
Modular Translation System

Document Coding Language
SPECIFICATION Version 2.0 December 21, 2008

© Copyright 1993-2008 by Omni Systems, Inc., All Rights Reserved.

Documentation and design by Rhea Barron, Zymurgy, New Orleans, LA

Omni Systems, Inc. • Email: info@omsys.com • Web: http://www.omsys.com

Document Coding Language 2.0 page i
Contents
Introduction . 1

Types of DCL Programs . 1

Form and Content . 2
Characteristics of DCL Files . 2
File Format of DCL Files . 2
Record Formats . 6

Binary DCL . 6

Editable DCL . 8

The Datatypes . 10
Summary of Datatypes . 10
Datatype 0: ibyte (longval contains 4 bytes) . 10
Datatype 1: ishort (longval contains 2 shorts) 11
Datatype 2: ilong (longval contains 1 long) . 11
Datatype 3: imnem (longval contains a mnemonic) 11
Datatype 4: ebyte (longval contains the size of the following numeric data) 11
Datatype 5: eshort (longval contains the size of the following numeric data) . . . 12
Datatype 6: elong (longval contains the size of the following numeric data) 12
Datatype 7: edoub (longval contains the size of the following numeric data) . . . 12
Datatype 8: ename (longval contains the size of the following text data) 12
Datatype 9: etext (longval contains the size of the following text data) 13
Datatype 10: ecode (longval contains the size of the following text data) 13
Datatype 11: stamp (longval contains a timestamp) 13
Datatypes 14 and 15: group (longval contains group ID or 0) 14

Internal Controls (majortype 1) . 15
Define (majortype 1, minortype 1) . 15
Field (majortype 1, minortype 2) . 15
Scope (majortype 1, minortype 3) . 16
Attr (majortype 1, minortype 4) . 16
Units (majortype 1, minortypes 10–13) . 17
User ID (majortype 1, minortype 20) . 17
Source ID (majortype 1, minortype 21) . 17
Processor ID (majortype 1, minortype 22) . 18
Target ID (majortype 1, minortype 23) . 18
Alternate (majortype 1, minortype 30) . 18
Set and Duplicate (majortype 1, minortypes 40 and 41) 19
Include (majortype 1, minortype 50) . 19
End (majortype 1, minortype 60) . 19
Ini (majortype 1, minortype 70) . 19
Debug (majortype 1, minortype 80) . 19

Text Properties (majortype 2) . 20
Text Streams (majortype 2, minortypes 1–6) . 21
12/21/08

Document Coding Language 2.0 page ii
Text Objects (majortype 2, minortype 10) . 22
Text Breaks (majortype 2, minortype 11) . 22
Text Keeps (majortype 2, minortype 12) . 23
Hyphenation (majortype 2, minortype 13) . 23
Fonts and Characters (majortype 2, minortypes 14–18) 24
Vertical Positioning (majortype 2, minortypes 20–24) 26
Horizontal Positioning (majortype 2, minortypes 30–34) 28
Tabs (majortype 2, minortypes 40–42) . 29
Tables (majortype 2, minortypes 50–58) . 30
Conditionals (majortype 2, minortypes 60–64) . 32
Footnotes (majortype 2, minortypes 70–72) . 33
Text Insets (majortype 2, minortypes 75–79) . 34
Formats (majortype 2, minortypes 80–82) . 36
Variables (majortype 2, minortypes 90–91) . 37
References (majortype 2, minortypes 95–97) . 37
Autonumbers (majortype 2, minortypes 100–103) 41
List Tokens (majortype 2, minortypes 110–111) 43
SGML (majortype 2, minortypes 120–121) . 44

Layout Properties (majortype 3) . 45
Page Properties (majortype 3, minortypes 10–12) 45
Frame Properties (majortype 3, minortypes 20–36) 46
Frame Content (majortype 3, minortypes 40–60) 48

Graphics Properties (majortype 4) . 49
Graphic Grouping (majortype 4, minortype 1) 49
Graphic Objects (majortype 4, minortype 10) . 50
Graphic Attributes (majortype 4, minortypes 20–25) 50
Vector Graphics (majortype 4, minortypes 30 and 40) 51
Graphic Text (majortype 4, minortype 40) . 53
Equations (majortype 4, minortype 50) . 53
Rasters (majortype 4, minortypes 60–62) . 53
EPS Images (majortype 4, minortypes 70–72) . 54
Attribute Definitions (majortype 4, minortypes 80–84) 54
Objects (majortype 4, minortypes 90–92) . 56

Spreadsheet Properties (majortype 5) . 58
Audio Properties (majortype 6) . 59
Video Properties (majortype 7) . 60
User-defined Properties . 61
12/21/08

Document Coding Language 2.0 page 1
Introduction
Document Coding Language (DCL) provides programmers with a modular and
extensible method for describing compound documents. Omni Systems’ 25 years
of practical experience building tools for filtering complex documents has led to the
creation of a flexible document format that is both efficient and easy to understand.

DCL provides a common document format for programs that need to work with files
from many sources. It permits such programs to operate on only one file format,
DCL, regardless of the original source document format or the desired target
format. The authors of DCL-aware programs can concentrate on their own products‘
features.

DCL is also a convenient intermediate language for programs that convert docu-
ments from one word-processor or desktop-publisher program format to another.
When it is bundled with a WP or DTP application, it provides a standard interface
for document exchange with other DCL-ready products. Eventually, this will permit
application vendors to scale back their filter-construction work. Instead of trying to
keep up with other vendors’ constant format changes, the vendors who use DCL
can focus on thorough support of one stable and extendable format.

Types of DCL Programs
Three types of programs use DCL for representing document form and content:

1.Source readers convert from the native source
format to DCL.

2.Code processors perform operations on DCL format files.

3.Target writers convert from DCL to the native target format.

The source readers generate a sequence of DCL control records (CTLs) that describe
the document, including its text, layout, graphics, spreadsheet data, and audio and
video annotations. The source reader may write CTLs for some data (such as format
definitions and images) to separate files that are incorporated by reference, in
which case the source reader puts the filenames for such content in CTLs in the
document’s DCL file. For example, Omni Systems’ drmif reads FrameMaker MIF files
and writes DCL files.

The code processors modify and rewrite existing DCL files. For example, a code
processor could remap font names and special characters based on user directions.
Or it could rasterize any vector drawings. It could check the text for spelling and
grammatical errors using only text CTLs, without any interference from formatting
data. Since the DCL representation is the same for all source types, the code
processor operates without any need to consider the source, although information
identifying the source format is present in the DCL code in case it is wanted. An
example of a code processor is Omni Systems’ dcx, which converts DCL’s native
binary files to and from their ASCII form so that they can be checked and edited by
humans.

The target writers obtain the information they need to produce the output document
by reading the CTLs in the DCL file generated by the source readers. Since the
information describing different features in the document is modular and clearly
packaged by the CTLs, the target writer can safely skip over any data that it does
not understand. This permits extensions to DCL to be added at any time without
any risk of breaking the existing target writers. Omni Systems’ dwrtf reads a DCL
file that has been created by one of the source readers, and writes it in RTF form.
12/21/08

Document Coding Language 2.0 page 2
Form and Content
DCL files describe a document’s layout as a series of pages containing text and
graphics frames. The document’s content is described as one or more text streams,
punctuated by property changes and optional anchored frames. The text streams
are segmented and linked to the text frames they flow through, allowing pages to
be processed and accessed independently. DCL files are easily used by viewers.

DCL uses named formats to describe repeating text properties and content. Its
master frames and pages capture all details of repeating layouts. The model is both
simple and comprehensive.

Characteristics of DCL Files
? DCL files are normally written in binary form, for maximum speed and

minimum size. For convenience, a human-readable and editable form is
available (typically, but not necessarily, ASCII). Editable DCL files employ
user-editable mnemonics, in any language desired.

? DCL files are portable. For greatest processing speed, DCL binary files are
written in the native byte order of the machine on which they are
produced, but each DCL file begins with a record that specifies its format
in a universally-readable manner. A DCL file produced on any platform
may be read on any other platform.

? Text types supported include ISO international character sets as well as
Unicode, permitting the unrestricted use of DCL throughout the world.

? Numeric values are given in the native unit set of the source document to
avoid unnecessary rounding errors. Four scalable unit sets are supported:
inches (nominally in ten-thousandths), metric (in microns), points (in
hundredths), and Didot (in hundredths). Different unit sets can be used
in the same file for different categories of values.

File Format of DCL Files
A DCL file begins with a file identifier which establishes whether the file is binary or
ASCII; if binary, the identifier also indicates the internal byte order. Next are one
or more control records (CTLs) that specify the file history, beginning with one
describing the source application from which the file was written.

The next record is a group CTL, which encloses CTLs specifying document-wide
defaults, such as the character set in use. This defaults group is followed by the
resources group, which includes definitions—such as format definitions—that are
used later in the file.

The rest of the file consists of page groups. DCL uses “master pages” to specify
page layouts; they also contain headers and footers. The following “body pages”
refer to the master pages for repeating page-based text and graphics. Other non-
repeating shared text and graphics are defined on “reference pages” as needed.

Each page group consists of CTLs for page attributes (such as page type and hand-
edness), followed by groups for each frame (text or graphic) on the page. Frame
CTL groups can be nested to any level. Graphics appear inside their frames, or
directly on the page if not in any frame. Text appears in groups (text segments)
after all the frames on the page; each segment contains the text for one frame,
12/21/08

Document Coding Language 2.0 page 3
with CTLs that link it to its frame as well as to any other text segments that logically
precede and follow it in the same text stream.

Table 1 diagrams the typical major portions of a DCL file: the file identifier, the file
history, the document defaults group, the document resources group, and page
groups.

A DCL file typically has many page groups—one for each body page, each master
page, and each reference page in the document. A page group is frequently quite
complex, comprising several page attribute CTLs and several nested group CTLs.
Each text frame, graphics frame, text stream, and independent graphic on the page
has its own group, nested within the page group. Groups can be nested to any level,
but cannot overlap. The page group in Table 1 is given in a skeletal form. Table 2
gives more detail about the contents of a typical page group, showing how frames
and text are associated with each other on the page.
12/21/08

Document Coding Language 2.0 page 4
Notes on Table 1:
1.The binary DCL identifier is a single eight-byte

record, as are all the CTLs.

2.The four numbers for CTLs in the “Binary” column are the datatype, majortype,
minortype, and shortval, respectively. For group CTLs, the longval, which is the
fifth element of a DCL CTL, is a group ID, and is omitted from this table. See
“Record Formats“ beginning on page 6 for a full explanation of CTL formats.

3.The binary and ASCII values given in roman type are all actual values, not
examples, with the exception of “6” and “Frame” in the file history CTL, and the
page_ID in the page group CTL. Type in italics is to be replaced by an actual
value.

4.In ASCII DCL, the beginning of a group is signalled by an additional open
parenthesis at the beginning of the group CTL, and the end of a group by a
matching closing parenthesis. The pound sign, “#”, makes the rest of the line a
comment.

Table 1: Typical DCL file organization.

Functionality Binary form ASCII form

DCL identifier
byte-order palindrome (SPARC shown)

0xA5C3C3A5
0x000000000

(DCL 100)

file history CTLs 11 1 21 6
timestamp

{dcl source Frame : time)

group CTL: begin document-wide
defaults, such as the character set in
use

15 1 40 1 ((dcl set defaults)

CTLs describing the document defaults – – – – (. . .)

endgroup CTL: end the document
defaults group

14 1 40 1)

group CTL: begin document resources
group

15 1 40 2 ((dcl set resources)

CTLs describing document resources – – – – (. . .)

endgroup CTL: end the document
resources group

14 1 40 2)

group CTL: begin page group 1 15 3 10 1 ((layout pg_def 1)#page_ID is 1

CTLs for page attributes, text and graphics
frames, and text streams; a page group
typically contains nested groups, as shown in
Table 2

– – – – (. . .)

endgroup CTL: end page group 1 14 3 10 1)
12/21/08

Document Coding Language 2.0 page 5
Notes on Table 2:
1.The page represented by this table has one

column of text, and one graphic that is anchored
to the text:

2.Each group also contains numerous CTLs that
give the properties associated with its page
element, such as page size and usage for the
page group, size and position for the two
frames, and paragraph properties and content
for the text segment.

3.The page ID is not the actual page number. The
first few page IDs are typically used for
reference and master pages.

Table 2: Generic page group in a DCL file.

Functionality Binary
form ASCII form

group CTL: begin page group 1 15 3 10 1 ((layout pg_def 1) #page_ID is 1

group CTL: begin text frame
group

15 3 20 2 ((layout fr_def 2) #frame_ID is 2

frame text CTL: identify text
stream that goes in this frame

2 3 40 4 (layout text 4) #frame contains
 # text with text_ID 4

end group CTL: end text frame
group

14 3 20 2)

group CTL: begin graphic
frame group

15 3 20 3 ((layout fr_def 3) #frame_ID is 3

end group CTL: end graphic
frame group

14 3 20 3)

group CTL: begin text segment
group

15 2 1 4 ((text id 4) #text stream ID is 4

text frame CTL: identify frame
containing this text

2 2 2 2 (text frame 2) #text is in frame 2

text anchor CTL: anchor a
graphics frame

2 2 5 3 (text anchor 3) #graphics frame 3 is
 # anchored in this text

end group CTL: end text segment
group

14 2 1 4)

end group CTL: end page
group 1

14 3 10 1)

Graphic
frame 3

Text frame 2
contains text
of stream 4
and anchor
for graphic

Page ID 1
12/21/08

Document Coding Language 2.0 page 6
Record Formats
A DCL file consists of a series of control records (CTLs). Each binary DCL CTL record
contains eight bytes, consisting of a datatype, a majortype, a minortype, a shortval,
and a longval. Each ASCII DCL CTL has the equivalent information in a similar form.

The datatype is the most significant nibble of the first byte of a binary DCL CTL
record. It may mark the record as starting or ending a group of records, or as
having an internal or external data area. In the latter case the datatype also spec-
ifies the format of the data. The datatype has no explicit representation in the ASCII
form of DCL.

The majortype values defined in standard DCL are:

1 = DCL internal control
2 = text property
3 = layout property
4 = graphic property
5 = spreadsheet property
6 = audio property
7 = video property

The meaning of the minortype depends on the majortype; the minortypes for each
majortype are detailed in this document.

The meaning of the shortval and longval fields depends on both the major and
minor types.

The shortval typically contains enumerated values (providing more subtypes),
indices (such as format number or text stream number), or counts of items (table
rows and columns).

The longval usage depends on the datatype of the record. The longval may contain
a numeric value such as type size or line thickness. If the datatype marks the
record as having an external data area, the longval is the byte size of the following
data. If the record starts or ends a group, the longval contains the group ID (or 0).

Note
All the format descriptions given in this specification are in the
SPARC/Motorola/MIPS form, with MSB first.

Binary DCL
The first record in a binary DCL file is the identifying record; it is different from all
other DCL records. Instead of having the form described above (datatype, major-
type, minortype, shortval, longval), the first four bytes identify the file using a
“magic” number. The second four bytes specify the byte order used in the file. To
make this initial record accessible to all platforms, both the magic number and the
byte-order codes are palindromes; they read the same forwards and backwards in
binary form.

The binary DCL identifying record has the following format:

0xA5 0xC3 0xC3 0xA5 byteorder byteorder byteorder byteorder
12/21/08

Document Coding Language 2.0 page 7
where byteorder = 0 for MSB first (most common), 0x81 for LSB first (Intel), or
0x42 for PDP-11.

Thus the second 4 bytes of a SPARC record would be 0x00000000, of a PDP-11
record 0x42424242, and of an Intel 80x86 record 0x81818181, all of which would
read as the same unsigned long integer on all three architectures.

After reading this record, a program can select the appropriate method to use for
reading the rest of the records.

Each of the remaining binary DCL records consists of an eight byte CTL plus any
associated external data. Each binary CTL is read as two bytes, an unsigned short,
and an unsigned long integer, and then byte-swapped as appropriate. The CTL for-
mat is:

(datatype majortype) minortype short1 short0 long3 long2 long1 long0

The first byte has two parts. The most significant nibble is the datatype. Datatypes
are discussed at some length beginning on page 10.

The least significant nibble of the first byte is a four-bit majortype value. The
meaning of majortypes 1 through 7 are given on page 6. The remaining values, 0
and 8 through 15, are unused and reserved.

The second byte in a CTL is the minortype. It has a range of 1 to 254, with both 0
and 255 reserved for future expansion. Its interpretation is a more detailed expan-
sion of the majortype. Details are given throughout this document.

The structure of the minortype allows users to introduce their own features into
DCL. If the top bit of the minortype byte is set, the rest of the record (or group)
has a user-defined meaning, and will be ignored if the defined UserID is not one of
those understood by the program that is reading the DCL file. (A target writer
ignores CTLs by skipping them, but a code processor copies CTLs it does not under-
stand to its output.)

The next two bytes of a CTL are the shortval, read as a single short int. The range
is 0 to 65,535 when used as an index or unsigned short (the usual case), or else -
32,767 to +32,767 when used as a signed short int.

The remaining four bytes of the CTL are the longval, read as a single long int. Its
usage depends on the datatype. For datatype 0 through 3 (internal), the longval
contains the data itself; for example, if the datatype is 3, the longval contains a
signed long integer, with a range of -2,147,483,647 to +2,147,483,647. When the
datatype indicates external data (4-10), the longval contains the size in bytes of
the following data.

The following diagram illustrates the functional parts of a binary DCL CTL.

4 8 16 4 32

Datatype

BYTE 1 BYTE 2 BYTES 3 and 4 BYTES 5 to 8

External dataMajor Minor ShortVal LongVal
12/21/08

Document Coding Language 2.0 page 8
Editable DCL
The editable form of DCL is used whenever DCL data must be examined or altered
by humans, or by programs that do not understand binary DCL. It is useful when
debugging programs that read and write binary DCL. Editable DCL need not neces-
sarily use the ASCII character set. Although the description in this specification is
in ASCII, the equivalent in any other set, such as Katakana (in Unicode) or EBCDIC,
is equally acceptable. For any editable form, the main requirement is that a
program exist that converts between that form and binary DCL, allowing the data
to make the round trip without semantic alteration. As a reference, Omni Systems
furnishes such a bidirectional converter between binary and ASCII DCL, the dcx
program.

The ASCII form of DCL is readable and writable using any text editor, such as vi or
emacs. An ASCII DCL file consists of a set of control records (CTLs) just as the
binary DCL files do. Each CTL begins and ends with parentheses, making it easy to
move between the record start and end, and to delete or copy records.

The first record is the DCL identifier, such as (DCL 100) for DCL of version 1.00. This
record should not be preceded by any blank lines or spaces since the UNIX file
command uses it to identify DCL files.

CTL formats: After the initial identifying record, the remaining records have the
following basic format in an editable DCL file:

(majortype minortype shortval longval)

unless they are group CTLs (datatypes 14 and 15) or have following data (data-
types 4 through 10). The ASCII formats used for each of the datatypes are
described in detail starting on page 10.

Group CTLs: The group CTLs, datatypes 14 and 15, generate an additional pair of
parentheses that enclose each group. The group CTL is preceded by a start paren-
thesis, and the endgroup CTL is replaced by a single close parenthesis.

((majortype minortype shortval)

. . .

)

User-defined CTLs: If the CTL is user-defined (the top minortype bit set in the binary
DCL), the first character after the opening parenthesis is an asterisk ’*’:

(*majortype minortype shortval longval)

Comments: A comment in an ASCII DCL file starts with a ’#’ and ends with the next
newline; it can occur anywhere outside a CTL, but not within one.

Formatting conventions in editable DCL: The content of the CTLs can be given either
in pure numeric form, using decimal numbers, or in mnemonic form, using the
mnemonics defined in stddef.dcl. This provides complete language independence,
and permits unrestricted user customization. For example:

(1 10 1 0) is the same as (dcl page_units inches 0)
Each record is typically on a line of its own for readability, but white space between
records is optional and ignored. Any type and amount of white space within records
(except within text strings) is treated as a single space.

The lines of a DCL file should never be more than 254 characters long, and 80-char-
acter (or shorter) lines are recommended for ease of editing. The only limit on the
12/21/08

Document Coding Language 2.0 page 9
byte length of a record is the maximum value of a long integer (2,147,483,647),
which is also the UNIX limit on file size.

The case used for mnemonics is significant; lower is preferred. The current major-
type mnemonics are dcl (for internal controls), text, layout, graph, spread, aud,
and vid. The dcl majortype, used for support of ASCII DCL, has among its
minortypes the internal controls “define”, “field”, and “scope”, described on page
15. These CTLs permit defining new mnemonics and redefining old ones within
normal DCL files as desired.

Numeric data is in decimal, except that datatypes 0 (internal byte, “=X”) and 4
(external byte, “+X”) are hex (commonly used for rasters). Each number contains
the data for one data item (typically a long) in the data following a CTL. White space
separates the numbers; extra white space is ignored.

For timestamps, the CTL should be followed by a comment with readable time:

(dcl source omni : 696898721) #Fri Jan 31 14:58:41 1992

Text strings are enclosed in double quotes, one string per CTL. In them, literal
double quotes are “\"’’, and a literal backslash is “\\”. Only characters in the print-
able set of isprint(3) are acceptable in strings. When a string ends at a line break,
it must include a trailing space if one is wanted at that point when the line break
shifts. Any line endings and tabs within text strings are ignored.

(text obj lit "this line ends, but the paragraph goes on. ")

The sequences ’\(’ and ’\)’ may be inserted in text strings as required to “balance”
parentheses within them in ASCII DCL; they should be ignored. They are used only
to make the editor parenthesis-matching functions work.
12/21/08

Document Coding Language 2.0 page 10
The Datatypes
The datatype—the first nibble in a record—indicates how the longval is to be inter-
preted, and whether external data is present. The following diagrams illustrate each
of the fourteen defined datatypes. The binary form is the native DCL form. The dcx
program converts a binary DCL file to and from human-readable ASCII format. Both
forms of DCL are displayed below.

Summary of Datatypes

Note that values 4 through 10 describe the type and size of data following the eight-
byte portion of the control. Values 15 and 14 indicate that this CTL is respectively
the beginning or end of a group of CTLs. The other values give information about
the type of data contained in the longval of the CTL.

Datatype 0: ibyte (longval contains 4 bytes)
In an ASCII DCL file, the longval portion of datatype 0 is four hexadecimal bytes
preceded by =X. Datatype 0 is used for user ID.

Value Meaning

0, 1, 2, 3 longval of this CTL contains data (byte, short, long,
mnemonic)

4, 5, 6, 7 longval of this CTL is the size of the following external
numeric data (byte, short, long, double), which is
treated logically as part of the CTL

8, 9, 10 longval of this CTL is the size of the following external
non-numeric data (name, text, code)

11 longval of this CTL contains timestamp

12, 13 unused, reserved for expansion

14, 15 this CTL is the start or end of group

maj min shortval0 byte byte byte byte

(major minor short =X 4F 4D 4E 49)

Binary form

ASCII form
12/21/08

Document Coding Language 2.0 page 11
Datatype 1: ishort (longval contains 2 shorts)
In an ASCII DCL file, the longval portion of datatype 1 is two short integers
preceded by =H.

Datatype 2: ilong (longval contains 1 long)
In an ASCII DCL file, the longval portion of datatype 2 is one long integer preceded
by an = sign.

Datatype 3: imnem (longval contains a mnemonic)
In binary DCL the longval for datatype 3 is a signed long that has an assigned
mnemonic value. In an ASCII DCL file, the longval portion is either the mnemonic,
or the long in decimal form if no mnemonic is defined for it.

Datatype 4: ebyte (longval contains the size of the following numeric data)
In a CTL whose datatype is 4, the longval is a long giving the number of bytes in
the following external numeric data. The external data is read as bytes.

In an ASCII DCL file, the external data is represented as hexadecimal bytes,
preceded by +X. The closing parenthesis of the CTL follows the end of the data. This
datatype is typically used for monochrome raster images.

maj min shortval1 short short

(major minor short =H 12345 12345)

maj min shortval2 long

(major minor short = 1234567890)

maj min shortval3 long (read as a mnemonic)

(major minor short mnemonic)

bytesmaj min shortval4 long

(major minor short +X 4F 4D 4E 49 4F 4D 4E 49)

bytes
12/21/08

Document Coding Language 2.0 page 12
Datatype 5: eshort (longval contains the size of the following numeric data)
In a CTL whose datatype is 5, the longval is a long giving the number of bytes in
the following external numeric data. The external data is read as shorts.

In an ASCII DCL file, the external data is represented as decimal numbers,
preceded by +H. The closing parenthesis of the CTL follows the end of the data.

Datatype 6: elong (longval contains the size of the following numeric data)
In a CTL whose datatype is 6, the longval is a long giving the number of bytes in
the following external numeric data. The external data is read as longs.

In an ASCII DCL file, the external data is represented as decimal numbers,
preceded by a + sign. The closing parenthesis of the CTL follows the end of the data.

Datatype 7: edoub (longval contains the size of the following numeric data)
In a CTL whose datatype is 7, the longval is a long giving the number of bytes in
the following external numeric data. The external data is read as doubles.

In an ASCII DCL file, the external data is represented as floating-point numbers,
preceded by +D. The closing parenthesis of the CTL follows the end of the data.

Datatype 8: ename (longval contains the size of the following text data)
In a CTL whose datatype is 8, the longval is a long giving the number of bytes in
the following external text data. The external data is read as characters in the default
character set of the document. The character data is always null-terminated in a
binary DCL file.

maj min shortval5 long

(major minor short +H 123 234 345 456)

shorts shorts

maj min shortval6 long

(major minor short + 12345 23456 34567)

longs longs

maj min shortval7 long

(major minor short +D 123.234 345.456)

doubles doubles
12/21/08

Document Coding Language 2.0 page 13
In an ASCII DCL file, the external data is represented as a name in single quotes.
The closing parenthesis of the CTL follows the end of the data.

Datatype 9: etext (longval contains the size of the following text data)
In a CTL whose datatype is 9, the longval is a long giving the number of bytes in
the following external text data. The external data is read as characters in the current
character set (which may not be the default character set of the document). The
character data is always null-terminated in a binary DCL file.

In an ASCII DCL file, the external data is represented as text in double quotes. The
closing parenthesis of the CTL follows the end of the data.

Datatype 10: ecode (longval contains the size of the following text data)
In a CTL whose datatype is 10, the longval is a long giving the number of bytes in
the following external text data. The external data is read as characters in the ANSI
set. The character data is always null-terminated in a binary DCL file.

In an ASCII DCL file, the external data is represented as lines of code; the shortval
contains the line count. The code begins on a new line, and the closing parenthesis
of the CTL is on a new line following the end of the data. This datatype is used for
EPS code, among other things.

Datatype 11: stamp (longval contains a timestamp)
In datatype 11 CTLs, the longval is an unsigned long that is read as a timestamp.

maj min shortval8 long

(major minor short 'name')

chars chars

maj min shortval9 long

(major minor short "text")

chars chars

maj min shortval10 long

(major minor short %
code
)

chars chars
12/21/08

Document Coding Language 2.0 page 14
In an ASCII DCL file, the timestamp is represented as a long preceded by a colon.
The timestamp should be followed by a comment with readable time. (Text
following a pound sign [#] on the same line is an ASCII DCL comment.)

? Datatypes 12 and 13 are reserved for expansion.

Datatypes 14 and 15: group (longval contains group ID or 0)
Datatypes 15 and 14 are used to signal the beginning and end, respectively, of a
group of related CTLs. The longval may contain zero, or an ID for matching group
start and end.

In an ASCII DCL file, the group CTL starts with two open parentheses, and the
entire endgroup CTL becomes a single close parenthesis. The group ID is not used.

The group type is used for CTLs such as graphics definitions. This datatype also
allows a target writer or code processor to successfully ignore a set of CTLs that
describe a feature that is not understood.

Groups can nest but not overlap.

maj min shortval11 unsigned long

(major minor short : 696898721) #Fri Jan 31 14:58:41 1992

maj min shortval15 group ID or 0

((major minor short)
 other CTLs in the group
)

maj min shortval14 group ID or 0

other CTLs in the group
12/21/08

Document Coding Language 2.0 page 15
Internal Controls (majortype 1)
For DCL internal controls, the following minortypes are defined:

1 = define
2 = field
3 = scope
4 = attr

10 = page units
11 = leading units
12 = font units
13 = line units

20 = user ID
21 = source ID
22 = processor ID
23 = target ID

30 = alternate

40 = set
41 = duplicate

50 = include

60 = end

70 = ini

80 = debug

Define (majortype 1, minortype 1)
The define CTL(1) is used to define the mnemonics to be used for numeric values
whenever the DCL binary file is converted to editable DCL form. The shortval
contains the numeric (short integer) value of the mnemonic. The datatype is
ename, and the longval gives the length of the naming string that follows. The
defined string should be 80 characters or less, should begin with a letter, and should
contain only alphanum characters and ’_’. All lower case is preferred, but mixed
case can be used if desired.

Field (majortype 1, minortype 2)
The field CTL(2) restricts the usage of defines to a particular field of CTLs. The
shortval contains the field identifier:

shortvals
1 = major type
2 = minor type
3 = shortval
4 = longval

The datatype is group; the other CTLs in the group can include defines and scope
groups, which may in turn contain more nested field groups. Each of the CTL fields
12/21/08

Document Coding Language 2.0 page 16
constitutes a separate name space, so the same defined string may have different
meanings when in different fields. In addition, the same string can have different
meanings in the same field when it is used within different scopes.

Scope (majortype 1, minortype 3)
The scope CTL(3) restricts the scope of defines to a particular area of DCL, so that
the same names may have different meanings in different contexts. The scope CTL
is used within a field group; the shortval of the scope CTL then specifies the value
for that field within which the subsequent defines are in effect. The value must be
given as a number. The datatype is group; the scope group contains a field group,
which itself contains defines and possibly more nested scope groups.

To clarify field, scope, and definition usage, here is an excerpt from stddef.dcl,
which contains the default definitions for ASCII DCL:

((dcl field maj) #field is majortypes
 (dcl def 1 "text") #majortype 1 is "text"
 ((dcl scope 1) #scope is within majortype text
 ((dcl field min) #field is minortypes
 (dcl def 3 "break") #minortype 3 is "break"
 ((dcl scope 3) #scope is within minortype break
 ((dcl field short) #field is shortval mnemonics
 (dcl def 1 "para_start")#data type 1 is a paragraph start
 (dcl def 2 "para_end")#data type 2 is a paragraph ending
 (dcl def 3 "frame")
 (dcl def 4 "page")
 ((dcl scope 4) #scope is within shortval page
 ((dcl field long) #field is longval mnemonics
 (dcl def 0 "soft") #longval 0 means soft page
 (dcl def 1 "hard")
) #end field longval
) #end scope of page
 (dcl def 5 "lpage")
 (dcl def 6 "rpage")
) #end field shortval
) #end scope of break
) #end field minor
) #end scope of text
) #end field major

Attr (majortype 1, minortype 4)
The attr CTL(4) specifies the nature of the information in the CTL. It is used only for
conversions from binary and editable DCL to “xdcl”, the XML form of DCL, which is
experimental.

shortvals
0 = tag
1 = id (string ID)
2 = nid (numeric ID)
3 = ref (to an ID)
4 = type
5 = value
12/21/08

Document Coding Language 2.0 page 17
6 = page
7 = rows
8 = col
9 = cols
10 = level
11 = lines
12 = next
13 = rel

Units (majortype 1, minortypes 10–13)
The units CTLs specify the units sets for position and size information in subsequent
CTLs. Page units(10) are for layout, graphics, and horizontal text positioning;
leading units(11) for vertical text positioning, interline and interparagraph; font
units(12) for type size; and line units(13) for graphics line thickness. The shortval
identifies the units set:

shortvals
1 = inches in 0.0001" increments
2 = metric in microns
3 = points (72 per inch) in hundredths
4 = Didot points (European standard) in hundredths

The precision of all of these is of a similar order of magnitude, ranging from 6,721
per inch for Didot to 25,400 per inch for microns. This exceeds by a factor of 2 to
10 the best resolution of current typesetting devices.

The longval can be used to scale the units set as desired. A size of 0 or 1000 indi-
cates native scaling, smaller values specify smaller units, and larger values specify
larger units. For example, a longval of 1000000 for metric units would make the
unit millimeters instead of microns. Units are given near the start of the file, in the
“document defaults” set of properties.

User ID (majortype 1, minortype 20)
The user ID CTL(20) uniquely identifies the user responsible for creation of user-
defined controls, so that code processors and target writers can determine whether
or not they know how to interpret such codes. The longval contains a four-byte user
identifier, such as “OMNI”. The shortval gives the minimum revision level (of the
user program, not of DCL) required for code comprehension. It is desirable but not
essential for user identifiers to be issued by a central source (initially Omni
Systems, eventually a user group) to minimize the possibility of accidental duplica-
tion. This ID CTL may be reissued as required to distinguish CTLs defined by the
source reader from those that may be defined by the code processors. Currently
defined IDs are:

longvals
OMNI = new CTL defined by Omni Systems, but not yet part of standard
ASTX = Applix Aster*x feature
FMIF = FrameMaker MIF feature
ILFA = Interleaf ASCII feature
WPER = WordPerfect feature

Source ID (majortype 1, minortype 21)
The source ID CTL(21) is written at or near the beginning of the DCL file by the
source reader. It uses the shortval for the source ID:
12/21/08

Document Coding Language 2.0 page 18
shortvals
1 = unknown
2 = Aster*x
3 = Avalon
4 = DCA/RFT
5 = DisplayWrite
6 = FrameMaker
7 = Interleaf
8 = Island Write/Paint/Draw
9 = Lyrix

10 = Microsoft Word (DOS)
11 = Microsoft Word (Mac)
12 = PageMaker
13 = Quark Express
14 = Quintet
15 = Rapport
16 = Signature
17 = troff
18 = Uniplex
19 = Ventura Publisher
20 = Word for Windows
21 = WordMARC
22 = WordPerfect through 4.2
23 = WordPerfect 5.0 and up
24 = GPO Microcomp

Its datatype is 11; the longval is a timestamp as returned by time(3).

Processor ID (majortype 1, minortype 22)
A processor ID CTL(22) is added after the source ID CTL(21) by each code processor
that operates on the DCL files. The longval contains either a timestamp as for the
source ID CTL(21), or, if the datatype is ename, a version identifier string. The
shortval identifies the processor type:

shortvals
1 = reader
2 = format constructor
3 = spelling checker
4 = grammar checker
5 = remapper (font or character)

Target ID (majortype 1, minortype 23)
The target ID CTL(23) specifies information that is intended for use only by a specific
target writer. The shortval contains an ID value from the same set of values used
for the source ID CTL(21). The datatype is group, and the group contains the target-
specific CTLs. If the target writer that is reading the file is not the one identified, it
should ignore (skip) that data. The datatype is imnem (3) instead when the target
ID CTL(23) is used within a set of alternates, as defined below, to mark data that
is not for that target.

Alternate (majortype 1, minortype 30)
The alternate CTL(30) groups information which is given in two or more forms to
support target writers that have differing capabilities. Each alternate CTL(30) in a
12/21/08

Document Coding Language 2.0 page 19
set contains the same ID number in its shortval, beginning with 1 and increasing
monotonically. This ID distinguishes alternate sets from those adjacent to them or
nested within them. The datatype is group, and the group contains the current
alternate. A program considering a set of alternates should skip to the end of the
current alternate as soon as it sees a CTL describing an object it cannot render. To
simplify analysis, the alternate may contain target ID CTLs (with datatype imnem,
3) to specify the targets for which the current alternate is not suited. After
accepting one alternate, the program should skip all other alternates in the same
set.

Set and Duplicate (majortype 1, minortypes 40 and 41)
The set CTL(40) identifies a group of CTLs for later duplication. The shortval is the
set ID, a number starting with 1 and increasing monotonically. The datatype is
group. The first two sets are reserved. Set 1 is reserved for document-wide
defaults. Set 2 is for packaging all the resources in a DCL file, such as number
streams and formats, from the document defaults up to the first page image.

The duplicate CTL(41) specifies immediate duplication of the CTL which has the set
ID given in the shortval. It avoids needless repetition of CTL data.

Include (majortype 1, minortype 50)
The datatype of the include CTL(50) is ename (8), and the longval is the length of
the following absolute or relative pathname of a file to include. The shortval indi-
cates the type of file:

1 = binary DCL
2 = editable DCL
3 = graphic data (raster or EPS)

If the file referenced is found, its contents are read and interpreted immediately.
Such included DCL files generally contain information used in multiple documents,
such as format definitions and master frames.

End (majortype 1, minortype 60)
The end CTL(60) shortval is 1 to mark the end of a DCL file. The longval is the byte
size of the file up to the start of the end CTL itself. This provides assurance that the
file is complete.

Ini (majortype 1, minortype 70)
The datatype of the ini CTL(70) is etext (8), and the longval is the length of the
following string. The shortval indicates the type of ini-file item described:

1 = application (basename of .ini file)
2 = sect (section heading)
3 = prop (key, on left of equal sign within section)
4 = value (data, on right of equal sign within section)

Debug (majortype 1, minortype 80)
The debug CTL(80) shortval is 1 to specify a breakpoint, when running a DEBUG
version of a DCL processor under a debugger. It is generally inserted and also
removed from editable DCL during the debugging process.
12/21/08

Document Coding Language 2.0 page 20
Text Properties (majortype 2)
Each text stream in a document is associated with a set of layout or graphics text
elements, and is considered to flow through them. The text properties CTLs apply
to the current text stream, as set by the text stream ID CTL below. Streams all
begin with the document default properties, which are those set before the start of
any text stream, in effect. Within each stream, footnote text properties are distinct
from normal text properties. The minortypes are:

1 = text stream ID
2 = text frame
3 = text prev
4 = text next
5 = text anchor
6 = text stream properties

10 = text objects
11 = text breaks
12 = text keeps
13 = hyphenation
14 = text character set
15 = font attributes
16 = drop box size
17 = text language
18 = revision bar properties

20 = vertical positioning
21 = line spacing
22 = paragraph spacing
23 = vertical justification
24 = column coordination

30 = horizontal positioning
31 = horizontal alignment
32 = indentation
33 = word spacing
34 = character spacing

40 = tab definition
41 = tab position
42 = tab character

50 = table
51 = table properties
52 = table column
53 = table column properties
54 = row
55 = row properties
56 = cell
57 = cell properties
58 = title properties

60 = conditional definition
61 = conditional properties
62 = conditional usage
63 = conditional end
64 = conditional display
12/21/08

Document Coding Language 2.0 page 21
70 = footnote type definition
71 = footnotes
72 = footnote properties

75 = text inset
76 = text inset client
77 = text inset flow
78 = text inset text
79 = text inset table

80 = format definition
81 = format properties
82 = format call
83 = format text
84 = format tag

90 = variable definition
91 = variable properties

95 = reference definition
96 = reference properties
97 = reference token

100 = autonumber definition
101 = autonumber properties
102 = autonumber token
103 = autonumber setting

110 = list token
111 = variable value
112 = hypertext token

120 = SGML definition
121 = SGML usage

Text Streams (majortype 2, minortypes 1–6)
The text stream ID CTL(1) shortval has the ID of the current text stream. The stream
ID begins with 1 and increases monotonically. The datatype is group, and the group
contains the current portion of the stream. Text streams follow the frame definitions
within the page descriptions (or the page definitions, for text on master pages).

For the text frame CTL(2), the shortval gives the ID of the frame in which the stream
is contained; if the text does not fit, it flows on to the next frame as identified by
the frame text content CTL in that frame. The longval gives the page number for
that frame.

For the text prev CTL(3), the shortval gives the ID of the frame in which the previous
portion of the stream is contained; 0 indicates the beginning of the stream. The
longval gives the page number on which that frame is located.

For the text next CTL(4), the shortval gives the ID of the frame in which the next
portion of the stream is contained; 0 indicates the end of the stream. The longval
gives the page number on which that frame is located.

For the text anchor CTL(5), the shortval gives the ID of the frame which is anchored
at this point in the stream. The longval gives the page number on which it is
described, or 0 if it is not within a page description.
12/21/08

Document Coding Language 2.0 page 22
The text stream properties CTL(6) shortval has the property type:

Text Objects (majortype 2, minortype 10)
The text object CTL(10) shortval identifies the type of renderable object:

1 = literal text
2 = variable
3 = autonumber
4 = autonumber reference
5 = autonumber page reference
6 = generated text
7 = list token cross-reference

For literal text strings, the datatype is etext (9), and the longval contains the length
of the text following. Variables, autonumbers, and cross-references are described
later. Generated text includes text from the prefix and suffix content of formats, as
well as autonumbers that don’t have actual autonumber stream data (such as
autonumbers used for bullets).

Text strings are restricted to “printable” characters, in the isprint(3) set. In ASCII
DCL only, the backslash is used as an escape; a literal backslash is “\\”, a literal
double quote is “\"“, and a balancing parenthesis is “\(“ or “\)”. In binary DCL, the
literal backslash and double quote are themselves, and balancing parentheses are
omitted. Binary DCL strings are always null-terminated.

Non-printable characters must be given in text object CTLs of datatype imnem (3).
The longval contains the character value. Printable characters may also be given
individually in these CTLs, instead of in strings. In ASCII DCL, they are shown as a
mnemonic or as a decimal value, rather than as a character or as a string value.

Text Breaks (majortype 2, minortype 11)
The text break CTL(11) is used to identify points in the text flow at which breaks
occur, and specify limits on them. The shortval may be:

Type Values

1 = stream name text flow tag

2 = auto add frames 0 = stay within frame,
1 = add new frame on overflow

3 = flow content 0 = text, 1 = PostScript code

Type Values

1 = paragraph start paragraph ID, or 0 if ID is not needed

2 = paragraph end paragraph ID, or 0 if ID is not needed

3 = frame or col start 0 = soft, 1 = hard

4 = page start 0 = soft, 1 = hard

5 = left page start 0 = soft, 1 = hard

6 = right page start 0 = soft, 1 = hard
12/21/08

Document Coding Language 2.0 page 23
Soft returns disappear entirely if they are not at line ends; if a space is wanted at
such a point instead, one must be put explicitly in the text string before the soft
return.

Text Keeps (majortype 2, minortype 12)
The text keeps CTL(12) describes the limits placed on frame or page breaks before,
after, and within paragraphs. The shortval may be:

Hyphenation (majortype 2, minortype 13)
The hyphenation CTL(13) specifies rules to use for hyphenation. The shortval may
be:

7 = return usage 0 = soft returns present, 1 = absent (as in Interleaf
pre-5.2)

8 = cancel break 1 = cancel any break in effect from preceding
format

9 = break char group of text object lit CTLs, each containing a
character or character sequence after which line
breaks are acceptable (such as “-” and “/”).

10 = line end 0 = soft, 1 = hard

Type Values

1 = keep prev 0 = allow, 1 = prohibit break before

2 = keep next 0 = allow, 1 = prohibit break after

3 = keep together 0 = allow, 1 = prohibit break within

4 = widows minimum lines before break,
0 = no widow control

5 = orphans minimum lines after break,
0 = no orphan control

Type Values

1 = hyphenation 0 = off, 1 = used

2 = max hyph maximum consecutive lines ending with hyphens

Type Values
12/21/08

Document Coding Language 2.0 page 24
Fonts and Characters (majortype 2, minortypes 14–18)
The text character set CTL(14) longval has the size in bits of a character as used in
text objects and in names, usually 8 or 16; 0 means variable. The shortval gives
the character set used for the text data:

1 = 7-bit ASCII
2 = PC-8
3 = Standard PS (Adobe)
4 = Symbol PS (Adobe)
5 = Interleaf PS
6 = BitStream Standard
7 = Ventura Standard
8 = Ventura Math
9 = Windows

10 = Code Page 437 (United States)
11 = Code Page 850 (Multilingual)
12 = Code Page 860 (Portuguese)
13 = Code Page 863 (Canadian French)
14 = Code Page 865 (Norwegian)
32 = EBCDIC
48 = Macintosh
64 = ISO 8859:1 Latin-1 (also called “ANSI”)
128 = Unicode (default; text strings can contain only U+0020 through U+007E)

For ISO Latin-1 (ANSI), the undefined characters 128 through 159 are used as
specified by FrameMaker; they consist primarily of PostScript characters missing
from ANSI.

The following values define multibyte characters:

192 = Japanese, Shift-JIS (variable 8 or 16 bit)
193 = Simplified Chinese, GB2312-80EUC (16)
194 = Traditional Chinese, Big5 (16)
195 = Korean, KSC5601-1982 (16)
200 = EUC, ISO 2022 (variable length 8 to 24 bit)
201 = ISO 10646 (32-bit)

3 = min word minimum word size to hyphenate

4 = min prefix minimum characters before hyphen

5 = min suffix minimum characters after hyphen

6 = respell 1 = hyphenated word at end of line is spelled
differently if not hyphenated (as in German),
affects only next line.

Type Values
12/21/08

Document Coding Language 2.0 page 25
The font attribute CTL(15) uses the shortval for the attribute type and the longval
for the attribute value. The values for each type are mutually exclusive; 0 always
means normal or off:

Type Values

1 = name font number from list below or string name

2 = size vertical font size, in font units

3 = compression 1 = compressed, 2 = condensed, 3 = narrow, 4 =
wide, 5 = expanded

4 = font weight 1 = thin, 2 = light, 3 = demi, 4 = bold, 5 = extra
bold, 6 = heavy

5 = font angle 1 = italic, 2 = backslant

6 = baseline 1 = subscript, 2 = superscript, 3 = drop initial

7 = capitalization 1 = lower, 2 = upper, 3 = initial caps, 4 = small
caps

8 = font style 1 = shadow, 2 = outline

9 = revision mark 1 = inserted (redline), 2 = deleted (strikethrough) ,
3 = changed (revbar)

10 = underscore rule 1 = spaces (default), 2 = tabs, 3 = both

11 = lining 1 = single underscore, 2 = double underscore, 3 =
overline, 4 = numeric underline

12 = overstrike character to use as overstrike char

13 = font color color index value

14 = visibility 1 = invisible (hidden)

15 = Western name for combined Western/Asian fonts (FrameMaker)

16 = Combined name for combined Western/Asian fonts (FrameMaker)

For the following document properties, sizes are in font units:

21 = superscript size

22 = superscript offset

23 = subscript size

24 = subscript offset

25 = small cap size

26 = superscript stretch

27 = subscript stretch

28 = small cap stretch
12/21/08

Document Coding Language 2.0 page 26
For the font name, if the source writer cannot find the name in the default font list,
the datatype is ename (8) and the longval contains the length of the following font
name. The default list is:

1 = unknown
2 = Times Roman
3 = Helvetica
4 = Courier
5 = Avant Garde
6 = Bookman
7 = Garamond
8 = Helvetica Black
9 = Helvetica Light

10 = Helvetica Narrow
11 = Korinna
12 = New Century Schoolbook
13 = Palatino
14 = Zapf Chancery
15 = Zapf Dingbats
16 = Symbol
17 = Webdings

The drop box size CTL(16) shortval has the width of the drop box for any following
drop initial characters (0 to fit the width to the character). The longval contains the
depth of the drop box below the baseline.

The text language CTL(17) shortval specifies a subtype, such as ISO (1), Frame (2),
Interleaf (3), or Microsoft (4). The longval is either a numeric ID (as for
FrameMaker and Microsoft), or the length of the following name.

The revision bar CTL(18) shortval contains the property type:

Vertical Positioning (majortype 2, minortypes 20–24)
The vertical positioning CTL(20) itself takes immediate effect, specifying one of the
following types of move for the distance (relative) or to the position (absolute, from
the top) given in the longval. The values are in lead units. The move type is in the
shortval:

1 = relative down
2 = relative up
3 = absolute in current frame
4 = absolute on current page

Type Values

1 = auto 0 = no auto revision bars, 1 = auto create revision
bars

2 = position 0 = left, 1 = right, 2 = inner margin, 3 = outer
margin, 4 = Interleaf autopositioning

3 = color color number

4 = gap distance from column edge in lead units

5 = thickness bar thickness in line units
12/21/08

Document Coding Language 2.0 page 27
The line spacing CTL(21) specifies a mode in the shortval and a value in the longval.
The defined modes are:

1 = fixed baseline-to-baseline
2 = fixed, allow for largest size in line
3 = additive to font size
4 = additive, allow for largest size in line
5 = proportional to font size

For the first four modes, the longval contains a height value. For the fifth, it
contains a 0 or 1000 for “normal” leading, smaller values to tighten, and larger
values to increase; 500 would be half spaced, and 2000 would be double spaced.

The paragraph spacing CTL(22) always contains a height value in the longval. It has
one of these modes in the shortval:

1 = fixed before
2 = minimum before
3 = fixed after
4 = minimum after

The fixed values are always used, except that the before values are not used at the
top of a frame. The minimum values are compared with the corresponding
minimum of the adjacent paragraph, and the greater of the two is used (the model
employed by FrameMaker, and by Interleaf 4.0 and earlier).

The vertical justification CTL(23) shortval contains the property type:

Type Values

1 = feathering 0 = no vert justification, 1 = use vert justification

2 = line max maximum spread between lines in lead units

3 = para max maximum spread between paragraphs in lead units

4 = para shrink maximum shrinkage between paragraphs in lead
units

5 = frame max maximum spread at anchored frame margins in
lead units

6 = depth at break percent of page height at which to attempt vert
justification

7 = depth no break same if no forced break (Interleaf)
12/21/08

Document Coding Language 2.0 page 28
The column coordination CTL(24) shortval gives the coordination property:

Horizontal Positioning (majortype 2, minortypes 30–34)
The horizontal positioning CTL(30) itself takes immediate effect, specifying one of
the following types of move for the distance (relative) or to the position (absolute,
from the left) given in the longval. The values are in page units. The move type is
in the shortval:

1 = relative right
2 = relative left
3 = absolute in current frame
4 = absolute on current page

Horizontal alignment CTL(31) uses the longval (normally 0) as an offset (left is nega-
tive, right is positive) to the mode given by the shortval:

1 = left
2 = center
3 = right
4 = justified
5 = force-justified (leadered if in middle of line)

The indentation CTL(32) uses the longval as an offset from the left edge of the
containing frame (or column) for the first line and body line indents, and as an
offset from the right edge of the frame for the right indent. A negative value indi-
cates a position outside the frame boundaries. The indent type is in the shortval:

1 = left for first line of para
2 = left for body of para
3 = right

The word spacing CTL(33) uses the shortval for the spacing type:

1 = optimum word space
2 = minimum word space
3 = maximum word space

The longval is 0 or 1000 for word space equal to an en space, smaller values to
decrease proportionally, and larger values to increase.

The character spacing CTL(34) uses the shortval for the type:

1 = pair kerning
2 = maximum letterspacing to achieve justification
3 = track kerning

Type Values

1 = sync lines 0 = off, 1 = synchronize baselines in adjacent
columns

2 = spacing nominal line spacing to which to sync, in lead units

3 = first line max max height of first line to be synchronized, lead
units

4 = balance 1 = balance columns on pages before breaks or at
end
12/21/08

Document Coding Language 2.0 page 29
For type 1, the longval is 0 for off and 1 for on. For type 2, it is 0 for no letter-
spacing, 1000 for en-space width. For type 3, it is in terms of the font size: 0 or
1000 for none, values under 1000 to tighten (500 would be 50% tighter), and
values over 1000 to loosen (2000 would be 50% looser).

The placement CTL(35) uses the shortval for the type:

1 = span
2 = sidehead
3 = run-in punctuation

For type 1, span, the longval is 1 for placement in column, 2 for col but not sidehead
area, 3 for col and sidehead area, and 4 for run-in. For type 2, sidehead, the longval
specifies alignment, where 1 is first baseline, 2 is top edge, and 3 is last baseline.

The sidehead CTL(36) uses the shortval for the type:

1 = flow
2 = pos
3 = width
4 = gap

For type 1, flow, the longval is 0 for off and 1 for on. For type 2, position, it is 1 for
left, 2 for right, 3 for inner, and 4 for outer.

Tabs (majortype 2, minortypes 40–42)
The tab definition CTL(40) indicates that the following tab values replace the ones
previously in effect. The shortval contains a count of tabs. The datatype is group.
The tabs are listed by position in ascending sequence.

The tab position CTL(41) longval contains the offset of the tab from the left edge of
the frame (may be negative). The shortval is the tab type:

1 = left
2 = center
3 = right
4 = align on decimal (period or comma, per country)
5 = align on period
6 = align on comma
7 = align on tab align character
8 = unknown, issued but not set; longval is 0

Within format prefix and suffix groups, and autonumber definition groups, tabs are
represented by an “unknown” tab position CTL, with a position of 0. This is neces-
sary because the tab type and position are not determined until the format is called
or the autonumber is used in the text; the tabs in effect at define time are not
necessarily those in effect later.

The tab character CTL(42) shortval contains the character purpose:

1 = fill char, to fill the space up to the next tab, default of space
2 = align char, for align tabs only (type 7 above), default of period

The longval has the character itself, in the set used by the current text stream. For
the fill character, if the datatype is etext (9), the longval contains the length of a
string to repeat, which follows.
12/21/08

Document Coding Language 2.0 page 30
Tables (majortype 2, minortypes 50–58)
The table CTL(50) has a datatype of group, and the group contains the table data.
The shortval contains the row count of the table, or 0 if the row count is unknown.

The table properties CTL(51) shortval contains the property type:

The table column CTL(52) shortval contains the column number starting with 1, or
0 for properties common to all columns. The datatype is group, and the contained
CTLs describe the column properties.

The table column properties CTL(53) shortval contains the property type:

Type Values

1 = name name for master table

2 = placement group, containing text alignment, indent, break,
etc., CTLs

3 = top rule ruling format number, 0 for no rule

4 = bottom rule ruling format number

5 = left rule ruling format number

6 = right rule ruling format number

7 = autonumbering 0 = by row, 1 = by column

8 = alt shading 0 = by row, 1 = by column

9 = reg shade count count of normally-shaded rows or columns

10 = alt shade count count of alternately-shaded rows or columns

11 = alt color color number

12 = alt fill fill property number

13 = page end rule 0 = normal, 1 = table bottom rule ends each page

14 = defaults group, containing title and row defaults CTLs

Type Values

1 = column count count of columns, if known

2 = column widths page units, datatype elong (6) for multiple widths,
or ilong (3) for the width of the current single
column

3 = column color color number

4 = column fill fill property number

5 = left rule ruling format number

6 = right rule ruling format number
12/21/08

Document Coding Language 2.0 page 31
The row CTL(54) starts each row of the table; the datatype is group, and the
shortval is the row type:

1 = body
2 = head of table
3 = foot of table
4 = running head (used after page break)
5 = running foot (used before page break)

The row properties CTL(55) shortval contains the property type:

The cell CTL(56) starts each cell of the row; the datatype is group, and the shortval
is the content:

1 = text or empty
2 = graphic (in graphic frame with cell attribute set)
3 = numeric (represented as text)
4 = formula (application dependent)

Within a cell, the content, alignment, indent, and any other properties CTLs can be
used in the usual way. However, such properties are effective only within the cell
itself, not for the following text or graphics. When cells straddle, the CTL is given in
the row that contains the top left corner of the cell.

Type Values

1 = row name name for master row

2 = auto height 0 or actual height of content (default)

3 = fixed height height in page units

4 = min height height in page units

5 = max height height in page units

6 = row count count of rows of the current type

7 = row color color number

8 = row fill fill property number

9 = top rule ruling format number

10 = bottom rule ruling format number

11 = boundary rule for head and foot rows, rule between them and
body

12 = ruling period count of rows before different rule

13 = periodic rule ruling format number to use every ruling period
12/21/08

Document Coding Language 2.0 page 32
The cell properties CTL(57) shortval gives the property type:

The table title CTL(58) shortval contains the property type:

Conditionals (majortype 2, minortypes 60–64)
These CTLs support the Interleaf “effectivity” controls, and the FrameMaker “condi-
tional text” facilities. Note that this CTL is unrelated to the DCL internal alternate
CTL, described previously.

Type Values

1 = straddle cols column count

2 = straddle rows row count

3 = rotation angle degrees ccw from east, in hundredths

4 = locked lock state

5 = color color number

6 = fill type fill property number

7 = top rule ruling format number

8 = bottom rule ruling format number

9 = left rule ruling format number

10 = right rule ruling format number

11 = top margin margin width, in lead units

12 = bottom margin margin width, in lead units

13 = left margin margin width, in lead units

14 = right margin margin width, in lead units

15 = t marg mode 0 = replace, 1 = add to table cell defaults

16 = b marg mode 0 = replace, 1 = add to table cell defaults

17 = l marg mode 0 = replace, 1 = add to table cell defaults

18 = r marg mode 0 = replace, 1 = add to table cell defaults

19 = vertical align 0 = middle, 1 = top, 2 = bottom

Type Values

1 = title placement 1 = at top of table, 2 = at bottom of table

2 = title gap distance in lead units between title and top or
bottom of table

3 = title content group, including text format CTLs
12/21/08

Document Coding Language 2.0 page 33
The conditional definition CTL(60) shortval contains a condition ID number, and the
data type is group. Condition IDs start with 1 and increase monotonically.

The conditional properties CTL(61) is used inside the conditional definition. The
shortval contains the property type:

The overrides are applied to the text for which the defined condition is true. The
properties given are typically font attribute CTLs, used when the text is not hidden
and the conditional display CTL permits.

The conditional usage CTL(62) applies the condition ID in the shortval to the current
text stream. More than one condition may be applied to the same text. The longval
contains either a conditional block ID, or 0. The datatype is not group, because
failure to understand the conditional should not result in discarding the data to
which it applies. Instead, the conditional end CTL(63) with the same shortval and
longval content marks the end of the affected data. Conditional usages may nest
and overlap.

The conditional display CTL(64) properties apply to the entire document:

Both of these properties would be off for a file ready to be printed in final form. If
“show hidden” is off, text marked as hidden is omitted from the DCL file. This
provides the user with a choice between producing a DCL file that can be used as
a master for all versions (with “show hidden” on), or one that is for a specific
version (or set of versions) only (with “show hidden” off). It eliminates the usual
need for producing a native-format file containing only the text for the desired
versions before conversion.

Footnotes (majortype 2, minortypes 70–72)
Footnotes are considered part of the text stream in which they are referenced, but
do not inherit properties from that stream. Instead, they inherit text properties only
from one to the next, so that any properties set in the first footnote continue to
affect all subsequent footnotes within the same text stream until changed in
another footnote.

The footnote definition CTL(70) datatype is group, and the group contains the
default footnote properties. The shortval contains the footnote type, 1 for text or 2
for table.

Type Values

1 = name datatype is ename (8), name follows

2 = overrides datatype is group, contains CTLs

3 = visibility 0 = shown, 1 = hidden

4 = color color number, used when printed

Type Values

1 = show hidden 0 = no, 1 = show hidden text (for editing purposes)

2 = use overrides 0 = off, 1 = use conditional property overrides on
screen
12/21/08

Document Coding Language 2.0 page 34
The footnote CTL(71) shortval contains the footnote type. The datatype is group,
and the group contains the footnote data.

Footnote numbers are represented by autonumbers (described below). The auto-
number itself is placed in the text at the footnote reference; the footnote number
displayed at the beginning of the footnote is a reference to that autonumber. Both
numbers are implicit; there are no codes required to describe them at their actual
locations. If explicit codes are inserted, they override the implicit code properties.

The footnote property CTLs (72) in a footnote definition group specify default foot-
note properties; when they are inside a footnote, they override the default for that
instance. The shortval gives the property type:

Text Insets (majortype 2, minortypes 75–79)
The text inset CTLs handle FrameMaker text insets, but may also be used for other
cases of content transclusion, such as conrefs. Insets can be nested to any depth.

The text inset CTL(75) marks the beginning of a text inset; the shortval specifies
the properties for the inset:

Type Values

1 = format default footnote format number

2 = number footnote autonumber stream number

3 = max space space at bottom of page for footnotes in lead units

4 = format tag when footnote format is undefined, name follows

5 = frame above ID of a master frame that describes the gap and
line (if any) between the body (or table) text and
the first footnote

6 = marker character to use in place of footnote number for
next footnote (only); supports Windows Help
facilities

Type Values

1 = start group for starting properties

2 = name optional ename, usually assigned by FDK client

3 = file ename, source file path and name for inset

4 = import ename, import filter hint string

5 = auto update 0 = no, 1 = yes

6 = last update timestamp in longval

7 = locked 0 = no, 1 = yes

8 = end of inset placed after inset content
12/21/08

Document Coding Language 2.0 page 35
The text-inset client CTL(76) is inside the start group, and identifies the API client
if any that created the text inset:

The text-inset flow CTL(77) is inside the start group, and identifies the flow used
within the source file:

The text-inset text CTL(78) is inside the start group, and specifies properties for
the inset text:

Type Values

1 = api group for API client properties

2 = name ename of client application

3 = file ename, source file path and name

4 = type ename, type of client file

5 = data etext, added data used by client

Type Values

1 = source group for flow properties

2 = main 0 = no, 1 = yes

3 = page type 0 = body, 1 = reference

4 = name ename, flow tag

5 = format source 0 = inset, 1 = container, 2 = plain text

6 = overrides 0 = keep, 1 = remove

7 = page breaks 0 = keep, 1 = remove

Type Values

1 = prop group for text properties

2 = EOL is EOP 0 = no, 1 = end of line is end of para

3 = encoding encoding of inset, as in text charset CTL 2/14
12/21/08

Document Coding Language 2.0 page 36
The text-inset table CTL(79) is inside the start group, and specifies properties for
the inset tables:

Formats (majortype 2, minortypes 80–82)
For the format definition CTL(80), the shortval contains the format ID, a number
starting with 1 that increases monotonically. The datatype is group. The definition
may contain autonumbers and other text as well as property information.

The format properties CTL(81) shortval indicates the property type, and the longval
contains the value:

Formats always cause properties specified in their definitions to be applied to the
text stream, but they differ in the treatment of the properties not mentioned. The
longval of the format properties type CTL identifies the possibilities:

1 = initialize from text stream defaults (default)
2 = inherit from current text stream values
3 = affect only table properties
4 = affect only ruling properties

The table formats (as in the Interleaf “Master Table”, or FrameMaker “Table-
Format”) initialize from defaults, and contain other table CTLs so that they provide
a template for newly-created tables.

The ruling formats describe a rule used between table columns or rows. These
formats include one current line attribute CTL for each line in the rule, used left to
right, or top to bottom. For multi-line rules, they specify the gap and line count.

Type Values

1 = prop group for table properties

2 = name ename, table format name

3 = byrow 0 = para is cell, 1 = para is row

4 = columns if para is cell, number of columns per row

5 = cellsep ename: if para is row, cell separator character
ilong: if para is row, count of cellsep chars per cell

6 = header ilong, number of header rows, 0 if none

7 = encoding encoding of table, as in text charset CTL 2/14

Type Values

1 = name datatype is ename (8), size is length of following
name

2 = type effect on unmentioned properties, described below

3 = prefix group, content goes at start of item affected by
format

4 = suffix group, content goes at end of item (usually
paragraph)
12/21/08

Document Coding Language 2.0 page 37
The format call CTL(82) shortval contains the format type, and the longval contains
the format ID. This CTL changes the current properties to those defined for the
named format. If the format inherits current values, only those properties explicitly
set in the definition are affected. If the format is initialized from stream defaults,
all properties are affected whether mentioned or not. Any local overrides to the
resulting properties are given after this CTL.

A call to inherit format 0 restores any properties altered by prior inherit formats
(such as FrameMaker character formats, or Interleaf in-line components) back to
the values in effect from the last init format. It is used for the FrameMaker “Default
Para Font”, and in editable DCL is “inherit restore”.

When overrides affect the default para format, a call to init format 0 marks their
end, and in editable DCL is “init store”.

If the format contains text, such as autonumbers, the format text CTL(83) is issued
next; its datatype is group, and the generated text, with any CTLs, follows. Its
shortval is:

1 = prefix content
2 = suffix content

If a format call is made for an undefined format, the format tag CTL(84) is used to
specify the requested format name. The shortval is a new format ID that will be
associated with the new tag whenever it is used elsewhere. The datatype is ename
(8).

Variables (majortype 2, minortypes 90–91)
The variable definition CTL(90) contains a variable ID in the shortval; ID numbers
start with 1 and increase monotonically. The datatype is group, and the group
contains variable properties CTLs for the variable name and format.

The variable properties CTL(91) contains the property type in the shortval:

When a variable is to be used, the text object CTL(10) is given with the variable
specifier (2) in the shortval. For simple variable references, the variable format ID
is in the longval. For more complex cases, the datatype of the text object CTL is
group; the group begins with the reference properties CTL object ID property
(which has the variable format ID). Then the group may contain two more refer-
ence property CTLs (a new format property, and a current value property), and any
other formatting properties CTLs (such as font properties) that are needed.

References (majortype 2, minortypes 95–97)
The reference definition CTL(95) contains a reference format ID in the shortval. The
datatype is group, and the group contains reference properties; it may also contain
other properties, such as font attributes, as needed.

Type Values

1 = name name of variable

2 = format as described for the reference properties format
CTL(96/3)

3 = date/time 0 = not used, 1 = current, 2 = file creation, 3 = file
modification
12/21/08

Document Coding Language 2.0 page 38
The reference properties CTL(96) is used in reference definitions, and also with text
object CTLs (10) when they refer to a variable, or to a cross-reference list token.
The shortval is the property type:

The reference token CTL(97) contains the token type in the shortval, often with a
subtype in the longval. The datatype is usually ilong (2), except for the two para-
graph tag-matching (97/31 and 97/32) CTLs, which use ename (8).

The “%c” tokens, where present in the “Meaning” column of the following list, mean
that the form of the token is as specified for that token in the POSIX strftime()
function.

Type Values

1 = reference tag name of format, used only in reference definition

2 = ref object ID ID of referenced object, number or string, 0 =
unknown

3 = ref format format ID number, or string (in def or as override),
or group containing reference tokens, text objects,
and properties

4 = ref value literal text string, or group if other properties
needed

5 = ext file name name of file in which referenced object is located

Type Sub Meaning Example

1 Combined date and time

1 %c local date and time Fri Apr 13 15:25:30 1990

2 Combined date

1 %x short local date 4/13/90

2 long local date April 13, 1990

3 Year

1 %y short year 91

2 %Y long year 1991

4 Month

1 %b short month name Jan

2 %B long month name January

3 %m month number, 2 digit 03 12

4 month number, 1-digit 11 2

5 Week

1 %U week of year from Sun (first Sunday is day 1 of week 1)
12/21/08

Document Coding Language 2.0 page 39
2 %W week of year from Mon (first Monday is day 1 of week 1)

6 Day

1 %a short day name Tue

2 %A long day name Tuesday

3 %d date number, 2 digit 02 10

4 date number, 1 digit 23 5

5 %j day of year, 3-digit 031 (for Jan 31)

6 %w day of week number (Sunday = 0, Saturday = 6)

10 Combined time

1 %X short local time 3:25 PM

11 Time zone

1 %z time zone, capital PST EDT

2 time zone, lower case cst gmt

12 AM and PM

1 %p am or pm, capital AM PM

2 am or pm, lower case am pm

13 Hour

1 %I hour, 12-hour, 2 digit 04 11

2 hour, 12-hour, 1-digit 11 4

3 %H hour, 24-hour, 2 digit 02 14

4 hour, 24-hour, 1 digit 15 3

14 Minute

1 %M minute, 2-digit 05 10

2 minute, 1-digit 20 3

15 Second

1 %S second, 2-digit 34 09

2 second, 1-digit 59 7

20 Filesystem

1 file name dcl_spec.txt

2 path name /usr/dcl/doc/dcl_spec.txt

21 Page number

Type Sub Meaning Example
12/21/08

Document Coding Language 2.0 page 40
1 page number 128

2 last page number in
doc

255

22 Table sheet

1 sheet number 1

2 last sheet number in
table

5

23 Variable Running Head

The longval contains the ID of the variable to be set by the
variable value CTL (111).

24 Document number

1 chapter number

2 volume number

30 Paragraph

1 paragraph number only 2.5.3

2 paragraph num string Section 2.5.3

3 tag of referenced item Body

4 text of referenced item Using References

5 pagenum of ref item 35

31 First paragraph on page with matching tag

32 Last paragraph on page with matching tag

For both, datatype is ename (8) and the following data is
the tag to match; normally used for running heads.

35 Xref

1 paragraph number only 2.5.3

2 paragraph num string Section 2.5.3

3 tag of referenced item Body

4 text of referenced item Using References

5 pagenumof ref item 35

Type Sub Meaning Example
12/21/08

Document Coding Language 2.0 page 41
The reference content CTL(98) datatype is group, and wraps the reference
content CTLs so that they can be matched up with their format elements. The
shortval is the type:

Autonumbers (majortype 2, minortypes 100–103)
The autonumber definition CTL(100) contains an autonumber stream ID in the
shortval. Stream ID numbers start with 1 and increase monotonically. The datatype
is group.

The autonumber properties CTL(101) shortval contains the property type:

40 Index

1 no page number gadget, see widget

2 single page number widget, 2

3 start of range tools, 2-5 (on page 2)

4 end of range tools, 2-5 (on page 5)

Type Values

1 = number paragraph number only

2 = num string paragraph numbering string

3 = tag tag of referenced item

4 = text text of referenced item

5 = pagenum page number of referenced item

6 = chapnum chapter number string

7 = volnum volume number string

Type Values

1 = name datatype is ename (8), name follows

2 = type type of autonumber, described below

3 = stream ID ID of definition, used in references

4 = format group, described below

5 = reference form same as 4, but applies to references to the
autonumber

6 = sequence sequence number in stream, omitted for master

7 = level number level to be incremented or set, starting with 1

Type Sub Meaning Example
12/21/08

Document Coding Language 2.0 page 42
The symbol list and auto reset properties are used mainly for footnotes. The refer-
ence form is used for the number in the footnote itself, which is a reference to the
number in the text.

For the type(2) property, the longval contains the autonumber type:

1 = page number
2 = footnote number
3 = paragraph number
4 = figure number
5 = table number
6 = equation number
7 = list (default)
8 = chapter number
9 = volume number
10 = table footnote number

For the format(4) and reference format(5) properties, the datatype is group; the
group contains text object CTLs for fixed text and autonumber token CTLs for vari-
ables, both interspersed with any required properties (such as font property or
format use CTLs). Such properties are in effect only within the group.

The symbol list(9) is a group of text obj lit CTLs containing symbols to be used in
the order given, typically for footnotes where numbering is per page. Symbols may
be multiple characters. If the count of symbols needed in the text (before an auto
reset) exceeds the count of symbol CTLs in the list, the last symbol is reused.

The autonumber token CTL(102) longval contains the level (counter) number
described by the token, and the shortval specifies the counter type:

1 = no display (not used in definition format)
2 = arabic number
3 = lower-case roman
4 = upper-case roman
5 = lower-case alpha
6 = upper-case alpha
7 = symbol (from symbol list)
8 = text (fixed)
9 = chapter number
10 = volume number

The autonumber set CTL(103) longval contains the level number to be set; the
shortval contains the value to which that level (counter) should be set.

When an autonumber is used in the text, the text object CTL(10) is given with one
of the following specifiers in the shortval:

8 = value group, content of current instance with properties

9 = symbol list group, symbols to use for symbol token in format

10 = auto reset 0 = none, 1 = per page, 2 = per stream, 3 = per
table

11 = increment

Type Values
12/21/08

Document Coding Language 2.0 page 43
3 = autonumber
4 = autonumber reference (content of referenced autonumber itself)
5 = autonumber page reference (number of page on which autonumber falls)

Page numbers are automatically incremented, so they are always used as auto-
number references, rather than as autonumbers per se. For them, the longval may
contain just the stream ID(3). For more complex situations, the text object CTL
datatype is group. The group begins with the stream ID property(3), may contain a
new format property(4), and may include a current value property(8). It always
includes a sequence number(6), except for autonumbers in master shared content
(such as format definitions).

The autonumber level property(7) specifies the level to be incremented after the
current instance. At define time all levels are set to 1 unless otherwise specified by
one or more autonumber set CTLs(103).

List Tokens (majortype 2, minortypes 110–111)
The list token CTL(110) shortval contains the token type:

1 = index
2 = TOC
3 = list
4 = cross-reference
5 = hypertext
6 = subject (ALink)

The token content is usually a group of text obj lit CTLs and property CTLs.

In the index entry content, multiple entries are separated by semicolons, multiple
levels by colons, and sort strings are in square brackets (as in FrameMaker format).
The index entry group often contains property information, such as format calls, or
includes reference tokens.

In the TOC token, the group content consists of the level number first as an ilong,
then the title as etext, then the reference as an ename.

For other lists, the list name is first, then a colon, then the list entry text.

For cross-reference tokens, the content may be either a number or a string. When
all references are within a single document, the numeric form is preferred. When
the cross-references may be to or from external files, as with FrameMaker, the orig-
inal marker string must be preserved in the token.

For hypertext, the literal command contained in the original document is used only
if the command does not fit any of the types given for the hypertext token
CTL(112).

The variable value CTL(111) shortval contains a variable ID which matches the ID
used with the variable reference token (97/22). The datatype is ename (8), and the
variable text follows. The text is used as the replacement for the variable token.
This CTL is employed to set running heads that change based on page content. The
reference is placed on a master page, and the variable value tokens are placed in
the text stream whenever the content of the running head should be changed.
12/21/08

Document Coding Language 2.0 page 44
The hypertext token CTL(112) shortval contains a command type:

SGML (majortype 2, minortypes 120–121)
Global SGML definition CTLs(120) are given in the resources set, so that they
precede the first real page. The shortval identifies:

1 = elements
2 = entities
3 = attribute lists

Within the text, SGML usage CTLs(121) use the shortval to specify:

1 = tags, which are references to the elements named
2 = ents, which are references to the entities named
3 = endtag for the named element
4 = attribute name
5 = attribute value
6 = element path (from current elem to root)
7 = PI (Processing Instruction) content

For all of them, the datatype is ename (8); the string name, stripped of its usual
SGML delimiters (such as “<>” and “&;”) follows.

The SGML CTLs are also used for info from (or for) XML and HTML files.

Type Values

1 = option 1 = display in new window

2 = location Frame newlink

3 = filename Can include full path

4 = jump Frame gotolink

5 = popup Frame openlink

6 = alert Frame alert, alerttitle

7 = URL Frame message URL

8 = macro

9 = macro definintion

10 = alternate location Type 11 markers

11 = jump to page

12 = page location Target for jump to page

13 = alert title

14 = popup menu

15 = target window Window for hypertext jumps, often "_blank"
12/21/08

Document Coding Language 2.0 page 45
Layout Properties (majortype 3)
Page definitions are given for each page in the document. Frame definitions are
given in the page on which the frame appears. The frame is normally anchored to
that page unless the frame anchor CTL is used to specify that it is anchored to the
text. Frames may contain other frames anchored within them. Text streams follow
all frames on the page. The following minortypes are defined:

10 = page definition
11 = page attributes
12 = page size

20 = frame definition
21 = frame attributes
22 = frame size
23 = frame anchor
24 = frame line
25 = frame pen
26 = frame fill

30 = frame preview

35 = frame properties
36 = frame property

40 = text content
50 = graphic content
60 = ps content

Page Properties (majortype 3, minortypes 10–12)
The page definition CTL(10) contains the page ID number in the shortval. The ID
starts with 1 and increases monotonically. The datatype is group.

The page attribute CTL(11) uses the shortval for the attribute type and the longval
for the attribute value:

Type Values

1 = name datatype is ename (8), the name follows

2 = usage 0 = body, 1 = first (of section), 2 = special
(exception)

3 = master type 0 = not master, 1= page description master, 2 =
special page master, 3 = reference master

4 = master ID page ID of master page for this page

5 = orientation 0 = portrait, 1 = landscape, 2 = turned

6 = handedness 0 = none, 1 = right, 2 = left

7 = background ID of frame to be used as page background

8 = number string value of page num autonumber for current
page
12/21/08

Document Coding Language 2.0 page 46
Master pages are templates for use as needed for a class of pages (such as left or
right pages). Headers and footers are represented as frames on such pages. Inter-
leaf Master Frames are stored on a single reference page. Reference pages (as in
FrameMaker) are considered master pages.

Turned pages are portrait pages on which the content (but not the page headers
and footers) has been rotated 90 degrees counterclockwise.

The page size CTL(12) shortval specifies the type of size information it has:

1 = full page size in page layout units
2 = count of columns and rows (for label pages)

The datatype is 6, and the longval contains the size of the following data, the width
then height (or columns then rows, for label pages).

Frame Properties (majortype 3, minortypes 20–36)
The frame definition CTL(20) contains the frame ID number in the shortval. The ID
starts with 1 and increases monotonically. The datatype is group.

The frame attribute CTL(21) uses the shortval for the attribute type and the longval
for the attribute value. The value 0 always means normal or off:

Type Values

1 = name datatype is ename(8), name follows

2 = special use 1 = body, 2 = header, 3 = footer, 4 = border, 5 =
label

3 = master type 1 = content, 2 = frame only

4 = shared ID of master frame containing real content

5 = table use 1 = full table, 2 = cell content

6 = horizontal 1 = left, 2 = center, 3 = right, 4 = full, 5 = inner
margin, 6 = outer margin

7 = vertical 1 = top, 2 = center, 3 = bottom, 4 = full

8 = ground 1 = foreground (overlay), 2 = background
(underlay)

9 = position 1 = inline, 2 = next (following anchor), 3 = float, 4
= run-in

10 = autosizing 1 = auto width, 2 = auto height, 3 = auto both

11 = cropping 1 = cropped, 2 = overlap

12 = constraints 1 = horizontal, 2 = vertical, 3 = both (stay in col of
anchor)
12/21/08

Document Coding Language 2.0 page 47
The frame size CTL(22) shortval specifies the reference point for frame positioning:

1 = text anchor
2 = text paragraph start
3 = page origin (top left)
4 = frame origin (top left of enclosing frame or column)
5 = column edge at vertical position of text anchor, as specified by the

 horizontal frame attribute CTL (21/6), which must be 1, 3, 5 or 6

A frame may have two size CTLs with different references, such as anchor and
page, when both positions are known; the first is controlling. The datatype is elong
(6), and the data follows. The x and y position (xypos) values are all relative to the
reference point, and are given as pairs of signed longs. The interpretation of the
data depends on the count of longs, based on four bytes of data for each:

For column offset frames, the x value is the distance from the specified column
edge to the nearest side of the frame, with the frame placed outside the column.
Positive values move the frame away from the column, negative values move the
frame into the column. The y value is positive to move up, negative to move down;
0 aligns the base of the frame to the reference. This usage is in accord with that of
FrameMaker and RTF.

For elliptical frames, the diameters are for a normalized ellipse (major axis hori-
zontal), then the rotation (in hundredths of a degree) is applied counterclockwise.

The frame anchor CTL(23) specifies a frame anchored to a text stream. The shortval
is the text stream ID, and the longval is the page ID number of the page containing
the part of that stream that has the anchor.

The frame line, pen and fill CTLs(24, 25, 26) have the same syntax as the related
CTLs for graphics attributes, described below, but apply only to frames, not to the
objects inside them.

13 = rotation degrees ccw from east, in hundredths

14 = gap spacing around frame, in page units, for run-in

15 = columns count of snaking columns

16 = column gap gap between snaking columns, in page units

Count of longs Following data

0 = at reference None

1 = anchor offset Offset from anchor in text to bottom (y, for type 1)

2 = column offset Offset from anchor at col edge (x and y, for type 5)

3 = size unknown Top left corner xypos, width (0 if unknown)

4 = rectangle Top left corner xypos, width and height

5 = ellipse Center xypos, x and y diameter, rotation angle

6 and up = polygon Vertices of polygon, xypos (2 longs) for each

Type Values
12/21/08

Document Coding Language 2.0 page 48
The frame preview CTL(30) specifies a graphic image that may be used in place of
the entire frame. It is ename (8), and the filepath follows. The shortval is the
preview type:

1 = GIF
2 = DIB
3 = TIFF
4 = WMF
5 = JPEG
6 = PNG

The frame properties CTL(35) is a group with shortval = 1 (for FrameMaker),
used to identify arbitrary attributes assigned to graphic frames. It contains two
frame property CTLs(36) of type ename, one each with the following shortvals:

Frame Content (majortype 3, minortypes 40–60)
Graphic content includes vector (draw) objects, raster (paint) objects, and EPSI
(PostScript) objects as well as graphics text. Master frames may have content that
is shared by later copies. Graphic frames contain graphic groups (4/1) and objects
(4/10).

Text frames contain some portion of a text flow. The text content CTL(40) shortval
contains the text stream ID of the flow (0 for empty master frames), and the
longval contains the ID of the next frame to use. When the next frame is a master
text frame, a new copy of that frame (and new page if needed) should be generated
in the target application.

The graphic content CTL(50) is reserved for future use.

For PostScript page image support, the ps content CTL(60) shortval indicates defs
(1) or page (2); the datatype is ecode (10). The defs CTL contains prologue infor-
mation, and must be in the resources set that precedes the first page. The page
CTL appears within the layout page group of its page. Concatenating all of these
CTLs produces a PS file of the whole document; concatenating the defs CTL and any
one page CTL creates a PS file that images that page.

Type Values

1 = name property name (FrameMaker ObjectAttribute tag)

2 = value value string
12/21/08

Document Coding Language 2.0 page 49
Graphics Properties (majortype 4)

Graphics are contained in graphics frames. They consist of vector (draw) objects,
raster (paint) objects, and EPS (PostScript) objects. The frame itself is described
under “Layout Properties (majortype 3)”. The content of the frame is described in
back-to-front sequence, without explicit z coordinates.

Graphic position and size data is given as two long integers, an x value then a y
value, called xypos and xysize. Graphic positions are always relative to the top
left corner of the smallest enclosing frame. Angles are measured in hundredths of
a degree counterclockwise from east, in a range of 0 to 36000 inclusive.

The following minortypes are defined for the graphic majortype:

1 = graphic group

10 = graphic object

20 = line attribute
21 = pen attribute
22 = fill attribute
23 = marker attribute
24 = arrow attribute
25 = name attribute

30 = graphic shape

40 = graphic text attributes

50 = equation type
51 = equation properties
52 = equation content

60 = raster content
61 = raster properties
62 = raster colormap

70 = EPS content
71 = EPS properties
72 = EPS header

80 = color definition
81 = line pattern definition
82 = fill pattern definition
83 = marker definition
84 = arrow definition

Graphic Grouping (majortype 4, minortype 1)
The graphic group CTL(1) identifies the start of a set of grouped graphic objects,
such as all the objects in one image plane, or all the lines and arcs that make up
one visual item. This CTL may be repeated and nested to any degree desired. The
shortval contains the group type, 1 for a normal group, 2 for a fillable group, in
which the endpoints of the individually-unfillable objects in the group must connect,
or 3 for a complex group, in which the first object (which may itself be a group)
contains “holes” defined by the following objects (which may also be groups). The
datatype is group.
12/21/08

Document Coding Language 2.0 page 50
Graphic Objects (majortype 4, minortype 10)
The graphic object CTL(10) has a datatype of group, to permit skipping of unrecog-
nized graphic objects. The shortval has the type of object:

1 = vector
2 = graphics text
3 = equation
4 = raster
5 = PostScript
6 = unknown external

The CTL for unknown external objects contains an include CTL with the name of the
external object’s file. It may also have a frame size CTL, a frame attribute angle
CTL, and line, pen, and fill CTLs. It may not have a frame definition CTL.

Graphic Attributes (majortype 4, minortypes 20–25)
Graphic attribute CTLs given outside a graphic object are persistent, and apply to
all objects following them in the same frame until reissued. The starting defaults
are given at the start of the frame before the first group; any not present receive
the standard DCL defaults, described below for each, as modified by graphic attri-
butes given in the starting document defaults set. All attributes given within a
graphic object definition apply only to that object.

The line attribute CTL(20) shortval has the attribute type, and the longval contains
the attribute value:

The default line is black, solid, and 1 pt, 0.5 mm, or 0.02" thick (depending on the
line thickness units in effect).

The pen attribute CTL(21) shortval has the attribute type, and the longval contains
the attribute value:

Type Value

1 = line pattern Line pattern number, 0 = invisible, 1 = solid

2 = line color Color number, 0 = invisible, 1 = black

3 = line thickness Thickness in line units

4 = line spacing Distance between multiple lines in rule in line units

5 = line count Number of parallel lines, usually 1 or 2

Type Value

1 = fill pattern Fill pattern number, 0 = invisible, 1 = solid, 2-15 =
hatch

2 = foreground Color number, 0 = use line color

3 = background Color number, 0 = transparent

4 = shading 0-255 of foreground color, 0 = solid, 255 = whited
out
12/21/08

Document Coding Language 2.0 page 51
T he fill pattern is applied only to the solid parts of the current line attribute. The
foreground color number is 0 to use the current line color. The background color
number is 0 for transparent. The default pen pattern is solid in the current line color.
For FrameMaker, the line attribute pattern is always solid, and the pen attribute
alone is used to vary line appearance.

The fill attribute CTL(22) shortval has the same syntax as the pen attribute shortval.
The background color number is 0 for transparent. Fill pattern 0 is background (or
invisible). The default fill pattern is opaque solid black. Fill applies to the area that
lies inside the fillable object according to the odd-parity rule.

The current marker style CTL(23) shortval has the attribute type, and the longval
contains the attribute value:

The marker size is measured from top to bottom at a line drawn vertically through
the horizontal centerpoint. The default marker is a black dot, 1 pt, 0.5 mm, or 0.02"
diameter (depending on thickness units in effect).

The arrow attribute CTL(24) shortval has the attribute type, and the longval contains
the attribute value:

The default is head 0, tail 0 (no arrow). The length and width apply to both the head
and the tail. The head is the starting point of the polyline or arc with the arrow.

The name attribute CTL(25) shortval contains the ID of the mutually-exclusive name
space to which the name belongs. The datatype is ename (8), and the name
follows. The name replaces any name in effect in the same name space, but applies
in addition to any names in effect in other name spaces.

Vector Graphics (majortype 4, minortypes 30 and 40)
For vector graphics, the graphic shape CTL(30) specifies the object form. Its data-
type is typically elong (6), and the longval contains the size of the following data.

For polys, the shortval contains:

1 = polylines
2 = polygons
3 = polymarkers

Type Value

1 = marker style Marker style number

2 = marker color Color number

3 = marker size Height

Type Value

1 = arrow head Arrow style number

2 = arrow tail Arrow style number

3 = arrow length Length

4 = arrow width Width
12/21/08

Document Coding Language 2.0 page 52
The data following has one xypos for each mark or vertex; the last vertex of a
polygon need not be the same as the first, but may be if convenient. Polygons are
always filled; polylines are not filled even if they are closed.

For rectangles, the shortval contains:

10 = square-cornered
11 = rounded

Both types of rectangles are specified by the xypos of the upper left corner, then
an xysize giving the width and height. In addition, the rounded rectangle uses
another xysize to give the corner radius (for circular corners, the x and y sizes are
equal).

For ellipses, the shortval contains:

20 = normal ellipses, with the major and minor axes at right angles
21 = Interleaf ellipses, where the axes may be at any angles

The normal ellipse CTL is followed by the xypos of the center, an xysize with the
major radius as x and the minor radius as y, and the rotation angle from the x axis
(east) counterclockwise to the right end of the major axis. The Interleaf ellipse data
contains the xypos of the center, the xypos of the left end of the major axis, and
the xypos of the top end of the minor axis; if the rotation is exactly 90 degrees, the
top end of the major axis and left end of the minor axis are used.

For elliptic arcs, the shortval is:

30 = normal unfilled
31 = pie-slice filled (with the center connected to each endpoint)
32 = chord filled (endpoints connected to each other)

The data contains the same xypos and xysize used for normal ellipses, the rotation
angle, then the start and end angles. The start and end angles are both measured
counterclockwise from the east end of the normalized major axis (before the rota-
tion angle is applied), and the arc is drawn from start to end counterclockwise. If
the start and end angles are equal, the arc is a normal ellipse.

For Hermite arcs, used by Interleaf only, the shortval is:

33 = non-extended
34 = extended

The non-extended form uses five points, each described by an xypos, in accordance
with Interleaf rules. The extended form adds a sixth point. Refer to Interleaf docs
for details. This form is never filled, although it can be grouped with polylines (and
other open arcs and curves) so as to construct a fillable object.

For spline curves, the shortval contains:

40 = open spline
41 = closed spline

The data uses the same syntax as polys. The closed form is fillable.

For Bezier curves, the shortval contains:

50 = open Bezier
51 = closed Bezier

The descriptive data is the same as the spline curve, except that the data contains
six long integers per vertex instead of two. Each vertex xypos is preceded by the
xypos of the preceding control point, and followed by the xypos of the following
control point. The closed form is fillable. The open form begins and ends with a
vertex, not a control point, so the ends have one control point each instead of two.
12/21/08

Document Coding Language 2.0 page 53
Graphic Text (majortype 4, minortype 40)
Graphic text objects (10/2) contain the graphic text attributes CTL, any needed text
property CTLs, and text object CTLs for the text itself.

The graphic text attributes CTL(40) shortval specifies the alignment of the text to its
anchor point:

1 = left (default)
2 = center
3 = right

The datatype is elong (6), and the longval has the length of the following data, the
xypos of the anchor point and rotation of the text around it.

Equations (majortype 4, minortype 50)
The equation type CTL(50) shortval gives the format type:

1 = standard troff eqn
2 = Interleaf math object
3 = WordPerfect near-eqn
4 = Frame MathFullForm

The equation properties CTL(51) shortval gives the property type:

1 = frame size, elong (6) with xypos and xysize of math object
2 = alignment, 0 = left, 1 = center, 2 = right, 3 = justified
3 = text size, 0 = small, 1 = medium, 2 = large

The equation content CTL(52) shortval gives the content type:

1 = Frame MathFullForm as an ename (8)
2 = graphic file, ename (8) containing file path

Rasters (majortype 4, minortypes 60–62)
The raster properties CTL(61) contains the pixel depth in the shortval. The datatype
is elong (6), and the data follows: an xypos for the top left corner, an xysize for the
display size, another xysize in pixels, and the rotation angle.

A negative display size means the object is flipped around the corresponding axis;
if the width is negative, the object is flipped left-to-right, and if the height is nega-
tive, the object is flipped top-to-bottom. The rotation angle is applied last, after any
flipping.

The raster content CTL(60) contains the compression method in the shortval:

1 = uncompressed, 8-bit row roundup
2 = Portable Bit Map (PBM), no colormap
3 = PCX run-length-encoded
4 = SunRaster RT_BYTE_ENCODED
5 = TIFF PackBits
6 = MS DIB uncompressed (32-bit roundup)
7 = MS DIB compressed for 4-bit pixels
8 = MS DIB compressed for 8-bit pixels
9 = WMF (not necessarily raster)

If the datatype is group, an include CTL follows with the pathname of a file
containing the raster data in its standard format (TIFF, SunRaster, PBM, PCX, or
DIB, with normal header). Otherwise the datatype is ebyte (4), and the longval
contains the size in bytes of the following raster data.
12/21/08

Document Coding Language 2.0 page 54
The raster colormap CTL(62) shortval contains the colormap type, 1 for SunRaster
or 2 for DIB. The datatype is ebyte (4), and the longval is the length of the uncom-
pressed color map following. If the pixel depth is 1, the raster colormap has two
entries. If the depth is 24 or greater, the raster colormap is omitted. If the map is
not large enough to reset all 256 color values, the unset values retain their previous
states. If the raster is in a referenced external file, identified in an include CTL, the
colormap is also contained in that file, not in the DCL file.

EPS Images (majortype 4, minortypes 70–72)
The EPS properties CTL(71) shortval contains the type:

1 = EPSI with ASCII preview
2 = EPSI without preview
3 = EPS with binary preview
4 = EPS without preview
5 = PostScript without BoundingBox (non-EPS compliant)

The datatype is elong (6), and the data follows: an xypos and xysize for the position
and size in the frame, then the lower-left xypos and upper-right xypos from the
BoundingBox (in PostScript units, both 0 for type 5), then the rotation angle. As
described for rasters, negative sizes mean the object is flipped; the rotation angle
is applied last, after any flipping.

If the EPS content CTL(70) datatype is group, then an include CTL with the path-
name of a standard EPS file containing the data follows. Otherwise, the datatype is
ecode (10) and the longval contains the length of the PostScript data that follows.
The last byte of the PS data is always 0 in binary DCL, to permit string operations
on it (such as strstr() for searching). The shortval contains the count of PostScript
lines, excluding the binary header if any.

If the EPS file has a binary header, it is in an EPS header CTL(72) with datatype
ebyte (4). The header format is specified in the same way as for the raster format
CTL (60), with the compression method in the shortval.

Attribute Definitions (majortype 4, minortypes 80–84)
The attributes identified by numeric indexes (color, line pattern, fill pattern, marker
style, and arrow style) can be redefined at any time.

The color definition CTL(80) shortval has the color number defined; color 0 is
reserved to mean “invisible”. The longval is treated as four unsigned chars, data-
type ibyte (0). The MSB, long3, contains the definition type: 1 for RGB (also used
for values originally in CMY or CMYK, since conversion is trivial), 2 for HSV (hue,
saturation, value), and 3 for CIELUV. The three LSBs contain the three color values
in their usual order. If more precision is needed than is provided by 8 bits, the CTL
datatype is elong (6); then the data that follows has a 32-bit long int for the type
and for each value.
12/21/08

Document Coding Language 2.0 page 55
The DCL default colors include the FrameMaker defaults; the “1” values below
represent the maximum value, 0xFF for 8-bit color:

The line pattern definition CTL(81) has the line pattern number in the shortval;
pattern 0 is invisible. The datatype is elong (6), and the longval has the length of
the following data. The first long is the real length of one segment of the line
pattern; the second is the bit length of that segment. It is followed by a bitmap of
the pattern, where set bits are present and zero bits are absent, MSB to LSB. The
default pattern definitions depend on the source application; 1 is always solid.

The fill pattern definition CTL(82) has the fill pattern number in the shortval; pattern
0 is invisible. The datatype is elong (6), and the longval has the length of the
following data. The first long is the real width of a tile of the pattern. The second
long contains the bit depth of the pattern (1 for bitmap, usually 8 for pixmap). The
third long contains the map width, and the fourth the map height. For FrameMaker,
the map is 16 bits wide and 8 bits high; for Interleaf, the map has 16 rows of 16
pixels each. For a bitmap, the rest of the long ints contain a bitmap of the pattern;
set bits are foreground and zero bits are background. For a pixmap, each pixel is
specified by an 8-bit (or more) value, packed MSB to LSB in long ints; the values
are each color numbers (not raster colormap numbers), with zero used for trans-
parent background. The default pattern definitions depend on the source
application; for FrameMaker, styles 0 through 14 map directly to DCL styles 1
through 15.

The marker definition CTL(83) has the marker style number in the shortval. The
datatype is group, and the group contains CTLs that define the vector or raster
object to be used as a marker. All positions in those CTLs are relative to the mark
point, which need not be the center of the marker (or even within the marker
bounds). The default marker definitions depend on the source application. Style 0
is invisible; style 1 is dot.

The arrow definition CTL(84) has the arrow style number in the shortval. The data-
type is elong (6), and the longval has the length of the following data. The first long
contains the arrow definition type:

1 = Aster*x
2 = Avalon
3 = FrameMaker

Color R G B

1 = black 0 0 0

2 = white 1 1 1

3 = red 1 0 0

4 = green 0 1 0

5 = blue 0 0 1

6 = cyan 0 1 1

7 = magenta 1 0 1

8 = yellow 1 1 0
12/21/08

Document Coding Language 2.0 page 56
The remaining content depends on the definition type. Dimensions are in line units.
It always begins with an xysize containing the arrow length (as x) and the arrow
head type (as y, 1 = filled, 2 = hollow, 3 = open). Next, for type 1 (Aster*x), it has
an xysize with the width (as x) and the base indent (as y), in the same units as the
length. For type 2 (Avalon), it has an xysize with the width (as x) and the base
indent (as y), both in percent of length. For type 3 (FrameMaker), it has an xysize
containing the tip angle (as x) and the base angle (as y). The default arrow defini-
tions depend on the source application; style 0 is reserved to mean no arrow.

In addition, type 3 (FrameMaker) treats line caps as arrow head types: 0 = square
(default), 4 = butt, and 5 = round.

The default styles are 0 = square, 1 = butt, 2 = round, and 3 through 10 are the
standard FrameMaker arrows.

Objects (majortype 4, minortypes 90–92)
The objects CTLs can be used for graphics in place of the graphics CTLs whenever
they have sufficient content to satisfy the output modules. In general, that is true
for all HTML and most XML outputs. They can also handle audio and video.

The object definition CTL(90) has a datatype of group, and wraps the object
properties and param CTLs. The shortval can be used for ID.

The object properties CTL(91) contains the information that would be used for
attributes of the object element in HTML 4 and in DITA. The shortvals are:

Type Value

1 = data etext, URL of data file

2 = classid etext, identifier for object type

3 = type etext, MIME type such as image/jpg

4 = codebase etext, URL of implementation code if needed

5 = codetype etext, MIME type for classid item

6 = ID ename

7 = alignment 0 = none, 1 = left, 2 = right, 3 = center,
4 = texttop, 5 = textmiddle, 6 = textbottom,
7 = middle, 8 = baseline

8 = height ilong

9 = width ilong

10 = hspace ilong

11 = vspace ilong

12 = border thickness, 0 = none

13 = declare 0 = normal, 1 = postpone load until called

14 = standby etext, message to display while loading
12/21/08

Document Coding Language 2.0 page 57
The object param CTL(92) describes one param element used in the object
element. Its shortvals are:

Type Value

1 = param group containing the other param CTLs

2 = name etext, name attribute

3 = value etext, value attribute

4 = value type 0 = data (default), 1 = ref, 2 = object
12/21/08

Document Coding Language 2.0 page 58

12/21/08

Spreadsheet Properties (majortype 5)

DCL may be used to describe included spreadsheets, such as those used in Aster*x
and Rapport. The DCL minortypes are not yet defined.

Document Coding Language 2.0 page 59

12/21/08

Audio Properties (majortype 6)

Audio annotations may appear at any point in text or graphics. The DCL majortype
is 6; the minortypes are not yet defined.

Document Coding Language 2.0 page 60

12/21/08

Video Properties (majortype 7)

Video annotations may appear at any point in text or graphics. The DCL majortype
is 7; the minortypes are not yet defined.

Document Coding Language 2.0 page 61

12/21/08

User-defined Properties
DCL permits definition of properties specific to the source application in a manner
that can be disregarded by target writers that are not aware of those properties.

A user-defined CTL is identified by setting the top bit of the minortype. If it is the
start of a group, the datatype is group, so that related data can be skipped by a
target writer that does not understand it. The other datatypes also have their usual
DCL meanings. Otherwise, the CTL can be defined in any way desired, although it
is wise to keep the basic design concepts of DCL in mind when planning its use.

The specific user by which the CTL is defined is identified by the user ID CTL. The
user identification is persistent and may be changed at any time.

For example, suppose that Frame wanted to include the <Pgf Next Tag> data in the
DCL. There is no CTL defined for that, so Frame could make one up with a datatype
of ename (8), a majortype of 2 (text property), a minortype of 201 (128 + 83, in
the format area), a shortval containing the format ID for the Next Tag name, and
a longval giving the length of the tag name, followed by the name itself. Sometime
before the first use of this CTL, perhaps near the start of the DCL file, Frame would
issue a user ID CTL with a shortval of 200 (for version 2.0) and a longval of “FMIF”.
Then any program that recognized CTLs written by that user ID would understand
the Pgf Next Tag item. Frame could define many such CTLs to “enrich” its DCL files.

In general, the DCL version of a document should be a complete version, so that if
it is converted back to its original format nothing is lost. Then it is possible for third-
party products to operate on the DCL form without having to understand dozens of
unique formats in order to do their job. A single language translator, for example,
can work with DCL documents from many sources without affecting, or even under-
standing, their native formatting. The ability to define new DCL properties at will,
without breaking existing translators, is critical to the success of such a process.

Copyright (c) 1993-2008 by Omni Systems, Inc. All rights reserved.

Email: <info@omsys.com> Web: <http://www.omsys.com>

	Document Coding L anguage
	Contents
	Introduction
	Types of DCL Programs

	Form and Content
	Characteristics of DCL Files
	File Format of DCL Files
	Record Formats

	Binary DCL
	Editable DCL
	The Datatypes
	Summary of Datatypes
	Datatype 0: ibyte (longval contains 4 bytes)
	Datatype 1: ishort (longval contains 2 shorts)
	Datatype 2: ilong (longval contains 1 long)
	Datatype 3: imnem (longval contains a mnemonic)
	Datatype 4: ebyte (longval contains the size of the following numeric data)
	Datatype 5: eshort (longval contains the size of the following numeric data)
	Datatype 6: elong (longval contains the size of the following numeric data)
	Datatype 7: edoub (longval contains the size of the following numeric data)
	Datatype 8: ename (longval contains the size of the following text data)
	Datatype 9: etext (longval contains the size of the following text data)
	Datatype 10: ecode (longval contains the size of the following text data)
	Datatype 11: stamp (longval contains a timestamp)
	Datatypes 14 and 15: group (longval contains group ID or 0)

	Internal Controls (majortype 1)
	Define (majortype 1, minortype 1)
	Field (majortype 1, minortype 2)
	Scope (majortype 1, minortype 3)
	Attr (majortype 1, minortype 4)
	Units (majortype 1, minortypes 10–13)
	User ID (majortype 1, minortype 20)
	Source ID (majortype 1, minortype 21)
	Processor ID (majortype 1, minortype 22)
	Target ID (majortype 1, minortype 23)
	Alternate (majortype 1, minortype 30)
	Set and Duplicate (majortype 1, minortypes 40 and 41)
	Include (majortype 1, minortype 50)
	End (majortype 1, minortype 60)
	Ini (majortype 1, minortype 70)
	Debug (majortype 1, minortype 80)

	Text Properties (majortype 2)
	Text Streams (majortype 2, minortypes 1–6)
	Text Objects (majortype 2, minortype 10)
	Text Breaks (majortype 2, minortype 11)
	Text Keeps (majortype 2, minortype 12)
	Hyphenation (majortype 2, minortype 13)
	Fonts and Characters (majortype 2, minortypes 14–18)
	Vertical Positioning (majortype 2, minortypes 20–24)
	Horizontal Positioning (majortype 2, minortypes 30–34)
	Tabs (majortype 2, minortypes 40–42)
	Tables (majortype 2, minortypes 50–58)
	Conditionals (majortype 2, minortypes 60–64)
	Footnotes (majortype 2, minortypes 70–72)
	Text Insets (majortype 2, minortypes 75–79)
	Formats (majortype 2, minortypes 80–82)
	Variables (majortype 2, minortypes 90–91)
	References (majortype 2, minortypes 95–97)
	Autonumbers (majortype 2, minortypes 100–103)
	List Tokens (majortype 2, minortypes 110–111)
	SGML (majortype 2, minortypes 120–121)

	Layout Properties (majortype 3)
	Page Properties (majortype 3, minortypes 10–12)
	Frame Properties (majortype 3, minortypes 20–36)
	Frame Content (majortype 3, minortypes 40–60)

	Graphics Properties (majortype 4)
	Graphic Grouping (majortype 4, minortype 1)
	Graphic Objects (majortype 4, minortype 10)
	Graphic Attributes (majortype 4, minortypes 20–25)
	Vector Graphics (majortype 4, minortypes 30 and 40)
	Graphic Text (majortype 4, minortype 40)
	Equations (majortype 4, minortype 50)
	Rasters (majortype 4, minortypes 60–62)
	EPS Images (majortype 4, minortypes 70–72)
	Attribute Definitions (majortype 4, minortypes 80–84)
	Objects (majortype 4, minortypes 90–92)

	Spreadsheet Properties (majortype 5)
	Audio Properties (majortype 6)
	Video Properties (majortype 7)
	User-defined Properties

