

Mif2Go User’s Guide
for Mif2Go Version 4.1, Update 55

May 15, 2013

Omni Systems, Inc.
Overview

Lists
§ Contents. .1
§ Figures. .31
§ Tables. .35

How to set up and use Mif2Go
§ About this guide. .41
§1 Getting started with Mif2Go .51
§2 Planning a conversion project .65
§3 Converting a book or document. .77
§4 Editing configuration files. .91
§5 Setting basic conversion options .109

Configuring print RTF output
§6 Converting to print RTF. .141

Configuring on-line Help output
§7 Producing on-line Help .199
§8 Generating WinHelp .243
§9 Generating Microsoft HTML Help .295
§10 Generating OmniHelp .341
§11 Generating JavaHelp or Oracle Help. .373
§12 Generating Eclipse Help .403

Configuring HTML/XML output
§13 Converting to HTML/XHTML .423
§14 Converting to generic XML. .457
§15 Converting to DITA XML. .473
§16 Configuring DITA maps .539
§17 Converting to DocBook XML. .557
§18 Splitting and extracting files .585
§19 Creating HTML links. .609
§20 Providing navigation in HTML. .627
§21 Mapping text formats to HTML/XML .645
§22 Setting up CSS for HTML. .681
§23 Including graphics in HTML. .703
§24 Converting tables to HTML. .727

Web Accessibility Initiative
§25 Generating WAI markup for HTML . 755
§26 Identifying HTML table structure for WAI . 763
§27 Marking HTML table cells for WAI. 775

Advanced topics
§28 Working with macros. 787
§29 Working with FrameMaker markers . 831
§30 Working with templates . 849
§31 Working with graphics. 869
§32 Working with content models. 905
§33 Overriding configuration settings. 919

Project workflow
§34 Automating Mif2Go conversions. 933
§35 Producing deliverable results. 955
§36 Converting via runfm. 979
§37 Converting via DCL. 995
§38 Generating intermediate output . 1005

Reference
§A WAI marker library for HTML . 1013
§B Distribution files . 1017
§C Document and conversion files. 1019
§D Technical support for Mif2Go. 1029
§E DITA <bookmeta> template . 1039
§F Content model configuration . 1043

Indexes
§ RTF keyword index . 1047
§ HTML/XML keyword index . 1059
§ Subject index . 1085

ALL RIGHTS RESERVED. 2013 MAY 18 1

Contents

Figures 31

Tables 35

About this guide 41

1 Getting started with Mif2Go 51
1.1 What you need to know .51

1.1.1 How Mif2Go is organized. .51
1.1.2 File, directory, and path names .51
1.1.3 Output types you can specify .52
1.1.4 Languages and character sets .53

1.2 What you need to have .53

1.3 What you need to do. .54
1.3.1 Set up a framework for Omni Systems applications54
1.3.2 Download a Mif2Go distribution .56
1.3.3 Install Mif2Go .56
1.3.4 Make Omni Systems executables accessible. .57
1.3.5 Obtain tools for Help systems or eBooks .58
1.3.6 Establish system-wide configuration settings. .58
1.3.7 Locate document-specific settings .60
1.3.8 Obtain a file comparison tool (optional) .60
1.3.9 Download the Mif2Go User’s Guide (optional)61

1.4 How to update Mif2Go .61
1.4.1 Change from the evaluation version to a licensed version 61
1.4.2 Update your Mif2Go installation .61
1.4.3 Try out Mif2Go beta executables .62

1.5 How Mif2Go works .62

1.6 How to start and stop Mif2Go .63

1.7 How to work with Mif2Go .63

1.8 How to uninstall Mif2Go .64

2 Planning a conversion project 65
2.1 Naming files, directories, and paths .65

2.2 Naming FrameMaker formats .66

2.3 Understanding Mif2Go configuration files .66

2.4 Importing formats from a conversion template .67

2.5 Preparing documents for conversion .69
2.5.1 Updating your document in FrameMaker .69
2.5.2 Planning for graphics processing. .69
2.5.3 Replacing embedded graphics with referenced graphics 69
2.5.4 Setting up cross references to and from text insets70
2.5.5 Creating hotspots for hypertext links .72
2.5.6 Producing a single output file from a FrameMaker book73
2.5.7 Preparing a structured document for conversion.73

2.6 Establishing a conversion environment .74

MIF2GO USER’S GUIDE

2 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

2.7 Setting up multiple interlinked HTML projects . 75

2.8 Preparing deliverables after conversion . 75

3 Converting a book or document 77
3.1 Checking set-up and conversion requirements . 77

3.2 Starting Mif2Go . 77

3.3 Creating a Mif2Go conversion project . 78

3.4 Choosing project set-up options . 79
3.4.1 Importing formats from a FrameMaker template 79
3.4.2 Converting FrameMaker system variables to text 80
3.4.3 Generating and updating your document . 81
3.4.4 Including FrameMaker-generated files . 81
3.4.5 Understanding configuration settings for general set-up options 81
3.4.6 Choosing output-specific set-up options . 82

3.5 Understanding how Mif2Go sets up a project . 82

3.6 Converting documents . 82

3.7 Choosing final conversion options . 83
3.7.1 Understanding how export options work . 84
3.7.2 Specifying output type and file extension . 84
3.7.3 Choosing input source and disposition . 85
3.7.4 Figuring out graphics export options . 85
3.7.5 Choosing postprocessing options. 88

4 Editing configuration files 91
4.1 Working with Mif2Go configuration files . 91

4.2 Editing files with the Configuration Manager . 91
4.2.1 Understanding how to use the Configuration Manager 92
4.2.2 Starting the Configuration Manager . 93
4.2.3 Setting Configuration Manager preferences . 93
4.2.4 Establishing a starting point . 95
4.2.5 Choosing a configuration category or file type 95
4.2.6 Understanding variable vs. fixed names and keys 95
4.2.7 Choosing the kind of change to make . 96
4.2.8 Selecting a configuration section . 100
4.2.9 Selecting a configuration setting . 100
4.2.10 Selecting a configuration file . 101
4.2.11 Specifying a final value . 101

4.3 Understanding where project settings come from . 102

4.4 Understanding the rules for configuration settings. 102

4.5 Specifying file paths in configuration settings . 105

4.6 Using wildcards in configuration settings. 106

4.7 Commenting out configuration sections . 107

4.8 Ending a configuration file . 107

5 Setting basic conversion options 109
5.1 Specifying operating settings . 109

5.1.1 Checking output type and file extension . 110
5.1.2 Excluding files from book conversions . 110
5.1.3 Reusing or discarding MIF files. 111

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 3

5.1.4 Reusing or discarding ASCII DCL files .111
5.1.5 Checking for broken links in HTML or XML output112
5.1.6 Skipping the Mif2Go Export and Finished dialogs.112
5.1.7 Specifying how to treat cases, spaces, and wildcards113
5.1.8 Reordering text flows .113
5.1.9 Converting system variables to text .114
5.1.10 Preserving Word-generated cross-reference markers114

5.2 Logging conversion events. .115

5.3 Identifying files and objects .117
5.3.1 Understanding how Mif2Go creates identifiers 117
5.3.2 Working with FrameMaker ObjectIDs .118
5.3.3 Working with FrameMaker cross-reference IDs.119
5.3.4 Working with Mif2Go FileIDs .119

5.4 Applying FrameMaker conditions and variables .122
5.4.1 Applying condition Show/Hide settings .123
5.4.2 Replacing values of FrameMaker user variables.123

5.5 Converting FrameMaker-generated files .124
5.5.1 Converting FrameMaker TOC and IX files. .124
5.5.2 Preventing conversion of other generated files125
5.5.3 Activating hypertext links in a converted index125
5.5.4 Making See and See also index entries into useful links.125

5.6 Generating/updating before converting .126

5.7 Processing graphics .126
5.7.1 Understanding which graphics are included .126
5.7.2 Choosing how to convert graphics .127
5.7.3 Choosing when to convert graphics .131
5.7.4 Identifying exported graphics files .133

5.8 Converting structured documents. .135

5.9 Converting equations .136
5.9.1 Understanding how equations are processed. .136
5.9.2 Specifying equation size and DPI .136
5.9.3 Specifying equation output format .137
5.9.4 Providing a file-name suffix for equations .137
5.9.5 Positioning equations in RTF output .137

5.10 Creating hotspots for hypertext links .138
5.10.1 Delimiting a hotspot with a character format 138
5.10.2 Making an entire paragraph into a hotspot .138
5.10.3 Delimiting a hotspot with a color .139

5.11 Repurposing FrameMaker markers .139

6 Converting to print RTF 141
6.1 Converting to Word: a one-way street .141

6.1.1 Understanding differences in implementation.142
6.1.2 Understanding differences in file sizes .143
6.1.3 Understanding why round-tripping is not an option143
6.1.4 Migrating a document from FrameMaker to Word.144
6.1.5 Developing a workflow using Word for reviews144

6.2 Setting up a print RTF project .145
6.2.1 Creating a print RTF project .145
6.2.2 Choosing set-up options for a print RTF project.146

MIF2GO USER’S GUIDE

4 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

6.2.3 Specifying output file extension . 147
6.2.4 Specifying the default output language and code page 147
6.2.5 Constraining the number of bookmarks in Word. 148
6.2.6 Importing a Word template . 148

6.3 Adjusting output for different versions of Word . 149

6.4 Converting a FrameMaker book to print RTF . 150

6.5 Specifying document layout options. 151
6.5.1 Understanding page layout restrictions . 151
6.5.2 Eliminating large top or bottom margins . 151
6.5.3 Using text frames to solve spacing problems. 152
6.5.4 Maintaining pagination in Word . 152
6.5.5 Managing page and section breaks . 152
6.5.6 Specifying columns and gaps. 153
6.5.7 Adjusting sidehead width for Word . 153
6.5.8 Converting footnotes . 153
6.5.9 Converting headers and footers . 154
6.5.10 Converting special text flows for RTF output 156
6.5.11 Handling different page size or orientation . 157

6.6 Converting system variables to text for RTF . 157

6.7 Converting paragraph and character formats . 158
6.7.1 Mapping paragraph formats to RTF styles . 158
6.7.2 Merging paragraph formats . 159
6.7.3 Converting sidehead formats . 159
6.7.4 Converting run-in headings . 160
6.7.5 Converting autonumbered formats. 160
6.7.6 Converting bulleted formats. 162
6.7.7 Converting reference frames for Word . 162
6.7.8 Converting character formats. 163
6.7.9 Removing unused formats . 163

6.8 Converting tabs and spaces. 163
6.8.1 Understanding differences in tab behavior . 163
6.8.2 Understanding differences in spaces . 164
6.8.3 Altering tab behavior for Word output . 164
6.8.4 Altering font metrics to adjust tabs . 165

6.9 Specifying font usage . 166
6.9.1 Setting default font parameters . 166
6.9.2 Remapping fonts . 166
6.9.3 Specifying font types . 167
6.9.4 Specifying font encoding for non-Western characters. 168
6.9.5 Specifying font encoding for FrameMaker 8 Unicode 169
6.9.6 Removing unused fonts . 170

6.10 Modifying text appearance . 170
6.10.1 Adjusting line spacing . 170
6.10.2 Adjusting paragraph spacing . 170
6.10.3 Adjusting small caps . 172
6.10.4 Specifying a style for quotes . 172
6.10.5 Mapping high ASCII characters for RTF output 172
6.10.6 Specifying text color . 172
6.10.7 Hiding white text . 173
6.10.8 Hiding content in Word . 173

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 5

6.10.9 Omitting content from RTF output .174
6.10.10 Replacing content in RTF output .174

6.11 Converting cross references and hypertext links .174
6.11.1 Including ObjectIDs for Word links and cross references 175
6.11.2 Converting cross references to Word .175
6.11.3 Converting hypertext links to Word .178
6.11.4 Locking hypertext links to allow revision tracking.178
6.11.5 Enabling interfile cross references and hypertext links.179
6.11.6 Replacing building blocks in master-page references181

6.12 Converting generated files to print RTF. .181
6.12.1 Specifying which generated files to convert.182
6.12.2 Activating links in converted index and list files 182
6.12.3 Making the entire text of each list entry an active link182
6.12.4 Ensuring link targets are present in RTF output183
6.12.5 Correcting <$nopage> index links .184

6.13 Converting tables to print RTF. .184

6.14 Managing graphics for print RTF. .186
6.14.1 Understanding graphics requirements for Word186
6.14.2 Converting referenced graphics. .187
6.14.3 Converting embedded graphics .189
6.14.4 Limiting bitmap resolution and color depth .190
6.14.5 Managing callouts added to graphics .190
6.14.6 Positioning graphics and wrapping text .191
6.14.7 Preserving graphics scale in Word .191
6.14.8 Accommodating graphics in multiple versions of Word.192
6.14.9 Including file names of referenced graphics in Word192
6.14.10 Linking instead of embedding referenced graphics.193
6.14.11 Embedding graphics in converted RTF files193
6.14.12 Updating fields in Word to show linked graphics193

6.15 Including RTF code for Word output. .194

6.16 Turning on revision tracking in Word .194

6.17 Managing Word output after conversion .195
6.17.1 Supporting more than one version of Word .195
6.17.2 Including index terms in Word .195
6.17.3 Producing ASCII text from a converted Word document196
6.17.4 Combining RTF files into a Word master document 197
6.17.5 Checking print RTF output files for Mif2Go version197

6.18 Converting to OpenOffice or StarOffice .197

7 Producing on-line Help 199
7.1 Weighing Help-system alternatives .199

7.1.1 Considering Help-system features. .200
7.1.2 Understanding the effects of mid-topic links .200
7.1.3 Evaluating Microsoft Windows Help (WinHelp)200
7.1.4 Evaluating Microsoft HTML Help .201
7.1.5 Evaluating WebHelp .201
7.1.6 Evaluating OmniHelp .202
7.1.7 Evaluating JavaHelp and Oracle Help for Java.202
7.1.8 Evaluating Eclipse Help .202

7.2 Setting up a Help system project .203

MIF2GO USER’S GUIDE

6 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

7.2.1 Checking automatic Help topic assignments . 203
7.2.2 Configuring run-in paragraphs. 203
7.2.3 Specifying additional processing after conversion 203
7.2.4 Compiling and distributing Help systems . 204

7.3 Producing contents and index for Help systems. 204
7.3.1 Understanding how Mif2Go produces contents and index 205
7.3.2 Including FrameMaker TOC and IX in Help systems 205
7.3.3 Grouping contents entries . 206
7.3.4 Modifying contents or index production for HTML-based Help 206
7.3.5 Modifying contents or index production for WinHelp 208

7.4 Configuring contents entries for Help systems. 209
7.4.1 Understanding how contents levels are assigned. 209
7.4.2 Setting contents levels for WinHelp . 209
7.4.3 Including contents entries in HTML-based Help. 209
7.4.4 Setting contents levels for HTML-based Help 210

7.5 Configuring index entries for Help systems . 211
7.5.1 Understanding how Mif2Go creates Help index entries 211
7.5.2 Preparing index entries for Microsoft Help Viewer. 211
7.5.3 Limiting length of index entries for HTML Help or WinHelp 212
7.5.4 Omitting intermediate index-range entries . 212
7.5.5 Treating commas as potential index level separators. 213
7.5.6 Combining index levels for HTML-based Help 213
7.5.7 Configuring See and See also entries for HTML-based Help 214
7.5.8 Specifying index link destinations for HTML-based Help 215
7.5.9 Customizing index sort order . 216

7.6 Providing related-topic links for Help systems. 219
7.6.1 Understanding related-topic links . 219
7.6.2 Understanding how ALinks work . 220
7.6.3 Understanding how KLinks work . 221
7.6.4 Adding related-topic link keywords in FrameMaker. 221
7.6.5 Adding ALink and KLink jumps in FrameMaker 222
7.6.6 Creating target-and-jump ALinks for HTML-based Help 224
7.6.7 Specifying ALink and KLink list-link destinations 224

7.7 Jumping to secondary windows in Help systems . 224
7.7.1 Assigning secondary windows for WinHelp . 224
7.7.2 Assigning secondary windows for HTML-based Help 225

7.8 Creating pop-up topics for Help systems . 225
7.8.1 Understanding pop-up hotspots, links, and topics 225
7.8.2 Defining a pop-up hotspot . 226
7.8.3 Displaying a topic in a pop-up window . 226

7.9 Including expandable sections in Help topics. 226
7.9.1 Understanding Mif2Go expandable drop-down sections 227
7.9.2 Setting up expandable sections for your document 227
7.9.3 Delimiting expandable drop-down sections. 228
7.9.4 Configuring drop-down links. 230
7.9.5 Configuring drop-down blocks . 233
7.9.6 Providing CSS for drop-down links and blocks. 233
7.9.7 Deploying JavaScript code for drop-down sections 234
7.9.8 Emulating Web Works Publisher drop-down hotspots 237

7.10 Setting up Context Sensitive Help (CSH). 239

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 7

7.10.1 Understanding how CSH works .240
7.10.2 Specifying CSH mappings .241

7.11 Setting up a dynamic modular Help system. .241

8 Generating WinHelp 243
8.1 Obtaining tools for WinHelp .243

8.2 Setting up a WinHelp project .243
8.2.1 Setting up a WinHelp project .244
8.2.2 Choosing set-up options for a WinHelp project 244
8.2.3 Deciding where to locate configuration settings245
8.2.4 Preparing a document for conversion to WinHelp 246
8.2.5 Understanding initial set-up requirements. .246
8.2.6 Deciding whether to regenerate the WinHelp project file.246
8.2.7 Accommodating platform differences. .247
8.2.8 Setting basic WinHelp options in the configuration file248
8.2.9 Including ObjectIDs in WinHelp. .249
8.2.10 Handling page breaks and section breaks .249
8.2.11 Providing multiple .hlp files .249
8.2.12 Integrating WinHelp from RoboHelp .250
8.2.13 Compiling a WinHelp project .250
8.2.14 Checking WinHelp RTF files for Mif2Go version251

8.3 Converting text .252
8.3.1 Converting formats for WinHelp. .252
8.3.2 Converting special characters .254
8.3.3 Removing unused formats and fonts .257
8.3.4 Converting autonumbers .257
8.3.5 Replacing paragraph or character content .257
8.3.6 Specifying text color .258
8.3.7 Converting footnotes .258

8.4 Converting cross references .259
8.4.1 Creating help context markers. .259
8.4.2 Specifying cross-reference destination files .259
8.4.3 Specifying cross-reference jump destinations.260
8.4.4 Specifying WinHelp options for cross-reference formats260
8.4.5 Limiting cross-reference text. .261

8.5 Converting tables to WinHelp RTF .261
8.5.1 Positioning tables and table titles .261
8.5.2 Adjusting table appearance .261
8.5.3 Converting table rows to topics and table cells to pop-ups262

8.6 Managing graphics for WinHelp .263
8.6.1 Choosing a graphics format for WinHelp .263
8.6.2 Avoiding the GDI resource leak .264
8.6.3 Positioning graphics in WinHelp. .264
8.6.4 Displaying graphics in pop-ups for WinHelp .265

8.7 Converting generated files for WinHelp .265
8.7.1 Converting lists of paragraph references. .266
8.7.2 Converting indexes and lists of marker references266

8.8 Configuring WinHelp topics .267
8.8.1 Creating WinHelp topics .267
8.8.2 Assigning properties to formats for topics and hotspots268
8.8.3 Configuring topic titles for WinHelp .271

MIF2GO USER’S GUIDE

8 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

8.9 Creating jumps and pop-ups for WinHelp . 272
8.9.1 Identifying WinHelp jump destinations with FileIDs 273
8.9.2 Configuring pop-up topics . 273
8.9.3 Creating hotspots for jumps and pop-ups in WinHelp. 274
8.9.4 Using cross references for jumps and pop-ups 276
8.9.5 Using hypertext links for jumps and pop-ups 276
8.9.6 Disallowing hypertext links for jumps and pop-ups 277
8.9.7 Specifying jumps to secondary windows in WinHelp 277
8.9.8 Specifying jumps to external files . 278
8.9.9 Using the same content for both normal topics and pop-ups. 278
8.9.10 Creating a glossary pop-up: an example . 280
8.9.11 Configuring alternative jumps and pop-ups. 280
8.9.12 Specifying the scope of alternative jumps and pop-ups. 283

8.10 Invoking WinHelp macros . 284
8.10.1 Using a hypertext marker to invoke a macro 284
8.10.2 Assigning a hotspot property to invoke a macro 284

8.11 Creating related-topic links in WinHelp . 285
8.11.1 Understanding KLink limitations. 285
8.11.2 Adding ALinks and KLinks with markers. 285
8.11.3 Adding related-topic keywords with formats. 285
8.11.4 Inserting WinHelp macros for ALink jumps 286

8.12 Configuring index entries for WinHelp . 287
8.12.1 Designating index level separators . 287
8.12.2 Eliminating duplicate keywords. 287
8.12.3 Keeping or discarding “See also” entries. 288
8.12.4 Using FrameMaker Index markers . 288

8.13 Configuring contents for WinHelp . 288
8.13.1 Naming and configuring Help files and titles 288
8.13.2 Specifying heading formats and levels for contents 289
8.13.3 Assembling WinHelp contents from the command line 291

8.14 Creating browse sequences. 292
8.14.1 Setting up an automatic browse sequence . 292
8.14.2 Specifying browse numbers . 292
8.14.3 Setting up multi-file browse sequences . 293
8.14.4 Setting up branching browse sequences. 293

9 Generating Microsoft HTML Help 295
9.1 Understanding how Mif2Go produces HTML Help . 295

9.2 Understanding why Unicode is not the answer. 296

9.3 Setting up an HTML Help project . 297
9.3.1 Creating an HTML Help project . 297
9.3.2 Choosing set-up options for an MS HTML Help project 298
9.3.3 Deciding where to locate configuration settings 299
9.3.4 Organizing source files for HTML Help . 299
9.3.5 Specifying a project title for HTML Help . 300
9.3.6 Deciding whether to compile HTML Help . 300
9.3.7 Naming project and compiled files for HTML Help 300
9.3.8 Specifying a starting topic file for HTML Help 301
9.3.9 Regenerating the HTML Help project file . 301
9.3.10 Locating graphics files for HTML Help . 302

9.4 Customizing HTML Help display features. 302

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 9

9.4.1 Using CSS and font tags with HTML Help. .303
9.4.2 Eliminating graphic and table indents from HTML Help303
9.4.3 Adding tabs and toolbar buttons to HTML Help.303
9.4.4 Adding expandable sections to HTML Help. .305

9.5 Creating pop-ups for HTML Help .305
9.5.1 Using HTML Help for pop-ups. .306
9.5.2 Using KeyHelp for pop-ups. .306
9.5.3 Using WinHelp for pop-ups .307

9.6 Creating links and hypertext jumps in HTML Help. .307
9.6.1 Creating hypertext jumps to other CHM files .307
9.6.2 Specifying href link syntax for HTML Help .308
9.6.3 Linking to external files from compiled HTML Help.308

9.7 Creating related-topic links for HTML Help .309
9.7.1 Adding ALink keywords for HTML Help .309
9.7.2 Adding ALink and KLink jumps for HTML Help 309
9.7.3 Configuring ALink and KLink jumps for HTML Help 310
9.7.4 Rolling your own macros for ALink jumps in HTML Help312
9.7.5 Using the same format or marker for ALink keywords and jumps. . . .312
9.7.6 Creating buttons for other types of related-topic links317

9.8 Using secondary windows in HTML Help. .317
9.8.1 Defining secondary windows for HTML Help317
9.8.2 Jumping from a topic to a secondary window.318
9.8.3 Jumping from contents or index to a secondary window 318

9.9 Generating contents and index for HTML Help .319
9.9.1 Choosing how to generate HTML Help contents and index319
9.9.2 Choosing whether to generate binary contents or index320
9.9.3 Generating contents and index with HTML Help Workshop321
9.9.4 Generating contents and index with Mif2Go .321
9.9.5 Configuring contents entries for HTML Help.322
9.9.6 Providing mid-topic contents links in HTML Help 323
9.9.7 Making the TOC track index links in HTML Help.323
9.9.8 Customizing contents and index for HTML Help.324

9.10 Converting generated files for HTML Help. .325
9.10.1 Converting lists of paragraph references. .325
9.10.2 Converting lists of marker references .325

9.11 Providing full-text search (FTS) for HTML Help .326

9.12 Setting up CSH for HTML Help .326
9.12.1 Inserting CSH destinations in your document.327
9.12.2 Determining whether you need map and alias files.328
9.12.3 Specifying and generating a map file for CSH links.329
9.12.4 Creating an alias file for CSH links. .330
9.12.5 Understanding alias-file entries. .330
9.12.6 Producing a list of aliases and associated topic titles 331

9.13 Generating HTML Help in non-Western languages .331
9.13.1 Converting from Unicode to Windows code pages.331
9.13.2 Specifying locale and language for HTML Help 332
9.13.3 Preventing inclusion of Unicode numeric references333
9.13.4 Coping with FrameMaker index-entry conversion defects333

9.14 Compiling and testing HTML Help .333
9.14.1 Directing Mif2Go to run the HTML Help compiler333

MIF2GO USER’S GUIDE

10 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

9.14.2 Copying output files and compiling later. 334
9.14.3 Compiling in a different language . 335
9.14.4 Testing HTML Help generation. 335
9.14.5 Registering your HTML Help system for network use 335

9.15 Mapping and merging CHM files . 336
9.15.1 Interlinking multiple CHM files . 336
9.15.2 Synchronizing TOC references to slave CHM files. 338
9.15.3 Putting up with a binary index for merged CHM files 338
9.15.4 Merging CHM files . 339
9.15.5 Comparing HHW settings for stand-alone vs. merged CHMs. 339

10 Generating OmniHelp 341
10.1 Understanding how OmniHelp works . 341

10.2 Setting up OmniHelp viewer control files . 342
10.2.1 Choosing XHTML vs. HTML OmniHelp control files 342
10.2.2 Making OmniHelp viewer control files available 343
10.2.3 Customizing OmniHelp viewer control files 343
10.2.4 Examining generated control and data files. 344

10.3 Setting up an OmniHelp project . 345
10.3.1 Creating an OmniHelp project . 345
10.3.2 Choosing set-up options for an OmniHelp project 346
10.3.3 Deciding where to locate configuration settings 347
10.3.4 Naming your OmniHelp project . 347
10.3.5 Giving your OmniHelp project a title . 348
10.3.6 Specifying the starting topic . 348
10.3.7 Specifying memory requirements . 348
10.3.8 Removing paths from interfile links for OmniHelp. 349
10.3.9 Getting OmniHelp supporting files in the right place 349

10.4 Using CSS with OmniHelp. 350
10.4.1 Specifying CSS for topics in OmniHelp . 350
10.4.2 Understanding how CSS works in OmniHelp topics. 351
10.4.3 Specifying CSS for OmniHelp navigation frames. 352

10.5 Customizing OmniHelp display features . 352
10.5.1 Configuring OmniHelp window usage and frameset dimensions . . . 352
10.5.2 Altering OmniHelp top navigation frame content 353
10.5.3 Modifying OmniHelp navigation aids . 353
10.5.4 Choosing whether to use cookies for OmniHelp 354
10.5.5 Localizing the OmniHelp interface . 354
10.5.6 Modifying OmniHelp CSS classes . 355
10.5.7 Modifying the OmniHelp template . 356

10.6 Choosing navigation features for OmniHelp . 356

10.7 Configuring contents and index for OmniHelp . 357
10.7.1 Understanding OmniHelp contents and index creation 357
10.7.2 Choosing whether to use expanding contents or index 357
10.7.3 Choosing how far to expand contents and index subentries 358
10.7.4 Providing alternate expansion icons for contents or index 358
10.7.5 Excluding Open All and Close All buttons. 359
10.7.6 Redirecting See and See also index entries . 359

10.8 Providing related-topic links in OmniHelp. 359

10.9 Jumping to secondary windows in OmniHelp . 360

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 11

10.10 Configuring full-text search for OmniHelp .361
10.10.1 Understanding how OmniHelp FTS works .361
10.10.2 Generating search data .361
10.10.3 Making compound terms searchable .362
10.10.4 Supporting search for non-ANSI text .362
10.10.5 Specifying length of search terms .363
10.10.6 Excluding search terms .363
10.10.7 Excluding content from being searched .363
10.10.8 Using regular expressions in search .363
10.10.9 Highlighting search terms found in topics. .364

10.11 Setting up CSH for OmniHelp .364
10.11.1 Specifying alias prefixes for OmniHelp CSH calls364
10.11.2 Referencing OmniHelp topic IDs from an application365
10.11.3 Using redirect pages for OmniHelp CSH calls365
10.11.4 Executing browser commands for OmniHelp CSH calls 366

10.12 Merging OmniHelp projects. .366
10.12.1 Understanding the OmniHelp merge process366
10.12.2 Listing and mapping OmniHelp subprojects.367
10.12.3 Providing TOC placeholders for OmniHelp subprojects 368
10.12.4 Deciding when to merge OmniHelp subprojects.369

10.13 Assembling OmniHelp files for viewing .369

10.14 Deploying OmniHelp .370
10.14.1 Starting with the default topic or a specified topic371
10.14.2 Restarting where you left off .371
10.14.3 Coping with browser quirks .371

11 Generating JavaHelp or Oracle Help 373
11.1 Deciding which Java Help system to use .373

11.2 Obtaining tools for a Java-based Help system .373

11.3 Setting up a JavaHelp or Oracle Help project .374
11.3.1 Creating a JavaHelp or Oracle Help for Java project 374
11.3.2 Choosing set-up options for a JavaHelp or Oracle Help project375
11.3.3 Deciding where to locate configuration settings376
11.3.4 Specifying output options for JavaHelp .376
11.3.5 Establishing a JavaHelp environment .377
11.3.6 Establishing an Oracle Help environment. .377
11.3.7 Creating a directory structure for JavaHelp / Oracle Help 378
11.3.8 Configuring the helpset file .382
11.3.9 Coping with JavaHelp / Oracle Help viewer limitations.384
11.3.10 Compiling JavaHelp with Helen .384

11.4 Generating contents and index .385
11.4.1 Configuring contents entries for JavaHelp or Oracle Help385
11.4.2 Assigning TOC images and expansion levels in JavaHelp 2 385
11.4.3 Configuring index entries for JavaHelp or Oracle Help386
11.4.4 Eliminating index-marker artifacts from text 386
11.4.5 Locating JavaHelp or Oracle Help contents and index files387

11.5 Providing full-text search for JavaHelp / Oracle Help387
11.5.1 Including a search-index link in the helpset file387
11.5.2 Creating a search index for JavaHelp .388
11.5.3 Creating a search index for Oracle Help .389

MIF2GO USER’S GUIDE

12 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

11.6 Creating and viewing a Java Archive (JAR) file . 390
11.6.1 Creating a JAR file. 391
11.6.2 Viewing a JAR file. 391

11.7 Converting a glossary to JavaHelp 2 . 392
11.7.1 Evaluating glossary usability . 392
11.7.2 Assigning glossary properties . 392
11.7.3 Configuring glossary IDs. 392
11.7.4 Eliminating glossary entries from the JavaHelp TOC 393

11.8 Defining windows for JavaHelp or Oracle Help. 393
11.8.1 Specifying window parameters for JavaHelp 2. 393
11.8.2 Specifying window parameters for Oracle Help 398
11.8.3 Jumping to secondary windows in JavaHelp or Oracle Help 399

11.9 Linking to destinations within topics . 399

11.10 Creating ALinks for Oracle Help . 399

11.11 Merging JavaHelp or Oracle Help systems . 400

11.12 Setting up CSH for JavaHelp or Oracle Help . 401

12 Generating Eclipse Help 403
12.1 Understanding how Eclipse Help works. 403

12.2 Setting up an Eclipse Help project . 403
12.2.1 Creating an Eclipse Help project . 403
12.2.2 Choosing set-up options for an Eclipse Help project. 404
12.2.3 Deciding where to locate configuration settings 405
12.2.4 Specifying Eclipse Help output options. 405
12.2.5 Making sure links work in Eclipse Help . 406
12.2.6 Disabling breadcrumb trails in Eclipse Help. 406

12.3 Configuring Eclipse Help manifest files. 407
12.3.1 Specifying a Java manifest file for Eclipse Help 407
12.3.2 Specifying Eclipse Help plug-in properties . 407
12.3.3 Configuring the Java manifest file for Eclipse Help 408
12.3.4 Configuring the plug-in manifest file for Eclipse Help 409

12.4 Configuring contents and index for Eclipse Help. 411
12.4.1 Choosing contents and index methods for Eclipse Help 411
12.4.2 Supplying path information for contents and index links 412
12.4.3 Encoding special characters for contents and index entries. 412
12.4.4 Configuring contents properties for Eclipse Help 412
12.4.5 Configuring index properties for Eclipse Help 414

12.5 Configuring search properties for Eclipse Help . 415

12.6 Merging Eclipse Help projects . 415
12.6.1 Linking primary content to secondary TOCs. 415
12.6.2 Linking secondary TOCs to primary content (deprecated) 416

12.7 Setting up CSH for Eclipse Help . 417
12.7.1 Understanding how Mif2Go generates context links 417
12.7.2 Naming context file and attribute for secondary plug-ins 417
12.7.3 Configuring context IDs and context anchors 418
12.7.4 Configuring context descriptions . 418
12.7.5 Locating context information. 419

12.8 Packaging Eclipse Help files . 419
12.8.1 Specifying a ZIP command for doc.zip . 419

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 13

12.8.2 Specifying ZIP command parameters .419
12.8.3 Specifying a JAR command for doc.jar .420
12.8.4 Monitoring the packaging step for errors .420
12.8.5 Archiving Eclipse Help files .420

13 Converting to HTML/XHTML 423
13.1 Deciding which type of output to produce .424

13.2 Setting up an HTML project .424
13.2.1 Creating an HTML or XHTML project. .425
13.2.2 Choosing set-up options for an HTML or XHTML project425
13.2.3 Preparing a document for conversion to HTML or XHTML426
13.2.4 Specifying a different output file extension .427
13.2.5 Checking automatic settings for HTML or XML split files427
13.2.6 Establishing a conversion workflow for HTML.427
13.2.7 Checking HTML output files for broken links428
13.2.8 Checking HTML or XML output files for Mif2Go version428
13.2.9 Using XHTML tagging rules for HTML. .428

13.3 Including starting code and entity references. .429

13.4 Supplying values for the <head> element .429
13.4.1 Specifying HTML/XML version, DOCTYPE, and DTD429
13.4.2 Specifying namespace and language .430
13.4.3 Specifying character encoding for HTML .431
13.4.4 Including or omitting HTML/XML generator information.433
13.4.5 Specifying page titles for HTML output files433
13.4.6 Supplying content for the <meta> tag .434
13.4.7 Specifying nonstandard values for declarations 435

13.5 Specifying HTML <body> attributes. .436

13.6 Specifying document-wide properties for HTML .436
13.6.1 Specifying a default DPI setting .436
13.6.2 Converting system variables to text for HTML 437
13.6.3 Suppressing closing </p> tags for HTML. .437
13.6.4 Suppressing line breaks in HTML and XML output.437
13.6.5 Preventing adjacent <pre> elements from merging.438

13.7 Defining and mapping colors for HTML .438
13.7.1 Converting colors .438
13.7.2 Mapping FrameMaker colors to new values .439
13.7.3 Defining new colors .440
13.7.4 Using Web-safe colors .440
13.7.5 Redefining colors via conversion template .440
13.7.6 Understanding CMYK-to-RGB conversion anomalies.441

13.8 Converting generated files for HTML .441
13.8.1 Converting FrameMaker IX and other marker lists 442
13.8.2 Converting FrameMaker TOC and other paragraph lists 444

13.9 Importing HTML files as insets .446

13.10 Converting conditions to HTML attributes .446
13.10.1 Understanding how Mif2Go converts conditions446
13.10.2 Mapping FrameMaker conditions to HTML attributes447
13.10.3 Displaying condition indicators in HTML with CSS 447

13.11 Providing hover text for terms in HTML .448

13.12 Generating XHTML for Confluence 4.x .449

MIF2GO USER’S GUIDE

14 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

13.13 Exporting content for database input . 450

13.14 Using framesets. 450

13.15 Adding a “Made with Mif2Go” label or button . 452

13.16 Passing W3C validation tests . 453
13.16.1 Understanding limitations of W3C validation 453
13.16.2 Replacing high ASCII characters for W3C validation. 454
13.16.3 Eliminating <nobr> tags. 455
13.16.4 Removing full-row straddles from tables. 456
13.16.5 Avoiding redundant attribute assignments in tables 456
13.16.6 Eliminating duplicate ObjectIDs . 456

14 Converting to generic XML 457
14.1 Understanding how Mif2Go generates XML output 457

14.1.1 Accommodating HTML features in XML output 457
14.1.2 Introducing structure with Mif2Go . 458
14.1.3 Introducing structure with XSLT. 458
14.1.4 Creating structure in FrameMaker . 458
14.1.5 Producing SGML with Mif2Go and XSLT . 458

14.2 Setting up a generic XML project. 459

14.3 Specifying generic XML output settings . 459
14.3.1 Creating a generic XML project . 460
14.3.2 Changing output XML version or file extension 460
14.3.3 Specifying character encoding for generic XML. 460
14.3.4 Specifying the root element and content type 461
14.3.5 Preventing arbitrary line breaks in XML text elements. 461

14.4 Providing XML tags and structure . 461
14.4.1 Generating XML from an unstructured document. 462
14.4.2 Deriving XML tags from format and class names. 462
14.4.3 Eliminating HTML attributes and tags for generic XML 463
14.4.4 Including or excluding FrameMaker autonumbers 465
14.4.5 Configuring forced returns for XML . 465

14.5 Converting FrameMaker lists to generic XML. 466

14.6 Configuring links for generic XML . 467

14.7 Converting graphics for generic XML . 468

14.8 Converting index entries to generic XML . 468
14.8.1 Configuring index markers for conversion to XML 469
14.8.2 Defining macros to process index content . 469

15 Converting to DITA XML 473
15.1 Generating DITA XML with Mif2Go . 473

15.1.1 Understanding the complexity of a DITA conversion project. 473
15.1.2 Understanding what you need to know about DITA 474
15.1.3 Clarifying your purpose for creating DITA output 474
15.1.4 Converting from structured vs. unstructured FrameMaker 475
15.1.5 Understanding what information you must supply 476
15.1.6 Understanding how Mif2Go generates DITA output 476
15.1.7 Creating valid DITA XML output . 477

15.2 Setting up a DITA XML project. 478
15.2.1 Creating a DITA XML project. 478
15.2.2 Choosing set-up options for a DITA XML project 479

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 15

15.2.3 Specifying DITA output options .480
15.2.4 Specifying DITA version .480
15.2.5 Configuring the DITA DTD SYSTEM identifier481
15.2.6 Ensuring FrameMaker 8 import compatibility 481
15.2.7 Substituting document format names for default names481

15.3 Specifying general options for DITA. .483

15.4 Configuring DITA elements. .486
15.4.1 Understanding how Mif2Go delimits DITA elements 486
15.4.2 Treating FrameMaker format names as DITA element names486
15.4.3 Mapping paragraph formats to DITA block elements.487
15.4.4 Mapping character formats to DITA inline elements492
15.4.5 Assigning multiple typographic elements to a format.494
15.4.6 Assigning attributes to DITA elements .495
15.4.7 Preserving whitespace in block elements .499
15.4.8 Including PIs for line, column, or page breaks499
15.4.9 Providing a <shortdesc> element for a DITA topic 500
15.4.10 Converting index markers to <indexterm> elements 500

15.5 Nesting DITA block elements .501
15.5.1 Understanding how Mif2Go determines element nesting.501
15.5.2 Designating DITA ancestor elements .502
15.5.3 Fixing up interpolated ancestries. .503
15.5.4 Deciding when to fully specify ancestry .503
15.5.5 Specifying alternate ancestries for the same element504
15.5.6 Avoiding invalid ancestries .504
15.5.7 Specifying first-child status for nested elements.505
15.5.8 Configuring nested lists. .505
15.5.9 Closing DITA ancestor elements. .506
15.5.10 Opening DITA ancestor elements .507
15.5.11 Configuring multi-paragraph list items .508
15.5.12 Splitting a paragraph into separate DITA elements 508
15.5.13 Specifying DITA element levels .509

15.6 Converting tables to DITA XML .510
15.6.1 Working with Mif2Go DITA table types .510
15.6.2 Marking table footer rows for future reference511
15.6.3 Designating ancestors for <table> elements .512
15.6.4 Applying attributes to DITA tables .512
15.6.5 Configuring DITA table components .513
15.6.6 Converting tables used only as image containers514
15.6.7 Omitting table coding entirely. .515

15.7 Specifying options for images in DITA XML .516
15.7.1 Designating ancestors for <image> and <fig> elements516
15.7.2 Specifying what to include in a <fig> wrapper517
15.7.3 Omitting size attributes from images for DITA output518
15.7.4 Providing alternate text for images .518
15.7.5 Including MathFullForm equations in <alt> elements 518
15.7.6 Including the original image DPI as an attribute.518
15.7.7 Understanding why images might look incorrectly scaled519

15.8 Organizing DITA topics. .519
15.8.1 Understanding when to split, nest, or wrap DITA topics 519
15.8.2 Splitting FrameMaker files into DITA topic files520
15.8.3 Renaming DITA topic files .520

MIF2GO USER’S GUIDE

16 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

15.8.4 Nesting DITA topics in unsplit files . 521
15.8.5 Wrapping DITA topics in a top-level <dita> element 521

15.9 Configuring DITA topics . 522
15.9.1 Designating starting points for DITA topics 522
15.9.2 Specifying the DITA topic type . 524
15.9.3 Specifying the ID for a DITA topic . 526
15.9.4 Adjusting DITA topic IDs generated from file names. 526
15.9.5 Specifying alternate titles for a DITA topic. 526
15.9.6 Omitting a DITA topic from the TOC . 527

15.10 Configuring cross references and links for DITA. 527
15.10.1 Understanding how Mif2Go converts cross references. 527
15.10.2 Specifying an outputclass for cross-reference wrappers 528
15.10.3 Linking to elements below topic level . 528
15.10.4 Retaining cross-reference content in <xref> elements. 528
15.10.5 Omitting <xref> elements from footnotes . 529
15.10.6 Overriding <xref> attribute values. 529

15.11 Exporting FrameMaker variables to DITA XML. 530
15.11.1 Understanding how Mif2Go represents variables in DITA 530
15.11.2 Specifying how to treat FrameMaker variables 530
15.11.3 Treating FrameMaker variables as conrefs 531
15.11.4 Retaining format properties of user variables in DITA 532

15.12 Converting conditions to DITA attributes . 533
15.12.1 Understanding how Mif2Go converts conditional text 533
15.12.2 Mapping FrameMaker conditions to element attributes 533
15.12.3 Disallowing condition conversion for selected elements. 534

15.13 Marking FrameMaker text insets in DITA . 534

15.14 Including CSH targets in DITA XML . 535

15.15 Overriding DITA settings with markers . 536

16 Configuring DITA maps 539
16.1 Understanding how Mif2Go generates DITA maps . 539

16.2 Configuring DITA ditamaps. 539
16.2.1 Specifying options for ditamaps . 539
16.2.2 Specifying topic levels in ditamaps . 544
16.2.3 Accounting for missing topic levels. 544
16.2.4 Specifying roles for topics in ditamaps . 545
16.2.5 Adding relationship tables to ditamaps . 546
16.2.6 Providing navigation aids in ditamaps. 547

16.3 Constructing a DITA bookmap. 548
16.3.1 Specifying the type of map for a book. 548
16.3.2 Specifying <booktitle> information. 548
16.3.3 Specifying <bookmeta> information . 549
16.3.4 Extending <part> to include <appendix> . 550
16.3.5 Choosing whether a bookmap references maps or topics 550
16.3.6 Excluding the book-level reltable from a bookmap. 550

16.4 Mapping FrameMaker files to bookmap components 551
16.4.1 Assigning bookmap roles to FrameMaker files. 551
16.4.2 Assigning frontmatter and backmatter roles and components 552
16.4.3 Including multiple booklist components of the same type 553
16.4.4 Assigning a divider role to a section file or chapter 554

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 17

16.4.5 Assigning a series of roles to a single FrameMaker file554
16.4.6 Assigning a single role to a series of FrameMaker files554
16.4.7 Including placeholders for additional bookmap elements.555

16.5 Providing attributes for bookmap wrapper elements .555

16.6 Overriding DITA map settings with markers. .556

17 Converting to DocBook XML 557
17.1 Generating DocBook XML with Mif2Go .557

17.1.1 Understanding what you need to know about DocBook557
17.1.2 Clarifying your purpose for creating DocBook output557
17.1.3 Understanding what information you must supply558

17.2 Setting up a DocBook XML project. .559
17.2.1 Creating a DocBook project .559
17.2.2 Choosing set-up options for a DocBook project560
17.2.3 Specifying DocBook output options .561

17.3 Specifying general options for DocBook .562
17.3.1 Configuring styles for DocBook XML .562
17.3.2 Configuring entity information for DocBook XML563
17.3.3 Configuring links for DocBook XML. .563
17.3.4 Configuring tables for DocBook XML .563
17.3.5 Retaining empty paragraph tags in DocBook table cells.564
17.3.6 Configuring footnotes for DocBook XML .564

17.4 Configuring DocBook elements. .564
17.4.1 Treating FrameMaker format names as element names565
17.4.2 Mapping paragraph formats to DocBook elements.565
17.4.3 Mapping character formats to DocBook elements 568
17.4.4 Assigning ID attributes to DocBook block elements 569
17.4.5 Assigning attributes other than ID to DocBook elements571

17.5 Nesting DocBook block elements .573
17.5.1 Understanding how Mif2Go determines element nesting.573
17.5.2 Designating DocBook ancestor elements .573
17.5.3 Fixing up interpolated ancestries. .574
17.5.4 Deciding when to fully specify ancestry .575
17.5.5 Specifying alternate ancestries for the same element575
17.5.6 Specifying first-child status for nested elements.576
17.5.7 Specifying full ancestry for nested sections .576
17.5.8 Closing DocBook ancestor elements. .577
17.5.9 Opening DocBook ancestor elements .578
17.5.10 Configuring multi-paragraph list items .578
17.5.11 Specifying DocBook element levels .579

17.6 Designating ancestors for table elements .580

17.7 Specifying options for figure elements .581
17.7.1 Deciding what to include in a figure element581
17.7.2 Specifying ancestry for figure elements .581
17.7.3 Omitting size attributes from images for DocBook 582

17.8 Overriding DocBook settings with markers. .582

18 Splitting and extracting files 585
18.1 Splitting versus extracting .585

18.2 Splitting files .586

MIF2GO USER’S GUIDE

18 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

18.2.1 Designating split points . 586
18.2.2 Managing split points. 588
18.2.3 Combining instead of splitting files . 591

18.3 Extracting files . 591
18.3.1 Enabling and disabling extract processing. 591
18.3.2 Delimiting material to extract . 592

18.4 Identifying split and extract files . 593
18.4.1 Understanding how split and extract files are named 593
18.4.2 Specifying page titles for split or extract files 594
18.4.3 Supplying <meta> text for split or extract files 598

18.5 Inserting HTML code in split and extract files. 598
18.5.1 Choosing how to insert code in extracts . 598
18.5.2 Assigning code to [Inserts] keywords for splits and extracts. 599
18.5.3 Using special sections to insert code in extracts 600

18.6 Referencing split and extract files. 600

18.7 Customizing and replacing extracts . 601
18.7.1 Using markers for extract processing. 602
18.7.2 Customizing title text for extracts . 602
18.7.3 Replacing extracts with links in the parent file 603
18.7.4 Specifying extracts: an example . 607

19 Creating HTML links 609
19.1 Understanding sources of links. 609

19.2 Specifying link appearance. 609
19.2.1 Specifying link colors . 610
19.2.2 Specifying link class . 610
19.2.3 Assigning link attributes with markers . 612
19.2.4 Specifying link properties with macros . 612
19.2.5 Replacing problem characters in links . 612
19.2.6 Forcing link text to lowercase . 613

19.3 Specifying link destination . 613
19.3.1 Forcing links to top-of-page for selected paragraph formats. 614
19.3.2 Forcing all links to top-of-page . 614
19.3.3 Linking to an arbitrary location . 614
19.3.4 Providing alternate link destinations . 615
19.3.5 Troubleshooting bad links . 616

19.4 Creating jumps to particular windows for HTML . 616

19.5 Converting FrameMaker links to HTML . 617
19.5.1 Converting FrameMaker cross references to HTML. 617
19.5.2 Converting FrameMaker hypertext links to HTML. 619
19.5.3 Including ObjectID anchors as link targets . 620

19.6 Linking to other files and other Mif2Go projects. 621
19.6.1 Identifying HTML link destinations with FileIDs 621
19.6.2 Retaining file paths in interfile links . 622
19.6.3 Enabling links to renamed or relocated files 622
19.6.4 Enabling links to files in other projects . 623
19.6.5 Updating links between files in different projects 624
19.6.6 Mapping links to text insets . 624

19.7 Linking to external destinations . 625

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 19

20 Providing navigation in HTML 627
20.1 Understanding how navigation links work. .627

20.2 Generating trails of links .627
20.2.1 Understanding trails of links .627
20.2.2 Specifying whether to include trails of links.628
20.2.3 Specifying what to include in trails of links .628
20.2.4 Specifying heading levels for trails of links .630
20.2.5 Specifying where to display trails of links .630

20.3 Including local TOCs .631
20.3.1 Directing Mif2Go to generate local TOCs .631
20.3.2 Configuring local TOCs .631
20.3.3 Positioning local TOCs in HTML topics. .634
20.3.4 Creating local TOCs in FrameMaker .635

20.4 Creating a browse sequence .635
20.4.1 Understanding how browse macros work .636
20.4.2 Choosing buttons versus text links for a browse sequence638
20.4.3 Formatting browse-link labels. .639
20.4.4 Modifying macros <$_prev>, <$_next>, and <$_top>639
20.4.5 Understanding browse keyword scope and default values641
20.4.6 Specifying where to invoke a browse macro.642
20.4.7 Considering an example of browse navigation.643
20.4.8 Specifying an alternate file sequence for browse links644

21 Mapping text formats to HTML/XML 645
21.1 Understanding how Mif2Go converts text .645

21.2 Choosing how to map formats .645

21.3 Mapping paragraph formats .646
21.3.1 Assigning HTML tags and attributes to paragraph formats 646
21.3.2 Converting sidehead and run-in paragraph formats 648
21.3.3 Converting paragraph formats with autonumbers648
21.3.4 Including text-frame content in line .649
21.3.5 Designating script paragraph formats .650
21.3.6 Stripping paragraph properties .650
21.3.7 Keeping or removing reference frames .651
21.3.8 Deciding how to treat forced returns .651
21.3.9 Providing content for empty paragraphs .651
21.3.10 Eliminating empty paragraphs in text .652
21.3.11 Eliminating invisible paragraphs. .652
21.3.12 Eliminating unwanted paragraphs .652

21.4 Mapping character formats. .653

21.5 Assigning properties to text formats .653
21.5.1 Understanding where to specify format property overrides 654
21.5.2 Overriding paragraph alignment and size properties.656
21.5.3 Overriding properties added by typographic elements657
21.5.4 Overriding properties specified in font tags .657

21.6 Mapping special characters .658
21.6.1 Understanding how Mif2Go represents characters.658
21.6.2 Understanding how Mif2Go treats tabs in HTML/XML658
21.6.3 Understanding Mif2Go support for FrameMaker 8+ Unicode659
21.6.4 Converting Western European accented characters 660

MIF2GO USER’S GUIDE

20 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

21.6.5 Mapping individual special characters. 660
21.6.6 Mapping characters in a special font . 662
21.6.7 Avoiding use of special characters in URIs . 663
21.6.8 Preventing character mapping . 663

21.7 Mapping fonts . 663
21.7.1 Specifying a default font and size . 664
21.7.2 Remapping fonts . 664
21.7.3 Mapping font sizes . 664
21.7.4 Including or excluding font tags . 665
21.7.5 Managing font tags for symbol fonts . 666
21.7.6 Excluding face and size attributes from font tags 666
21.7.7 Accommodating browser font-rendering differences 666

21.8 Managing typographic elements for HTML or XML. 667
21.8.1 Deciding whether to suppress typographic elements. 667
21.8.2 Choosing how to treat typographic elements. 667

21.9 Specifying text colors for HTML . 669

21.10 Configuring preformatted text for HTML/XML . 670
21.10.1 Eliminating line wraps in preformatted text 670
21.10.2 Replacing tabs with spaces in preformatted text 671

21.11 Converting footnotes to HTML or XML . 671
21.11.1 Configuring and placing footnotes. 671
21.11.2 Eliminating links to jump footnotes. 672
21.11.3 Using list tags or <div> and <p> tags for jump footnotes 672
21.11.4 Formatting jump footnote text with macros. 673

21.12 Converting list formats to HTML. 674
21.12.1 Understanding the problem with HTML lists 674
21.12.2 Converting list formats to HTML list styles 675
21.12.3 Indenting list items. 678
21.12.4 Converting list formats to HTML/XML paragraphs 679

22 Setting up CSS for HTML 681
22.1 Deciding whether to use CSS . 681

22.2 Understanding how to use CSS. 681

22.3 Understanding how Mif2Go generates CSS. 682

22.4 Specifying CSS file and link options . 683
22.4.1 Specifying CSS options at project set-up time. 683
22.4.2 Specifying CSS options in a Mif2Go configuration file 684
22.4.3 Designating and locating a CSS file . 686
22.4.4 Directing Mif2Go to generate a CSS file . 686
22.4.5 Understanding effects of the older Stylesheet setting 687

22.5 Understanding how CSS affects other options . 687

22.6 Linking to alternate CSS files . 688
22.6.1 Selecting a CSS file at run time . 688
22.6.2 Changing CSS files in the middle of a document 689
22.6.3 Customizing the CSS link tag . 690
22.6.4 Using an alternate CSS link tag for Netscape 4 690

22.7 Assigning CSS classes . 691
22.7.1 Understanding CSS class name restrictions. 691
22.7.2 Mapping paragraph formats to CSS classes. 692
22.7.3 Mapping character formats to tags or span classes 693

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 21

22.7.4 Assigning CSS classes to table formats. .694
22.7.5 Assigning CSS classes to text and table footnotes 694
22.7.6 Assigning CSS classes based on Unicode character ranges694
22.7.7 Assigning CSS classes to FrameMaker conditions695
22.7.8 Using link format names as CSS class names696
22.7.9 Using CSS class names as tags for XML .696
22.7.10 Omitting tags from CSS selectors .696
22.7.11 Overriding CSS class for selected paragraphs.697

22.8 Customizing CSS properties .698
22.8.1 Assigning a CSS generic font family .698
22.8.2 Specifying CSS <body> tag properties .698
22.8.3 Specifying CSS size values and units of measurement699
22.8.4 Overriding styles in Mif2Go -generated CSS files 700
22.8.5 Adjusting leading (line spacing) in CSS .700
22.8.6 Preventing tags from overriding CSS properties.701

23 Including graphics in HTML 703
23.1 Starting with default graphics options .703

23.2 Understanding graphics processing for HTML .703

23.3 Locating graphics files for HTML .704

23.4 Specifying options for HTML graphics .705
23.4.1 Using referenced graphics without converting706
23.4.2 Specifying formats of replacement graphics .706
23.4.3 Choosing a graphics conversion method. .707
23.4.4 Using referenced, embedded, and compound graphics707
23.4.5 Omitting graphics from HTML or XML output708

23.5 Selecting and modifying graphics .708
23.5.1 Assigning properties to sets of graphics .708
23.5.2 Replacing or surrounding a graphic with macro code.710
23.5.3 Converting only the visible portion of a graphic.712
23.5.4 Converting reference-page graphics for HTML712
23.5.5 Eliminating graphics in unanchored frames .713
23.5.6 Omitting paragraph tags around graphics .713
23.5.7 Retaining run-in images in otherwise empty paragraphs 713

23.6 Positioning graphics in HTML output .714
23.6.1 Positioning graphics anchored in empty paragraphs714
23.6.2 Aligning anchored graphics. .714
23.6.3 Indenting images .716
23.6.4 Adding space above an image .717
23.6.5 Eliminating space above or below graphics in table cells.717

23.7 Specifying HTML image attributes .718

23.8 Providing (or omitting) alternate text for images. .718

23.9 Scaling images for HTML .719
23.9.1 Excluding image size attributes from HTML720
23.9.2 Adjusting image size for selected graphics .720
23.9.3 Adjusting image resolution for referenced graphics721
23.9.4 Specifying image resolution for exported graphics.721
23.9.5 Specifying px units for graphics sized in pixels 722

23.10 Creating image maps for HTML .722
23.10.1 Creating hotspots for image maps .722

MIF2GO USER’S GUIDE

22 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

23.10.2 Providing alternate text for a hotspot in an image map 723
23.10.3 Specifying jumps from image maps in framesets 725

23.11 Supplying a background image or watermark . 725

23.12 Converting equations for HTML . 725

24 Converting tables to HTML 727
24.1 Assigning properties to tables. 727

24.1.1 Understanding which table features can be converted. 727
24.1.2 Understanding precedence of assignment methods 728
24.1.3 Overriding default table and cell properties and attributes 728

24.2 Defining sets of tables. 728
24.2.1 Determining the TableID . 729
24.2.2 Creating table groups . 729
24.2.3 Using wildcards to specify table sets . 730

24.3 Specifying table structure . 730
24.3.1 Choosing the table structure model . 730
24.3.2 Identifying row and column groups and header cells 731
24.3.3 Identifying table headers and footers . 734

24.4 Specifying table attributes. 735
24.4.1 Specifying attributes for all tables . 736
24.4.2 Overriding attributes for selected tables . 736
24.4.3 Assigning a CSS class to a table . 737
24.4.4 Using markers to assign attributes to tables, rows, or cells 737
24.4.5 Specifying attributes for table rows . 737
24.4.6 Specifying attributes for table cells . 738
24.4.7 Eliminating automatically generated attributes 739
24.4.8 Adjusting borders, cell spacing, and cell padding 739
24.4.9 Determining the width of table columns . 741
24.4.10 Deciding what to do with empty paragraphs in table cells 744
24.4.11 Using shading and color in tables . 745

24.5 Positioning tables, table titles, and table footnotes . 746
24.5.1 Indenting tables . 747
24.5.2 Configuring and positioning table titles. 747
24.5.3 Eliminating FrameMaker table title variables 748
24.5.4 Positioning table footnotes. 748

24.6 Using macros to control table properties . 748
24.6.1 Invoking macros around tables . 748
24.6.2 Adding space before tables . 749
24.6.3 Adjusting space after tables . 749
24.6.4 Turning processing on and off around selected tables. 750
24.6.5 Specifying row-group, row, and cell attributes with macros 750
24.6.6 Capturing table row and column counts with variables. 751
24.6.7 Selectively modifying table text with macros: an example 752

24.7 Converting tables to paragraphs . 753
24.7.1 Removing table-specific tags from all tables. 753
24.7.2 Removing table-specific tags from selected tables 754
24.7.3 Removing table-specific tags from complex tables 754

25 Generating WAI markup for HTML 755
25.1 Comparing Mif2Go markup methods for WAI . 755

25.1.1 Choosing a markup method for WAI attributes. 755

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 23

25.1.2 Using paragraph formats for WAI attributes.755
25.1.3 Creating custom markers for WAI attributes 756

25.2 Applying WAI markup to images .756
25.2.1 Following WAI guidelines for images .757
25.2.2 Assigning WAI image attributes with dedicated formats757
25.2.3 Assigning WAI image attributes with custom markers.757
25.2.4 Assigning WAI image attributes via the Object Attributes dialog . . .758

25.3 Applying WAI markup to links .758
25.3.1 Following WAI guidelines for links .758
25.3.2 Assigning WAI link attribute values with dedicated formats758
25.3.3 Assigning WAI link attribute values with custom markers.759

25.4 Applying WAI markup to tables .759
25.4.1 Following WAI guidelines for tables .759
25.4.2 Choosing a WAI markup method for tables .760
25.4.3 Providing table summary and title information.760
25.4.4 Identifying table row and column information762

26 Identifying HTML table structure for WAI 763
26.1 Identifying table rows and columns .763

26.1.1 Developing a strategy for row and column markup 763
26.1.2 Comparing scope and id/headers accessibility methods763
26.1.3 Specifying a default accessibility method .764
26.1.4 Overriding the default accessibility method .765

26.2 Associating table cells with header cells .766
26.2.1 Specifying group properties for header cells.766
26.2.2 Using paragraph formats for table-cell attributes767
26.2.3 Assigning table-cell attribute values with dedicated formats772
26.2.4 Assigning table-cell attribute values with custom markers.772

27 Marking HTML table cells for WAI 775
27.1 Understanding table cell settings .775

27.2 Using the scope method to identify table cells. .775

27.3 Using the id/headers method to identify table cells .777
27.3.1 Choosing an id/headers level. .777
27.3.2 Specifying id/headers attributes for table cells777
27.3.3 Grouping header cells for identification .778
27.3.4 Column-group and row-group extent .779
27.3.5 Choosing a different row-group method .780
27.3.6 Using span attributes to identify rows and columns780
27.3.7 Column-span and row-span extent .781
27.3.8 Identifying individual table cells by row and column.782
27.3.9 Column and row extent .783
27.3.10 Using span IDs with row or column IDs .783

27.4 Overriding default table-cell settings .784

27.5 Using ColGroup and RowGroup cells .784
27.5.1 Understanding how the ColGroup property works784
27.5.2 Understanding how the RowGroup property works785

28 Working with macros 787
28.1 Defining and invoking macros .787

28.1.1 Defining macros .787

MIF2GO USER’S GUIDE

24 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

28.1.2 Invoking a macro . 791
28.1.3 Nesting macros. 791
28.1.4 Using predefined macros . 792

28.2 Accessing Mif2Go macro libraries. 792
28.2.1 Understanding Mif2Go -supplied macro libraries 792
28.2.2 Modifying Mif2Go -supplied macro definitions 793
28.2.3 Storing a macro definition in a separate file 793
28.2.4 Including macro definitions in your own macro library 794

28.3 Using macro variables. 795
28.3.1 Creating and invoking macro variables . 796
28.3.2 Assigning values to macro variables . 797
28.3.3 Incrementing and decrementing macro variables 799
28.3.4 Using predefined macro variables . 800
28.3.5 Treating FrameMaker user variables as macro variables. 801
28.3.6 Using some FrameMaker system variables as macro variables. 802
28.3.7 Creating macro variables from paragraph content. 802

28.4 Using multiple-value list variables . 806
28.4.1 Understanding list-variable syntax. 806
28.4.2 Assigning a value to a list-variable item . 806
28.4.3 Initializing list variables. 807
28.4.4 Using macros to process lists . 807
28.4.5 Using pointers to process lists . 808
28.4.6 Using a list instead of a conditional expression. 809

28.5 Accessing settings with configuration macros . 809
28.5.1 Understanding configuration macros and variables. 809
28.5.2 Determining the value of a configuration variable 810
28.5.3 Deploying configuration macros . 810

28.6 Using expressions in macros. 811
28.6.1 Understanding macro expressions . 811
28.6.2 Understanding operands and operators . 811
28.6.3 Displaying expression results in output . 813
28.6.4 Using control structures in expressions . 815
28.6.5 Specifying substrings in expressions . 817
28.6.6 Using list variables in expressions . 818
28.6.7 Using indirection in expressions . 819
28.6.8 Removing spaces from strings: an example. 820

28.7 Passing a parameter to a macro. 820

28.8 Debugging macros . 820

28.9 Deploying macros and macro variables . 820
28.9.1 Understanding where to use macros and macro variables 821
28.9.2 Invoking macros at predetermined points in output. 821
28.9.3 Surrounding or replacing text with code or macros. 822
28.9.4 Converting a dictionary-style list to an HTML table. 824
28.9.5 Assigning macros to graphics or tables for HTML 827
28.9.6 Redefining navigation macros in HTML. 827
28.9.7 Using HTML Macro markers to invoke macros 828
28.9.8 Implementing drop-down text with macros . 828

28.10 Using macros to fine-tune HTML or XML output. 828

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 25

29 Working with FrameMaker markers 831
29.1 Using custom FrameMaker markers .831

29.2 Adding custom marker types .832
29.2.1 Identifying dedicated custom marker types. .832
29.2.2 Naming new custom marker types .834
29.2.3 Understanding attribute markers .834
29.2.4 Using attribute markers for HTML or XML .835

29.3 Remapping marker types and hypertext commands. .836
29.3.1 Remapping and cloning marker types .836
29.3.2 Understanding when to remap marker types .837
29.3.3 Remapping FrameMaker hypertext commands.837

29.4 Defining and redefining marker behavior .838
29.4.1 Assigning properties to marker types .838
29.4.2 Observing restrictions on redefining marker behavior 840
29.4.3 Understanding examples of marker redefinition840

29.5 Suppressing markers. .841

29.6 Using marker property names for marker types. .842

29.7 Inserting code or text with markers .842
29.7.1 Inserting marker content in output .842
29.7.2 Surrounding marker content with code .843
29.7.3 Processing marker content as text for XML/HTML/XHTML844
29.7.4 Surrounding attribute markers with code .845
29.7.5 Converting custom markers to attributes. .845
29.7.6 Including code to be executed before a topic 846

29.8 Identifying markers with variable <$$_objectid> .847

30 Working with templates 849
30.1 Working with configuration templates. .849

30.1.1 Understanding how templates are organized.849
30.1.2 Understanding how templates are named .850
30.1.3 Understanding how templates are chained together850
30.1.4 Understanding how macro libraries are organized851

30.2 Referencing configuration files and templates. .851

30.3 Including document-specific configuration files .852
30.3.1 Understanding document-specific configuration files.853
30.3.2 Referencing a document-specific configuration file853
30.3.3 Deciding where to keep document-specific configuration files 854
30.3.4 Indicating the intended scope of a configuration file 855

30.4 Including chapter-specific configuration files .855

30.5 Deciding which configuration file to edit. .856
30.5.1 Understanding what configuration files are available857
30.5.2 Editing a project configuration file .858
30.5.3 Editing a document-specific configuration file859
30.5.4 Editing an output-specific configuration file.860
30.5.5 Editing a macro configuration file. .861
30.5.6 Indicating the intended scope of a configuration file 861

30.6 Creating your own configuration templates .861
30.6.1 Creating a template from a project configuration file862
30.6.2 Deciding what to include in a general configuration template862

MIF2GO USER’S GUIDE

26 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

30.6.3 Chaining configuration templates . 863

30.7 Applying FrameMaker conversion templates. 863
30.7.1 Specifying conversion-template settings . 864
30.7.2 Applying alternate conversion templates. 865
30.7.3 Changing template options. 866
30.7.4 Avoiding template-related disasters. 866
30.7.5 Troubleshooting template import problems. 866

31 Working with graphics 869
31.1 Choosing an appropriate graphics format . 869

31.1.1 Graphics formats for Word documents . 869
31.1.2 Graphics formats for WinHelp. 869
31.1.3 WMF format limitations . 870
31.1.4 Graphics formats for HTML . 871

31.2 Converting and exporting graphics. 871
31.2.1 Converting bitmap graphics . 871
31.2.2 Converting vector graphics . 874
31.2.3 Exporting and converting embedded graphics. 877
31.2.4 Exporting images and creating files from OLE objects. 881
31.2.5 Converting graphics with FrameMaker export filters 883
31.2.6 Embedding bitmap graphics in WMF for WinHelp. 886
31.2.7 Exporting embedded graphics imported from Word 886

31.3 Replacing and relocating graphics files . 887
31.3.1 Changing graphics files for HTML output . 887
31.3.2 Changing graphics files for RTF output . 890

31.4 Specifying custom settings for individual graphics . 895
31.4.1 Overriding graphics settings with custom markers 895
31.4.2 Overriding graphics settings with FrameMaker object attributes . . . 896

31.5 Controlling image appearance in RTF output. 898
31.5.1 Rescaling bitmap graphics . 898
31.5.2 Reorienting bitmap graphics . 899
31.5.3 Compressing bitmap graphics . 899
31.5.4 Positioning borders around inline graphics . 900
31.5.5 Mapping FrameMaker pen style patterns. 900
31.5.6 Converting graphic text . 901
31.5.7 Specifying transparency for WinHelp 4. 903

31.6 Converting graphics with Microsoft Word filters. 904

32 Working with content models 905
32.1 Understanding Mif2Go content models . 905

32.2 Modifying or replacing a content model. 905
32.2.1 Obtaining a copy of a built-in content-model 906
32.2.2 Generating a content model from a DTD. 906

32.3 Preparing a content model for use with Mif2Go . 907

32.4 Understanding content-model configurations. 908
32.4.1 Content model [Topic] settings . 909
32.4.2 Content model [ElementSets] settings . 910
32.4.3 Content model [TopicParents] settings . 910
32.4.4 Content model [TopicFirst] settings . 910
32.4.5 Content model [TopicLevels] settings . 911

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 27

32.5 Understanding how Mif2Go uses content models .911

32.6 Inspecting and correcting element types .912

32.7 Specializing or modifying DITA topic types .913
32.7.1 Creating a content model for a specialized topic type.913
32.7.2 Overriding settings in a DITA content model.914
32.7.3 Eliminating elements from a DITA content model915
32.7.4 Overriding declarations in a DITA map content model 915
32.7.5 Listing DITA topic type configuration files .915
32.7.6 Locating DITA topic type configuration files916
32.7.7 Providing table structure information for DITA topic types916

32.8 Extracting content-model debug information. .918

33 Overriding configuration settings 919
33.1 Using a different configuration for selected files. .919

33.1.1 Providing configuration files for individual chapters919
33.1.2 Understanding precedence of configuration settings 919
33.1.3 Updating a single chapter of a FrameMaker book 920

33.2 Overriding settings with markers or macros .920
33.2.1 Determining the extent of a configuration override 921
33.2.2 Overriding settings with configuration markers921
33.2.3 Overriding settings with macros .921
33.2.4 Assigning values to configuration variables .922
33.2.5 Adding a new configuration setting on the fly 923
33.2.6 Assigning a macro or variable to a configuration variable923
33.2.7 Understanding fixed-key vs. variable-key settings923
33.2.8 Overriding fixed-key configuration settings.924
33.2.9 Overriding variable-key configuration settings.925
33.2.10 Assigning HTML table and graphic groups with overrides 930

33.3 Overriding configuration settings with text .931

34 Automating Mif2Go conversions 933
34.1 Preparing documents for single-sourcing. .933

34.1.1 Using character formats to identify Help elements933
34.1.2 Using markers to add links and instructions .935
34.1.3 Using conditional text to differentiate output936
34.1.4 Importing formats and conditional text settings936

34.2 Converting a single chapter of a book .937

34.3 Considering ways to automate conversions .937

34.4 Executing operating-system commands. .937
34.4.1 Specifying system commands .938
34.4.2 Including macros and variables in system commands 939
34.4.3 Monitoring system command execution .939
34.4.4 Changing configuration settings with system commands940
34.4.5 Supplying system commands in a .bat file .940
34.4.6 Supplying system commands in a macro .940

34.5 Supplying run-time values for user variables. .941
34.5.1 Assigning an initial value to a user variable .941
34.5.2 Assigning a prompt to a user variable. .942
34.5.3 Deciding how often to prompt for values of user variables942
34.5.4 Understanding when Mif2Go prompts for user variables.942

MIF2GO USER’S GUIDE

28 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

34.5.5 Inspecting and editing values of user variables 943

34.6 Supporting document review in Word . 943

34.7 Converting autonumbers for database systems. 944

34.8 Renaming output files for automated systems . 946
34.8.1 Understanding which files can be renamed . 946
34.8.2 Renaming individual output files. 946
34.8.3 Using custom markers to name output files. 947
34.8.4 Using paragraph formats to name output files 947
34.8.5 Including identifiers and sequence numbers in file names 952

35 Producing deliverable results 955
35.1 Understanding Mif2Go pre- and post-processing . 955

35.2 Activating and logging production of deliverables. 956

35.3 Understanding path values for deliverables . 957

35.4 Clearing out old files before converting . 957
35.4.1 Specifying when to delete old files from the project directory 958
35.4.2 Specifying which files to delete from the project directory. 958
35.4.3 Understanding when not to delete .ref and .htm files 959
35.4.4 Deleting MIF files from the project directory 960

35.5 Gathering additional files before converting . 960

35.6 Assembling files for distribution . 961
35.6.1 Specifying a wrap directory . 961
35.6.2 Emptying the wrap directory before copying 962
35.6.3 Listing files to copy to the wrap directory. 962
35.6.4 Understanding when to use other file copy settings 963
35.6.5 Understanding which files are copied from where 963
35.6.6 Listing extracurricular files to put in the wrap directory 964

35.7 Placing graphics files for distribution . 965
35.7.1 Copying referenced graphics to a distribution directory 965
35.7.2 Selecting graphics to copy from arbitrary locations 966
35.7.3 Deleting prior contents of the graphics destination directory 967
35.7.4 Synchronizing graphics settings for HTML output 968
35.7.5 Synchronizing graphics settings for RTF output 969

35.8 Placing CSS or XSL files for assembly . 969

35.9 Gathering files for an HTML project: an example . 970

35.10 Gathering and processing Help-system files. 971

35.11 Archiving deliverables . 973
35.11.1 Specifying an archiving command. 973
35.11.2 Supplying parameters for the archiving command 973
35.11.3 Specifying archive file name and optional version 974

35.12 Placing deliverables in a shipping directory. 975
35.12.1 Specifying a shipping directory for deliverables 975
35.12.2 Understanding which files are placed in the shipping directory . . . 976
35.12.3 Choosing whether to copy or move deliverables 976

35.13 Postprocessing separately from converting . 976

36 Converting via runfm 979
36.1 Designing a project for unattended operation. 979

36.2 Setting up FrameMaker for unattended operation . 980

 CONTENTS

ALL RIGHTS RESERVED. 2013 MAY 18 29

36.3 Understanding runfm command-line syntax .980

36.4 Using runfm for Mif2Go conversions .982
36.4.1 Locating FrameMaker executable and files .982
36.4.2 Identifying your Mif2Go project .983
36.4.3 Configuring runfm output .984
36.4.4 Closing FrameMaker files after conversion .987

36.5 Troubleshooting runfm processes .987
36.5.1 Increasing console diagnostics: runfm -diag option988
36.5.2 Capturing console diagnostics: runfm -log option 988
36.5.3 Reviewing FrameMaker console messages after runfm988
36.5.4 Troubleshooting failed runfm processes .989
36.5.5 Running a single Mif2Go conversion or print job.989
36.5.6 Running a series of Mif2Go conversions .990
36.5.7 Including runfm in a multi-step or scheduled process.991

36.6 Comparing runfm with the DCL command-line filter991

36.7 Operating runfm across a network .992

36.8 Using runfm for other FrameMaker plug-ins .993

37 Converting via DCL 995
37.1 How the DCL filter works .995

37.2 Using the DCL filter. .996
37.2.1 Understanding where to run DCL .996
37.2.2 Preparing for conversion .996
37.2.3 Converting a single MIF or DCL file .996
37.2.4 Converting a group of MIF or DCL files .997
37.2.5 Merging ancillary Help files with DCL. .997

37.3 DCL command-line syntax .998
37.3.1 Command-line switch -f format .998
37.3.2 Command-line switch -o output .999
37.3.3 Command-line argument input999
37.3.4 Command-line switch -v .1000
37.3.5 Additional command-line switches .1000

37.4 Command-line examples .1000
37.4.1 Creating a document information file .1001
37.4.2 Writing converted files to a different directory.1001
37.4.3 Converting a group of files to RTF .1001
37.4.4 Converting a file to HTML .1001
37.4.5 Converting from one DCL format to another1001
37.4.6 Generating DITA output via command line1002

37.5 Converting in multiple steps via DCL .1002

37.6 Specifying output file paths and names .1002

37.7 About DCL technology .1003
37.7.1 DCL file structure .1003
37.7.2 Writing DCL conversion modules. .1003

38 Generating intermediate output 1005
38.1 Producing MIF with Mif2Go vs. FrameMaker .1005

38.2 Generating MIF output. .1006
38.2.1 Understanding how MIF files are generated1006
38.2.2 Setting up a FrameMaker MIF project .1006

MIF2GO USER’S GUIDE

30 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

38.2.3 Specifying which files to include in MIF output 1007
38.2.4 Saving FrameMaker 8 files as FrameMaker 8 MIF. 1008
38.2.5 Saving FrameMaker 9+ files as FrameMaker 7 MIF. 1008
38.2.6 Specifying file extensions for MIF output . 1008

38.3 Converting to ASCII DCL . 1009
38.3.1 Setting up an ASCII DCL project . 1009

38.4 Generating ASCII DCL output . 1011
38.4.1 Including generated files in ASCII DCL output 1011
38.4.2 Specifying type and file extension for ASCII DCL output 1012
38.4.3 Exporting embedded graphics via ASCII DCL output 1012

A WAI marker library for HTML 1013

B Distribution files 1017

C Document and conversion files 1019

D Technical support for Mif2Go 1029

E DITA <bookmeta> template 1039

F Content model configuration 1043

RTF keyword index 1047

HTML/XML keyword index 1059

Subject index 1085

ALL RIGHTS RESERVED. 2013 MAY 18 31

Figures

1 Getting started with Mif2Go
Figure 1-1 Mif2Go conversion process .62

2 Planning a conversion project
(No illustrations)

3 Converting a book or document
Figure 3-1 Choose Project dialog. .78

Figure 3-2 Import FrameMaker Template .80

Figure 3-3 Convert variables to text. .80

Figure 3-4 Include generated files .81

Figure 3-5 Mif2Go Export dialog .83

4 Editing configuration files
(No illustrations)

5 Setting basic conversion options
(No illustrations)

6 Converting to print RTF
Figure 6-1 Set Up Print RTF Project .146

7 Producing on-line Help
(No illustrations)

8 Generating WinHelp
Figure 8-1 Set Up WinHelp Project .245

9 Generating Microsoft HTML Help
Figure 9-1 Set Up MS HTML Help Project .298

Figure 9-2 HTML Help Workshop Project tab .304

Figure 9-3 HTML Help Workshop Window Types. .304

10 Generating OmniHelp
Figure 10-1 Set Up OmniHelp Project .346

11 Generating JavaHelp or Oracle Help
Figure 11-1 Set Up Java Help Project .375

12 Generating Eclipse Help
Figure 12-1 Set Up Eclipse Help Project .404

13 Converting to HTML/XHTML
Figure 13-1 Set Up HTML/XML Project. .426

Figure 13-2 RGB color 0099CC .440

Figure 13-3 Made with Mif2Go .452

MIF2GO USER’S GUIDE

32 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

14 Converting to generic XML
(No illustrations)

15 Converting to DITA XML
Figure 15-1 Set Up DITA Project. 479

16 Configuring DITA maps
(No illustrations)

17 Converting to DocBook XML
Figure 17-1 Set Up DocBook Project . 560

18 Splitting and extracting files
Figure 18-1 Splitting a file . 585

Figure 18-2 Extracting a file . 585

19 Creating HTML links
(No illustrations)

20 Providing navigation in HTML
Figure 20-1 Positions of files in TechGuide.book . 643

21 Mapping text formats to HTML/XML
(No illustrations)

22 Setting up CSS for HTML
Figure 22-1 CSS set-up options . 683

23 Including graphics in HTML
(No illustrations)

24 Converting tables to HTML
(No illustrations)

25 Generating WAI markup for HTML
Figure 25-1 TableSummary marker . 762

26 Identifying HTML table structure for WAI
(No illustrations)

27 Marking HTML table cells for WAI
Figure 27-1 Extent of row and column groups . 780

Figure 27-2 Extent of column and row spans . 782

Figure 27-3 Extent of column and row IDs . 783

28 Working with macros
(No illustrations)

29 Working with FrameMaker markers
(No illustrations)

30 Working with templates
(No illustrations)

ALL RIGHTS RESERVED. 2013 MAY 18 33

31 Working with graphics
Figure 31-1 FrameMaker 7+ Object Attributes dialog. .898

32 Working with content models
(No illustrations)

33 Overriding configuration settings
(No illustrations)

34 Automating Mif2Go conversions
Figure 34-1 Defining character format Popup .934

Figure 34-2 Defining a character format for pop-up hotspots934

Figure 34-3 Pop-up hotspot in WinHelp .934

Figure 34-4 Edit User Variable dialog. .943

35 Producing deliverable results
(No illustrations)

36 Converting via runfm
(No illustrations)

37 Converting via DCL
(No illustrations)

38 Generating intermediate output
Figure 38-1 Set Up FrameMaker MIF Project .1007

Figure 38-2 Set Up ASCII DCL Project .1010

A WAI marker library for HTML
Figure A-1 Primary travel method in near future. .1015

B Distribution files
(No illustrations)

C Document and conversion files
(No illustrations)

D Technical support for Mif2Go
(No illustrations)

E DITA <bookmeta> template
(No illustrations)

F Content model configuration
(No illustrations)

MIF2GO USER’S GUIDE

34 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. 2013 MAY 18 35

Tables

About this guide

Table 0-1 Mif2Go User’s Guide formats and archives. .41

1 Getting started with Mif2Go

(No tables)

2 Planning a conversion project

(No tables)

3 Converting a book or document

Table 3-1 General set-up options and settings .81

Table 3-2 Mif2Go export options and configuration settings84

4 Editing configuration files

Table 4-1: Absolute vs. relative file-path settings .106

5 Setting basic conversion options

Table 5-1 Output types, file extensions, project configuration files 110

Table 5-2 Basic graphic conversion options for HTML/XML 127

Table 5-3 Basic graphic conversion options for RTF .128

6 Converting to print RTF

Table 6-1 Print RTF set-up options and configuration settings146

Table 6-2 RTF differences between Word 7/95 and later versions150

Table 6-3 Default font types and metrics for RTF .167

Table 6-4 RTF font types and font families .168

Table 6-5 Effects of cross-reference settings in Word .176

Table 6-6 Graphics scale percentages for Word versions .191

7 Producing on-line Help

Table 7-1 Index link options for KeywordRefs in HTML-based Help216

Table 7-2 Effects of drop-down format properties. .229

8 Generating WinHelp

Table 8-1 WinHelp set-up options and configuration settings.245

Table 8-2 Starting and following format properties for topics and hotspots269

Table 8-3 Effects of format properties on topics and hotspots 269

9 Generating Microsoft HTML Help

Table 9-1 HTML Help set-up options and configuration settings299

MIF2GO USER’S GUIDE

36 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Table 9-2 ALink and KLink jump properties for HTML Help 311

Table 9-3 Binary TOC/Index advantages and disadvantages for HTML Help . . . 321

Table 9-4 Map and alias files needed for CSH in HTML Help 328

Table 9-5 Rationale for HHW settings by CHM role . 340

Table 9-6 HTML Help Workshop settings for stand-alone vs. merged CHMs . . . 340

10 Generating OmniHelp

Table 10-1 OmniHelp viewer control files included in the distribution. 344

Table 10-2 OmniHelp data and control files generated by Mif2Go 345

Table 10-3 OmniHelp set-up options and configuration settings 346

Table 10-4 OmniHelp navigation features . 356

Table 10-5 OmniHelp viewer files copied from OHViewPath to WrapPath 370

11 Generating JavaHelp or Oracle Help

Table 11-1 JavaHelp set-up options and configuration settings 375

Table 11-2 [JavaHelpOptions] pop-up and secondary window properties. 396

Table 11-3 [JavaHelp window name] window-access object properties. 396

Table 11-4 Oracle Help for Java window properties . 398

12 Generating Eclipse Help

Table 12-1 Eclipse Help set-up options and configuration settings 405

Table 12-2: Eclipse Help properties in either MANIFEST.MF or plugin.xml. . . . 407

13 Converting to HTML/XHTML

Table 13-1 HTML and XHTML set-up options and configuration settings. 426

Table 13-2 Color numbers for default FrameMaker colors 439

Table 13-3 Ways to express Web-safe RGB color values 440

Table 13-4 FrameMaker color conversion anomaly. 441

Table 13-5 Default options for Confluence 4.x XHTML. 450

Table 13-6 Characters replaced or removed for W3C validation 454

14 Converting to generic XML

(No tables)

15 Converting to DITA XML

Table 15-1 DITA set-up options and configuration settings 479

Table 15-2 Precedence of DITA topic type assignment methods. 524

Table 15-3 Predefined marker types for DITA XML. 536

16 Configuring DITA maps

Table 16-1 DITA map navigation elements from custom markers 548

Table 16-2 Roles of component files in a bookmap . 551

Table 16-3 Components for bookmap frontmatter and backmatter 553

ALL RIGHTS RESERVED. 2013 MAY 18 37

Table 16-4 Predefined marker types for DITA maps and bookmaps.556

17 Converting to DocBook XML

Table 17-1 DocBook set-up options and configuration settings 561

Table 17-2 Predefined marker types for DocBook .583

18 Splitting and extracting files

Table 18-1 Precedence of HTML page titles .595

Table 18-2 Extract code insertion methods .598

Table 18-3 Basic macro-insertion keywords and locations599

Table 18-4 Keyword prefixes for split or extract code insertion599

Table 18-5 Code insertion keywords for split and extract files600

Table 18-6 Predefined macro variables for splits and extracts 601

Table 18-7 Predefined marker types for extracts .602

Table 18-8 Predefined macro variables for extract replacement code603

19 Creating HTML links

(No tables)

20 Providing navigation in HTML

Table 20-1 Indirect navigation macros for files in a book .637

Table 20-2 Equivalent browse macros and variables by file position637

Table 20-3 Default destination and label values for browse macros637

Table 20-4 Component macro variables for browse macros638

Table 20-5 Scope of [NavigationMacros] keywords .642

Table 20-6 Default values of text-link browse keywords .642

Table 20-7 Default values of button browse keywords .642

Table 20-8 Values of variables in navigation links for TechGuide.book 643

21 Mapping text formats to HTML/XML

Table 21-1 HTML properties for paragraph and character formats.654

Table 21-2 Special characters to replace for HTML/XML output.661

22 Setting up CSS for HTML

Table 22-1 Default CSS file options when [HtmlOptions]Stylesheet is used687

Table 22-2 CSS-dependent default values of options .688

23 Including graphics in HTML

(No tables)

24 Converting tables to HTML

Table 24-1 Precedence of table and cell property assignment methods.728

Table 24-2 Browser-dependent HTML tags for tables .731

Table 24-3 Default counts of table header rows/columns and footer rows734

MIF2GO USER’S GUIDE

38 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

25 Generating WAI markup for HTML

(No tables)

26 Identifying HTML table structure for WAI

Table 26-1 Format properties for WAI table-cell attributes 768

Table 26-2 Using paragraph formats to identify table cells (example) 770

27 Marking HTML table cells for WAI

Table 27-1 WAI scope attributes for table cells . 775

Table 27-2 WAI id/header table cell attributes. 778

Table 27-3 ColGroup property effects . 785

Table 27-4 RowGroup property effects . 786

28 Working with macros

Table 28-1 Predefined macros for HTML output . 792

Table 28-2 Character literals for macro variables. 798

Table 28-3 Predefined macro variables . 800

Table 28-4 Operators for HTML macro expressions . 812

Table 28-5 Format components for displaying expression results 814

Table 28-6 Predefined control-structure elements . 815

Table 28-7 String operators in macro expressions . 817

Table 28-8 Macro code placement properties. 823

29 Working with FrameMaker markers

Table 29-1 Custom marker types with predefined effects 832

Table 29-2 Elements to which attribute markers apply, by output type 835

Table 29-3 Effects of [MarkerTypes] properties . 839

30 Working with templates

Table 30-1 Output-type-specific general configuration files 850

Table 30-2 Configuration chain for Mif2Go User’s Guide title page. 855

Table 30-3 Intended scope of settings by configuration type 857

Table 30-4 Chain of general configuration files for HTML Help output 858

Table 30-5 Output types and starting project configuration files 859

Table 30-6 Editable local output-specific configuration files. 860

Table 30-7 Macro configuration files . 861

Table 30-8 Configuration options determined at run time 863

Table 30-9 Template flag values for importing formats. 864

31 Working with graphics

Table 31-1 RTF replacement graphics file mappings and locations. 892

ALL RIGHTS RESERVED. 2013 MAY 18 39

32 Working with content models

Table 32-1 Configuration files for Mif2Go built-in content models906

33 Overriding configuration settings

Table 33-1 Precedence of settings in configuration files and templates 920

Table 33-2 Fixed-key configuration sections subject to overrides.925

Table 33-3 Text configuration sections subject to overrides926

Table 33-4 Cross-reference sections subject to overrides .928

Table 33-5 HTML table sections subject to overrides .928

Table 33-6 HTML graphic sections subject to overrides .930

34 Automating Mif2Go conversions

(No tables)

35 Producing deliverable results

Table 35-1 Default files copied from project directory to wrap directory963

Table 35-2 Files copied by default to the wrap directory. .964

Table 35-3 Default graphics files copied for assembly .966

Table 35-4 Automation settings activated by CompileHelp or FTSCommand972

Table 35-5 Default base file name for deliverables archive.975

36 Converting via runfm

Table 36-1 Command-line options for runfm .981

37 Converting via DCL

Table 37-1 DCL intermediate input and output options. .1000

38 Generating intermediate output

Table 38-1 FrameMaker MIF set-up options and configuration settings.1007

Table 38-2 ASCII DCL set-up options and configuration settings 1011

A WAI marker library for HTML

Table A-1 Special marker types for WAI table attributes1013

Table A-2 Examples of WAI table markers. .1014

Table A-3 Special marker types for WAI graphic attributes1015

Table A-4 Special marker types for WAI link attributes .1016

B Distribution files

Table B-1 Mif2Go distribution files .1017

C Document and conversion files

Table C-1 Location of document files .1019

Table C-2 Location of conversion files .1019

MIF2GO USER’S GUIDE

40 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

D Technical support for Mif2Go

Table D-1 Examples of build numbers for Mif2Go DLL files 1034

E DITA <bookmeta> template

(No tables)

F Content model configuration

(No tables)

ALL RIGHTS RESERVED. MAY 18, 2013 41

About this guide

The Mif2Go User’s Guide describes how to install and use Omni Systems Mif2Go
version 4.1 software and configuration files, to convert FrameMaker documents to any of
several output types. This guide assumes you are familiar with FrameMaker, and also with
the output type to which you are converting FrameMaker files.

In this section:
§ Availability on page 41
§ New information on page 41
§ Colophon on page 50

Availability
The Mif2Go User’s Guide is available in the formats listed in Table 0-1. All editions
except the FrameMaker source files and the PDF edition are produced with Mif2Go .

You can download any of these archives from Omni Systems:
http://mif2go.com/

Extract the files from their archive before you try to view them.

New information
The Mif2Go User’s Guide is a perpetual work-in-progress, largely unreviewed.This
section identifies substantive additions and corrections since prior editions. Corrections
are shown in red.

Table 0-1 Mif2Go User’s Guide formats and archives

Format Archive Starting file Comments*

DITA XML UGMif2Go_dita55.zip Not applicable DITA version 1.1, including bookmap; not validated

DocBook XML UGMif2Go_dbk55.zip Not applicable DocBook version 4.5; not validated

Eclipse Help UGMif2Go_EH55.zip Not applicable Requires Eclipse platform or infocenter

FrameMaker UGfrm55.zip Not applicable FrameMaker, configuration, template, graphics files

HTML UGMif2Go_HTM55.zip _ugmif2go.htm Requires JavaScript to enable CSS

HTML Help UGMif2Go_HH55.zip ugmif2go.chm Includes context-sensitive Help for Mif2Go
Must be registered for network use

JavaHelp 2 UGMif2Go_JH55.zip ugmif2go.jar Requires Java Runtime Environment

OmniHelp UGMif2Go_OH55.zip _ugmif2go.htm Requires browser and JavaScript

Oracle Help UGMif2Go_OHJ55.zip ugmif2go.hs Requires Java Virtual Machine

PDF UGMif2Go_PDF55.zip ugmif2go.pdf Designed for duplex printing

Word 2007 UGMif2Go_RTF55.zip ugmif2go.rtf Includes active cross references and hypertext links

XHTML UGMif2Go_XH55.zip _ugmif2go.htm Requires JavaScript for CSS; some browsers ignore

*See § Colophon on page 50 for additional information.

http://mif2go.com/

NEW INFORMATION MIF2GO USER’S GUIDE

42 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

May 15, 2013 version 4.1, update 55

Getting started with Mif2Go:

 • Copy m2rbook.dll and m2gframe.dll to the correct Plugins directory. These
files are located in %OMSYSHOME%\m2g\plugin in your distribution, and they must
be copied to your FrameMaker \fminit\Plugins directory; see §1.3.3.2 Finish
installing Mif2Go on page 57.

Converting a book or document:

 • Access the Mif2Go Configuration Manager from the Choose Project dialog. New
button; see §3.3 Creating a Mif2Go conversion project on page 78.

Editing configuration files:

 • Edit settings with the Mif2Go Configuration Manager. New tool, accessible from
the Choose Project dialog; see §4.2 Editing files with the Configuration Manager on
page 91.

 • Use relative path settings with care! Relativity of some path settings has changed,
notably those listed in Table 4-1; see §4.5 Specifying file paths in configuration
settings on page 105.

 • A relative path specified for [Automation]CopyAfterFrom is relative to the
project directory (correction). Not to the wrap directory; see §4.5 Specifying file
paths in configuration settings on page 105.

 • A relative path specified for [Setup]TemplateFileName is relative to the
location of the configuration file in which the setting occurs (correction). Not to
the source directory; see §4.5 Specifying file paths in configuration settings on
page 105.

Setting basic conversion options:

 • One setting for output file extension. Use [Setup]FileSuffix for all output
types; see §5.1.1 Checking output type and file extension on page 110. Though still
recognized, the following are deprecated in favor of [Setup]FileSuffix , which
overrides them in any event:

WordperfectSuffix
WordSuffix
XMLSuffix
HTMLSuffix

 • Turn off warnings about uncatalogued formats. New setting
ShowUndefinedFormats , on by default; see §5.2 Logging conversion events on
page 115.

 • Identify and use Structured FrameMaker attributes. New settings IDAttrName
and IDRefAttrName , new section [AttributeMarkers] ; see §5.8 Converting
structured documents on page 135.

Converting to print RTF:

 • Double any backslashes in included RTF code. And double them again in a macro;
see §6.15 Including RTF code for Word output on page 194.

 • Remove unwanted empty paragraphs at end of topics. New setting
FrameEndPara ; see §6.10.9 Omitting content from RTF output on page 174.

Producing on-line Help:

 • TopicAlias markers for context-sensitive help. Instead of hypertext newlink
markers. New custom marker type TopicAlias ; see §7.10.2 Specifying CSH mappings
on page 241.

 ABOUT THIS GUIDE NEW INFORMATION

ALL RIGHTS RESERVED. MAY 18, 2013 43

Generating Microsoft HTML Help:

 • Specify binary TOC or index for HTML Help . Newly documented settings
BinaryTOC and BinaryIndex ; see §9.9.2 Choosing whether to generate binary
contents or index on page 320.

 • Exclude selected topics from FTS for HTML Help. An inelegant hack via new
custom marker Search ; see §9.11 Providing full-text search (FTS) for HTML Help on
page 326.

 • Generate a CSH map file. New settings MakeCshMapFile , CshMapFileNumStart ,
and CshMapFileNumIncrement ; see §9.12.3 Specifying and generating a map file
for CSH links on page 329.

Generating OmniHelp:

 • Make compound terms searchable in OmniHelp. Newly documented setting
CompoundWordChars ; see §10.10.3 Making compound terms searchable on
page 362.

 • Exclude content from full-text search. New custom marker Search ; see §10.10.7
Excluding content from being searched on page 363.

Converting to HTML/XHTML:

 • Show FrameMaker condition indicators in HTML output . New section
[ConditionOptions] ; new settings UseConditionalFlagging ,
CSSFlagsFile , WriteFlagsFile , and ReferenceFlagsFile . See §13.10.3
Displaying condition indicators in HTML with CSS on page 447.

 • Prevent adjacent HTML <pre> elements from merging. New setting MergePre ;
see §13.6.5 Preventing adjacent <pre> elements from merging on page 438.

Converting to DITA XML:

 • Wrap anchored images in <fig> as an exception. Newly documented HTML
format property Figure ; see §15.7.2 Specifying what to include in a <fig> wrapper
on page 517.

 • Keep selected topics out of the TOC. New marker type DITANoTOC ; see §15.9.6
Omitting a DITA topic from the TOC on page 527.

 • CSH targets via TopicAlias markers are included by default. New setting
UseTopicAlias ; see §15.14 Including CSH targets in DITA XML on page 535.

Configuring DITA maps:

 • Omit id attribute from chapter maps. New setting UseMapID; see §16.2.1.6
Specifying the ID for a ditamap on page 542.

Creating HTML links:

 • Tell Mif2Go to leave link text case alone. Although its internal default value is No,
MakeFileHrefsLower is set to Yes in system file d2htm_config.ini , which is
referenced for every HTML output type. If you want Mif2Go to leave case alone in
hypertext links, you must explicitly set MakeFileHrefsLower to No in a project or
local configuration file; see §19.2.6 Forcing link text to lowercase on page 613.

Mapping text formats to HTML/XML:

 • Assign HTML tags in new configuration sections. [ParaTags] and [CharTags]
replace [ParaStyles] and [CharStyles] , respectively; see:

§21.3.1 Assigning HTML tags and attributes to paragraph formats on page 646
§21.4 Mapping character formats on page 653

 • Distinguish paragraph (block) from character (inline) format properties. New
sections [HTMLParaStyles] and [HTMLCharStyles] supersede [HTMLStyles] ,
which is still honored; see §21.5 Assigning properties to text formats on page 653.

NEW INFORMATION MIF2GO USER’S GUIDE

44 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • Exclude size attribute from font tags. Newly documented setting UseFontSize ;
see §21.7.6 Excluding face and size attributes from font tags on page 666.

Setting up CSS for HTML:

 • Omit element tags from CSS selectors. New setting SelectorIncludesTag ; see
§22.7.10 Omitting tags from CSS selectors on page 696.

 • HTML table rows are now wrapped in groups by default . Reversed setting
HeadFootBodyTags ; see §24.3.2.4 Wrapping table row groups on page 732.

Working with macros:

 • Distinguish between paragraph and character code inclusions. New sections:

The old sections are deprecated, but still honored; see §28.9.3 Surrounding or
replacing text with code or macros on page 822.

Working with FrameMaker markers:

 • Replace marker content with code. New section [MarkerTypeCodeReplace] ;
see §29.7.2 Surrounding marker content with code on page 843.

 • No need to remap TopicAlias markers for CSH. No longer required, and not advised
for DITA output; see §29.3.2 Understanding when to remap marker types on
page 837.

Converting via runfm:

 • ”Save As PDF” via runfm . New command-line option -pdfsave can avoid printer
issues and TimeSavers issues; see §36.4.3.3 Configuring PDF output: runfm -pdfsave
option on page 986.

May 1, 2012, version 4.0, update 54

Getting started with Mif2Go:

 • No “quick start” this time! Omni Systems has massively reorganized the Mif2Go
distribution; see §1.3.1 Set up a framework for Omni Systems applications on
page 54.

 • System-wide configuration file. Specify in one place any settings that apply to all
projects; see §1.3.6 Establish system-wide configuration settings on page 58.

 • All Mif2Go executables are now referenced from the new Omni Systems
directory structure , not from the Windows system directory. See §1.4.2 Update your
Mif2Go installation on page 61.

Planning a conversion project:

 • Produce a single output file from a FrameMaker book. You really need a script to
do this right; see §2.5.6 Producing a single output file from a FrameMaker book on
page 73.

Editing configuration files:

 • New names for project configuration files! Each is now named for its output type;
see §5.1.1 Checking output type and file extension on page 110.

 • Keep at least one line of header text. Each configuration file must start with a header
line; see §4.4 Understanding the rules for configuration settings on page 102.

Old section New for paragraph formats New for character formats
[StyleCodeAfter] [ParaStyleCodeAfter] [CharStyleCodeA fter]

[StyleCodeBefore] [ParaStyleCodeBefore] [CharStyleCod eBefore]

[StyleCodeEnd] [ParaStyleCodeEnd] [CharStyleCodeEnd]

[StyleCodeReplace] [ParaStyleCodeReplace] [CharStyleC odeReplace]

[StyleCodeStart] [ParaStyleCodeStart] [CharStyleCodeS tart]

 ABOUT THIS GUIDE NEW INFORMATION

ALL RIGHTS RESERVED. MAY 18, 2013 45

 • No more than one space after a key=value equals sign. Do not try to line up values
vertically with extra spaces after the equals (before is usually OK, though not always);
see §4.4 Understanding the rules for configuration settings on page 102.

 • Comment out entire configuration sections with a single semicolon. New tip; see
§4.7 Commenting out configuration sections on page 107.

 • Append log files to a history file. New setting HistoryFileName ; see §5.2
Logging conversion events on page 115.

 • ObjectIDs change on show/hide conditional text. Always! So use carefully; see
§5.3.2 Working with FrameMaker ObjectIDs on page 118.

 • Condition show/hide settings might not work in FrameMaker 10+. Go back to
importing FrameMaker templates instead; see §5.4.1 Applying condition Show/Hide
settings on page 123.

 • Include a suffix in generated equation file names. New setting EqSuffix ; see
§5.9.4 Providing a file-name suffix for equations on page 137.

Converting to print RTF:

 • Specify a Windows code page for print RTF output. New setting CodePage; see
§6.2.4 Specifying the default output language and code page on page 147.

 • Keep trailing tabs in Word output. New setting TrailingTabs ; see §6.8.3
Altering tab behavior for Word output on page 164.

 • Produce .doc or .docx files via Word macro and a SystemEndCommand. See
§6.17.1 Supporting more than one version of Word on page 195.

Producing on-line Help:

 • Produce index meta elements for Microsoft Help Viewer. New setting
UseHVIndex , new custom marker type HVIndex ; see §7.5.2 Preparing index entries
for Microsoft Help Viewer on page 211.

 • Provide a sort order for Japanese index entries. Most likely you will need help; see
§7.5.9.5 Defining Japanese index sort order on page 218.

Generating WinHelp:

 • Get WinHelp viewers from Microsoft. And so must every user; see §8.1 Obtaining
tools for WinHelp on page 243

 • Tell Mif2Go where to find the WinHelp compiler. Previously undocumented setting
Compiler ; see §8.2.13 Compiling a WinHelp project on page 250.

 • Specify copyright and date for WinHelp Version Information. Previously
undocumented settings HelpCopyright and HelpCopyDate ; see §8.2.13
Compiling a WinHelp project on page 250.

 • Insert a separator between text and footnotes in WinHelp . New setting
FootnoteSeparator ; see §8.3.7 Converting footnotes on page 258.

 • Specify table width when you use column-width percentages for WinHelp. New
setting TblFullWidth ; see §8.5.2 Adjusting table appearance on page 261.

Generating Microsoft HTML Help:

 • Omit code-page mapping for uncompiled HTML Help. New setting
UseCodePage ; see §9.3.6 Deciding whether to compile HTML Help on page 300.

 • Generate Asian or Cyrillic HTML Help . New code-page DLLs; see §9.13
Generating HTML Help in non-Western languages on page 331.

 • Fixed spaces become ideographs for Japanese HTML Help . Or you can map them
to something else; see §9.13 Generating HTML Help in non-Western languages on
page 331.

 • Tell Mif2Go where to find the HTML Help compiler. New setting Compiler ; see
§9.14.1 Directing Mif2Go to run the HTML Help compiler on page 333.

NEW INFORMATION MIF2GO USER’S GUIDE

46 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • Compile HTML Help in a different locale. Use command-line utility SBAppLocale;
see §9.14.3 Compiling in a different language on page 335.

Generating OmniHelp:

 • .Include relative paths in OmniHelp subprojects to be merged. See §10.12.2
Listing and mapping OmniHelp subprojects on page 367.

Generating JavaHelp or Oracle Help:

 • Specify options for Oracle Help in their own eponymous section. New section
[OracleHelpOptions] ; for example, see §11.3.7.2 Letting Mif2Go set up the
directory structure and copy files on page 379.

 • Add type attribute to list tags for JavaHelp and Oracle Help. New CSS setting
UseListTypeAttribute ; see:

§11.3.9 Coping with JavaHelp / Oracle Help viewer limitations on page 384
§21.12.2.7 Including or excluding the type list attribute on page 678.

Converting to HTML/XHTML:

 • For ePub, XHTML output can provide input to Calibre. See §13.1 Deciding
which type of output to produce on page 424.

 • For HTML 5 output, set DOCTYPE as appropriate. See §13.4.1 Specifying
HTML/XML version, DOCTYPE, and DTD on page 429.

 • Omit generator information from HTML output (not advisable). Previously
undocumented setting [HtmlOptions]GeneratorTag=None ; see §13.4.4
Including or omitting HTML/XML generator information on page 433.

 • Generate XHTML for Confluence 4.x. New settings Confluence ,
ConfluenceLinks , and ConfluenceLink* ; see §13.12 Generating XHTML for
Confluence 4.x on page 449.

 • Supply hover text for terms and acronyms in HTML . New format property
GlossTitle , new sections [GlossTitles] and [GlossFiles] ; see §13.11
Providing hover text for terms in HTML on page 448.

 • Turn on UseSpacers explicitly to indent tables and figures! Important if your
output relies on this setting, because the default value has been changed to No. See:

§23.6.3 Indenting images on page 716
§24.5.1 Indenting tables on page 747.

Converting to generic XML:

 • Keep Shift+Enter line breaks. New setting UseXMLbr; see §14.4.5 Configuring
forced returns for XML on page 465.

Converting to DITA XML:

 • Map formats to elements depending on topic type. New functionality in
[DITAAliases] , new predefined macro variable $$_ditastart ; see §15.4.3.8
Mapping paragraph format aliases algorithmically on page 491.

 • Replace change bars or overlines with tags for DITA XML output . When
UseTypographicElements=Yes , you get <chbar> and <over> elements,
respectively; see §15.4.4.2 Including typographic elements in addition to mapped
formats on page 493.

 • Give every DITA element that can accommodate it an ID. New setting
SetElementIDs ; see §15.4.6.2 Including an id attribute in every element on
page 496.

 • Specify attributes for the root element of a topic. New section
[DITATopicRootAttrs] , new marker type DITATopicRootAttrs ; see §15.4.6.3
Specifying attribute values for the root element of a topic on page 497.

 ABOUT THIS GUIDE NEW INFORMATION

ALL RIGHTS RESERVED. MAY 18, 2013 47

 • Include an outputclass attribute in the DITA XML root element . New marker
type DITATopicOutputclass ; see §15.4.6.6 Providing outputclass attributes for all
elements on page 498.

 • Avoid constructing invalid ancestries. New setting UseCommonNames; see §15.5.6
Avoiding invalid ancestries on page 504.

 • Configure nested lists for DITA XML. See §15.5.8 Configuring nested lists on
page 505.

 • Use relative or absolute table widths in DITA XML . New setting
TableColsRelative ; see §15.6.5.3 Specifying relative vs. absolute widths for table
columns on page 513.

 • Give table footer rows an @outputclass of their own. New settings
UseTableFooterClass , TableFooterClass ; see §15.6.2 Marking table footer
rows for future reference on page 511.

 • Specify placement of figure titles for DITA. New setting
FigureTitleStartsFigure ; see §15.7.2 Specifying what to include in a <fig>
wrapper on page 517.

 • Omit size attributes from images for DITA. Newly applicable setting
[Graphics]GraphScale ; see §15.7.3 Omitting size attributes from images for
DITA output on page 518.

 • Include MathFullForm equation objects in <alt> text. New setting
MathFullForm ; see §15.7.5 Including MathFullForm equations in <alt> elements on
page 518.

 • Include FrameMaker DPI values in <image> attributes. New setting
UseOtherpropsDPI ; see §15.7.6 Including the original image DPI as an attribute on
page 518.

 • Rename DITA topic files to make the file names readable. FrameScript method;
see §15.8.3.2 Renaming DITA topic files with FrameScript on page 521.

 • Specify an outputclass attribute for cross-reference wrappers. New settings
XrefWrapClass , FootnoteWrapClass , and IndexWrapClass ; see §15.10.2
Specifying an outputclass for cross-reference wrappers on page 528.

Configuring DITA maps:

 • Adjust map levels for missing heading levels. See §16.2.3 Accounting for missing
topic levels on page 544.

 • Include DITA bookmap <appendix> elements in <part> . New setting
AllowPartAppendix ; see §16.3.4 Extending <part> to include <appendix> on
page 550.

 • Exclude book-level reltable from a bookmap. New setting MapBookRelTable ; see
§16.3.6 Excluding the book-level reltable from a bookmap on page 550.

 • Include multiple TOCs, indexes, other booklist items in a bookmap. New sections
[IndexMarkerOutputClass] , [DITABookmapOutputclasses] ; see §16.4.3
Including multiple booklist components of the same type on page 553.

 • Accommodate placeholders for extra bookmap elements. New sections
[BookmapElementBefore] , [BookmapElementAfter] ; see §16.4.7 Including
placeholders for additional bookmap elements on page 555.

Converting to DocBook XML:

 • Allow multiple images in a figure element for DocBook. Newly applicable setting
MultiImageFigures ; see §17.7.1 Deciding what to include in a figure element on
page 581.

 • Include additional content in figure elements for DocBook. Newly applicable
setting CloseFigAfterImage ; see §17.7.1 Deciding what to include in a figure
element on page 581.

NEW INFORMATION MIF2GO USER’S GUIDE

48 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • Specify placement of figure titles for DocBook. New setting
FigureTitleStartsFigure ; see §17.7.1 Deciding what to include in a figure
element on page 581.

 • Omit size attributes from images for DocBook. Newly applicable setting
[Graphics]GraphScale ; see §17.7.3 Omitting size attributes from images for
DocBook on page 582.

Splitting and extracting files:

 • Insert space or a separator between HTML topics in a single output file. New
[Inserts] keyword TopicBreak ; see:

§18.5.2 Assigning code to [Inserts] keywords for splits and extracts on page 599
§28.9.2 Invoking macros at predetermined points in output on page 821.

Creating HTML links:

 • Replace spaces in links with hyphens or underscores. Instead of only
alphanumerics for XrefSpaceChar or HyperSpaceChar ; see §19.2.5 Replacing
problem characters in links on page 612.

Mapping text formats to HTML/XML:

 • Prevent line breaks and preserve leading spaces at the paragraph format level.
New [HTMLParaStyles] format property NoWrap; see §21.3.6 Stripping paragraph
properties on page 650.

 • Font tags are now excluded from HTML output by default. The default values for
NoFonts and NoSymbolFont have been reversed; see:

§21.7.4 Including or excluding font tags on page 665
§21.7.5 Managing font tags for symbol fonts on page 666

 • Replace change bars or overlines with tags for HTML/XML output . Use new
“pseudo tag” names chbar and over ; see §21.8.2 Choosing how to treat typographic
elements on page 667.

Setting up CSS for HTML:

 • Replace spaces in CSS class names with hyphens or underscores. Instead of only
alphanumerics as a value for ClassSpaceChar ; see §22.7.1 Understanding CSS
class name restrictions on page 691.

 • Flag alternate-language glyphs with CSS classes. New setting
UseCharRangeClasses , new section [CharacterRangeClasses] ; see §22.7.6
Assigning CSS classes based on Unicode character ranges on page 694.

Including graphics in HTML:

 • HTML image indent spacer default has been reversed. If you rely on this
deprecated technique, you must explicitly set UseSpacers =Yes ; see §23.6.3
Indenting images on page 716.

 • Omit empty alt attribute values from HTML output . New setting
AllowEmptyAlt ; see §23.8 Providing (or omitting) alternate text for images on
page 718.

Converting tables to HTML:

 • HTML table indent spacer default is reversed. If you rely on this deprecated
technique, you must explicitly set UseSpacers =Yes ; see §24.5.1 Indenting tables on
page 747.

 • Strip HTML code from selected tables. With configuration macros or Config
markers; see:

§24.6.4 Turning processing on and off around selected tables on page 750
§24.7.2 Removing table-specific tags from selected tables on page 754.

 ABOUT THIS GUIDE NEW INFORMATION

ALL RIGHTS RESERVED. MAY 18, 2013 49

Working with macros:

 • Add a visible trailing space to a macro. New convention “\~ ” for trailing spaces;
see §28.1.1.3 Escaping special characters in macro definitions on page 789.

 • Predefined macro variables for project name and path. New variable
$$_prjname ; also, variable $$_prjpath can now be used in macros as well as in
system commands. See Table 28-3 on page 800.

 • More ways to manipulate strings. New macro expression operators lower , upper ,
and replace with ; see Table 28-4 Operators for HTML macro expressions on page
812.

 • Pass a parameter to a macro, and capture its value. New predefined macro variable
$$_macroparam ; see §28.7 Passing a parameter to a macro on page 820.

Working with FrameMaker markers:

 • Treat marker content as plain text for XML output. New marker property type
Text ; see §29.7.3 Processing marker content as text for XML/HTML/XHTML on
page 844.

Working with templates:

 • Configuration templates play a major role now. New [Templates] section with
new settings Document , Configs , and Macros ; see §30.1 Working with
configuration templates on page 849.

 • [FDK]ConfigTemplate is deprecated in favor of [Templates]Configs .
Replace all instances of the former; see §30.2 Referencing configuration files and
templates on page 851.

 • Include one or more templates for document-specific settings. New setting
[Templates]Document ; see §30.3 Including document-specific configuration files
on page 852.

Working with graphics:

 • Extract embedded graphics imported from Word. Without knowing their formats;
see §31.2.7 Exporting embedded graphics imported from Word on page 886.

Automating Mif2Go conversions:

 • System-command keywords have new names, new configuration section:

See §34.4.1 Specifying system commands on page 938.

 • Whip FrameMaker variables into shape for use in file names. Whack spaces and
punctuation with macros; see §34.8.4.2 Including FrameMaker variables in output file
names on page 949.

 • Use variable <$$_objectid> in file names. To guarantee uniqueness, if you are
determined to name output files yourself; see §34.8.4.5 Specifying a file-name prefix
or suffix on page 950.

Producing deliverable results:

 • Copy ancillary files before and after conversion. New [Automation] settings
CopyBeforeFrom , CopyBeforeFiles , CopyAfterFrom , CopyAfterFiles ; see:

§35.5 Gathering additional files before converting on page 960

Old New
[BookFileCommands] [Automation]

BookStartCommand SystemStartCommand

BookWrapCommand SystemWrapCommand

BookEndCommand SystemEndCommand

FileStartCommand SystemStartCommand

FileWrapCommand SystemWrapCommand

FileEndCommand SystemEndCommand

COLOPHON MIF2GO USER’S GUIDE

50 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§35.6.6 Listing extracurricular files to put in the wrap directory on page 964.

 • Default value of WrapPath is now ._wrap , relative to the project directory; see
§35.6.1 Specifying a wrap directory on page 961.

 • Gather referenced graphics files for distribution. New setting
CopyOriginalGraphics ; see §35.7.1 Copying referenced graphics to a distribution
directory on page 965.

 • Default value of ShipPath is now ..\.._ship , relative to the project
directory ; see §35.12.1 Specifying a shipping directory for deliverables on page 975.

Converting via runfm:

 • Log in as administrator before you set up runfm . Because you must write to the
Windows Registry; see §36.2 Setting up FrameMaker for unattended operation on
page 980.

Colophon
PDF edition The PDF edition of the Mif2Go User’s Guide is:

 • intended for duplex printing (using both sides of the paper).
 • sized to fit either US Letter or A4 size paper.

Word edition The Microsoft Word edition of the Mif2Go User’s Guide consists of separate RTF
chapter files optimized for Word 2000, with active cross references and hypertext links. To
make this edition viewable in other versions of Word, see §6.17.1 Supporting more than
one version of Word on page 195.

HTML and
XHTML editions

The OmniHelp edition of the Mif2Go User’s Guide has been tested with the following
browsers:

 • Internet Explorer 9.x
 • Mozilla Firefox 16.x
 • Opera 12.x
 • Google Chrome 26.x

The XHTML edition works poorly with Mozilla browsers when viewed locally;
furthermore, these browsers ignore CSS entirely when the XHTML edition is viewed on
the Web.

HTML and XHTML editions have an overview TOC on the opening page, a detailed TOC
next, and several indexes at the end. These navigation features were created in
FrameMaker and implemented with settings in Mif2Go configuration files. The
navigation tables and breadcrumb links at top and bottom of each text page were produced
automatically with Mif2Go macros.

DITA and
DocBook editions

The DITA and DocBook editions have not been validated. These editions are provided
primarily as demonstrations; their structure has not been made to conform to architectural
conventions or best practices.

Source files The Mif2Go User’s Guide is an unstructured FrameMaker version 8.0 document,. The
FrameMaker source files in UGMif2Go_frm55.zip include path information. You can
download this archive from Omni Systems:

http://mif2go.com

(5/18/13 13:09:57)

http://mif2go.com

ALL RIGHTS RESERVED. MAY 18, 2013 51

1 Getting started with Mif2Go

This section tells you how to install Mif2Go , and how to update Mif2Go . Topics include:
§1.1 What you need to know on page 51
§1.2 What you need to have on page 53
§1.3 What you need to do on page 54
§1.4 How to update Mif2Go on page 61
§1.5 How Mif2Go works on page 62
§1.6 How to start and stop Mif2Go on page 63
§1.7 How to work with Mif2Go on page 63
§1.8 How to uninstall Mif2Go on page 64

1.1 What you need to know
To use Mif2Go effectively, it is best if all the following apply:

 • You are intimately acquainted with the structure of your FrameMaker document.
 • You understand the output type to which you are converting your document.
 • You have a good idea which FrameMaker features and formats you want to map to

which output features.

Conversions to a final format such as HTML or RTF are easy, and you can often wing it,
achieving acceptable output with default options in just a few minutes. But conversions to
another source format, such as DocBook or DITA XML, can be Very Hard. There are no
shortcuts. You might need days or weeks to get it right, working with small test
documents, before you can go into production.

In this section:
§1.1.1 How Mif2Go is organized on page 51
§1.1.2 File, directory, and path names on page 51
§1.1.3 Output types you can specify on page 52
§1.1.4 Languages and character sets on page 53

1.1.1 How Mif2Go is organized

To convert your FrameMaker source to an HTML or RTF representation, Mif2Go
provides the means to perform two primary tasks:

 • Map FrameMaker formats to output formats.
 • Define presentational properties of those output formats.

Mif2Go also carries out a number of output-type-dependent secondary tasks, such as
constructing Help file infrastructure.

To map FrameMaker formats to output formats, Mif2Go relies on both rules and instance
mark-up. Rules come from settings in configuration files; instance mark-up is in the
FrameMaker files themselves, in the form of custom FrameMaker markers.

1.1.2 File, directory, and path names

This section describes naming conventions that apply to all the resources in your
conversion project.

WHAT YOU NEED TO KNOW MIF2GO USER’S GUIDE

52 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

No spaces or
punctuation in file

or path names

Book files, chapter files, graphics files, and any other files referenced by your
FrameMaker document, or by configuration settings, should have names and paths that
conform to the following guidelines:

 • No spaces in file or path names (because FrameMaker does not always handle them
correctly).

 • Only alphanumeric characters in file or path names (even underscores can cause
problems on some systems).

 • Maximum 256 characters in a file name, 1,024 characters in a path name (Windows
limits).

 • At most one period in a file or path name.

Mif2Go is not the
problem!

Although Mif2Go supports file and path names that include underscores and spaces, the
output type you choose, or the target operating system where your output will be
deployed, might not. For example, Microsoft acknowledges a known defect in HTML
Help when you use underscores in file names. Some flavors of UNIX do not like
underscores, either. In the interest of compatibility, we advise against file names that are
not strictly alphanumeric.

Single period
followed by

extension

Use only one period in a path or file name, followed by the correct extension for the type
of file. Many Windows programs break because this tiny character is misused. It is best
not to challenge the easily confused software on your computer.

1.1.3 Output types you can specify

Choose from the following output types:

Print RTF Mif2Go handles styles, tables, and graphics.You can convert to Word or WordPerfect. See
§6 Converting to print RTF on page 141 for more information.

WinHelp RTF You can configure and generate WinHelp RTF with Mif2Go ; and if you have access to
Help Workshop (unfortunately no longer available from Microsoft) you can compile
WinHelp files that need no further tweaking. Mif2Go produces all the files you need,
including a TOC, an Index, and a Help project file. See:

§8 Generating WinHelp on page 243.

HTML-based
Help

You can use Mif2Go to configure and generate several flavors of HTML-based Help.
Mif2Go produces all the files you need, typically including TOC, Index, and a Help
project file. For the two Java formats, Mif2Go prepares the map file; for HTML Help, the
aliases file. See:

§9 Generating Microsoft HTML Help on page 295
§10 Generating OmniHelp on page 341
§11 Generating JavaHelp or Oracle Help on page 373
§12 Generating Eclipse Help on page 403.

HTML and XML Mif2Go can produce HTML 4.01, XHTML 1.0, and XML 1.0 files from your
FrameMaker document, and also create Cascading Style Sheets. You can include arbitrary
JavaScript anywhere in HTML output. You can produce ePub input from Mif2Go
XHTML output. See:

RTF / WinHelp HTML / XML HTML-based Help Other formats
Word 7/95 Standard HTML MS HTML Help ASCII DCL
Word 8/97+ XHTML Eclipse Help FrameMaker MIF

WinHelp 4/95 Generic XML JavaHelp
WordPerfect DITA XML Oracle Help for Java

DocBook XML OmniHelp

1 GETTING STARTED WITH MIF2GO WHAT YOU NEED TO HAVE

ALL RIGHTS RESERVED. MAY 18, 2013 53

§13 Converting to HTML/XHTML on page 423
§14 Converting to generic XML on page 457.

DITA and
DocBook

Mif2Go can produce DITA XML and DocBook XML from DITA documents. See:
§15 Converting to DITA XML on page 473
§17 Converting to DocBook XML on page 557.

Intermediate
format

You can run a Mif2Go conversion in two stages, stopping the first part of the process
when DCL files have been created. You can use the intermediate files for other purposes,
or modify them and then run Mif2Go again to continue the conversion. See §38
Generating intermediate output on page 1005 for more information.

1.1.4 Languages and character sets

In addition to Western languages, Mif2Go supports Russian, Greek, and Central/Eastern
European languages. For HTML/XML outputs Mif2Go supports all languages, via
Unicode (UTF-8). For RTF outputs, Mif2Go supports only single-byte languages,
although it is possible to produce decent Japanese RTF for Word.

Mif2Go does not currently support non-Unicode double-byte languages, nor right-to-left
languages such as Hebrew and Arabic. However, if you use Mif2Go to produce Microsoft
HTML Help, you can specify Japanese, Chinese, or Korean output, via Asian code pages
that you must download separately; see §1.2 What you need to have on page 53.

1.2 What you need to have
To use Mif2Go your computer system should be equipped as follows:

 • Windows: 2000, XP, Vista, or 7
 • Intel-compatible Pentium-level processor
 • 1+ GB memory recommended

In addition to Mif2Go , you will need at least some of the following software:
Adobe FrameMaker
Text editor
File comparison tool (optional)
Archiving tool
Ancillary tools for Help output.

Adobe
FrameMaker

You will need Adobe FrameMaker version 5.5.6 or a later version. Mif2Go supports
FrameMaker versions 9 and 10, with the following exceptions:

 • Books containing books are not supported; nested books are ignored.
 • Non-FrameMaker files in books are not supported; such files are ignored.

Text editor To work with configuration files you will need a text editor, such as Notepad, that uses
ANSI or UTF-8 encoding; do not use UTF-16.

File comparison
tool (optional)

If you modify any of the local configuration files provided with your Mif2Go distribution,
you might find it helpful to have a file comparison tool such as WinMerge; see §1.3.8
Obtain a file comparison tool (optional) on page 60.

Archiving tool To have Mif2Go automatically archive the output from your conversion projects for safe
storage or for distribution, you will need an archiving program that can be run from a
Windows command line, such as WinZip (via wzzip) or PKZip.

WHAT YOU NEED TO DO MIF2GO USER’S GUIDE

54 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Ancillary tools for
Help output

If you intend to generate on-line Help, you will need one or more of the following tools;
see §1.3.5 Obtain tools for Help systems or eBooks on page 58:

To produce Asian code-page output, such as for HTML Help in Japanese, you will also
need two enormous ICU DLLs: icudt40.dll (13MB) and icuuc40.dll (1MB). These
DLLs are available in archive icu401.zip (6 MB), which you can download from the
Omni Systems Web site. These DLLs are not needed for RTF output.

1.3 What you need to do
Starting with version 4.0 of Mif2Go , you must establish a new Omni Systems directory
structure for Mif2Go files. Follow the instructions in this section the first time you install
a version of Mif2Go later than version 3.3. To update Mif2Go version 4.0 or a later
version, see §1.4 How to update Mif2Go on page 61.

In this section:
§1.3.1 Set up a framework for Omni Systems applications on page 54
§1.3.2 Download a Mif2Go distribution on page 56
§1.3.3 Install Mif2Go on page 56
§1.3.4 Make Omni Systems executables accessible on page 57
§1.3.5 Obtain tools for Help systems or eBooks on page 58
§1.3.6 Establish system-wide configuration settings on page 58
§1.3.7 Locate document-specific settings on page 60
§1.3.8 Obtain a file comparison tool (optional) on page 60
§1.3.9 Download the Mif2Go User’s Guide (optional) on page 61

1.3.1 Set up a framework for Omni Systems applicat ions

If this is the first Omni Systems application to be installed on your system, you must
establish a new directory structure for executables, configuration templates, and ancillary
files. You must:

Create an Omni Systems home directory
Create an Omni Systems environment variable
Create FrameMaker environment variables
Verify that your new framework is accessible.

Create an Omni
Systems home

directory

Unless you already have the Omni Systems directory structure in place, create a new
directory on your system for all Omni Systems applications; for example, D:\omsys . This
is your Omni Systems home directory.

Do not place the Omni Systems home directory:

 • on a network drive; latency issues can cause intermittent problems
 • on any path that contains spaces.

See §D.2.5 Check path names, file names, and drive location on page 1032.

WinHelp Microsoft Help Workshop (no longer available) and viewer

HTML Help Microsoft HTML Help Workshop

JavaHelp Java Runtime Environment (JRE) and JavaHelp software

Oracle Help for Java Oracle Help for Java Developer’s Kit 2.0

Eclipse Help Java Runtime Environment (JRE), Eclipse Platform

1 GETTING STARTED WITH MIF2GO WHAT YOU NEED TO DO

ALL RIGHTS RESERVED. MAY 18, 2013 55

Create an Omni
Systems

environment
variable

Unless your system already has system environment variable %OMSYSHOME% that specifies
an absolute path to the Omni Systems home directory, you will need to create this variable.

1. In Control Panel (on Windows XP, for example):
Control Panel > System > Advanced > Environment Var iables

2. If OMSYSHOME is not listed in the System variables section, click New to create this
environment variable. For example:

Click OK.

3. Under System variables select Path and click Edit . You should see something like:

4. Place your cursor in the Variable value field and press the End key on your keyboard,
to navigate to the end of the Path value.

5. If the last character in the Path value is a semicolon, very carefully add the following
to the end of the Path value:

%omsyshome%\common\bin;

Otherwise, if the last character in the Path value is not a semicolon, very carefully
add the following to the end of the Path value:

;%omsyshome%\common\bin

Be sure to include the leading semicolon!

6. Click OK three times to save the environment variable definition and revised system
path, and return to Control Panel. Now Mif2Go will be able to find all the Omni
Systems files.

Create
FrameMaker
environment

variables

Unless your system already has one or more environment variables of the form
%FMnHOME% that specify the path(s) to your FrameMaker installation(s), you will need to
create a variable for each version of FrameMaker installed on your system.

For example, if you have FrameMaker versions 7.x, 8.x, and 10.x, you will need
%FM7HOME%, %FM8HOME%, and %FM10HOME%. To see if environment variable %FM7HOME%
(for example) is already present, in a Windows Command Prompt window, type:

set fm7home

and press Enter. If this environment variable is already defined, Windows will display its
definition.

To define %FM7HOME% (for example) on Windows XP (for example), go to:
Control Panel > System > Advanced > Environment Var iables

If FM7HOME is not listed in the System Variables section, click New to create this
environment variable. For example:

Note: The double quotes are essential if the path contains spaces.

Click OK three times to save the definition and return to Control Panel.

Now Mif2Go will be able to find the version of FrameMaker you are currently using.

Variable name: OMSYSHOME

Variable value: D:\omsys

Variable name: Path

Variable value: C:\a\long\string;C:\of\directory\paths;

Variable name: FM7HOME

Variable value: "C:\Program Files\Adobe\FrameMaker7.0"

WHAT YOU NEED TO DO MIF2GO USER’S GUIDE

56 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Verify that your
new framework is

accessible

Reboot your Windows system. Then open a command-prompt window, type dcl , and
press Enter . You should see a usage message for dcl.exe . If you see a “not found”
message instead, something is wrong.

Next: §1.3.2 Download a Mif2Go distribution on page 56.

1.3.2 Download a Mif2Go distribution

Register (or log in) at:
http://mif2go.com

and go to one of the Download pages.

Download one of the following, depending on what Omni Systems software is already
present on your system:

Next: §1.3.3 Install Mif2Go on page 56.

1.3.3 Install Mif2Go

Before you begin:

 • If you do not yet have an Omni Systems home directory on your system, first §1.3.1
Set up a framework for Omni Systems applications on page 54.

 • If you already have Mif2Go version 4.0 or later on your system, skip this section and
instead §1.4.2 Update your Mif2Go installation on page 61.

Why no installer? Omni Systems does not provide an installer for Mif2Go . This is for transparency; you
know Mif2Go does not “call home”, make changes to the Windows Registry, put files
where your company policy does not permit them, nor alter any other files on your system.
Information-system technicians can see exactly what will happen, and adjust the
instructions as needed to comply with company policy.

In this section:
§1.3.3.1 Extract files from the Mif2Go distribution archive on page 56
§1.3.3.2 Finish installing Mif2Go on page 57

1.3.3.1 Extract files from the Mif2Go distribution archive

To install Mif2Go for the first time, place Mif2Go distribution m2g_full_ 55 .zip in
your Omni Systems home directory and extract all files, allowing the extraction process to
create subdirectories.

Check extraction If your unzip or uncompress utility puts the extracted files in a directory named after the
distribution archive, move them up one level so they are directly under the Omni Systems
home directory (see §1.3.1 Set up a framework for Omni Systems applications on
page 54).

For example, executables should be here:
%OMSYSHOME%\common\bin

not here:
%OMSYSHOME%\m2g_full_55\common\bin

Already on your system: What to download:
Mif2Go , any version m2g_update_55.zip

DITA2Go but not Mif2Go m2g_addon_55.zip

Neither DITA2Go nor Mif2Go version 4.0 or later m2g_full_55.zip

http://mif2go.com
http://mif2go.com/

1 GETTING STARTED WITH MIF2GO WHAT YOU NEED TO DO

ALL RIGHTS RESERVED. MAY 18, 2013 57

Check directory
structure

You should have a directory structure that looks like this:

%OMSYSHOME%
|
|--common
| |--bin
| |--local
| +--system
|
+--demo
| +--Mif2Go_Demo
|
+--m2g

 |--local
 |--plugin
 |--system
 |--usersguide
 +--zip

1.3.3.2 Finish installing Mif2Go

To complete the installation:

1. Move the Mif2Go distribution .zip file to subdirectory %OMSYSHOME%\m2g\zip,
where it will be available for future reference.

2. On your desktop, create a shortcut to %OMSYSHOME%\common\bin\m2gcm.exe.
This gives you double-click access to the Mif2Go Configuration Manager, which
you can use to edit project settings.

3. In Windows Explorer, navigate to:
%OMSYSHOME%\m2g\usersguide

Right-click ugmif2go.chm , select Properties , and click Unblock . This is a standard
Microsoft “security” measure, used for all CHM files downloaded from the Internet,
or contained in archives downloaded from the Internet.

4. Double-click ugmif2go.chm to register the Mif2Go context-sensitive Help system
with Windows, so Mif2Go can find it.

5. On your desktop, create a shortcut to:
%OMSYSHOME%\m2g\usersguide\ugmif2go.chm

This gives you access to the Mif2Go User’s Guide, HTML Help edition. You can
download other editions from Omni Systems; see Availability on page 41.

6. Close FrameMaker, then copy the following files from %OMSYSHOME%\m2g\plugin
to your FrameMaker fminit\plugins directory:

m2rbook.dll
m2gframe.dll

7. If you are using a version of FrameMaker earlier than version 9, delete file .cache
from your FrameMaker fminit\plugins directory.

Next: §1.3.4 Make Omni Systems executables accessible on page 57.

1.3.4 Make Omni Systems executables accessible

Starting with Mif2Go version 4.0, all Omni Systems executables except the FrameMaker
plug-ins are located in the following directory:

%omsyshome%\common\bin

WHAT YOU NEED TO DO MIF2GO USER’S GUIDE

58 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Make sure you add this directory to your system PATH; see §1.3.1 Set up a framework for
Omni Systems applications on page 54.

Old Mif2Go files Delete from your Windows system directory (\windows\system32 or, for 64-bit
systems, \windows\SysWOW64) the following Mif2Go components, for which there are
new versions:

dcl.exe
drmif.dll
dwrtf.dll
dwhtm.dll
dwinf.dll
libexpat.dll

Note: If you leave the old files in the system directory, Windows will use them instead
of your new executables, and you will wonder why Mif2Go does not work as
expected.

Automated build
systems

If you have been using automated build systems for Mif2Go that rely on finding
executables in the Windows system directory, you have two choices:

 • Change your scripts to access %omsyshome%\common\bin instead; this is the
preferred method.

 • Every time you update Mif2Go, copy all the new executables from
%omsyshome%\common\bin to the Windows system directory.

Next, if you plan to produce on-line Help or ebook formats, §1.3.5 Obtain tools for Help
systems or eBooks on page 58; otherwise, §1.3.6 Establish system-wide configuration
settings on page 58.

1.3.5 Obtain tools for Help systems or eBooks

If you plan to generate any of the Help formats, you will need additional tools to compile
or complete your Help project.

MS HTML Help Tools, including HTML Help Workshop, are in the Microsoft Library:
http://msdn.microsoft.com/en-us/library/ms669985.aspx

If you plan to generate HTML Help in non-Western languages, you will also need the ICU
library; see §9.13 Generating HTML Help in non-Western languages on page 331.

Oracle Help Oracle Help for Java, available from Oracle:
http://www.oracle.com/technetwork/topics/ohj50ext-089966.html

JavaHelp JavaHelp, available from java.net :
http://download.java.net/javadesktop/javahelp/

Eclipse Help Eclipse SDK or Infocenter, available from Eclipse:
http://www.eclipse.org/downloads/

WinHelp Microsoft Help Workshop for 32-bit WinHelp is no longer available; however, you can
still obtain the viewer; see §8.1 Obtaining tools for WinHelp on page 243.

eBooks You can produce ePub input with Mif2Go XHTML output, then use free converter
Calibre:http://calibre-ebook.com

Next, §1.3.6 Establish system-wide configuration settings on page 58.

1.3.6 Establish system-wide configuration settings

To specify values for system-wide settings that apply to all Omni Systems applications,
open the following configuration file in a text editor:

http://msdn.microsoft.com/en-us/library/ms669985.aspx
http://www.oracle.com/technetwork/topics/ohj50ext-089966.html
http://download.java.net/javadesktop/javahelp/
http://www.eclipse.org/downloads/
http://calibre-ebook.com

1 GETTING STARTED WITH MIF2GO WHAT YOU NEED TO DO

ALL RIGHTS RESERVED. MAY 18, 2013 59

%omsyshome%\common\local\config\local_omsys.ini

This configuration file is accessed by all other Mif2Go configuration files, through chains
of links; the settings it contains are available to all Mif2Go projects. You can place in this
file any setting that will apply to most or all of your DITA2Go and Mif2Go projects. For
particular FrameMaker documents or conversion projects, you can override these settings
in output- or document-specific configuration files.

Note: For proper syntax, see §4.4 Understanding the rules for configuration settings on
page 102.

Specify settings for any of the following features that might be required for your
conversion projects:

Archiving program and options
HTML Help compiler command
Eclipse Help zip command
JavaHelp, Oracle Help index and JAR commands
WinHelp copyright statement and compiler command

Archiving
program and

options

Mif2Go can package the output from your conversion projects in .zip files for
distribution. You must provide an archiving program that can be run from a command line,
and specify appropriate parameters:

[Automation]
ArchiveCommand = path\to\archiver
ArchiveStartParams = parameters preceding name of archive file
ArchiveEndParams = parameters following name of archive file
ArchiveExt = file extension; usually zip
MoveArchive = Yes to move archive, No to copy archive
LogAuto = Yes to record archiving steps in the run log

See §35.11 Archiving deliverables on page 973. The starting and ending parameters for
the archive command have default values; for some output types you will need to override
these defaults in your project configuration file.

HTML Help
compiler

command

For HTML Help projects, Mif2Go can run the Microsoft HTML Help compiler for you, to
produce compiled CHM files. Unless the compiler is on your system PATH, you must tell
Mif2Go where to find it:

[MSHtmlHelpOptions]
Compiler = path\to\hhc

See §9.14.1 Directing Mif2Go to run the HTML Help compiler on page 333.

Eclipse Help zip
command

For Eclipse Help projects, Mif2Go can package your HTML topic files in doc.zip . You
must provide an archiving program that can be run from a command line, and specify
appropriate parameters:

[EclipseHelpOptions]
ZipCommand = path\to\archiver
ZipParams = all required parameters

See §12.8 Packaging Eclipse Help files on page 419.

JavaHelp, Oracle
Help index and

JAR commands

For JavaHelp projects, Mif2Go can run the JavaHelp indexer to produce a full-text search
index, and also package the output in a .jar file. You must specify the indexer and JAR
commands:

[JavaHelpOptions]
FTSCommand = path\to\jhindexer
JarCommand = path\to\jar

WHAT YOU NEED TO DO MIF2GO USER’S GUIDE

60 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For Oracle Help projects, Mif2Go can run the Oracle Help indexer to produce a full-text
search index:

[OracleHelpOptions]
FTSCommand = java -mx256m oracle.help.tools.index.I ndexer

See §11.5 Providing full-text search for JavaHelp / Oracle Help on page 387, and

§11.6.1 Creating a JAR file on page 391.

WinHelp
copyright

statement and
compiler

command

For WinHelp projects, Mif2Go can provide a copyright statement to be included in the
WinHelp .hpj project file:

[HelpOptions]
HelpCopyright = your copyright statement

Mif2Go can also run the Microsoft WinHelp compiler for you, to produce compiled HLP
files. Unless the WinHelp compiler is already on your system PATH, you must tell Mif2Go
where to find it. For example:

[HelpOptions]
; Compiler = path\to\hcw; can include run parameters
Compiler = hcw /c /e

See §8.2.13 Compiling a WinHelp project on page 250.

1.3.7 Locate document-specific settings

The default location for document-specific configuration files is a directory named
_config , located parallel to your project directory. To change this location, or to specify
different default names for these files, you must edit values of the following options in
configuration file %OMSYSHOME%\m2g\local\config\local_m2g_config.ini :

[Setup]
; Used when creating document-specific configuratio n files:
; LocalConfigPath = location relative to project di rectory
LocalConfigPath = .._config\
; WinHelpDocName = default document-specific .ini f or WinHelp output
WinHelpDocName = winhelp_doc.ini
; WordDocName = default document-specific .ini for Word output
WordDocName = word_doc.ini
; HTMLDocName = default document-specific .ini for all HTML outputs
HTMLDocName = html_doc.ini

To determine whether the default location is appropriate, see §30.3.3 Deciding where to
keep document-specific configuration files on page 854.

Your Mif2Go installation is now complete, and you can set up a Mif2Go conversion
project, or run an existing conversion. Your existing project configuration files will work
without modification. See §2 Planning a conversion project on page 65.

1.3.8 Obtain a file comparison tool (optional)

If you do not already have software on your system that compares text files and allows you
to accept or reject changes, consider downloading WinMerge for this purpose:

http://winmerge.org/

If you customize local copies of any of the configuration templates or macro libraries
included in Mif2Go distributions, with WinMerge you will be able to see what has
changed when you update the system copies.

http://winmerge.org/

1 GETTING STARTED WITH MIF2GO HOW TO UPDATE MIF2GO

ALL RIGHTS RESERVED. MAY 18, 2013 61

1.3.9 Download the Mif2Go User’s Guide (optional)

The HTML Help edition of the Mif2Go User’s Guide is included with your Mif2Go
installation. You can download other editions of the Mif2Go User’s Guide, in several
formats, from the Omni Systems Web site:

http://mif2go.com

Log in, and go to Download > User’s Guide . Download any or all current editions.

1.4 How to update Mif2Go
If you have never installed Mif2Go on your system, or if you have a version of Mif2Go
earlier than version 4.0, you must first §1.3.3 Install Mif2Go on page 56. Then in future
you can use one of the update procedures described here.

In this section:
§1.4.1 Change from the evaluation version to a licensed version on page 61
§1.4.2 Update your Mif2Go installation on page 61
§1.4.3 Try out Mif2Go beta executables on page 62

1.4.1 Change from the evaluation version to a lice nsed version

If you have only the evaluation version, you can order a full license for Mif2Go . Go to:
http://mif2go.com

Log in, and go to Orders > Order Mif2Go . Follow the instructions there.

If your evaluation version is earlier than version 4.0, you must install Mif2Go from
scratch; first, §1.3.1 Set up a framework for Omni Systems applications on page 54.

Next, §1.4.2 Update your Mif2Go installation on page 61.

1.4.2 Update your Mif2Go installation

As long as you subscribe to Mif2Go support, you are automatically notified of new
versions of Mif2Go .

Note: Updates do not change anything in your %OMSYSHOME%\m2g\local or
%OMSYSHOME%\common\local subdirectories, nor replace executables that are
unchanged since the prior update.

To update Mif2Go to the latest version:

1. Download m2g_update_55.zip into your Omni Systems home directory,
%OMSYSHOME%.

2. Extract all files from m2g_update_55.zip , allowing old files to be overwritten.

3. Only if you are using build systems that require executables in the system directory,
copy all files from %omsyshome%\common\bin into system directory
\windows\system32 (on 64-bit systems, \windows\SysWOW64), overwriting any
DITA2Go or Mif2Go components already there. You will have to do this every time
you update Mif2Go . A much better plan would be to change your build scripts to
reference %omsyshome%\common\bin instead.

4. Close FrameMaker, then copy the following files from
%OMSYSHOME%\common\plugin to your FrameMaker fminit\plugins directory:

m2rbook.dll

http://mif2go.com/
http://mif2go.com
http://mif2go.com
http://mif2go.com/

HOW MIF2GO WORKS MIF2GO USER’S GUIDE

62 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

m2gframe.dll

5. If you are using a version of FrameMaker earlier than version 9, delete file .cache
from your FrameMaker fminit\plugins directory.

6. Consult %omsyshome%\m2g\userguide\history.txt and New information on
page 41 to see what has changed since your last update.

1.4.3 Try out Mif2Go beta executables

You can obtain the latest beta revisions of Mif2Go distribution files dr*.dll and
dw*.dll from the Omni Systems Web site:

http://mif2go.com

Log in, go to Download > Registered Software , and scroll down to Beta Components .
Each .dll file is in an individual .zip archive with a name that includes the build
number, such as mwrtf372.zip .

To see if a .dll file you have is the latest revision:

1. In Windows Explorer, right-click the file icon for the copy of the .dll file that is
located in %OMSYSHOME%\common\bin.

2. Go to Properties > Version .

3. Compare the build number displayed after File version: with the build number that
appears in the name of the corresponding .zip archive. The larger number represents
the later version.

Extract the beta .dll file to %OMSYSHOME%\common\bin (or to your Windows system
directory, if you are using build systems that require executables to reside in the system
directory).

1.5 How Mif2Go works
To convert FrameMaker documents, Mif2Go first saves the document files as MIF (Maker
Interchange Format) files, then passes the MIF through an input filter to produce
intermediate DCL (Document Coding Language) files, then passes the DCL files through
an output filter to produce the final output type. Figure 1-1 shows the main features of this
process. Mif2Go deletes the intermediate DCL files after completing the conversion.

Figure 1-1 Mif2Go conversion process

File placement Mif2Go places a project file and a FileID file in the same directory as your FrameMaker
document, and a project configuration file and other conversion files in whatever directory
you specify for the output; see §C.2 Identifying conversion files on page 1020.

.mif

.dcb

.wmf

FrameMaker

Maker

Graphics file(s)

Rich Text Format,

.jpg

Document
Coding Language
binary file(s)

Interchange Format
file(s)

.fm

file(s)

Conversion template

HyperText Markup, or
eXtensible Markup
Language document

.fm

.book

.rtf

.htm

.xml

http://mif2go.com

1 GETTING STARTED WITH MIF2GO HOW TO START AND STOP MIF2GO

ALL RIGHTS RESERVED. MAY 18, 2013 63

If you subsequently move your document, project, and FileID files to another directory,
Mif2Go still expects to find the FileID file in the original location; this is because the
configuration file contains an absolute (full path) reference to the location of the FileID
file at the time the project was created. If Mif2Go does not find a FileID file in the original
directory, Mif2Go creates a new FileID file in that directory.

Conversion
template

If you use a FrameMaker conversion template (see §2.4 Importing formats from a
conversion template on page 67) and experiment with conversion settings, you can
produce output that needs no further editing, without altering your original FrameMaker
document.

Evaluation
version

The evaluation version of Mif2Go works identically to the shipping version, with one
small exception: the evaluation version randomly modifies about 10% of the text in your
document to ensure that it is used for evaluation only, per the evaluation license. No
changes are made to the Windows Registry, and there are no time or size limits. Graphics
are not modified at all.

1.6 How to start and stop Mif2Go
Starting Mif2Go 1. If you have not yet set up your Mif2Go project: with your FrameMaker book or

document file open, on the FrameMaker File menu click Set Up Mif2Go Export... to
specify a name, location, and output type for the project; §3.3 Creating a Mif2Go
conversion project on page 78.

2. On the FrameMaker File menu, click Save Using Mif2Go... to select the project and
start the conversion (see §3.6 Converting documents on page 82).

Stopping Mif2Go How to cancel a Mif2Go conversion before it finishes depends on which version of
Windows you are using and whether you are running Mif2Go from the command line or
from FrameMaker. Try one of the following:

 • Press Ctrl+C , which works in some Windows environments.
 • Open the Windows Task Manager (on Windows NT/2000/XP/Vista/7)

or press Ctrl+Alt+Del to bring up the Close Program dialog (on Windows 9x/ME):

1. Select the Mif2Go process, dcl.exe .

2. Click End Task .

1.7 How to work with Mif2Go
The methodology for converting documents with Mif2Go is iterative:

1. Run your conversion project using the defaults for the output type you specify.

2. Look at the results, and pick one thing you want different.

3. Look up that feature in the Mif2Go User’s Guide (this document), and find out what
setting you need to change to get what you want.

4. Make that setting in your project configuration file.

5. Rerun the conversion, then go to Step 2.

What makes this feasible is the running time, which for a sample document set is about 3
seconds; and is seldom more than a few minutes for any size project. So you do not lose
your train of thought waiting for completion.

HOW TO UNINSTALL MIF2GO MIF2GO USER’S GUIDE

64 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

1.8 How to uninstall Mif2Go
To uninstall Mif2Go , delete all files and subdirectories from directory
%OMSYSHOME%\m2g. If you have no other Omni Systems applications installed, you can
also delete the Omni Systems home directory and all subdirectories.

(No tables)

ALL RIGHTS RESERVED. 2013 MAY 18 65

2 Planning a conversion project

This section describes useful things to know and do before you use Mif2Go to convert
documents. Topics include:

§2.1 Naming files, directories, and paths on page 65
§2.2 Naming FrameMaker formats on page 66
§2.3 Understanding Mif2Go configuration files on page 66
§2.4 Importing formats from a conversion template on page 67
§2.5 Preparing documents for conversion on page 69
§2.6 Establishing a conversion environment on page 74
§2.7 Setting up multiple interlinked HTML projects on page 75
§2.8 Preparing deliverables after conversion on page 75

2.1 Naming files, directories, and paths
No spaces or

punctuation in file
or path names

Book files, chapter files, graphics files, and any other files referenced by your
FrameMaker document (or by the configuration file) should have names and paths that
conform to the following restrictions:

 • No spaces in file or path names (because FrameMaker does not always handle them
correctly).

 • Only alphanumeric characters in file or path names (even underscores can cause
problems).

 • Maximum 256 characters in a file name, 1,024 characters in a path name (Windows
limits).

 • At most one period in a file or path name.

Mif2Go is not the
problem!

Although Mif2Go supports file and path names that include underscores and spaces, the
output type you choose, or the target operating system where your output will be
deployed, might not. For example, Microsoft lists a known defect in HTML Help when
you use underscores in file names. Some flavors of UNIX do not like underscores, either.
Some Help outputs, notably JavaHelp and Eclipse Help, but even HTML Help, will fail if
there are spaces in paths within the project, because the display software is UNIX-based
and treats spaces as delimiters. In the interest of compatibility, we advise against file
names and paths that are not strictly alphanumeric.

Spaces cause
problems in

FrameMaker

Spaces in file and path names cause obscure problems for many Windows applications,
including FrameMaker itself. For example, if a referenced graphic is missing, the path
name FrameMaker presents in the Import dialog ends at the first space. You might have no
idea what file FrameMaker is looking for, and there is no workaround. For example, if you
have files named Image 200.gif , Image 201.gif , and so on, the dialog would ask for
\ somepath\Image . All you could do is skip the missing graphics file, then look very
carefully for gray boxes once the document is open. A graphics file is probably the very
worst kind of file to give a name that contains spaces.

Note: Presence of spaces in file or path names could invalidate requests for Mif2Go
technical support.

Single period
followed by

extension

Use only one period in a path or file name, followed by the correct extension for the type
of file. Many Windows programs break because this tiny character is misused. It is best
not to challenge the easily confused software on your computer.

NAMING FRAMEMAKER FORMATS MIF2GO USER’S GUIDE

66 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Book name must
not duplicate a
chapter name

If you are converting a FrameMaker book, make sure the base name of the book file is
different from the base name of any of the chapter files. This is especially important for
generating OmniHelp or DITA XML, where output files with the same name could get
overwritten; and for generating WinHelp, where duplicate names could cause unexpected
results.

No duplicate
chapter names

No two chapter files in a FrameMaker book may have the same base file name. Mif2Go
does not support duplicate file names in the same book. If you are using Mif2Go to create
on-line Help, make separate Help projects instead, each with only unique FrameMaker file
names, and then merge the projects later.

2.2 Naming FrameMaker formats
Mif2Go does not impose restrictions on FrameMaker format names. However, your
conversion projects might go more smoothly if you adhere to the following guidelines.
Avoid using format names that:

 • are identical for a paragraph format and a character format
 • differ only in case (such as Body and body)
 • contain punctuation or other non-alphanumeric characters.

Paragraph and
character format

names should
differ

Using the same name for a paragraph format and a character format can cause problems,
unless you are careful to specify properties for those formats in the correct configuration
section; see §21.5 Assigning properties to text formats on page 653. Even then, if you use
any characters in symbol fonts, those characters might be incorrectly mapped. Mif2Go
writes a warning to the log file if your FrameMaker document uses the same name for both
a character and a paragraph format.

Do not rely on
difference in case

A common issue is using (for example) both Bulleted and bulleted as paragraph format
names, with different definitions. This is valid in FrameMaker, but nowhere else, because
most other programs—including browsers that process CSS, and Microsoft Word—do not
consider a difference in case alone to constitute a difference in identity. These are not just
issues for Mif2Go , but for the downstream software that must interpret the results of your
conversion. Mif2Go writes a warning to the log file if your FrameMaker document uses
format names that differ only in case.

Escape reserved
characters

The characters “=”, “ ; ”, and “[” must be escaped with a backslash when a format name is
referenced in a Mif2Go configuration file.

Eschew wildcard
characters in

names

It is best not to use wildcard characters “*” and “?” in any names. However, you can turn
off wildcard use (and turn on case sensitivity) if you need to accommodate formats with
such names. See §5.1.7 Specifying how to treat cases, spaces, and wildcards on page 113
for more information.

Spaces in format
names can be a

problem for HTML

Spaces in format names are harmless if you are converting to RTF. If you are converting to
HTML, spaces are a problem only if you have two format names that become the same
when spaces are removed (which is required for CSS). For example, if your document
uses both heading 1 and heading1, there will be a conflict in the CSS file. Mif2Go writes a
warning to the log file if your FrameMaker document uses format names that contain
spaces, and removing the spaces results in duplicate names.

2.3 Understanding Mif2Go configuration files
To control the conversion process, Mif2Go uses conversion settings read from
configuration files. A Mif2Go configuration file is an ASCII text file with extension
.ini . A configuration file lists the options and settings that drive a particular conversion.

2 PLANNING A CONVERSION PROJECT IMPORTING FORMATS FROM A CONVERSION TEMPLATE

ALL RIGHTS RESERVED. 2013 MAY 18 67

To specify these options and settings, you must edit configuration files with a text editor,
outside of FrameMaker; see §4 Editing configuration files on page 91.

Project
configuration file

The configuration file you work with most will most likely be your project configuration
file, located in the project directory for your Mif2Go conversion project.

As you work with Mif2Go , you might need any or all of the following additional
configuration files, depending on the type and complexity of your projects:

Configuration template files
Configuration files Mif2Go creates for you
Configuration files from previous conversions
Configuration files for individual chapters
File identifier index

Configuration
template files

Configuration template files hold settings that rarely change from project to project.
Mif2Go maintains a hierarchy of configuration template files chained together; the chain
is referenced from your project configuration file. Also, you can create one or more
configuration templates of your own, or direct Mif2Go to use an existing configuration
file as a template; see §30 Working with templates on page 849.

Configuration files
Mif2Go creates

for you

For each new conversion project, Mif2Go creates a project configuration file for you, if a
file of the same name is not already present in the project directory. Table 30-1 on
page 850 lists the names of these starting configuration files. Each name begins with an
underscore, to help you find the file in the project directory.

If you put a project configuration file in the project directory before you run Mif2Go via
FrameMaker, Mif2Go cannot make certain initial settings for you; see §1.5 How Mif2Go
works on page 62. For this reason it is best to allow Mif2Go to create a new project
configuration file when you start a new conversion project.

Configuration files
from previous

conversions

If you already have configuration files with the right settings for a particular document
(perhaps a configuration file from a previous installation of Mif2Go or mif2rtf), you can
place that configuration file in the project directory and Mif2Go will use it.

Note: If you had Mif2Go version 3.3 on your system, each of your existing Mif2Go
projects already has, in the project directory, a configuration file named either
mif2rtf.ini (for RTF output) or mif2htm.ini (for HTML/XML output).
Mif2Go version 4.0 uses those files if they are present, even though they do not
have the newer file names.

Configuration files
for individual

chapters

If you are converting a FrameMaker book, in special cases you might also need individual
configuration files for certain chapter files; see §33.1 Using a different configuration for
selected files on page 919.

File identifier
index

For each FrameMaker book or single-file document, Mif2Go creates a FileID (“file
identifier”) file in the same directory as your FrameMaker book or document, unless this
file is already present. The FileID file is named mif2go.ini ; see §C.2.1 Conversion files
created during set-up on page 1020.

2.4 Importing formats from a conversion template
For conversion purposes, Mif2Go can use FrameMaker Import Formats to temporarily
apply a different FrameMaker template to your document. Applying formats from a
template that more closely approximates what you want to see in a given type of output is
the best and easiest first step to achieve successful single-sourcing from FrameMaker.
Import is automatic, and affects only the MIF conversion files, not your original document
files. If you have chapter files open when Mif2Go imports formats, those files remain

IMPORTING FORMATS FROM A CONVERSION TEMPLATE MIF2GO USER’S GUIDE

68 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

open, and they are not affected by the formats Mif2Go imports. You get true single-
sourcing, and you have to specify changes only once, in FrameMaker.

To create a conversion template, prepare a new FrameMaker template that uses the same
features and names as the original template for your document, but provides different
definitions for the following:

 • paragraph, character, table, and cross-reference formats
 • conditions and variables
 • master pages.

You can start just by saving a copy of your main FrameMaker template file under a
different name, then change the definitions of only those formats that should look different
in the output.

Note: If you are converting a FrameMaker book, and some chapter files in the book use
a different template, you must create a separate configuration file for each of those
chapter files, and an alternate conversion template; then you can direct Mif2Go to
apply the alternate conversion template to those files. See §33.1 Using a different
configuration for selected files on page 919.

If you plan to convert FrameMaker-generated files, such as contents, index, list of tables,
and list of figures, do either of the following:

 • import, into your main conversion template, all paragraph and character formats from
all generated files you plan to convert; or,

 • provide a separate configuration file and conversion template for each of those
generated files.

Some of the changes you might want to make with a conversion template are as follows:

 • Provide cross-reference formats that are underlined and in a different color, and that
eliminate page numbers, for Help systems or for HTML output.

 • Define TOC paragraph formats that do not include page numbers, for Help systems or
for HTML output.

 • Change the Show/Hide settings for conditional text, to substitute simpler versions of
complex objects that have no counterpart in the output type, or to provide alternate
text, or different illustrations. Mif2Go excludes from the output any hidden
conditional text.

 • Redefine paragraph formats to eliminate sideheads and tabs.
 • Redefine heading formats to omit, add, or alter Frame Above or Frame Below.
 • Reduce the size range of headings; for example, sizes larger than 18 pt or smaller than

10 pt often look bad in Help systems.
 • Substitute redesigned master pages, to alter or eliminate headers, footers, or other

background objects.

Mif2Go applies the conversion template as part of the conversion process, without
altering your FrameMaker document. However, if you are using Mif2Go to produce an
HTML output type and you specify CSS, your CSS settings override display properties
both from the original FrameMaker file and from any imported template.

See also:
§3.4.1 Importing formats from a FrameMaker template on page 79
§34.1.4 Importing formats and conditional text settings on page 936

2 PLANNING A CONVERSION PROJECT PREPARING DOCUMENTS FOR CONVERSION

ALL RIGHTS RESERVED. 2013 MAY 18 69

2.5 Preparing documents for conversion
You can improve your chances of success with Mif2Go by observing certain conventions
in your FrameMaker documents, to make the result look the way you want in the output.
Also, you can create a special conversion template in FrameMaker to implement these
conventions on the fly.

In this section:
§2.5.1 Updating your document in FrameMaker on page 69
§2.5.2 Planning for graphics processing on page 69
§2.5.3 Replacing embedded graphics with referenced graphics on page 69
§2.5.4 Setting up cross references to and from text insets on page 70
§2.5.5 Creating hotspots for hypertext links on page 72
§2.5.6 Producing a single output file from a FrameMaker book on page 73
§2.5.7 Preparing a structured document for conversion on page 73

See also:
§8.2.3 Deciding where to locate configuration settings on page 245
§13.2.3 Preparing a document for conversion to HTML or XHTML on page 426

2.5.1 Updating your document in FrameMaker

Mif2Go works reliably only on FrameMaker documents that have been updated and are
free from unresolved cross references:

 • If your document contains cross references or other links, make sure they are all
resolved in FrameMaker before you use Mif2Go .

 • If you intend to convert generated files, make sure they are updated first in
FrameMaker.

If your FrameMaker document was originally converted from Microsoft Word via
FrameMaker native Word import (not recommended), the document might contain a very
large number of Word-generated cross-reference markers. By default, Mif2Go ignores
these markers. If you have actually used any of these markers in FrameMaker, see §5.1.10
Preserving Word-generated cross-reference markers on page 114.

2.5.2 Planning for graphics processing

You will need to provide versions in the following formats of all imported-by-reference or
copied-in graphics in your document, possibly via conditional-text settings applied with a
conversion template (see §2.4 Importing formats from a conversion template on page 67):

 • BMP or WMF for Word or WinHelp
 • JPEG, GIF, or PNG for HTML.

While Mif2Go can convert a number of graphic formats for you, the results are often
better when you use a third-party graphic tool such as Graphic Workshop. See §5.7
Processing graphics on page 126 for more information.

If you are converting to Word, be aware of version-dependent image scaling issues; see
§6.14.7 Preserving graphics scale in Word on page 191.

2.5.3 Replacing embedded graphics with referenced graphics

Mif2Go can export embedded graphics from your FrameMaker document.

PREPARING DOCUMENTS FOR CONVERSION MIF2GO USER’S GUIDE

70 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Referenced
graphics are

preferable

If your document contains many images that were imported into FrameMaker by copying
instead of by reference, you might want to consider using Mif2Go to export them as
graphics files. Then you can re import them as referenced graphics. Referenced graphics
do not have to be processed again and again as you fine-tune your Mif2Go conversion
settings. Importing graphics into your FrameMaker documents by reference is a good idea
anyway, if your document design and workflow permit doing so.

Note: If the embedded images are embellished in FrameMaker with callouts or other
added features, you will have to replace those features for the reimported
graphics.

Make sure file
names will be

unique

Because FrameMaker does not retain the original names of embedded images, each
exported file comes out named with the first four letters of the FrameMaker file name
followed by an incremental four-digit number; for example, intr0001.gif . To keep all
the file names distinct you can change how many letters and digits Mif2Go uses for a
name; see §5.7.4.2 Naming files produced from embedded graphics on page 134.

Export and
replace

To replace embedded graphics with referenced graphics:

1. Set up Mif2Go for Standard HTML (or any other HTML/XML format); see §3.3
Creating a Mif2Go conversion project on page 78.

2. In your starting project configuration file, set the following options:
[GraphExport]
ImportGraphics=Export
ExportNameChars= n
ExportNumDigits= m

where n is the number of letters to use in the name of an exported file and m is the
number of digits. The default value is 4 for each of these options. See §4.4
Understanding the rules for configuration settings on page 102.

3. Run the conversion with default export settings; see §3.6 Converting documents on
page 82.

4. (Optional) Change the name of each newly exported graphics file to a more
reasonable name that helps you recognize the graphic.

5. (Optional) Move the newly exported graphics files to a directory relative to the
directory that contains your FrameMaker document.

6. For each embedded graphic in each FrameMaker file in your document:
6.1. Select the image itself (not the frame it is in).
6.2. Use File > Import > File to replace the embedded image with the corresponding

graphics file, imported by reference.

For additional information see §31.2.3.2 Replacing embedded graphics on page 878.

2.5.4 Setting up cross references to and from text insets

The FrameMaker process for updating text insets is like the process for generating
contents, index, and other lists: any properties you apply to the container document for the
inset (rather than to the inset) are cleared away whenever you update the document. To
create persistent cross references, the container document must reference markers instead
of paragraphs.

Also, if a text inset references the container document (or another text inset), and you
import the text inset into more than one container document, you must create a separate
cross-reference pointer in the text inset for each such container document.

2 PLANNING A CONVERSION PROJECT PREPARING DOCUMENTS FOR CONVERSION

ALL RIGHTS RESERVED. 2013 MAY 18 71

Note: Text-inset referencing is a FrameMaker issue, not a Mif2Go issue. Improperly
created text-inset cross references fail in FrameMaker itself, and in any output
type, as soon as you update the container document.

In this section:
§2.5.4.1 Creating persistent references to text insets on page 71
§2.5.4.2 Creating persistent references from text insets on page 71
§2.5.4.3 Creating persistent references between text insets on page 72

2.5.4.1 Creating persistent references to text ins ets

To cross-reference material in a text inset from a container document so that the cross-
reference links survive document updating:

1. Open both the container document and the text-inset file in FrameMaker.

2. From the container document, import the text inset (by reference) at the point where
you want the inset to appear.

3. From the container document, use the FrameMaker Cross-Reference dialog to create a
cross reference to the appropriate paragraph in the text inset:
3.1. From the Document list, choose the name of the text-inset file (not Current).
3.2. From the Source Type list, choose Paragraph .
3.3. Select the text-inset format and paragraph you want to reference.
3.4. Select the appropriate cross-reference format.
3.5. Click Insert ; FrameMaker inserts a cross-reference marker into the text-inset

file, in the paragraph you selected.

4. Save the text-inset file.

5. In the container document, use the FrameMaker Cross-Reference dialog to replace the
cross reference you created in Step 3:
5.1. From the Document list, choose Current .
5.2. From the Source Type list, choose Cross-Reference Marker . (The marker list

shows all the markers in text insets, along with any in the container document.)
5.3. Select the marker for the cross reference you created in Step 3.
5.4. Click Insert ; FrameMaker inserts into the container file a cross-reference to the

text-inset marker, but with the paragraph properties of the container document.

The resulting cross reference will persist through document updates.

2.5.4.2 Creating persistent references from text i nsets

To cross-reference material in container documents from a text inset so that cross-
reference links survive document updating regardless of which container document
imports the inset:

1. Open the text-inset file in FrameMaker.

2. Open a container document.

PREPARING DOCUMENTS FOR CONVERSION MIF2GO USER’S GUIDE

72 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

3. From the text-inset file, use the FrameMaker Cross-Reference dialog to create a cross
reference to the appropriate paragraph in the container document:
3.1. From the Document list, choose the name of the container file (not Current).
3.2. From the Source Type list, choose Paragraph .
3.3. Select the container-document format and paragraph you want to reference.
3.4. Select the appropriate cross-reference format.
3.5. Click Insert ; FrameMaker inserts a cross-reference marker into the container

file, in the paragraph you selected.

4. Save the container file.

5. In the text-inset file, use the FrameMaker Cross-Reference dialog to replace the cross
reference you created in Step 3:
5.1. From the Document list, choose the name of the container file (not Current).
5.2. From the Source Type list, choose Cross-Reference Marker .
5.3. Choose the marker for the cross reference you created in Step 3.
5.4. Click Insert ; FrameMaker inserts into the text-inset file a cross-reference to the

marker in the container document.

6. In the text-inset file, use the FrameMaker Conditional Text dialog to define a unique
condition, and apply that condition to the cross-reference pointer.

7. Repeat Step 2 through Step 6 for each container document that imports the text inset,
defining a different condition for each, and applying that condition to the newly
created cross-reference pointer in the text inset.

8. In each container document, do the following:
8.1. Define all the unique text-inset conditions you created in Step 6.
8.2. Show the condition for the container document in question, and Hide all the

other unique text-inset conditions.

2.5.4.3 Creating persistent references between tex t insets

To cross-reference material in one text inset from another text inset so that the cross-
reference links survive document updating regardless of which container document
imports the insets:

1. Open both text insets in FrameMaker.

2. In the referenced text inset, create a cross-reference target marker (see §2.5.4.1
Creating persistent references to text insets on page 71).

3. In the referencing text inset, place a distinct cross-reference pointer for each different
container document, each pointing to the marker you created in Step 2.

4. Use conditional text to define and apply a distinct condition to each such cross-
reference pointer in the referencing text inset; see §2.5.4.2 Creating persistent
references from text insets on page 71.

5. In each container document, do the following:
5.1. Define all the unique text-inset conditions you created in Step 4.
5.2. Show the condition for the container document in question, and Hide all the

other unique text-inset conditions.

2.5.5 Creating hotspots for hypertext links

To create a hypertext hotspot:

2 PLANNING A CONVERSION PROJECT PREPARING DOCUMENTS FOR CONVERSION

ALL RIGHTS RESERVED. 2013 MAY 18 73

 • Insert an appropriate hypertext marker in your FrameMaker document where you
want the link to start. See §34.1.2 Using markers to add links and instructions on
page 935.

 • Apply a character format to the surrounding text to delimit the hotspot for the link.

To make an entire paragraph into a hotspot, do not apply any character formats to the
paragraph. This is intended for short paragraphs (TOC items, headings, and so forth),
where adding a character format would be an annoyance.

See §5.10 Creating hotspots for hypertext links on page 138.

2.5.6 Producing a single output file from a FrameM aker book

When you convert a FrameMaker book, Mif2Go does not create an output file from the
FrameMaker book file itself; nor does Mif2Go combine all the FrameMaker files in a
book into a single output file. Instead, each file in a FrameMaker book is converted to one
or more output files. Each FrameMaker chapter contains its own formatting information,
which can be entirely different from that in other chapters. For this reason, chapters must
be converted to separate output files.

To produce one file from an entire book with Mif2Go , you must first combine the chapter
files in FrameMaker. This can require reworking links and numbering. You might also
have to deal with issues such as differing definitions of formats and variables in different
chapters. You have these options:

Use a script to preserve links and numbering
Import chapters as text insets (and lose links).

Use a script to
preserve links

and numbering

The process of combining book components into a single document can be automated with
FrameScript, ExtendScript (FrameMaker 10 or a later version), or the FDK. A script can
modify cross references, hypertext links, and numbering sequences so they are internal to
the combined file, and resolve differences in variable definitions. FrameScript is available
from Finite Matters Ltd:

http://www.framescript.com/

Import chapters
as text insets

(and lose links)

Otherwise, to use Mif2Go to produce a single output file from a FrameMaker book:

1. In FrameMaker, create a new file from the chapter template for your book.

2. Import all chapter files into the new file by reference, as text insets.

Whenever you want to produce a combined file, convert the combined FrameMaker file. If
you change any content in the original FrameMaker book, the only maintenance required
for the combined file is to update insets. This method allows you to:

 • select only files you want to include
 • add other information as needed
 • combine the files only once.

You will not have working cross references, of course, because they reference the
individual chapters and not the container. And the numbering, if any, is unlikely to work.

2.5.7 Preparing a structured document for conversi on

You can use Mif2Go to convert Structured FrameMaker files. Mif2Go fully supports
structured cross references; however, Mif2Go does not use structure tags and attributes for
any other purpose. You must use distinct format names to get distinct effects in the output.
We consider it better practice to separate structure and formatting by having a set of

http://www.framescript.com/

ESTABLISHING A CONVERSION ENVIRONMENT MIF2GO USER’S GUIDE

74 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

formats rather than a mass of overrides. Using distinct formats simplifies maintenance by
letting a designer modify templates without touching the structured application.

At present, elements and attributes created as part of the structure are not included in XML
output. Starting with FrameMaker version 7.1, you can export XML directly from
FrameMaker.

See also:
§5.8 Converting structured documents on page 135
§14.1 Understanding how Mif2Go generates XML output on page 457.

2.6 Establishing a conversion environment
If your FrameMaker files are on a network server, you might find that FrameMaker
sometimes has trouble accessing those files. It is best to make a local copy, and use
Mif2Go to convert from that copy.

Follow these steps to establish a working environment for your conversion project:

1. Establish a conversion project directory. Unless you specify a directory, Mif2Go
places output files in the same directory as the FrameMaker files to be converted. We
strongly advise you to create a separate project directory for each conversion
project, under the directory where your FrameMaker files are located (see §3.3
Creating a Mif2Go conversion project on page 78). If you plan to convert the same
FrameMaker document to several different output types, create a separate project
directory for each, to avoid overwriting files.

2. Decide about a configuration file:

Restart
FrameMaker

between
conversions

3. Restart FrameMaker. If you have already set up a Mif2Go conversion in your
current FrameMaker session, close FrameMaker and restart it. Sometimes Mif2Go
“remembers” settings used in a prior conversion, causing unexpected results (such as
crashes). Whether this is likely to happen seems to depend on your operating
environment and on Mif2Go configuration settings. In some situations you might be
able to get away without restarting FrameMaker, especially if you delete output files
and conversion files (but not project or configuration files) between runs; see §C.2.4
What not to do with conversion files on page 1025. You should never have to reboot
the system, unless you have hit the Windows 9x/ME GDI resource-leak wall; see
§8.6.2 Avoiding the GDI resource leak on page 264.

4. Close previous output files. If you are converting to Word, close any RTF files from
a previous conversion that you have open in Word. Mif2Go cannot write a new
version if Word has the old one open.

5. Select a book or document. In FrameMaker, open and select a book or document file.

6. Start Mif2Go . Follow instructions in §3 Converting a book or document on page 77.

New project: If you are setting up a brand-new conversion project, remove
from the project directory any existing configuration file
intended for the same output type.

Existing project: If you want Mif2Go to use a configuration file already created
for the document, or one based on a different FrameMaker
document, place that configuration file (or a copy of it) in the
project directory.

2 PLANNING A CONVERSION PROJECT SETTING UP MULTIPLE INTERLINKED HTML PROJECTS

ALL RIGHTS RESERVED. 2013 MAY 18 75

2.7 Setting up multiple interlinked HTML projects
If you wish to convert two or more FrameMaker books to the same HTML output type,
and these books contain cross references or hypertext links to each other, you have two
basic choices for a conversion environment:

 • Use the same project directory for all books
 • Use a different project directory for each book.

The first is the simpler choice: all output files from all the books go into the same project
directory. Use a single project configuration file for all the projects, with each of the book
project files pointing to the project directory. This way Mif2Go will automatically handle
all the links between books.

However, if some books include files that have the same name but different content (for
example, intro.fm), the files with duplicate names will get overwritten by whichever
book is converted last; for the other books, the content will not be correct. In that case, you
will need to use a separate project directory for each book, so each has its own
configuration file. Then you must tell each book where the files in the other books are
located; see §19.6 Linking to other files and other Mif2Go projects on page 621.

2.8 Preparing deliverables after conversion
Converting a document might be just one step in a workflow that also includes preparing
the results for distribution. Mif2Go can automate much of this post-conversion
processing. For many conversions, Mif2Go supports one-click production of deliverables;
see §35 Producing deliverable results on page 955. For more involved workflows,
Mif2Go supports interactive prompts and custom before-and-after processing; see §34
Automating Mif2Go conversions on page 933.

(No tables)
(No illustrations)

PREPARING DELIVERABLES AFTER CONVERSION MIF2GO USER’S GUIDE

76 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. 2013 MAY 18 77

3 Converting a book or document

This section shows how to use the Mif2Go FrameMaker plug-in to set up a conversion
project and convert FrameMaker books and documents. Topics include:

§3.1 Checking set-up and conversion requirements on page 77
§3.2 Starting Mif2Go on page 77
§3.3 Creating a Mif2Go conversion project on page 78
§3.4 Choosing project set-up options on page 79
§3.5 Understanding how Mif2Go sets up a project on page 82
§3.6 Converting documents on page 82
§3.7 Choosing final conversion options on page 83

See also:
§2.5 Preparing documents for conversion on page 69
§2.6 Establishing a conversion environment on page 74

3.1 Checking set-up and conversion requirements
Before you set up a Mif2Go conversion project, check the following requirements:

Mif2Go installed
No spaces in file names or paths
No configuration file before project set-up

Mif2Go installed Mif2Go must be installed on your system as a FrameMaker plug-in; see §1.3.3 Install
Mif2Go on page 56.

No spaces in file
names or paths

All FrameMaker files, graphics files, and any other files to be used in the conversion
should have paths and names that do not contain:

 • spaces
 • multiple periods.

See §2.1 Naming files, directories, and paths on page 65.

No configuration
file before project

set-up

If you are creating a new project, in order to use a Mif2Go Set Up dialog there must be no
prior configuration file for the same output type present in the project directory; see §3.4
Choosing project set-up options on page 79.

3.2 Starting Mif2Go
To convert a FrameMaker book, run Mif2Go with the book file active. To convert a
single-file document, run Mif2Go with the document file active.

1. Select the book or document file in FrameMaker.

2. From the FrameMaker File menu, choose one of the following:

Individual
chapters

To reconvert a chapter of a book (or to convert a newly added chapter), after you have set
up the book conversion keep the book file open, and run Save Using Mif2Go... from the
chapter file.

Set Up Mif2Go Export... to convert a book or document for the first time.

Save Using Mif2Go... for subsequent conversions of the same project.

CREATING A MIF2GO CONVERSION PROJECT MIF2GO USER’S GUIDE

78 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

3.3 Creating a Mif2Go conversion project
Mif2Go stores project information in a file that has the same base name as your
FrameMaker document, with extension .prj . This project file is located in the same
directory as your FrameMaker document.

To specify a conversion project, from the document or book file click one of the two
Mif2Go options on the FrameMaker File menu:

Set Up Mif2Go Export... to create a new project
Save Using Mif2Go... to modify or re-run an existing project.

The Mif2Go Choose Project dialog shown in Figure 3-1 opens.

Figure 3-1 Choose Project dialog

Name Give your project a unique name, or select an existing project from the
list. The default name for a new project is the base name of your
FrameMaker book or document file. Your project list is kept in a file with
extension .prj , located in the same directory as your FrameMaker files.

Path Select or create a project directory for the converted files. Browse (...)
for the directory where you want Mif2Go to place output files, or create a
new directory. For best results, specify a directory immediately under the
directory where your FrameMaker document is located. If you plan to
convert the same document to several different output types, create a
separate project directory for each.

Format Select an output type from the list.

Configure Start the Mif2Go Configuration Manager to access the configuration
files your project references. See§4.2 Editing files with the Configuration
Manager on page 91.

Add To add a new project, click Add . When you click OK, the project is added
to your project list.

Modify To change the name, directory, or format of an existing project, click
Modify . When you click OK, information for the currently displayed
project is changed in your project list.

3 CONVERTING A BOOK OR DOCUMENT CHOOSING PROJECT SET-UP OPTIONS

ALL RIGHTS RESERVED. 2013 MAY 18 79

Proceed with the
conversion

What happens after you dismiss the Choose Project dialog depends on whether you are
creating a new conversion project or modifying an existing project:

3.4 Choosing project set-up options
Mif2Go presents a different Set Up dialog for each output type.

In this section:
§3.4.1 Importing formats from a FrameMaker template on page 79
§3.4.2 Converting FrameMaker system variables to text on page 80
§3.4.3 Generating and updating your document on page 81
§3.4.4 Including FrameMaker-generated files on page 81
§3.4.5 Understanding configuration settings for general set-up options on page 81
§3.4.6 Choosing output-specific set-up options on page 82

3.4.1 Importing formats from a FrameMaker template

To import formats from a FrameMaker conversion template, check Import FrameMaker
Template (or Import FM Help Template) in the Set Up dialog as shown in Figure 3-2, and
browse to the location of the template file.

Delete To delete the currently displayed project, click Delete . When you click
OK, all information for the project is removed from your project list.

Huh? To see this information in HTML Help while you are working, with
Mif2Go file %OMSYSHOME%\m2g\usersguide\ugmif2go.chm open
(see §1.3.3 Install Mif2Go on page 56), click Huh?

OK To save changes you made to the currently displayed project, Click OK.
The Choose Project dialog is dismissed.

Cancel To discard current changes, click Cancel ; you lose any additions and
changes you just made. You might want to do this if you accidentally
delete the wrong project, and realize it before you click OK.

New project: If this is a new project (no project configuration file is present in the
project directory), you get a one-time opportunity to specify set-up
options. See §3.4 Choosing project set-up options on page 79.

Existing project: If this is an existing project (a project configuration file is already
present in the project directory), you must use a text editor to modify
conversion settings.

CHOOSING PROJECT SET-UP OPTIONS MIF2GO USER’S GUIDE

80 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Figure 3-2 Import FrameMaker Template

Mif2Go Set Up dialogs provide checkboxes for all the same properties as the FrameMaker
Import Formats dialog. Some cautions:

 • If you specify a template file, but you do not check any properties, all properties
except Document properties are imported, and overrides and page breaks are removed.

 • Best not to check Doc Props (document properties); a defect in FrameMaker can
cause unexpected changes to document settings.

 • The Comb fonts option stands for “combined Japanese/English fonts”. Although
Mif2Go supports Japanese on FrameMaker version 8 and later versions, checking this
option can cause “template failure” on non-Japanese systems. If this happens, Mif2Go
tries the template import again, without the Comb fonts option.

See also:
§2.4 Importing formats from a conversion template on page 67
§3.4.5 Understanding configuration settings for general set-up options on page 81
§30.7 Applying FrameMaker conversion templates on page 863

3.4.2 Converting FrameMaker system variables to te xt

To convert the FrameMaker date, time, and file-name system variables in your document
to text before conversion, check Convert variables to text in the Set Up dialog, as shown
in Figure 3-3.

Figure 3-3 Convert variables to text

Only system date/time and file-name variables on body pages are converted. Other
variables are already present in a usable form in MIF files. Use this option conservatively,
because it can drastically increase the time required to convert your document.

See also:
§3.4.5 Understanding configuration settings for general set-up options on page 81
§5.1.9 Converting system variables to text on page 114

3 CONVERTING A BOOK OR DOCUMENT CHOOSING PROJECT SET-UP OPTIONS

ALL RIGHTS RESERVED. 2013 MAY 18 81

3.4.3 Generating and updating your document

To generate and update your document after importing formats (if you checked that box)
and before carrying out the conversion, check Generate/Update after import in the Set
Up dialog. Use this option only if necessary; mid-conversion updating takes time and
requires all files to be open at once.

See also:
§3.4.5 Understanding configuration settings for general set-up options on page 81
§5.6 Generating/updating before converting on page 126

3.4.4 Including FrameMaker-generated files

To include FrameMaker-generated files in the conversion, check one or more of the Set Up
dialog boxes shown in Figure 3-4.

Figure 3-4 Include generated files

You do not need the TOC or IX files if you are creating WinHelp or HTML-based help,
because Mif2Go generates contents and index for Help systems.

See also:
§3.4.5 Understanding configuration settings for general set-up options on page 81
§5.5 Converting FrameMaker-generated files on page 124
§7.3.2 Including FrameMaker TOC and IX in Help systems on page 205

3.4.5 Understanding configuration settings for gen eral set-up options

Table 3-1 shows which configuration settings correspond to each of the general set-up
options described in sections 3.4.1 through 3.4.4, and shows the default value for each
setting.

Table 3-1 General set-up options and settings

Set-up dialog Configuration file
Option [Setup] Setting Default Ref.

Import FrameMaker Template ApplyTemplateFile=Yes No 30.7.1

TemplateFileName= pathtofile.fm None 30.7.1

Select properties to update, and
properties to remove

AppliedTemplateFlags=
a number you must compute; default is 0
(zero): all but Document properties

All but Doc
props

30.7.1

Convert system variables to text ConvertVariables No 5.1.9

Generate/Update after import GenerateBook No 5.6

Use FrameMaker TOC UseFrameTOC (Print RTF, HTML, XML) Yes 5.5.1

UseFrameTOC (WinHelp, HTML-based help, DITA) No 7.3.2

Use FrameMaker IX UseFrameIX (Print RTF, HTML, XML) Yes 5.5.1

UseFrameIX (WinHelp, HTML-based help, DITA) No 7.3.2

Use other FM generated files UseFrameGenFiles (all but DITA) Yes 5.5.2

UNDERSTANDING HOW MIF2GO SETS UP A PROJECT MIF2GO USER’S GUIDE

82 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

3.4.6 Choosing output-specific set-up options

For set-up options specific to each output type, see:

3.5 Understanding how Mif2Go sets up a project
When you click OK on a Set Up dialog, Mif2Go does the following:

1. Copies from %OMSYSHOME%\m2g\local\starts a starting project configuration
file for the output type you specified, and places this file in the project directory; see
§4.3 Understanding where project settings come from on page 102.

Note: If a configuration file for the same output type is already present in the project
directory when you start Mif2Go , you will not see a Set Up dialog.

2. If not already present, creates a document-specific configuration file for your
FrameMaker document; see §30.3 Including document-specific configuration files on
page 852.

3. Includes in the starting project configuration file (see Step 1) a reference to the
document-specific configuration file.

4. Loads the new project configuration file in Notepad for you to inspect and edit.

Once you click OK on the Set Up dialog, thereafter you must use a text editor to change
any settings in these or any other configuration files.

3.6 Converting documents
After setting up a conversion project, follow these steps to convert a FrameMaker
document:

1. Open a document in FrameMaker. To convert all the files in a book, select the book
file. Even if a few files in the book do not need converting, this is usually faster than
converting each file separately.

2. Select a conversion project. On the FrameMaker File menu, choose Save Using
Mif2Go... The Choose Project dialog opens (see Figure 3-1 on page 78). If the project
in the Name field is not the one you want, select your project from the list. Click OK
to dismiss the dialog.

Output type Link to set-up options
ASCII DCL §38.3.1 Setting up an ASCII DCL project on page 1009
DITA XML §15.2.2 Choosing set-up options for a DITA XML project on page 479
DocBook §17.2.2 Choosing set-up options for a DocBook project on page 560

Eclipse Help §12.2.2 Choosing set-up options for an Eclipse Help project on page 404
HTML Help §9.3.2 Choosing set-up options for an MS HTML Help project on page 298
HTML/XHTML/XML §13.2.2 Choosing set-up options for an HTML or XHTML project on

page 425
JavaHelp/Oracle Help §11.3.2 Choosing set-up options for a JavaHelp or Oracle Help project on

page 375
MIF §38.2.2 Setting up a FrameMaker MIF project on page 1006

OmniHelp §10.3.2 Choosing set-up options for an OmniHelp project on page 346
WinHelp §8.2.2 Choosing set-up options for a WinHelp project on page 244
Word/WordPerfect §6.2.2 Choosing set-up options for a print RTF project on page 146

3 CONVERTING A BOOK OR DOCUMENT CHOOSING FINAL CONVERSION OPTIONS

ALL RIGHTS RESERVED. 2013 MAY 18 83

3. Choose export options. When you dismiss the Choose Project dialog, the Mif2Go
Export dialog opens (see Figure 3-5 on page 83). For information about export
options, see §3.7 Choosing final conversion options on page 83.

4. Start the conversion. Click OK in the Mif2Go Export dialog to start converting
documents.

During conversion, Mif2Go displays progress messages in the status bar at the bottom of
the book or file window.

Run the conversion the first time with just the settings you specified in the Set Up dialog,
then fine-tune after you examine the output. Always make the minimum number of
changes, and only after trying out the default values; Omni Systems developers work hard
to make the defaults reasonable for most purposes.

You can keep a text editor open while trying different settings, using File > Save in the
editor to update the configuration file (see §2.3 Understanding Mif2Go configuration files
on page 66), then File > Save Using Mif2Go... in FrameMaker to run the conversion
again.

Figure 3-5 Mif2Go Export dialog

3.7 Choosing final conversion options
Use the Export dialog (Figure 3-5) to make last-minute changes to conversion options.

CHOOSING FINAL CONVERSION OPTIONS MIF2GO USER’S GUIDE

84 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

In this section:
§3.7.1 Understanding how export options work on page 84
§3.7.2 Specifying output type and file extension on page 84
§3.7.3 Choosing input source and disposition on page 85
§3.7.4 Figuring out graphics export options on page 85
§3.7.5 Choosing postprocessing options on page 88

3.7.1 Understanding how export options work

Export options both reflect and affect configuration settings:

 • When you change an option in the Export dialog (see Figure 3-5), Mif2Go makes the
corresponding change to relevant settings in your project configuration file.

 • When you change a relevant setting in your project configuration file, next time you
open the Export dialog it will show this change to the corresponding option.

When you rerun a conversion, the Export dialog shows the options you checked the last
time you ran the conversion; unless, in the meantime, you altered the corresponding
settings in the project configuration file. Table 3-2 lists the configuration-file settings that
correspond to each export option. Default values that differ from the corresponding set-up
value are shown in red.

3.7.2 Specifying output type and file extension
Output type To override the output type you originally specified for a project, on the Mif2Go Export

dialog select a different format from the list, under:
Select type of file to create

You must select a format that is valid for the configuration file associated with the project.
Table 3-2 on page 84 shows the settings that are valid for each type of configuration file.

Table 3-2 Mif2Go export options and configuration settings

Export dialog Configuration file
Option Section Setting Default References

Select type of file to create (None) (See Figure 3-1 on page 78 for a list) (None) 3.3

Suffix for created files [Setup] FileSuffix = . any (Varies) 5.1.1

Use existing MIF file if any [Setup] UseExistingMIF = Yes No 5.1.3

Use existing DCL file if any [Setup] UseExistingDCL = Yes No 5.1.4

Do not write graphics files [Graphics]
[Setup]
[Setup]

UseGraphicPreviews = No
WriteEquations = No
WriteAllGraphics = No

Yes
No
No

5.7.2

Write graphics for equations [Graphics]
[Setup]
[Setup]

UseGraphicPreviews = No
WriteEquations = Yes
WriteAllGraphics = No

Yes
No
No

5.7.2.1, 31.2.5.3

Write for anchored frames [Graphics]
[Setup]
[Setup]

UseGraphicPreviews = Yes
WriteEquations = No
WriteAllGraphics = Yes

Yes
No
No

5.7.2.2, 31.2.5.3

Use original graphic names [Graphics] UseOriginalGraphicNames = Yes No 23.4.1, 31.2.5.4,
31.3.1.4, 31.3.1.5

Write only graphics, no text No corresponding setting none

Make combined TOC/IX [HelpOptions] MakeCombinedCnt = Yes Yes 8.2.8

Compile Help [Automation] CompileHelp = Yes No 8.2.8, 9.14.1

Wrap and Ship [Automation] WrapAndShip = Yes No 35.2

3 CONVERTING A BOOK OR DOCUMENT CHOOSING FINAL CONVERSION OPTIONS

ALL RIGHTS RESERVED. 2013 MAY 18 85

File extension When the Export dialog opens, this entry:
Suffix for created files

shows the file extension specified in the configuration file. However, if you change the
output type, the file extension automatically changes to the appropriate value for the new
output type you select. In either case, you can type in a different file extension.

MIF or DCL If you specify .mif as the file extension, Mif2Go stops after creating MIF files; and if
you specify .dcl , Mif2Go stops after creating DCL files.

If you specify .mif and you are converting a FrameMaker book; and the names of files in
the book have extensions that start with .fm (such as .fm , .fm5 , or .fm6); Mif2Go uses
the original book file extension (typically .book or .bk) for the MIF book file.

3.7.3 Choosing input source and disposition
Existing MIF files If you already have current MIF files for your document located in the project directory,

you can save conversion time by checking:

Use existing MIF file if any

in the Mif2Go Export dialog.

This setting is meant to save you time when you are experimenting with different
configuration-file settings for the same output. When this box is checked, changes made to
FrameMaker binary files after the MIF files were created are not included in the
conversion. For production, check this box only if you are sure of the following:

 • the FrameMaker file(s) in question have not been altered
 • you have not changed an imported template, or template import option.

If this box is checked but Mif2Go cannot find one or more MIF files in the project
directory, Mif2Go creates from the FrameMaker binary files any that are missing.

If you have only MIF files, but not the original FrameMaker binary files, always check
this box.

Existing DCL files If you already ran the conversion with ASCII DCL only as the output type, you can check:

Use existing DCL file if any

to avoid redoing the first part of the conversion, and also avoid rewriting graphics.

Delete MIF files? If you are short on disk space, check:

Delete MIF when done

Mif2Go creates and removes MIF files one at a time. However, if you have only MIF files,
and you do not have the original FrameMaker binary files, do not check this option.

3.7.4 Figuring out graphics export options

Your conversion must use one of the following three graphics options presented in the
Mif2Go Export dialog:

Two additional graphics options are also available in the Mif2Go Export dialog:

Do not write graphics files (because they already exist)

Write graphics for equations (use Mif2Go native graphics processing)

Write for anchored frames (use FrameMaker export filters for graphics)

Use original graphic names (HTML only: avoid FrameMaker export filters)

CHOOSING FINAL CONVERSION OPTIONS MIF2GO USER’S GUIDE

86 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Table 3-2 on page 84 shows the configuration-file settings that correspond to each of these
options.

In this section:
§3.7.4.1 Omitting and restoring graphics production on page 86
§3.7.4.2 Using Mif2Go native graphics processing on page 86
§3.7.4.3 Using FrameMaker export filters on page 87
§3.7.4.4 Using original referenced graphics for HTML on page 87
§3.7.4.5 Producing only graphics on page 88

3.7.4.1 Omitting and restoring graphics production

Omit graphics
processing

If you have already converted (or provided replacements for) the graphics in your
document, you might save processing time by choosing Do not write graphics files in the
Mif2Go Export dialog. However, this choice has no effect if your configuration file
specifies Mif2Go native graphics processing, such as for WinHelp output. Only
production of graphics using FrameMaker export filters is omitted.

Two effects are involved:

 • the actual production of graphics files
 • the way those files are referenced in the output.

If you choose Do not write graphics files the first time you run a conversion, Mif2Go
creates references based on file names that would have been assigned to graphics files
produced using FrameMaker export filters, but without actually producing any graphics.

When you choose Do not write graphics files for a subsequent conversion run, Mif2Go
checks the settings in the configuration file, and creates references based on the more
recently used of the two graphics production methods.

Restore graphics
processing

If you add or change any graphics in your document after you have run the conversion
with Do not write graphics files checked, and you have not specified external
replacement files for the graphics (see §31.3 Replacing and relocating graphics files on
page 887), you must choose one of the other two options.

Choose the
correct option

If you do not remember which option you chose when you first ran the conversion, look in
the [Graphics] section of the configuration file for the UseGraphicPreviews setting:

3.7.4.2 Using Mif2Go native graphics processing

Choose Write graphics for equations if you do not want Mif2Go to use FrameMaker
export filters to convert graphics. This is an appropriate choice if either of the following is
true:

 • You are relying on Mif2Go native graphics processing to produce WMF graphics for
RTF output (see §5.7.2.1 Using Mif2Go native graphics processing on page 128).

 • You have specified export options for embedded graphics (see §31.2.3 Exporting and
converting embedded graphics on page 877), and your referenced graphics are either:
 – already in a suitable format (see §31.1 Choosing an appropriate graphics format

on page 869), or

Write only graphics, no text (to experiment with different graphics settings)

[Graphics] setting Export option Production method
UseGraphicPreviews=Yes Write for anchored frames FrameMaker export filters
UseGraphicPreviews=No Write graphics for equations Mif2Go native graphics

processing

3 CONVERTING A BOOK OR DOCUMENT CHOOSING FINAL CONVERSION OPTIONS

ALL RIGHTS RESERVED. 2013 MAY 18 87

 – mapped to suitable equivalents (see §31.3 Replacing and relocating graphics files
on page 887).

However, if you are converting to HTML, the following graphics in your document are
not converted when you choose Write graphics for equations :

 • illustrations created with FrameMaker drawing tools
 • graphics in reference-page frames
 • compound graphics (referenced or embedded) that include callouts, text lines, or

FrameMaker native graphic elements.

Note: Mif2Go uses FrameMaker export filters to convert FrameMaker native math
equations, regardless of which graphics-processing option you choose.

3.7.4.3 Using FrameMaker export filters

When you choose Write for anchored frames , Mif2Go uses the FrameMaker export
filters to create an external file for every anchored frame in your document, including:

 • all graphics, whether embedded or imported by reference
 • any tables in anchored frames
 • all equations.

Choose this option if either of the following is true:

 • You are converting to HTML or XML, and any of your graphics include FrameMaker
drawing elements such as callouts.

 • Your graphics are not already in a suitable format (see §31.1 Choosing an appropriate
graphics format on page 869), and you do not have a graphics conversion program
available.

For more information about when to have Mif2Go use the FrameMaker export filters, see
§5.7.2 Choosing how to convert graphics on page 127.

3.7.4.4 Using original referenced graphics for HTM L

For referenced graphics, checking Use original graphic names in the Mif2Go Export
dialog directs Mif2Go to use, wherever possible, the original external graphics file instead
of any file created from the graphic by FrameMaker export filters; that is, for any graphic
that is alone in its anchored frame, without FrameMaker-added elements. The resulting
 tag does the following:

 • References the original file name of the graphic (possibly modified for path and
extension by other configuration settings; see §31.3 Replacing and relocating graphics
files on page 887).

 • Uses the FrameMaker-determined size of the original referenced image as opposed to
the size of the enclosing anchored frame (to preserve scale, possibly modified by other
configuration settings; see §23.9 Scaling images for HTML on page 719).

You might want to check this option if your conversion project has the following
characteristics:

 • Output type is HTML (HTML, XHTML, XML, or HTML-based help).
 • At least some of the graphics in your document are all of the following:

 – either:
 › referenced (not embedded in the document), or:
 › already exported to external files (see §31.2.3 Exporting and converting

embedded graphics on page 877)
 – either:

CHOOSING FINAL CONVERSION OPTIONS MIF2GO USER’S GUIDE

88 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 › in a suitable format (such as JPEG, GIF, or PNG), or:
 › replaced by alternate files you specified via configuration-file settings, where

the replacements have the same base file names as the originals
 – alone in their anchored frames (no callouts, text lines, or other images).

If you choose Write for anchored frames and check Use original graphic names in the
Mif2Go Export dialog, you get the best of both worlds: Mif2Go uses original (or
replaced) external graphics wherever possible, and also uses FrameMaker export filters to
convert graphics for which there is no external name (FrameMaker native graphics,
embedded graphics, and reference-page graphics).

Note: If an image is not the same size as the enclosing anchored frames, the size used
when you check Use original graphic names is that of the image, not of the
frame, to avoid distorting the image.

See also:
§23.4.1 Using referenced graphics without converting on page 706
§23.4.4 Using referenced, embedded, and compound graphics on page 707
§31.3.1 Changing graphics files for HTML output on page 887

3.7.4.5 Producing only graphics

After you have successfully converted your document, to experiment with different
graphics DPI or format settings without actually producing document files, check
Write only graphics, no text in the Mif2Go Export dialog. When you check this option,
Mif2Go uses the .grx files from the previous conversion run to get a list of graphics to
produce. You must have already run the conversion at least once to produce the .grx files,
because this option works only when .grx files are present in the project directory. See
§C.2.2 Files created during conversion on page 1021.

If you really want to output only graphics, without first producing .grx files, you could
set [Setup]GraphicsFirst=Yes in the configuration file; then instead of referring to
.grx files, Mif2Go would crank out every graphic in your document, including unused
reference-page and master-page items (but not any graphics in hidden conditional text).
See §5.7.3.1 Processing all graphics first on page 132.

This process is really useful only for RTF output; for HTML and XML, setting
[Setup]GraphicsFirst=Yes is usually a waste of time and space. And if you decide
to change graphics formats, you must run the entire conversion again (possibly with Do
not write graphics files checked) to get the src attributes right.

3.7.5 Choosing postprocessing options

Mif2Go can do the following after converting your document:
Update WinHelp TOC and IX
Compile WinHelp or HTML Help
Assemble and archive deliverables

Update WinHelp
TOC and IX

To update an existing WinHelp contents file when you are converting a single file for a
multi-file project, on the Mif2Go Export dialog check:

Make combined TOC/IX

The book containing the file you are converting must be open in FrameMaker. If you are
converting a book rather than a single file, this option is disabled, and the contents file is

3 CONVERTING A BOOK OR DOCUMENT CHOOSING FINAL CONVERSION OPTIONS

ALL RIGHTS RESERVED. 2013 MAY 18 89

always updated. See §8.2.8 Setting basic WinHelp options in the configuration file on
page 248.

Compile WinHelp
or HTML Help

If you are generating WinHelp or MS HTML Help and you specified a Help project file
for your conversion project, on the Mif2Go Export dialog you can check:

Compile Help

to make Mif2Go run the appropriate Help compiler after conversion. Usually it is safe to
use this option for MS HTML Help. However, if you are converting to WinHelp, use this
option only for small projects. Windows might run out of memory during compilation; or,
your graphics might not get included in the Help file; or, the Help compiler might run out
of memory. For most WinHelp projects you should leave this option unchecked, and
compile from Help Workshop instead. See §7.2.4 Compiling and distributing Help
systems on page 204.

Assemble and
archive

deliverables

If your configuration file includes options for assembling and archiving conversion
results, when you check:

Wrap and Ship

on the Mif2Go Export dialog, Mif2Go executes the specified commands and puts the
results in the specified directory(ies). See §35 Producing deliverable results on page 955.

CHOOSING FINAL CONVERSION OPTIONS MIF2GO USER’S GUIDE

90 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 91

4 Editing configuration files

This section explains how Mif2Go configuration files are created, and presents the rules
for adding and modifying configuration settings. Topics include:

§4.1 Working with Mif2Go configuration files on page 91
§4.2 Editing files with the Configuration Manager on page 91
§4.3 Understanding where project settings come from on page 102
§4.4 Understanding the rules for configuration settings on page 102
§4.5 Specifying file paths in configuration settings on page 105
§4.6 Using wildcards in configuration settings on page 106
§4.7 Commenting out configuration sections on page 107
§4.8 Ending a configuration file on page 107

See also:
§30 Working with templates on page 849

4.1 Working with Mif2Go configuration files
To add or change conversion settings after you set up a Mif2Go project, you must edit the
contents of one or more configuration files: text files with file extension .ini .

You will need two tools to work effectively with Mif2Go configuration files:

 • The Mif2Go Configuration Manager, to see and manipulate individual sections and
settings selected from all relevant configuration files and system templates that apply
to your project; see §4.2 Editing files with the Configuration Manager on page 91

 • A text editor (even Notepad) to inspect and optionally edit all sections and settings in
individual configuration files:
 – Make sure you use only ANSI, or UTF-8, encoding; do not use UTF-16 for

configuration files.
 – Do not use Word, or any other application that gets an exclusive-write lock on

files.

You might find it useful to have both tools open at once, so you can readily see in context,
in the text editor, any changes you make with the Configuration Manager.

4.2 Editing files with the Configuration Manager
The Mif2Go Configuration Manager gives you access to all the configuration settings and
macros that affect a conversion project, regardless of which configuration or template files
hold those values.

In this section:
§4.2.1 Understanding how to use the Configuration Manager on page 92
§4.2.2 Starting the Configuration Manager on page 93
§4.2.3 Setting Configuration Manager preferences on page 93
§4.2.4 Establishing a starting point on page 95
§4.2.5 Choosing a configuration category or file type on page 95
§4.2.6 Understanding variable vs. fixed names and keys on page 95
§4.2.7 Choosing the kind of change to make on page 96

EDITING FILES WITH THE CONFIGURATION MANAGER MIF2GO USER’S GUIDE

92 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§4.2.8 Selecting a configuration section on page 100
§4.2.9 Selecting a configuration setting on page 100
§4.2.10 Selecting a configuration file on page 101
§4.2.11 Specifying a final value on page 101

4.2.1 Understanding how to use the Configuration M anager

With the Configuration Manager you can “drill down” to see where a setting is located,
and also see the scope of each setting: does it affect only the current project, all your
projects, all outputs of one type, or perhaps only one document?

In this section:
§4.2.1.1 Drilling down to find a section or setting on page 92
§4.2.1.2 Heeding status and result messages on page 92
§4.2.1.3 Getting help with controls and configuration data on page 93
§4.2.1.4 Providing help for your own macro definitions on page 93
§4.2.1.5 Correcting configuration errors on page 93

4.2.1.1 Drilling down to find a section or setting

The process goes like this:

1. Select a project (thus identifying the project configuration file), or designate another
configuration file; all other files or templates referenced from that initial file via
[Templates] settings can be included in the current Configuration Manager session.

2. Decide what kinds of settings you want to work with: general configuration settings
macros, or content models.

3. Pick what you want to do: add, change, delete, restore, copy, move, or merge a setting
or a whole section.

4. Pick the section (and possibly setting) to work on. At this point you can see where the
item occurs in all the configuration files included in the current session; and you see
the scope of effect of each value.

5. Pick the file where you want the change to take place.

6. Apply your selections to make the change.

4.2.1.2 Heeding status and result messages

A message box at the bottom of each Configuration Manager page displays status
messages and reports the result of each action. If the Configuration Manager is unable to
proceed on a retry of the same action, you will need to exit and restart the program.

For example, if you try to use the Configuration Manager to make changes in a file that is
open in another application that locked the file, you will see this message:

File not updated, changes in .new

This means the Configuration Manager was unable to write your changes to that file, and
instead made a copy of the file but with extension .new , made the changes there, and
saved the .new file in the same directory as the original. If this happens, you must exit the
Configuration Manager and release the file from the application that locked it. Then restart
the Configuration Manager and retry the action.

4 EDITING CONFIGURATION FILES EDITING FILES WITH THE CONFIGURATION MANAGER

ALL RIGHTS RESERVED. MAY 18, 2013 93

4.2.1.3 Getting help with controls and configurati on data

On any Configuration Manager page, after making a selection or moving focus to a
control, you can click [?] in the lower right corner of the page to open a section of the
Mif2Go User’s Guide that explains that selection or control.

Note: Make sure that ugmif2go.chm , the HTML Help version of the Mif2Go User’s
Guide, is available in %OMSYSHOME%\m2g\usersguide; see §1.3.3.2 Finish
installing Mif2Go on page 57.

4.2.1.4 Providing help for your own macro definiti ons

The Configuration Manager displays one-line descriptions of all fixed-name configuration
sections, including all macro definitions supplied in the Mif2Go distribution.

For definitions of macros that you create and name, by default the Configuration Manager
displays:

No Help for this section

To provide descriptive help for a macro, prefix keyword help with special comment
delimiters ;= to keep it from being parsed as part of the macro. For example:

[AnotherURL]
;=help = The URL for the DTS project at SourceForge
http://sourceforge.net/projects/ditatestsuite

4.2.1.5 Correcting configuration errors

If any of the configuration files open for a given session contain settings that appear not to
be valid in their section, or sections that appear not to be valid in their file, the
Configuration Manager displays the names of those settings or sections in red. You will
need to delete the items, rename them, or move them to a valid location.

4.2.2 Starting the Configuration Manager

To access configuration values for your project, start the Mif2Go Configuration Manager,
either of the following ways:

 • On the Windows desktop: double-click the shortcut to
%OMSYSHOME%\common\bin\m2gcm.exe. (If you do not already have a desktop
shortcut to this program, see §1.3.3.2 Finish installing Mif2Go on page 57.) The
Configuration Manager opens to the Start page; see §4.2.4 Establishing a starting
point on page 95.

 • From the Choose Project dialog in FrameMaker; see §3.3 Creating a Mif2Go
conversion project on page 78.

Before you use the Configuration Manager to change the way your projects work,
consider visiting the Preferences page; see §4.2.3 Setting Configuration Manager
preferences on page 93.

4.2.3 Setting Configuration Manager preferences

You can change text colors in Configuration Manager displays, and choose to have all
your configuration edits annotated and timestamped in configuration files.

In this section:
§4.2.3.1 Specifying colors for different types of settings on page 94
§4.2.3.2 Annotating changes made to configuration files on page 94

EDITING FILES WITH THE CONFIGURATION MANAGER MIF2GO USER’S GUIDE

94 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

4.2.3.1 Specifying colors for different types of s ettings

These are the colors the Configuration Manager uses to display different kinds of items:

To change the color of an item, click the colored box next to the description. The Windows
color picker opens. Here you can go wild with any colors that float your boat; however,
avoid red. The Configuration Manager uses red to flag invalid section and setting names;
see§4.2.1.5 Correcting configuration errors on page 93.

Click OK to dismiss the color picker and establish the new color. The color change takes
effect immediately.

4.2.3.2 Annotating changes made to configuration f iles

To keep an annotated record of all the changes made to your files with the Configuration
Manager, check Include history comments .

To own up to these changes, under User name for history comments provide an
identifier such as your name or initials.

The Configuration Manager inserts a comment above each change, showing what was
changed and when. Deleted items are “commented out”, rather than removed. For
example:

[HTMLOptions]
Title=Mif2Go User's Guide
;2012-11-30 15:16:08: CS deleted duplicate Title
;=Title=Mif2Go User's Guide

Annotation takes effect immediately.

Available fixed-name sections Configuration sections that are valid in the category
of settings you are working with, but that do not
appear in any files for the current session.

Available fixed-key settings Configuration settings that are valid in the section you
are working with, but that do not appear in any
instances of that section in the files for the current
session.

Variable names and keys Configuration sections such as format and macro
definitions, and settings with keys such as format
names or object identifiers, whether or not they
appear in the files for the current session.

Internal defaults Values that Mif2Go uses for settings that do not
appear in any of the files for the current session.

System configuration files Values specified for settings in the system
configuration templates. You cannot change these
values; instead, you override them in the
corresponding local configuration templates. See
§30.5.1 Understanding what configuration files are
available on page 857.

4 EDITING CONFIGURATION FILES EDITING FILES WITH THE CONFIGURATION MANAGER

ALL RIGHTS RESERVED. MAY 18, 2013 95

4.2.4 Establishing a starting point

On the Configuration Manager Start page, select one of your conversion projects, or
choose a configuration template or file to start with. If you select a project, the project
configuration file for that project becomes the starting point for the current session.

Note: To get your project into the list of available projects on the Configuration
Manager Start page, choose Configure on the Choose Project dialog in
FrameMaker; see §3.3 Creating a Mif2Go conversion project on page 78.

The file designated as a “starting” configuration file determines which other configuration
files the Configuration Manager can include in your current session. Candidates include
all configuration files referenced through the chain of [Templates] settings (see §30.2
Referencing configuration files and templates on page 851) in the starting configuration
file, and in the files referenced by that file. Which subset of these files will be accessed
depends on which category of settings you intend to work with.

Once you have selected a starting point, click Apply file ; the Configuration Manager
switches to the Category page. See §4.2.5 Choosing a configuration category or file type
on page 95.

4.2.5 Choosing a configuration category or file ty pe

On the Configuration Manager Category page, choose a category of settings to work with,
or a type of configuration file. You are not locked into your choice; you can always return
to this page to switch to a different category or configuration type.

At the top of the Configuration Manager Category page you see the full path to the
starting configuration file for the current session; this is either the project configuration
file for a project you selected, or another file you specified on the Start page; see §4.2.4
Establishing a starting point on page 95.

Select type of file
or category of

settings

Under Select type of configuration file , you can highlight the kind of configuration file
or template you want to focus on. As an alternative, under Select category , click one of
the following categories:

If the category has a + in front of it, click the + to see a list of subcategories.

Section matches
and Setting

matches

To narrow down your selection, you can specify the name of a configuration section, the
name of a setting in that section, or both; and you can use wildcards in either name.If you
specify both a section name and a setting name, make sure that setting actually is valid in
the named section.

Apply selections Once you have selected a category or file type (and optionally specified section and/or
setting names), click Apply selections ; the Configuration Manager switches to the
Action page. See §4.2.7 Choosing the kind of change to make on page 96.

4.2.6 Understanding variable vs. fixed names and k eys

To specify certain actions for the Configuration Manager to perform, you must distinguish
between variable-name and fixed-name configuration sections, and between variable-key
and fixed-key settings.

Category Description Ref.
General Configuration Project configuration options and settings 5
Macros Definitions of Mif2Go macros 28

Content Models Configuration-style representation of a DTD 32

EDITING FILES WITH THE CONFIGURATION MANAGER MIF2GO USER’S GUIDE

96 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Variable-name vs.
fixed-name

sections

 • A variable-name configuration section can have any name at all; examples are
macro definitions, where the section name is the name of the macro.

 • A fixed-name configuration section has a name defined by Mif2Go ; examples
include Setup and HTMLOptions .

Variable-key vs.
fixed-key settings

 • Variable-key settings are characterized by keys that usually consist of an object
identifier (such as the settings in section GraphGroup).

 • Fixed-key settings must use a key from a set of Mif2Go -specified names for keys
that are valid in their section (such as the settings in section Setup). See §33.2.7
Understanding fixed-key vs. variable-key settings on page 923.

4.2.7 Choosing the kind of change to make

On the Configuration Manager Action page, select the kind of change you want to make
to a configuration. Some actions distinguish between variable-name and fixed-name
sections, or between variable-key and fixed-key settings; to determine which to select for
the section or setting you want to change, see §33.2.7 Understanding fixed-key vs.
variable-key settings on page 923.

Under Select action to be performed , click a button to act on a section or a setting. Once
you have selected an action, click Apply action . Provided there are no duplicate settings
or sections in any of the files for the current session, the Configuration Manager switches
to one of the following:

 • the Section page, to select a configuration section
 • the Setting page, if only one section applies
 • the.ini file page, if both section and setting are already determined.

Duplicate
sections or

settings

However, if the Configuration Manager finds duplicate settings in a section or duplicate
sections in a file, instead of proceeding with the action you specified, the Configuration
Manager changes your selection to one of the merge options; see §4.2.7.8 Merging
duplicate sections or settings on page 100. You can change it back again, but the
Configuration Manager will continue to nag you about duplicates until you resolve them.

In this section:
§4.2.7.1 Adding a new section or setting on page 96
§4.2.7.2 Editing a section or setting on page 97
§4.2.7.3 Deleting a section or setting on page 97
§4.2.7.4 Restoring a deleted section or setting on page 98
§4.2.7.5 Renaming a section or setting on page 98
§4.2.7.6 Moving a section or setting on page 99
§4.2.7.7 Copying a section or setting to another configuration file on page 99
§4.2.7.8 Merging duplicate sections or settings on page 100

4.2.7.1 Adding a new section or setting

You can add a new section to a selected configuration file, or a new setting to a section.
Under ADD new item on the Configuration Manager Action page, choose one of the
following:

Add new fixed-name
section to file

A fixed-name section is pretty much any configuration
section that is neither a format definition nor a macro
definition. You select from applicable section names on
the Section page.

4 EDITING CONFIGURATION FILES EDITING FILES WITH THE CONFIGURATION MANAGER

ALL RIGHTS RESERVED. MAY 18, 2013 97

If you try to add a section to a file that already has a section by the same name, the
Configuration Manager presents the existing section for you to edit instead; see §4.2.7.2
Editing a section or setting on page 97.

Note: You cannot add a setting to a named macro. Macro sections do not contain
settings. Instead, choose Edit full section content ; see §4.2.7.2 Editing a section
or setting on page 97.

Click Apply action ; the Configuration Manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

4.2.7.2 Editing a section or setting

You can edit an entire section, or a single setting, in a selected configuration file. Under
EDIT existing item on the Configuration Manager Action page, choose one of the
following:

If you edit the value for a setting, and you want a leading space before the value, you have
to add that space explicitly. A single space is stripped; multiple spaces are preserved. If
you change something else, spaces in the value are not altered, unlike spaces before the
equals sign, which are always removed.

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

4.2.7.3 Deleting a section or setting

You can delete an entire section, or a single setting, from a selected configuration file.
Under DELETE existing item on the Configuration Manager Action page, choose one of
the following:

Add new variable-name
section to file

To add a macro definition, select this option. You get to
specify the name on the Section page.

Add new setting to section If you try to add a setting to a file that does not contain the
section that the setting belongs in, the Configuration
Manager creates that section for you. Do not use for
macro definitions.

Add new variable-key
setting to one section

You get to choose the configuration section where you
want the new setting. Do not use for macro definitions.

Edit full section content Edit the content of a section, and also the section heading
and any comments; you can even change the name of the
section.

Edit one setting in section First you choose a section, then you pick the setting, then
you choose the file where you want to make changes. Do
not use for named macros; instead, edit the full section.

Delete section from one
file

When you choose to delete a section, the Configuration
Manager allows you to inspect and optionally edit the
content of the section before committing to its deletion.

EDITING FILES WITH THE CONFIGURATION MANAGER MIF2GO USER’S GUIDE

98 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When you delete a section or a setting, the Configuration Manager does not remove the
item from the file, but instead deactivates it by commenting it out. This allows you to
restore the item later. If you really want the item expunged leaving no trace, the
Configuration Manager allows you to edit it; at that point you can simply erase the item.

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

Note: The Configuration Manager will continue to show the deleted item until you
return to the Action or Category page and make another selection.

4.2.7.4 Restoring a deleted section or setting

You can restore an entire deleted section, or a single setting, in a selected configuration
file. Under RESTORE deleted item on the Configuration Manager Action page, choose
one of the following:

When you delete a section or a setting, the Configuration Manager does not remove the
item from the file, but instead deactivates it by commenting it out. When you choose to
restore an item, the Configuration Manager removes the commenting that deactivated the
item.

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

4.2.7.5 Renaming a section or setting

You can rename a variable-name section, or rename a single variable-key setting, in a
selected configuration file. Under RENAME existing item on the Configuration Manager
Action page, choose one of the following:

Delete setting from one
section

First you choose a section, then you pick the setting, then
you choose the file from which you want to delete the
setting. Do not use for named macros; macro sections do
not contain settings.

Restore deleted section in
one file

You can restore a section that has been marked for
deletion. The Configuration Manager will remove the
commenting that deactivated the section. To restore a
section that was physically removed from a file, instead
add it (§4.2.7.1 Adding a new section or setting on
page 96) or copy it from another file (§4.2.7.7 Copying a
section or setting to another configuration file on
page 99).

Restore deleted setting in
one section

First you choose a section, then you pick the setting, then
you choose the file where you want to restore the setting.

Rename variable-name
section in one file

Only variable-name sections, such as macro definitions,
can be renamed.

Rename variable-key
setting in one section

Only variable-key settings can be renamed, with keys that
represent format names or object group names. First you
choose a section, then you pick the setting, then you
choose the file where you want to change the name of the
setting.

4 EDITING CONFIGURATION FILES EDITING FILES WITH THE CONFIGURATION MANAGER

ALL RIGHTS RESERVED. MAY 18, 2013 99

If a file contains the wrong fixed-name section, you have to delete that section and add the
correct section. On deletion you might get away with simply changing the section name;
this could work only if the settings already present are valid under the new name.

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

4.2.7.6 Moving a section or setting

You can move sections within or between files, and you can move settings either within a
section or between instances of that section in different files. Under MOVE existing item
on the Configuration Manager Action page, choose one of the following:

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

4.2.7.7 Copying a section or setting to another co nfiguration file

You can copy sections between files, and you can copy settings between instances of the
same section in different files. Under COPY existing item on the Configuration Manager
Action page, choose one of the following:

Click Apply action ; the Configuration manager switches to the Section page, the Setting
page, or the .ini file page, depending on the action and the available sections or settings.

Move section within one
file

For the most part, the order of sections within a
configuration file does not affect functionality. However,
you might want to change the order of sections in a file for
readability.

Move section between files You might want to move a section “upstream” or
“downstream”; that is, make it apply more widely or less
widely.

Move setting within one
section

The only time the order of settings within a section affects
functionality is when you use wildcards in the names of
variable-key settings, such as in group names for graphics
or tables. This option lets you move a selected setting up
or down within the same section.

Move setting between files To change the scope of a setting, you can move it
“upstream” (to a configuration file with a wider scope) or
“downstream” (to a configuration file with a narrower
scope).

Copy section between files Insert a full copy of the designated section in another file,
even if that section does not exist in the “from” file.

Copy setting between files Copy one setting from a section you select to an instance
of the same section in another file. If the section is not
already present in the destination file, the Configuration
Manager creates it there before copying the setting.

EDITING FILES WITH THE CONFIGURATION MANAGER MIF2GO USER’S GUIDE

100 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

4.2.7.8 Merging duplicate sections or settings

The Configuration Manager detects duplicate sections in a file, and duplicate settings in a
section, and warns you about them on the Action page; inviting you to fix them by
selecting for you, under MERGE duplicate items , one of the following:

Click Apply action ; the Configuration manager switches to the .ini file page, where the
offending section name or setting value shows in the Value column for the highlighted file
that contains the duplicates.

4.2.8 Selecting a configuration section

At the top of the Configuration Manager Section page you see the full path to the starting
configuration file for the current session, and also the edit action you selected on the
Action page; see §4.2.7 Choosing the kind of change to make on page 96.

Under Select section for action you see listed all the sections (if any) that meet the
criteria you established on the Category page.

Click a section name to select it. Immediately below the selection box you see a
statement that characterizes the section.

If you had chosen to add a new variable-name section on the Action page, you could
specify its name after Name for new section . Or, if you had chosen to rename a variable-
name section on the Action page, you could specify its new name after Rename section .

Once you have selected a section, or possibly named a new section or renamed an existing
section, click Apply section ; what happens next depends on whether the action you chose
pertains to a section or to a setting:

4.2.9 Selecting a configuration setting

At the top of the Configuration Manager Setting page you see the full path to the starting
configuration file for the current session, and also the edit action you selected on the
Action page; see §4.2.7 Choosing the kind of change to make on page 96. Next you see
the name of the section you selected, and a note of its purpose.

Merge duplicate sections
in one file

The Configuration Manager moves the second instance of
the duplicate section to a position immediately after the
first, and comments out the second section heading. The
effect is to include all settings from both sections in the
first section, possibly resulting in duplicate settings. You
get a chance to edit the merged section.

Merge duplicate settings in
one section

The Configuration manager edits the first of the
duplicated settings to show the value you select on the
Finish page, then comments out the second setting, even
if the second was the one that had the correct value. This
is because only the first of duplicate settings in a section
has any effect.

Section The Configuration Manager switches to the .ini File page; see §4.2.10
Selecting a configuration file on page 101

Setting The Configuration Manager switches to the Setting page; see §4.2.9
Selecting a configuration setting on page 100.

4 EDITING CONFIGURATION FILES EDITING FILES WITH THE CONFIGURATION MANAGER

ALL RIGHTS RESERVED. MAY 18, 2013 101

Under Select setting for action you see listed all the settings (if any) that meet the
criteria you established on the Category page and that are valid (or already exist) in the
section you selected.

If you chose to add a fixed-key setting, those listed in black are already in use in at least
one configuration file for the current session, while those listed in an alternate color (see
§4.2.3 Setting Configuration Manager preferences on page 93) are available for use.

If you chose to add a variable-key setting, you can specify Name for new setting .

If you chose to edit a setting, only those currently in use are listed.

If you chose to rename a variable-key setting, you can Rename setting .

Once you have selected a setting or entered a new setting name, click Apply setting ; the
Configuration manager switches to the .ini File page, where you choose the file in which
you want to make the change; see §4.2.10 Selecting a configuration file on page 101.

4.2.10 Selecting a configuration file

At the top of the Configuration Manager .ini File page you see the full path to the starting
configuration file for the current session, and also the action you selected on the Action
page; see §4.2.7 Choosing the kind of change to make on page 96. Next you see the name
of the section you selected, and a note of its purpose; then, if you are changing a setting,
the name and value of the setting you selected, with a note of its purpose.

Under Select .ini to change for this action you see listed all the configuration files and
templates that apply to the current session, with the value of the setting in each file (or the
name of the section, if present in the file), along with a statement of the scope of effect of
the value. If the setting in question has an internal default value (see §4.2.3 Setting
Configuration Manager preferences on page 93), that value is listed at the top.

The configuration files for which the category and section you selected are valid, are listed
from greatest scope of effect (at top) to least scope (at bottom). A setting in a particular
configuration file overrides the value of the same setting in all configuration files listed
above, and is overridden by the value in any configuration files listed below.

Once you have selected the file where you want to make the change to the setting or
section, click Apply ini file ; the Configuration manager switches to the Finish page,
where you finally get to execute the action you chose; see §4.2.11 Specifying a final value
on page 101.

4.2.11 Specifying a final value

At the top of the Configuration Manager Finish page you see the full path to the starting
configuration file for the current session, and also the action you selected on the Action
page; see §4.2.7 Choosing the kind of change to make on page 96. Next you see the name
of the section you selected, and a note of its purpose; then, if you are changing a setting,
the name and value of the setting you selected, with a note of its purpose. Next you see the
name of the configuration file you selected, then the “current value” of the setting in that
file, and the purpose of the value.

The rest of the Finish page is devoted to giving you values to select from or settings or
sections to edit, depending on the action.

If you edit the value for a setting, and you want a leading space before the value, you have
to add that space explicitly. A single space is stripped; multiple spaces are preserved. If

UNDERSTANDING WHERE PROJECT SETTINGS COME FROM MIF2GO USER’S GUIDE

102 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

you change something else, spaces in the value are not altered, unlike spaces before the
equals sign, which are always removed.

Once you have completed your edits and/or selections, click Finish action ; the
Configuration Manager executes your changes and then switches back to the Action page;
see §4.2.7 Choosing the kind of change to make on page 96. There you can choose another
action, or you can go back to the Start or Category page to establish a different universe
of discourse.

To see what actually happened, either inspect the file you selected in a text editor, or
choose an Edit action on the Action page, and select the relevant section and file.

4.3 Understanding where project settings come from
When you set up a new conversion project, the Mif2Go plug-in copies a new output-type-
specific starting configuration file into your project directory. This file is populated with
the settings you specify in the Set Up dialog (see §3.4 Choosing project set-up options on
page 79). Mif2Go gets this file from a repository of configuration templates located in
your Mif2Go distribution; see §30.1.1 Understanding how templates are organized on
page 849. Each configuration template already contains values for basic settings specific
to the output type for your project.

Default
configuration

values

Configuration values presented in the Set Up dialog (see §3.4 Choosing project set-up
options on page 79) are not always the same as the internal default values for
configuration settings:

Often, the internal default value produces the effect you would have experienced before a
feature was added to Mif2Go ; this is to maintain backward compatibility with existing
configuration files. The effect is almost always equivalent to turning the feature “Off”.
However, if the feature corrects a defect, the corresponding configuration value might
default to “On”, with the setting provided to support users who had already put a
workaround in place and wanted its functionality left alone.

Referenced
configuration

values

Your project configuration file includes references to:

 • an optional document-specific configuration file created when you set up this or a
previous project (see §3.5 Understanding how Mif2Go sets up a project on page 82)

 • a required chain of configuration templates located in your Mif2Go distribution.

Your project incorporates by reference any settings those files contain, unless the settings
are overridden in your project configuration file. If you intend to work with many
conversion projects, you might want to inspect and possibly modify the local editions of
some of these templates. See §30.1 Working with configuration templates on page 849.

4.4 Understanding the rules for configuration sett ings
Every Mif2Go configuration file must begin with at least one line of header text, even if it
is an empty line. The content of the line does not matter to Mif2Go , as long as it does not
duplicate the name of a configuration section.

Set-up value: The value people usually want (or expect) for a new project for a
given output type.

Internal default: The value Mif2Go applies when the setting is missing entirely
from the configuration files for your project.

4 EDITING CONFIGURATION FILES UNDERSTANDING THE RULES FOR CONFIGURATION SETTINGS

ALL RIGHTS RESERVED. MAY 18, 2013 103

After the header text, each configuration file contains a series of sections. Each section
consists of a section name in square brackets, followed by a list of settings of the form
Key=Value or Key=Command, each on a separate line; and possibly by one or more
comments:

[Section]
Key = Value
Key = Value1 Value2 Value3 ...
Key = Command
; Comment

Section names may not contain spaces or punctuation. The opening bracket for each
section name must be in column 1.

Keep in mind these Microsoft rules for configuration files:

 • Section names must be unique; if there are duplicate section names in a
configuration file, only the first instance is processed.

 • Key names must be unique in a section; if you repeat a key name in the same
section, only the first instance is processed.

And these Mif2Go rules:

 • The first line in the file must be a comment; Mif2Go requires a header line.
 • No more than one space after the equals sign; otherwise, bad things can happen:

 – If the value is Boolean (Yes/No), Mif2Go treats it as No, even if you typed Yes.
 – If the value is a string, all spaces after the first are included in the string.

Consider all of the following:
Section names must be unique
Key names must be unique in a section
Key names must be valid ASCII
Key names are not case sensitive, by default
Fixed-key sections differ from variable-key sections
Order of settings can be important for variable keys
Formats must be in catalogs
Multiple values are separated by spaces
Spaces and tabs: some retained, some removed
Comments start with a semicolon
Boolean values can be expressed various ways

Section names
must be unique

Section names must be unique. If you use the same section name twice in your
configuration file, only the first section is processed. Otherwise, order of sections does not
matter, except for macro sections (see §28.1.1.2 Understanding where you can define
named macros on page 788).

Key names must
be unique in a

section

Each Key= setting in a given section must be the only setting for that key in that section. A
common error is to add a setting to a section that already has a setting for that key. For
example, any repeated lines assigning additional values to the same format name are
ignored; only the first line is processed. Instead, place any additional values on the same
line as the first, separated by spaces.

Key names must
be valid ASCII

All ASCII characters are valid in key names, with the following exceptions:

 • “?” and “* ” are treated as wildcards, unless you turn off wildcard usage; see §5.1.7
Specifying how to treat cases, spaces, and wildcards on page 113. (However, when
you override a configuration setting with a configuration variable, Mif2Go does not
recognize wildcards in the key name; see §33.2.4 Assigning values to configuration
variables on page 922.)

UNDERSTANDING THE RULES FOR CONFIGURATION SETTINGS MIF2GO USER’S GUIDE

104 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • “ ; ” or “ [” must be prefixed with escape character “\ ” if you want to start a key name
with either of these characters.

Spaces are nominally allowed in key names, but the spaces are ignored unless you turn off
[Options]SpacelessMatch ; see §5.1.7 Specifying how to treat cases, spaces, and
wildcards on page 113. Do not use spaces if you can possibly avoid them.

Key names are
not case

sensitive, by
default

Comparisons of key names are caseless, unless you turn on case sensitivity; see §5.1.7
Specifying how to treat cases, spaces, and wildcards on page 113. (However, when you
override a configuration setting with a configuration variable, the key name is case
sensitive; see §33.2.4 Assigning values to configuration variables on page 922.)

Fixed-key
sections differ

from variable-key
sections

Configuration files contain two kinds of sections: those with fixed keys (key names
predefined by Mif2Go) and those with variable keys. For example, sections such as
[HTMLOptions] and [WordOptions] are for settings with fixed key names; sections
such as [HTMLParaStyles] and [HelpStyles] are for settings with key names you
specify, typically names of FrameMaker formats.

Order of settings
can be important
for variable keys

In a fixed-key section, the order of settings does not matter. Order is important only in
sections where you can use variable keys, and usually only if you use wildcards in key
names (see §4.6 Using wildcards in configuration settings on page 106). However, there
are exceptions; for example, see §29.4.2 Observing restrictions on redefining marker
behavior on page 840.

Formats must be
in catalogs

Often the variable-key names you specify are names of formats in your FrameMaker
document, such as paragraph, character, or table formats. Make sure each format you use
for a key name actually appears in the appropriate catalog in FrameMaker; Mif2Go cannot
process formats that are not in a FrameMaker catalog.

Multiple values
are separated by

spaces

Some variable-key sections allow multiple values for each key: sections such as
[HTMLParaStyles] , [WordStyles] , and [HelpStyles] , where you can assign
multiple properties to each FrameMaker format. Use spaces between values.

Spaces and tabs:
some retained,
some removed

Mif2Go treats spaces and tabs in configuration settings as follows:

 • Spaces and tabs before the Key and before the equals sign are ignored, unless
[Options]SpacelessMatch=No , in which case those before the Key are not
ignored (see §5.1.7 Specifying how to treat cases, spaces, and wildcards on page 113).

 • If the equals sign is followed by one or more spaces or tabs, the first such space or tab
is removed, and the rest are treated as part of the value. Put no more than one space
after the equals sign. If you want to align settings vertically for readability, put extra
spaces before the equals sign, not after.

 • All spaces and tabs that follow a value are retained in the output.
 • Do not try to indent settings in your project configuration file. When Mif2Go updates

this file, Windows rewrites the file, and deletes all leading spaces in the settings. You
can use indentation in macro definitions in other configuration files and macro
libraries.

Comments start
with a semicolon

Lines that start with a semicolon “; ” are comments. For a line to be treated as a comment,
the semicolon must be the first character on the line (no leading blanks or tabs). Mif2Go
pays no attention to comment lines; you can use them to add your own notes. However, do
not try to “comment out” a section by inserting a “; ” in front of the section name; all
settings that follow such a line, up to the next line that starts with a “[”, would be added to
the settings for the preceding section. To comment out a section, see §4.7 Commenting out
configuration sections on page 107.

Boolean values
can be expressed

various ways

For an On/Off value, Mif2Go recognizes “1” (numeral one), “Yes”, and “True” as On, and
“0” (zero), “No”, and “False” as Off.

4 EDITING CONFIGURATION FILES SPECIFYING FILE PATHS IN CONFIGURATION SETTINGS

ALL RIGHTS RESERVED. MAY 18, 2013 105

4.5 Specifying file paths in configuration setting s
Path and file names should conform to the requirements listed in §1.1.2 File, directory, and
path names on page 51, otherwise you risk run-time errors. Additional considerations:

Path separator can be “\ ” or “ / ” (except sometimes!)
Paths that contain spaces must be quoted
Most relative paths relate to the project directory
Paths to configuration templates should be absolute
Some relative paths relate to the configuration file location
Paths to other applications must be absolute.

Path separator
can be “\ ” or “/ ”

(except
sometimes!)

When you specify a file path in a configuration setting, you can use either a backslash “\ ”
or a forward slash “/ ” as a separator character. A forward slash is preferred, except in the
following cases, where you must use a backslash:.

 • Windows system commands; see §34.4 Executing operating-system commands on
page 937

 • Windows command parameters; for example, see §35.11 Archiving deliverables on
page 973.

In FrameMaker dialogs, the backslash has a special meaning that trashes paths beyond
recovery. In Windows API calls, forward slashes work fine, because the original Windows
programmers compiled Windows on VAX/VMS machines.

Paths that contain
spaces must be

quoted

If a path contains any spaces, enclose the entire path in quotes. See §1.1.2 File, directory,
and path names on page 51 and §3.1 Checking set-up and conversion requirements on
page 77.

Most relative
paths relate to the

project directory

Most path settings (other than those listed in Table 4-1 on page 106) can be either relative
or absolute; however, file paths you specify via the FrameMaker plug-in; that is, in a
FrameMaker dialog box (as opposed to a setting in a configuration file); must be absolute.
Relative file paths can make your conversion project portable. Many support issues arise
when a project is moved, after which some buried links stop working.

When you specify a relative file path in a configuration setting, the path is relative to the
project directory, with the following exceptions:

 • settings listed in Table 4-1 on page 106
 • [Automation]ShipPath , which is relative to the wrap directory; see §35.3

Understanding path values for deliverables on page 957.

Paths to
configuration

templates should
be absolute

Settings that reference configuration templates, or other files in the Mif2Go distribution
directory structure, should use absolute paths that begin with environment variable
%OMSYSHOME%; for example:

Configs = %omsyshome%\m2g\local\config\local_m2htm_ config.ini

See §1.3.1 Set up a framework for Omni Systems applications on page 54.

Some relative
paths relate to the

configuration file
location

If you specify a relative path in any of the settings listed in Table 4-1 on page 106, the path
is considered to be relative to the location of the configuration file in which the setting
occurs. This means that if you move such a setting from one configuration file to another
at a different level in your project directory structure, the path will no longer be correct.

If you want project portability, the price is using a fixed directory structure, where both the
_config directory (see §30.3.3 Deciding where to keep document-specific configuration
files on page 854) and the project directory are immediately below the source directory. If
you have files all over the place, portability becomes impossible.

USING WILDCARDS IN CONFIGURATION SETTINGS MIF2GO USER’S GUIDE

106 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Paths to other
applications must

be absolute

File paths to non-Mif2Go executables must be absolute. However, a better way would be
to make sure those executables are on your system PATH, so your conversion project is
portable.

4.6 Using wildcards in configuration settings
In a variable-key setting, you can apply the same value to multiple keys by substituting a
wildcard “* ” or “?” for all or part of the key name, as follows:

 • A question mark can appear anywhere in a key name, substituting for any one
character; multiple question marks substitute for the same number of characters.

 • An asterisk can appear only at the end of a key name, substituting for one or more
characters.

You can use wildcards whenever the key is a format name or an identifier, provided you
have not turned off wildcard usage (see §5.1.7 Specifying how to treat cases, spaces, and
wildcards on page 113). For example, to make all FrameMaker paragraphs whose format
names start with Heading appear bold and centered in HTML output:

[HTMLParaStyles]
Heading*=Bold Center

You can exclude one or more key names from a group by listing the exceptions first:
[HTMLParaStyles]
Heading4=
Heading3=Bold Left
Heading*=Bold Center
z????title=Bold Right
*=Left

In this example:

 • No HTML style properties would apply to Heading4 paragraphs.
 • Heading3 paragraphs would appear left-aligned and bold in HTML.
 • All remaining Heading* paragraphs would be centered and bold.
 • All paragraphs whose format names start with z, followed by any four characters, and

end with title, would be right-aligned and bold.
 • Paragraphs in all other formats would be left-aligned.

Table 4-1: Absolute vs. relative file-path settings

Section Setting Absolute or relative file path? Ref.

[Templates] All settings Paths to templates in the Mif2Go
distribution should be absolute and start
with %OMSYSHOME%

30.1

Paths to your own template files should be
relative to the location of the configuration
file in which the setting occurs

30.6

[Setup] IDFileName Absolute path recommended 5.3.4

PrjFileName Absolute path recommended C.3

CheckLinkLog Absolute path recommended 5.1.5

ConfigTemplate deprecated 30.2

TemplateFileName Absolute path recommended

[Logging] LogFileName Keep setting in project configuration file 5.2

HistoryFileName Keep setting in project configuration file 5.2

[OmniHelpOptions] ProjectTemplate Keep setting in project configuration file 10.5.7

4 EDITING CONFIGURATION FILES COMMENTING OUT CONFIGURATION SECTIONS

ALL RIGHTS RESERVED. MAY 18, 2013 107

Mif2Go applies the first entry in a section that matches for each key name, so always put
the exceptions before the general case.

4.7 Commenting out configuration sections
If you need to comment out an entire section in your project configuration file, perhaps to
test an alternative approach, you can place a semicolon at the beginning of each setting in
that section. An easier way is to place a semicolon after the opening bracket of the section
head; for example:

[;Templates]

This has the effect of giving that section a name that has no meaning to Mif2Go , so the
settings for that section will be ignored.

Note: If you place the semicolon before the opening bracket, the settings will become
part of the previous configuration section, rarely what you want.

4.8 Ending a configuration file
All configuration files and templates in your Mif2Go distribution end with a dummy
section that signifies no more settings:

[End]

If you create additional configuration files or templates, end them with this section.
(No illustrations)

ENDING A CONFIGURATION FILE MIF2GO USER’S GUIDE

108 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 109

5 Setting basic conversion options

This section explains how to use basic Mif2Go configuration settings to convert
documents from FrameMaker to other representations. Topics include:

§5.1 Specifying operating settings on page 109
§5.2 Logging conversion events on page 115
§5.3 Identifying files and objects on page 117
§5.4 Applying FrameMaker conditions and variables on page 122
§5.5 Converting FrameMaker-generated files on page 124
§5.6 Generating/updating before converting on page 126
§5.7 Processing graphics on page 126
§5.8 Converting structured documents on page 135
§5.9 Converting equations on page 136
§5.10 Creating hotspots for hypertext links on page 138
§5.11 Repurposing FrameMaker markers on page 139

Print RTF For additional settings specific to print RTF, see:
§6 Converting to print RTF on page 141

Help systems For additional settings specific to on-line Help, see:
§7 Producing on-line Help on page 199 through
§12 Generating Eclipse Help on page 403

HTML, XML For additional settings specific to HTML and XML, see:
§13 Converting to HTML/XHTML on page 423 through
§27 Marking HTML table cells for WAI on page 775

Graphics For additional settings specific to graphics conversion, see:
§31 Working with graphics on page 869

5.1 Specifying operating settings
In this section:

§5.1.1 Checking output type and file extension on page 110
§5.1.2 Excluding files from book conversions on page 110
§5.1.3 Reusing or discarding MIF files on page 111
§5.1.4 Reusing or discarding ASCII DCL files on page 111
§5.1.5 Checking for broken links in HTML or XML output on page 112
§5.1.6 Skipping the Mif2Go Export and Finished dialogs on page 112
§5.1.7 Specifying how to treat cases, spaces, and wildcards on page 113
§5.1.8 Reordering text flows on page 113
§5.1.9 Converting system variables to text on page 114
§5.1.10 Preserving Word-generated cross-reference markers on page 114

See also:
§4.4 Understanding the rules for configuration settings on page 102

SPECIFYING OPERATING SETTINGS MIF2GO USER’S GUIDE

110 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

5.1.1 Checking output type and file extension

When you set up a conversion project (see §3.3 Creating a Mif2Go conversion project on
page 78), you use the Mif2Go Choose Project dialog to specify the output type. Mif2Go
produces a new project configuration file for you that contains settings for the output type
you selected.

Table 5-1 shows the name of the project configuration file for each output type, and the
preset extension for output files. You can change the setting for the output file extension,
for all output types except DITA and WinHelp.

For example, to specify a different file extension for HTML output:
[Setup]
; FileSuffix = suffix used for output file extensio n and in
; cross references
FileSuffix = .html

The leading dot on the extension is optional.

You can also use the Export dialog to change the file extension, just before running a
conversion (see §3.7 Choosing final conversion options on page 83). If you do so, Mif2Go
writes the new extension to the configuration file.

5.1.2 Excluding files from book conversions

To exclude FrameMaker-generated files, do one of the following:

 • Uncheck the appropriate options at set-up time; see §3.4.4 Including FrameMaker-
generated files on page 81.

 • Use a configuration setting; see §5.5 Converting FrameMaker-generated files on
page 124.

We suggest you exclude conditioned-out chapters entirely, instead of trying to hide them
with conversion settings, for the following reasons:

 • If temporary files from a previous conversion in which the text was not conditioned
out are still present in the project directory, those files will be included when the

Table 5-1 Output types, file extensions, project configuration files

Output
category Output type

Preset output
file extension

Project
configuration file Ref.

HTML-based
Help

Eclipse Help .htm _m2eclipse.ini 12

Microsoft HTML Help .htm _m2htmlhelp.ini 9

JavaHelp .htm _m2javahelp.ini 11

OmniHelp .htm _m2omnihelp.ini 10

Oracle Help for Java .htm _m2oraclehelp.ini 11

HTML Standard HTML .htm _m2html.ini 13

XHTML .xhtml _m2xhtml.ini 13

XML DITA XML .dita (not settable) _m2dita.ini 15

Docbook XML .ent _m2docbook.ini 17

Generic XML .xml _m2xml.ini 14

RTF WinHelp .rtf (not settable) _m2winhelp.ini 8

Print RTF .rtf _m2rtf.ini 6

Intermediate ASCII DCL .dcl _m2dcl.ini 38

FrameMaker MIF .mif _m2mif.ini 38

5 SETTING BASIC CONVERSION OPTIONS SPECIFYING OPERATING SETTINGS

ALL RIGHTS RESERVED. MAY 18, 2013 111

output is assembled, possibly producing unwanted results such as TOC entries for the
missing chapter. Since the chapter does not produce any output, the old temporary
files are not overwritten.

 • Processing an essentially empty file wastes time.

5.1.3 Reusing or discarding MIF files

FrameMaker keeps document files in “Maker” format, typically with an .fm extension.
This binary file format is a closely held trade secret of Adobe Systems Incorporated.
FrameMaker files must be saved as MIF (Maker Interchange Format) before Mif2Go can
read them. Mif2Go converts the MIF files to binary DCL (Document Coding Language)
files, and finally from DCL to the output type you specify (see §1.5 How Mif2Go works
on page 62).

Mif2Go ordinarily saves your FrameMaker files as MIF immediately before each
conversion. However, if you have not altered a FrameMaker file since the last time it was
saved as MIF, you can choose to let Mif2Go use the existing MIF file. You can specify
this option in the Mif2Go Export dialog, which in turn updates the configuration file. Or,
you can change this setting directly in the project configuration file:

[Setup]
; UseExistingMIF = No (default) or Yes (use if it e xists)
UseExistingMIF = Yes

You can have Mif2Go delete old MIF files from the project directory just before starting a
new conversion. To delete MIF files from the project directory before conversion:

[Automation]
; DeleteExistingMIF = No (default) or Yes (delete * .mif from the
: project directory before the conversion).
DeleteExistingMIF = Yes

When DeleteExistingMIF=Yes , Mif2Go deletes old MIF files from the project
directory before conversion, provided both of the following are true:

 • UseExistingMIF is not set, or is set to No

 • Use existing MIF file if any is not checked on the Export dialog (see §3.7.3 Choosing
input source and disposition on page 85).

5.1.4 Reusing or discarding ASCII DCL files

You can use Mif2Go to convert the files in your document to ASCII DCL, by choosing
ASCII DCL only in the Mif2Go plug-in Choose Project dialog (see §3.3 Creating a
Mif2Go conversion project on page 78). Because Mif2Go processes graphics as part of
the conversion from MIF to DCL, and writes out graphics files in addition to DCL files,
you can use this choice to export graphics from your document so you can alter or replace
them before producing final output. Next time you run the same conversion, you can direct
Mif2Go to use those DCL files (and your altered or replaced graphics files) instead of
creating them anew:

[Setup]
; UseExistingDCL = No (default, make .dcb)
; or Yes (use .dcl file if it exists)
UseExistingDCL = Yes

When you specify UseExistingDCL=Yes , instead of creating binary DCL files
(extension .dcb) and then deleting them at the end of the conversion process, Mif2Go
uses the existing ASCII DCL files (extension .dcl), and leaves them in place.

SPECIFYING OPERATING SETTINGS MIF2GO USER’S GUIDE

112 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When you are finished with a set of DCL files, to clear them out before you begin a new
conversion from your document:

[Setup]
; DeleteExistingDCL = No (default) or Yes (delete * .dcl from the
; project directory before conversion if UseExistin gDCL is not set.
DeleteExistingDCL = Yes

When DeleteExistingDCL=Yes , Mif2Go deletes both .dcl and .dcb files from your
project directory before conversion.

5.1.5 Checking for broken links in HTML or XML out put

When you convert a FrameMaker book to HTML or XML, Mif2Go can check all the
interfile cross-reference and hypertext links in your output, and provide a FrameMaker
“Book Error Log” that lists any broken links.

Note: Although this feature is not available for RTF, MIF, or DCL conversions, you can
still check links for those outputs by running an HTML conversion on the same
book, with the same conditions shown. The same link errors should be found.

To check for broken links:
[Setup]
; CheckLinks = No (default) or Yes (check links aft er running a book)
CheckLinks = Yes
; CheckLinkLog = D:\path\to\LinkLog.fm to make copy of Book Error Log
CheckLinkLog = path\to\MyBadLinks.fm
; LinkLogAlways = Yes (default) or No (do not displ ay Book Error Log
; if no broken links are found)
LinkLogAlways = Yes

When CheckLinks=Yes , after converting a book, Mif2Go writes a notice to the
FrameMaker Console window showing how many broken links were found. If Mif2Go
finds at least one broken link (or if LinkLogAlways=Yes), Mif2Go displays a Book
Error Log in FrameMaker, and closes only those FrameMaker files that have no link
errors. The Book Error Log contains active links to the broken links in the open files.

To save the Book Error Log, assign an absolute path and file name to CheckLinkLog .
Mif2Go copies the Book Error Log to the specified file for safekeeping; the Book Error
Log itself disappears when you exit FrameMaker.

If Mif2Go finds more than 1,024 link errors, only the first 100 are logged. This indicates a
massive problem, for which additional information from the other 924+ errors would not
help.

In a few cases you might find that an interfile link reported by Mif2Go as broken actually
works just fine in FrameMaker. This can happen when macros are involved, or can be
caused by latency issues in Windows shell operations. The remedy is to re-convert the
chapter containing the link, without deleting any .ref files.

5.1.6 Skipping the Mif2Go Export and Finished dialogs

Normally you will want to have both the Choose Project dialog and the Export dialog
come up when you click File > Save Using Mif2Go... so you can change graphics or MIF
usage settings before each conversion. To proceed with conversion as soon as you select
the right project, you can turn off the Export dialog.

To skip the Export dialog:

5 SETTING BASIC CONVERSION OPTIONS SPECIFYING OPERATING SETTINGS

ALL RIGHTS RESERVED. MAY 18, 2013 113

[Setup]
; UseInitDialog = Yes (default, display before conv ersion) or No
UseInitDialog = No

You can also eliminate the Finished dialog that announces completion of each Mif2Go
conversion, and that requires you to click OK before you can do anything else in
FrameMaker.

To skip the Finished dialog:
[Setup]
; UseDoneDialog = Yes (default, display after conve rsion) or No
UseDoneDialog = No

When UseDoneDialog=No , the Status bar at the bottom of the FrameMaker book or
document file window shows the message when the conversion is complete:

Mif2Go project finished

5.1.7 Specifying how to treat cases, spaces, and w ildcards

You can choose how Mif2Go interprets FrameMaker paragraph, character, and table
format names, to match them to settings in the configuration file:

[Options]
; CaselessMatch = Yes (default, ignore upper/lower differences) or No
CaselessMatch = Yes
; SpacelessMatch = Yes (default, ignore embedded sp aces) or No
SpacelessMatch = Yes
; WildcardMatch = Yes (default, allow ? and * in se ttings) or No
WildcardMatch = Yes

The default settings help eliminate hard-to-spot typing errors. However, you might have to
change one or more of these settings if any format names in your document:

 • differ only in case (such as Body and body): set CaselessMatch=No .
 • differ only by spaces (such as Lastbullet and Last bullet): set SpacelessMatch=No .
 • contain asterisks or question marks: set WildcardMatch=No . See §4.6 Using

wildcards in configuration settings on page 106.

5.1.8 Reordering text flows

When your FrameMaker document contains more than one tagged text flow, Mif2Go
normally writes the flows out in the order they are encountered. Mif2Go ignores empty
flows and flows that appear only on Master or Reference pages. However, you can
interleave flows instead, or omit certain flows, perhaps because they contain text used
only for cross references.

Note: Although you can skip flows and merge flows, you cannot change the order of the
text flows.

To change the treatment of selected text flows (for example):
[TextFlows]
; flowtags to Skip or to treat as Normal (to keep i n same section)
z = Skip
A = Normal
B = Normal

When flowtag=Skip , the text flow is omitted from output.

When flowtag=Normal , Mif2Go writes out content in the order in which text appears,
regardless of flow.

SPECIFYING OPERATING SETTINGS MIF2GO USER’S GUIDE

114 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When you do not specify either Skip or Normal for some flows, Mif2Go writes them out
in the order encountered.

In this example, Mif2Go would “merge” flows A and B, skip flow z entirely, and put any
other flows into the output separately.

5.1.9 Converting system variables to text

The values of FrameMaker system variables, such as date and time, are not stored in your
FrameMaker files; instead, they are read from the system when you load a document into
FrameMaker. Therefore, Mif2Go does not find values for system variables in the MIF
files. (However, user-defined variables are present in a usable form in MIF).

System variables
on master pages

For print RTF output, Mif2Go converts the values of system variables that appear on
master pages to their Word field equivalents. Mif2Go does not convert master-page
content for WinHelp or HTML output.

System variables
on body pages

To get system date/time and file-name variables that appear on body pages into your
output, Mif2Go must convert these variables to text. Specify the following setting:

[Setup]
; ConvertVariables = No (default) or Yes (convert t o plain text)
ConvertVariables = Yes

Apply this setting conservatively. It is best not to convert system variables to text in all
files, because the process requires slow FDK operations that can have unpleasant side
effects. The problems are in the FDK, not in Mif2Go , so there is little Omni Systems can
do to fix them. However, applying ConvertVariables=Yes to one or a few short
files—for example, to the title page of a FrameMaker book—should not hurt. See §33.1
Using a different configuration for selected files on page 919.

Note: For system variables to show up in the MIF files, Mif2Go must read your original
FrameMaker files. If you specify Use existing MIF on the Export dialog, or in
your project configuration file, system variables are not converted.

See also:
§6.6 Converting system variables to text for RTF on page 157
§13.6.2 Converting system variables to text for HTML on page 437

5.1.10 Preserving Word-generated cross-reference m arkers

Content imported from Word via FrameMaker native Word import arrives in FrameMaker
cluttered with hundreds of extra cross-reference markers, all starting with _Toc followed
by a long number. This is an artifact of the method Word uses to create a table of contents.
Your document might contain many of these markers, because Word uses them only once,
and makes a new set every time it generates a table of contents. If you leave these markers
in your FrameMaker document, they appear in the Mif2Go output as named destinations,
such as a # footnote in WinHelp, or in HTML.

Do not try to use these markers. By default, Mif2Go ignores them.

However, if the markers have been used in your FrameMaker document, you can instruct
Mif2Go to honor them, with the following option:

[HelpOptions] or [HTMLOptions]
; RemoveWordTocMarkers = Yes (default, ignore marke rs starting _Toc)
; or No
RemoveWordTocMarkers = No

5 SETTING BASIC CONVERSION OPTIONS LOGGING CONVERSION EVENTS

ALL RIGHTS RESERVED. MAY 18, 2013 115

Cross references to these markers will then work in Mif2Go output; but you will also have
many (perhaps thousands) of extra pointless anchors in HTML or footnotes in WinHelp.
They are harmless, but they do increase file size.

In future you can avoid this problem when you import files from Word. Bring them into
FrameMaker as plain text, using Copy in Word and Paste Specia l in FrameMaker. Then
re-tag per your FrameMaker template. This method takes longer, but it eliminates
numerous issues you would otherwise have forever as the result of the Word import.

5.2 Logging conversion events
Whenever you convert a document, by default Mif2Go records conversion events in a
plain ASCII log file located in the project directory. This event log lists files opened and
any error messages or warnings that are produced during conversion. At the start of the
next conversion run, Mif2Go appends the finished event log to a history file before
starting a new log.

To disable logging, or to change the name or location of the log file or history file:
[Logging]
; UseLog = Yes (default, log as specified in this s ection) or No
UseLog = No
; LogFileName = name with path (absolute, or relati ve to project dir)
LogFileName = _m2g_log.txt
; EditorFileName = text editor executable to displa y log if errors
EditorFileName = notepad.exe
; ShowLog = Yes (default, display log in text edito r if errors or
; warnings) or No
ShowLog = Yes
; HistoryFileName = name with path of cumulative lo g history, to which
; the contents of LogFileName are appended.
HistoryFileName = _m2g_history.txt

The default name of the log file is _m2g_log.txt , and the default name of the history file
is _m2g_history.txt . Unless you specify a different path for LogFileName or for
HistoryFileName , Mif2Go writes the log file and history file to the project directory. If
you specify a relative path, that path is relative to the project directory.

At the start of a conversion Mif2Go appends the contents of any existing log file (named
by LogFileName) to the history file named by HistoryFileName , then deletes the
contents of the old log file.Because the purpose of the log is to make diagnosing problems
easier, Mif2Go appends log entries to the history file for successive conversions. A key
diagnostic approach is to compare entries from successive conversion runs, and not
necessarily just the last two runs.

When ShowLog=Yes , if you are running the conversion from the FrameMaker plug-in, if
any warnings or errors occur, the plug-in pops up the log file in the editor named by
EditorFileName . The default editor is notepad.exe . If you specify a text editor that is
not on the system execution path, you must include its full path in the value for
EditorFileName . If you are running Mif2Go from the command line, each Mif2Go
DLL pops up the log file if errors or warnings are encountered.

When UseLog=Yes , you can specify the type and the importance (or level of severity) of
events Mif2Go reports in the log file:

[Logging]
; These take severity values, 1 (greatest) to 9 (le ast),
; or 0 to prevent logging (except for LogInfo)
; LogErrors = 1 (default, log events that terminate a process)

LOGGING CONVERSION EVENTS MIF2GO USER’S GUIDE

116 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

LogErrors = 1
; LogWarnings = 1 (default, log problems with worka rounds that might
; result in undesired output)
LogWarnings = 1
; LogQuerys = 1 (default, log possible ambiguities)
LogQuerys = 1
; LogInfo = 1 (default, log process information; 0 is ignored)
LogInfo = 1
; LogDebug = 0 (default, do not log possible progra mming issues)
LogDebug = 0

Log entry types are as follows:

By default, Mif2Go logs only the most important or severe events (level 1), but not less
important or less severe events (levels 2 through 9). At level 1 only the most important
processing events are logged, such as the start of processing for each FrameMaker file and
the identity of the software module doing the processing. Unless you specify otherwise
Mif2Go does not log events classified as debugging issues.

Note: When UseLog=Yes , process information is always logged, even if you set
LogInfo=0 .

Each log entry appended to the log file includes the following information:

 • timestamp (if different from the previous entry), on a line by itself
 • event type (E, W, Q, I , or D)
 • severity level or importance (from 1 = most severe or important to 9 = least severe or

important)
 • event description.

Flagging
uncatalogued

formats

By default, Mif2Go logs a warning about any format that is used in your document but not
defined in the FrameMaker catalog. If you get tired of seeing warnings about
uncatalogued formats:

[Logging]
; ShowUndefinedFormats = Yes (default) or No
ShowUndefinedFormats = No

Recording
configuration

chains

In addition to logging conversion events, you can have Mif2Go include in the event log all
the chains of configuration files and templates referenced by your project:

[Logging]
; LogIniChains = No (default) or Yes, list all chai ns
LogIniChains = Yes

When LogIniChains=Yes , before listing events, Mif2Go shows the full path of every
configuration file and template used in processing, in the order they are referenced by
settings in the [Templates] section. For example:

I1: Ini chain for Configs:
I1: _m2omnihelp.ini
I1: .._config\m2gug_htm_document.ini
I1: .._config\m2gug_document.ini
I1: g:\omnisys\m2g\local\config\local_m2omnihelp_ config.ini
I1: g:\omnisys\m2g\system\config\m2omnihelp_confi g.ini

E Error: process terminated

W Warning: problem with a workaround

Q Query: possible ambiguity

I Information only

D Debug: possible programming issue

5 SETTING BASIC CONVERSION OPTIONS IDENTIFYING FILES AND OBJECTS

ALL RIGHTS RESERVED. MAY 18, 2013 117

I1: g:\omnisys\m2g\local\config\local_m2help_conf ig.ini
I1: g:\omnisys\m2g\system\config\m2help_config.in i
I1: g:\omnisys\m2g\local\config\local_m2htm_confi g.ini
I1: g:\omnisys\m2g\system\config\m2htm_config.ini
I1: g:\omnisys\m2g\local\config\local_m2g_config. ini
I1: g:\omnisys\m2g\system\config\m2g_config.ini
I1: g:\omnisys\common\local\config\local_omsys.in i
I1: g:\omnisys\common\system\config\omsys.ini

This output shows the chain of general configuration files and templates referenced from
starting configuration file _m2omnihelp.ini , for a project to generate OmniHelp from
FrameMaker.

A log-file example that shows a warning:
Sat Oct 04 11:38:21 2008
I1: Starting log for dwhtm, h285z10
I1: Opened file "planning.htm" for HTML
I1: File ID is z102x
W2: Xref target ag123456 not found in intro.ref

The W2 entry is a warning, severity level 2, about a cross-reference destination missing
from the Mif2Go -generated reference file for chapter intro.fm .

5.3 Identifying files and objects
To maintain interfile and intrafile references, Mif2Go creates object names, link
destination names, and output file names from FrameMaker ObjectIDs and Mif2Go
FileIDs. These components originate as follows:

In this section:
§5.3.1 Understanding how Mif2Go creates identifiers on page 117
§5.3.2 Working with FrameMaker ObjectIDs on page 118
§5.3.3 Working with FrameMaker cross-reference IDs on page 119
§5.3.4 Working with Mif2Go FileIDs on page 119

5.3.1 Understanding how Mif2Go creates identifiers

To name objects and references in your document, and to name certain output files,
Mif2Go creates identifiers of the following form:

[L][ff] nnnnnn[. hhh]

where L, ff, nnnnnn, and .hhh are as follows:

ObjectID: Six-digit number assigned by FrameMaker to each paragraph, table, and
graphic; in MIF format, this is the <Unique ID> tag. Or, five-digit number
assigned by FrameMaker to each cross reference; in MIF format, this is the
<XRefSrcText> tag. See §5.3.2 Working with FrameMaker ObjectIDs on
page 118.

FileID: Two- or three-character alphanumeric code assigned by Mif2Go to each
FrameMaker file. See §5.3.4 Working with Mif2Go FileIDs on page 119.

L Link destinations only: X for cross references, R for hypertext links.

ff FileID (required for books, optional for single-file documents), assigned
to each FrameMaker file in mif2go.ini ; see §5.3.4 Working with
Mif2Go FileIDs on page 119.

IDENTIFYING FILES AND OBJECTS MIF2GO USER’S GUIDE

118 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Mif2Go creates identifiers for the following items:

 • Cross-reference anchors, for which the FrameMaker ID includes a five-digit number
(for example, Rab12345)

 • Hypertext link destinations (for example, Xac254678)
 • Graphics files produced with FrameMaker export filters (for example,

ad3f509e.gif); see §5.7.4.1 Naming files produced by FrameMaker export filters
on page 133

 • Split and extract files for HTML, XML, and DITA output (for example,
ae9704561.htm); see §18.4.1 Understanding how split and extract files are named
on page 593

 • Anchored frames for HTML (for example, aa4de33f); see §23.5 Selecting and
modifying graphics on page 708.

 • Tables for HTML (for example, bb123412); see §24.2 Defining sets of tables on
page 728.

This kind of composite identifier is sometimes referred to as an FDK name.

5.3.2 Working with FrameMaker ObjectIDs

You can view the ObjectID of a paragraph, table, or graphic on the FrameMaker status
bar:

ObjectIDs are not
always persistent

ObjectIDs are nominally unique within a FrameMaker file. However, when you hide and
then show a conditional paragraph or anchored frame, the ObjectID always changes. For
tables, the ObjectID persists only if you do not include the table anchor when you hide and
show the table.

If you copy an item, normally the copy gets a new ObjectID. However, if you cut an entire
paragraph, FrameMaker does not assign a new ObjectID when you paste the paragraph;
instead, FrameMaker copies the ObjectID of the original paragraph. That is, FrameMaker
assigns a new ObjectID if you copy and paste text, but not if you cut and paste text.

Very infrequently, FrameMaker re-uses an existing ObjectID number when assigning a
new ID. To ensure that new numbers are unique, FrameMaker increments a “next number”
value, which is stored in the document file. However, FrameMaker does not check for
conflicts with any existing values before assigning an ID number. If you happen to specify
an object with a duplicated number as the destination of a cross-reference or hypertext
link, you can get erroneous links in output from Mif2Go .

nnnnnn Five-digit (for cross references) or six-digit ObjectID. For output files
this is usually the ObjectID of the first item: paragraph, table, or
anchored frame. See §5.3.2 Working with FrameMaker ObjectIDs on
page 118.

.hhh Files only: period and file extension.

Paragraph: Click the paragraph, then Shift -click without moving the mouse. The
ObjectID shows on the status bar as the ParaID, a six-digit decimal
integer.

Table: Shift -click the table. The ObjectID appears on the status line as the
TableID , a six-digit decimal integer. (Use Ctrl -click to see the information
FrameMaker normally shows on the status bar for Shift-click.)

Graphic: Select the anchored frame or named reference-page frame. The ObjectID
appears on the status bar as the FrameID , a six-digit hexadecimal number.

5 SETTING BASIC CONVERSION OPTIONS IDENTIFYING FILES AND OBJECTS

ALL RIGHTS RESERVED. MAY 18, 2013 119

Resolve duplicate
ObjectIDs

To correct the problem of duplicate ObjectIDs, you must delete, then recreate, one of the
duplicate markers in FrameMaker. If you cut and then paste the marker, FrameMaker
keeps the old number; however, if you copy and paste, FrameMaker assigns a new
number. Select one of the paragraphs with the duplicate ObjectID, copy (not cut) the
paragraph, delete the original, then paste the copy back in place. The paragraph will now
have a new ObjectID.

Do not delete
<Unique ID> tags

Because Mif2Go uses ObjectIDs based on MIF <Unique ID> and <XRefSrcText>
tags, do not delete these tags from MIF files. The tags are targets for ObjectID hypertext
links, such as those created by generating FrameMaker TOC and IX files. Remove the
tags, and you break all links from existing generated files (indexes and lists). Although
FrameMaker recreates the links next time you generate, the new links will not have the
same numeric IDs. Removing MIF tags is a particularly bad idea if you use ObjectIDs to
specify properties in the configuration file for graphics and tables. After updating your
document you would have to look at every graphic and every table, get the new ID for
each, and edit the configuration file accordingly.

5.3.3 Working with FrameMaker cross-reference IDs

Although FrameMaker tries to assign unique five-digit IDs to cross references, in a single
FrameMaker document two cross-reference markers might have identical ID numbers.
Cross references with duplicate ID numbers can work properly within FrameMaker,
because FrameMaker actually uses a much longer ID that includes the format name and
the first several words of the referenced paragraph along with the ID number. However,
references to different markers with the same ID number would lead to a single destination
in Mif2Go -generated output. This is because the FrameMaker “verbose” IDs are not valid
in RTF or HTML, so Mif2Go trims them back to just the ID number, which usually is
unique within a file.

To resolve isolated instances of duplicate cross-reference IDs, the best approach is to
recreate one of the cross references in FrameMaker. To find duplicates, generate an Index
of Markers for each FrameMaker file, including markers only of type Cross-Ref , and scan
through the index for any ID numbers that are followed by more than one page reference.
This problem is rare, but it is nasty when it bites.

If you are converting Structured FrameMaker files to HTML, also see §5.8 Converting
structured documents on page 135.

5.3.4 Working with Mif2Go FileIDs

In this section:
§5.3.4.1 Understanding how and where FileIDs are assigned on page 120
§5.3.4.2 Replacing FileIDs with custom identifiers on page 121
§5.3.4.3 Updating files and references when FileIDs change on page 121
§5.3.4.4 Keeping legacy FileIDs in the configuration file on page 122

See also:
§5.7.4.1 Naming files produced by FrameMaker export filters on page 133
§6.11.5.1 Identifying Word link destinations with FileIDs on page 179
§8.9.1 Identifying WinHelp jump destinations with FileIDs on page 273
§18.4.1 Understanding how split and extract files are named on page 593
§C.4 Renaming or relocating the Mif2Go FileID file on page 1027

IDENTIFYING FILES AND OBJECTS MIF2GO USER’S GUIDE

120 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

5.3.4.1 Understanding how and where FileIDs are as signed

By default, Mif2Go uses FileIDs in the construction of cross references and hypertext
links. When you set up a Mif2Go project from within FrameMaker, Mif2Go assigns a
two-letter FileID to each FrameMaker file in your document, and stores those FileIDs in
file mif2go.ini , which by default resides in the same directory as your FrameMaker
document.

There should be just one copy of mif2go.ini for a given FrameMaker book or
document. However, if you are converting multiple books that reference each other, they
must all use the same copy of mif2go.ini ; see §2.7 Setting up multiple interlinked
HTML projects on page 75 and §19.6.4 Enabling links to files in other projects on
page 623.

FileIDs are not
required for a

one-file document

If your FrameMaker document is a single file, you can direct Mif2Go not to use FileIDs:
[WordOptions] or [HelpOptions] or [HTMLOptions]
; UseFileIDs = Yes (default, needed for identifying xrefs) or No
UseFileIDs = No

When UseFileIDs=No , links that Mif2Go makes from cross references and generated
hypertext links do not include any identification of the file(s) involved.

FileIDs are
needed for

multiple files

Unless the output from your conversion project will be only a single file, let Mif2Go use
FileIDs, so links do not get confused between files if a cross-reference number or
ObjectID is not unique. This is especially important for graphics, where ObjectIDs
(converted to hexadecimal) are used to name the graphics files. Without FileIDs, a graphic
produced for one file could easily overwrite a graphic made for another file, resulting in an
incorrect display.

Using FileIDs prevents problems with identical ObjectIDs occurring in two different
FrameMaker files (common for files originating from the same template), but FileIDs do
not help with duplicate IDs within any one file.

FileIDs in
mif2go.ini

When UseFileIDs=Yes , by default Mif2Go stores FileID assignments in a FileID file
that Mif2Go creates, named mif2go.ini , located in the source directory with your
FrameMaker document. You can specify a different name and location for the FileID file:

[Setup]
; IDFileName = name of file that contains FileIDs f or this project
IDFileName = D:/path/to/mif2go.ini

Specify an absolute path for IDFileName , because this reference has to work from
unpredictable locations. See §C.4 Renaming or relocating the Mif2Go FileID file on
page 1027.

FileIDs in old
configuration files

If you are using an old configuration file that contains FileID assignments, and you want
Mif2Go to use the assignments in your configuration file instead of assignments in
mif2go.ini , specify the following option:

[Setup]
; UseLocalFileID = No (default, use IDFile IDs)
; or Yes (use [FileIDs] here)
UseLocalFileID = Yes

See §5.3.4.4 Keeping legacy FileIDs in the configuration file on page 122.

FileID
assignments

A FileID assignment takes the form fmfile=id, where:

fmfile is the name (without extension) of a FrameMaker file in your document

id is a two- or three-letter identifier.

5 SETTING BASIC CONVERSION OPTIONS IDENTIFYING FILES AND OBJECTS

ALL RIGHTS RESERVED. MAY 18, 2013 121

FileID assignments are listed in section [FileIDs] of the FileID file (or possibly in
section [FileIDs] of an old configuration file). For example:

[FileIDs]
Intro = aa
Chapter1 = ab
Chapter2 = ac

Normally, the only time a new FileID assignment is needed is after you add a new chapter
to a book. If Mif2Go makes such an assignment during set-up, Mif2Go uses the value of
[FDK]NextFileID listed in mif2go.ini .

5.3.4.2 Replacing FileIDs with custom identifiers

Mif2Go -generated FileIDs are unique for all Mif2Go projects listed in .prj files that
reside in the same directory as mif2go.ini . If you want more associative names for
FileIDs, after you have set up a conversion you can edit mif2go.ini to replace generated
FileIDs with identifiers of your own choosing. These identifiers can consist of any valid
file-name characters. Stick to lowercase letters if possible, keep the identifiers short, and
make sure they are unique.

Note: Until your system is working flawlessly, do not change the FileIDs Mif2Go writes
to mif2go.ini .

Keep in mind these restrictions:

 • FileIDs must be unique for all current FrameMaker files in your document.
 • FileIDs must be short (two or three alphanumeric characters).
 • FileIDs may not contain spaces.
 • A FileID should not end in a digit.

For example:
[FileIDs]
Intro = in
Main = ma
Summary = su

Watch out for case sensitivity. Unless you specify [Options]CaselessMatch=No ,
Mif2Go regards AA, Aa, aA, and aa as identical; see §5.1.7 Specifying how to treat cases,
spaces, and wildcards on page 113.

Duplicate FileIDs
are allowed only

for replaced
FrameMaker files

There should be no duplicate FileID assignments in mif2go.ini , with one exception. If
you change the name of a FrameMaker file in your document, and there are cross
references to that file from other files, you might want to map both the old and new
FrameMaker file names to the same FileID, so that existing references work. For example:

[FileIDs]
Intro = in
Main = ma
NewMain = ma
Summary = su

5.3.4.3 Updating files and references when FileIDs change

The current method of naming FileIDs (and interfile links) was introduced in Mif2Go
Version 3.2. If you update a file created using an older version of Mif2Go , you might have
to update all files that it references, and that reference the updated file. Otherwise you
might encounter broken links, because the internal link identifiers might be using different
FileIDs.

APPLYING FRAMEMAKER CONDITIONS AND VARIABLES MIF2GO USER’S GUIDE

122 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Note: Whenever FileIDs change, you must update settings in any configuration sections
that reference the previous FileIDs, such as the [Graph*] sections.

5.3.4.4 Keeping legacy FileIDs in the configuratio n file

If you are still using a Mif2Go configuration created before the introduction of
mif2go.ini , you might have FileIDs in the main configuration file:

[FileIDs]
; original filename (no ext) = prefix ID for text a nd graphic objects.
fmfile = id

To continue using FileIDs listed in mif2htm.ini or mif2rtf.ini , set the following
option:

[Setup]
; UseLocalFileID = No (default, use mif2go.ini IDs)
; or Yes (use [FileIDs] here)
UseLocalFileID = Yes

When UseLocalFileID=Yes , Mif2Go uses the FileIDs (if any) listed in your project
configuration file. If a FrameMaker file (either the current file or a referenced file) is not
already listed in configuration section [FileIDs] , Mif2Go tries to create a unique FileID
by using the last three characters of the base file name (such as er2 for Chapter2.mif).
If that sequence is already in use, Mif2Go uses the last four characters, and so on, until
Mif2Go finds an unused sequence or is using the entire base file name. FileIDs created
this way are not added to the [FileIDs] section of your configuration file.

When UseLocalFileID=No (the default), Mif2Go uses the FileIDs in mif2go.ini
instead; this is the preferred method.

Note: Do not add a [FileIDs] section to the main configuration file for new projects;
use mif2go.ini instead.

5.4 Applying FrameMaker conditions and variables
To produce multiple outputs from a single FrameMaker source, you might need several
different combinations of FrameMaker variables and condition Show/Hide settings.
Usually, we advise establishing those combinations in FrameMaker conversion templates,
one for each output type; see §30.7 Applying FrameMaker conversion templates on
page 863.

However, if you need so many FrameMaker templates that maintenance of common
formats across all variations would be difficult, you can specify values for FrameMaker
user variables and condition Show/Hide settings in your Mif2Go project configuration
file instead.

It is best not to use these settings to condition out entire chapters of a book; instead, create
a separate FrameMaker book that does not include the unwanted chapters. See §5.1.2
Excluding files from book conversions on page 110.

In this section:
§5.4.1 Applying condition Show/Hide settings on page 123
§5.4.2 Replacing values of FrameMaker user variables on page 123

5 SETTING BASIC CONVERSION OPTIONS APPLYING FRAMEMAKER CONDITIONS AND VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 123

5.4.1 Applying condition Show/Hide settings

Note: The method described in this section might not work in FrameMaker version 10,
in which case you will need to use the older method, importing FrameMaker
templates; see §2.4 Importing formats from a conversion template on page 67.

To apply FrameMaker condition Show/Hide settings to Mif2Go output:
[Setup]
; SetFrameConditions = No (default) or Yes (set per [ConditionsShown]
; after template import, if any).
SetFrameConditions = Yes

To specify which conditions to show and which to hide:
[ConditionsShown]
; Condition name = Yes to show or No to hide. Any not mentioned
; are left in their current state; any not found ar e ignored.
; Note: not for use in a configuration template.
WantedCondition = Yes
UnwantedCondition = No

If you are importing a FrameMaker conversion template, these conditions are applied after
import, so that any conditions you do not list retain the settings they had in the imported
template.

For example, to include condition HelpOnly and exclude condition PrintOnly:
[Setup]
SetFrameConditions = Yes

[ConditionsShown]
HelpOnly = Yes
PrintOnly = No

If any conditions are actually altered, Mif2Go closes the FrameMaker file without saving,
same as after template import. If the file was open before processing, Mif2Go reopens the
original file.

If you are producing HTML or DITA XML output, you can express FrameMaker
conditions as element attribute settings. See:

§13.10 Converting conditions to HTML attributes on page 446
§15.12 Converting conditions to DITA attributes on page 533.

5.4.2 Replacing values of FrameMaker user variable s

To replace FrameMaker user variables with Mif2Go macro variables:
[Macros]
; ReplaceFrameVars = No (default) or Yes (replace F rame variables with
; the correspondingly named macro variable, if any)
ReplaceFrameVars = Yes

For example, to supply run-time values for FrameMaker user variables ProductName and
ProductVersion:

[MacroVariables]
ProductName = Ace Gadget
ProductVersion = 10.3

Any FrameMaker user variables not listed in [MacroVariables] retain the values you
gave them in FrameMaker.

See also:
§28.3.2 Assigning values to macro variables on page 797

CONVERTING FRAMEMAKER-GENERATED FILES MIF2GO USER’S GUIDE

124 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§28.3.5 Treating FrameMaker user variables as macro variables on page 801

5.5 Converting FrameMaker-generated files
In this section:

§5.5.1 Converting FrameMaker TOC and IX files on page 124
§5.5.2 Preventing conversion of other generated files on page 125
§5.5.3 Activating hypertext links in a converted index on page 125
§5.5.4 Making See and See also index entries into useful links on page 125

5.5.1 Converting FrameMaker TOC and IX files

When you are converting a FrameMaker book, you can choose whether to include
FrameMaker-generated contents and index files in the process:

[Setup]
; UseFrameTOC = Yes (default, except for Help forma ts, DocBook,
; and DITA), or No (default for Help formats, DocBo ok, and DITA)
UseFrameTOC=Yes
; UseFrameIX = Yes (default, except for Help format s, DocBook,
; and DITA), or No (default for Help formats, DocBo ok, and DITA)
UseFrameIX=Yes

The default value is the same for both UseFrameTOC and UseFrameIX , and depends on
the output type you specify:

Note: These are default values in the sense that Mif2Go presets them that way in the Set
Up dialog. But if the settings are not present in your project configuration file
because someone deleted them, the default for both is Yes for all output types.

If you are creating a Help system, you should not need either TOC or IX; by default,
Mif2Go generates contents and index for Help systems. See §7.3.2 Including
FrameMaker TOC and IX in Help systems on page 205.

To make sure TOC entries that contain character formatting become active links in their
entirety, see §5.10.2 Making an entire paragraph into a hotspot on page 138.

Output type Default
Print RTF (Word, WordPerfect) Yes

WinHelp No

Standard HTML Yes

DITA No

DocBook No

EclipseHelp No

JavaHelp No

MS HTML Help No

OmniHelp No

Oracle Help for Java No

XHTML Yes

XML Yes

MIF only Yes

ASCII DCL only Yes

5 SETTING BASIC CONVERSION OPTIONS CONVERTING FRAMEMAKER-GENERATED FILES

ALL RIGHTS RESERVED. MAY 18, 2013 125

5.5.2 Preventing conversion of other generated fil es

By default, Mif2Go automatically converts generated files other than TOC and IX. To
prevent Mif2Go from converting other generated files:

[Setup]
; UseFrameGenFiles = Yes (default for all formats e xcept DITA)
; or No (default for DITA)
UseFrameGenFiles=No

To make sure entries that contain character formatting in LOF, LOM, and other “list of”
generated files become active links in their entirety, see §5.10.2 Making an entire
paragraph into a hotspot on page 138.

5.5.3 Activating hypertext links in a converted in dex

When you convert a FrameMaker index, only the page numbers in an entry become
hypertext links, because each index entry can have multiple links to different parts of your
document.

To activate the index links, you must apply a character format to the index-entry page
numbers, in FrameMaker. Without the character format, multiple page references for an
index entry might cause a crash.

To apply a character format to index page numbers:

1. In the FrameMaker IX file, define a new character format; for example, IXpgnum. The
character format can be set to “As Is”.

2. On the IX Reference page of the IX file, find the line with paragraph format IndexIX,
which contains the <$pagenum> element, and apply character format IXpgnum to the
entire line.

3. Save the IX file, and generate the book. In the Body pages of the regenerated IX file
you will see that the page numbers are still links but the index-entry text is not, just as
before; so locked FrameMaker documents and PDF files are unaffected.

For HTML output, you can replace each page number with a clickable image; see
§13.8.1.3 Replacing page numbers with symbols or images on page 442.

See also §5.5.4 Making See and See also index entries into useful links on page 125.

5.5.4 Making See and See also index entries into useful links

A FrameMaker-generated index includes, for every <$nopage> entry, a cross reference to
the original marker location in your document. Such references are not very useful. If your
index includes a lot of See and See also entries, consider using IndexRef, a FrameMaker
plug-in available from Sundorne Communications:

http://www.sundorne.com/FrameMaker/IndexRef/indexref.htm

IndexRef changes <$nopage> See and See also entries in a FrameMaker IX file so the
links point to the referenced index entries instead of to the original markers in the text.
When you convert a FrameMaker index processed by IndexRef, Mif2Go preserves the
corrected See and See also links in the output (except for Help systems; see §7.5
Configuring index entries for Help systems on page 211).

Note: For OmniHelp output, Mif2Go redirects <$nopage> links, whether or not you
use IndexRef; see §10.7.6 Redirecting See and See also index entries on page 359.

http://www.sundorne.com/FrameMaker/IndexRef/indexref.htm

GENERATING/UPDATING BEFORE CONVERTING MIF2GO USER’S GUIDE

126 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

5.6 Generating/updating before converting
If you need to regenerate a table of contents, index, or other generated file because an
imported template would change page references for these files, or if you do not update
cross-references and other links for an entire book before converting, you can have
Mif2Go generate/update your book before proceeding with conversion (and after applying
a conversion template, if you specified one). Specify the following setting:

[Setup]
; GenerateBook = No (default) or Yes (generate afte r import)
GenerateBook=Yes

Generate/update during conversion is an expensive choice in terms of time and memory,
because all book files must be open at the same time. Best to generate/update in
FrameMaker before you start the conversion, if at all possible.

Note: See §30.7.4 Avoiding template-related disasters on page 866 for important
information about what not to do if Mif2Go encounters a problem while
converting your document.

5.7 Processing graphics
This section provides a brief overview of options and methods for getting the graphics in
your FrameMaker document into an appropriate format.

If some graphics referenced by your document are in a format that is not appropriate for
the output type you select (see §31.1 Choosing an appropriate graphics format on
page 869), you have the following options:

 • Omit the graphics from the output.
 • Recreate the graphics in a different format.
 • Convert the graphics to a different format.

In this section:
§5.7.1 Understanding which graphics are included on page 126
§5.7.2 Choosing how to convert graphics on page 127
§5.7.3 Choosing when to convert graphics on page 131
§5.7.4 Identifying exported graphics files on page 133

See also:
§3.7.4 Figuring out graphics export options on page 85
§31 Working with graphics on page 869

5.7.1 Understanding which graphics are included

Mif2Go processes graphics that occur in the following places in a FrameMaker document,
unless you specify otherwise:

 • anchored frames on body pages
 • unanchored frames on body pages (HTML output only)
 • unanchored frames and images on master pages (RTF output only)
 • named frames on reference pages.

For HTML output, by default Mif2Go attaches any unanchored frame on a body page to
the first paragraph on that page; see §23.5.5 Eliminating graphics in unanchored frames on
page 713.

5 SETTING BASIC CONVERSION OPTIONS PROCESSING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 127

For RTF output, by default Mif2Go attaches any unanchored frame on a master page to a
header or footer.

See also:
§31.2.5.7 Converting graphics on reference pages on page 885
§31.2.5.9 Converting unanchored graphics on body pages on page 886

5.7.2 Choosing how to convert graphics

You have two (for HTML/XML) or three (for RTF) ways to convert graphics to another
format. Mif2Go handles the first two of the following:

§5.7.2.1 Using Mif2Go native graphics processing on page 128 (RTF output only)
§5.7.2.2 Using FrameMaker graphic export filters on page 129 (RTF or HTML
output)
§5.7.2.3 Using third-party graphics converters on page 130 (RTF or HTML output)

Table 5-2 and Table 5-3 summarize the types of processing your graphics are likely to
need, based on:

 • the document output type (HTML/XML or RTF)
 • the original graphic format (JPEG, BMP, etc.) and access type (referenced or

embedded)
 • whether an anchored frame contains a single image with no added elements (such as

callouts), or contains multiple images or added elements.

This is just a starting point; you might need to experiment with different methods and
different settings to find the best way to handle graphics for your Mif2Go project.

For example, if you are converting graphics for use in WinHelp, be sure you understand
when to use WMF and when to use BMP; see §8.6.1 Choosing a graphics format for
WinHelp on page 263.

See §31 Working with graphics on page 869 for more information.

Table 5-2 Basic graphic conversion options for HTML/XML

Image
format

Access
type How to convert for use in HTML/XML output Ref.

GIF, JPEG,
PNG**

Referenced OK as is; no conversion needed, except possibly rescaling 23.9

Embedded Export from FrameMaker (default) 31.2.3

FM vector, FM equation, or
compound* illustration

Use FM export filters to convert to GIF, JPEG, or PNG 5.7.2.2

Any other
format**

Referenced Use FM export filters to convert to GIF, JPEG, or PNG, or
Use a 3rd-party tool to convert to GIF, JPEG, or PNG

5.7.2.2
5.7.2.3

Embedded Use FM export filters to convert to GIF, JPEG, or PNG, or:
1. Export from FrameMaker, then
2. Use a 3rd-party tool to convert to GIF, JPEG, or PNG

5.7.2.2
5.7.3.2
5.7.2.3

*Multiple images in the same anchored frame, or image with callouts, etc.
**Single image, alone in its anchored frame

PROCESSING GRAPHICS MIF2GO USER’S GUIDE

128 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See also:
§3.7.4 Figuring out graphics export options on page 85
§6.14 Managing graphics for print RTF on page 186
§8.6 Managing graphics for WinHelp on page 263
§23 Including graphics in HTML on page 703

5.7.2.1 Using Mif2Go native graphics processing

RTF output only Mif2Go can convert several graphic types to RTF-friendly formats. Mif2Go has full built-
in support for converting the following formats to BMP or WMF:

 • BMP (Windows bitmap, .bmp)
 • WMF (Windows metafile, .wmf)
 • OLE objects
 • FrameImage (Sun raster, .rf)
 • FrameMaker vector graphics (images created with FrameMaker drawing tools)

Mif2Go processes graphics of these types to produce WMF output, by default. You get the
same result when you do one of the following:

 • In the Mif2Go Export dialog, choose Write graphics for equations
 • In the RTF configuration file, set the following options:

[Graphics]
UseGraphicPreviews = No

[Setup]
WriteEquations = Yes
WriteAllGraphics = No

The built-in Mif2Go graphics processing does a better job than the FrameMaker export
filters for many graphics, and has much finer controls for adjusting things like callout
sizes. Also see §6.14.5 Managing callouts added to graphics on page 190.

Not for tables in
anchored frames

Mif2Go native graphics processing fails miserably on multi-cell tables inside anchored
frames. For such cases, the FrameMaker export filters do a better job.

Table 5-3 Basic graphic conversion options for RTF

Image
format

Access
type How to convert for use in RTF output Ref.

BMP or WMF OK as is; Mif2Go embeds BMP images in WMF 5.7.2.1

FrameImage, FM vector Mif2Go converts automatically to WMF 5.7.2.1

FM equation or compound*
illustration

Use FM export filters to convert to WMF or BMP 5.7.2.2

EPS** Referenced Use a 3rd-party tool (or FM filters) to convert to BMP or WMF 5.7.2.3

Embedded 1. Set EpsiUsage=EPS or EpsiUsage=Retain (print RTF
only), export from FrameMaker; then
2. Use a 3rd-party tool to convert to BMP or WMF

31.2.2.3
31.2.3

Any other
format**

Referenced Use a 3rd-party tool (or FM filters) to convert to BMP or WMF 5.7.2.3

Embedded 1. Export from FrameMaker, then
2. Use a 3rd-party tool to convert to BMP or WMF

5.7.3.2
5.7.2.3

*Multiple non-BMP, non-WMF images in the same frame, or non-BMP, non-WMF image with callouts.
**Single image, alone in its anchored frame

5 SETTING BASIC CONVERSION OPTIONS PROCESSING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 129

5.7.2.2 Using FrameMaker graphic export filters

Mif2Go can use FrameMaker graphic export filters to produce graphics files from the
contents of anchored frames in your document. Converting graphics this way can take
awhile, because the FrameMaker filters are not known for speed. This is the only way
Mif2Go can export equations to external files.

Note: This built-in conversion is provided as a convenience only; we do not consider it
to be acceptable for quality document production.

In this section:
§5.7.2.2.1 Understanding when to use FrameMaker export filters on page 129
§5.7.2.2.2 Understanding FrameMaker filter limitations on page 129
§5.7.2.2.3 Specifying options for FrameMaker export filters on page 130
§5.7.2.2.4 Specifying graphic output format and DPI on page 130

For a complete list of FrameMaker export filter settings, see §31.2.5 Converting graphics
with FrameMaker export filters on page 883.

5.7.2.2.1 Understanding when to use FrameMaker exp ort filters

You might need to resort to FrameMaker export filters for your graphics in the following
situations, depending on the type of output format:

RTF output (Word, WinHelp)
HTML output (HTML, HTML-based Help, XHTML, XML).

RTF output Use FrameMaker graphic export filters for RTF output if your document contains either of
the following:

 • Multi-cell tables that are inside anchored frames.
 • One or more referenced graphics for which both of the following are true:

 – The graphics are in formats other than:
 › BMP (“DIB” in the FrameMaker import dialog),
 › WMF (most of which work; but see §5.7.2.2.2 Understanding FrameMaker

filter limitations on page 129), or
 › OLE (which works only if Mif2Go can dig out the embedded WMF preview

image, no small feat).
 – You have not mapped the graphics to equivalent BMP or WMF files (created

outside of Mif2Go), and you do not want them used in their current format.

HTML output Use FrameMaker graphic export filters for HTML output only if your document contains
one or more referenced graphics for which both of the following are true:

 • The graphics are either (or both) of the following:
 – in formats other than JPEG, GIF, or PNG
 – not alone in their anchored frames (for example, they include FrameMaker

drawing elements such as arrows or callouts).
 • You have not mapped the graphics to equivalent JPEG or GIF files (created outside of

Mif2Go), and you do not want them used in their current format.

5.7.2.2.2 Understanding FrameMaker filter limitati ons

FrameMaker export filters can respond poorly to slightly corrupt imported graphics that
FrameMaker itself tolerates. The export filter might crash and cause a Mif2Go error; this
is probably the case if the FrameMaker status bar shows “Writing Graphics” at the time of
the crash.

PROCESSING GRAPHICS MIF2GO USER’S GUIDE

130 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You might not want to use FrameMaker graphics export filters in any of the following
circumstances:

 • You need better resolution than screen, and your original imported graphics have
significantly better resolution.

 • The FrameMaker export filters put out incorrect images (WMF), or images with
artifacts (BMP on Windows NT).

 • Your graphics are in EPS format; the FrameMaker filters use only the preview image,
and do a poor job with it.

 • Your shrinkwrapped graphics will be viewed on a colored background in the output,
and the white padding is undesirable.

5.7.2.2.3 Specifying options for FrameMaker export filters

To have Mif2Go use FrameMaker graphic export filters:
[Graphics]
; UseGraphicPreviews = No (default)
; or Yes (use preview bitmaps for frames)
UseGraphicPreviews = Yes

[Setup]
; WriteAllGraphics = No (default)
; or Yes (write all anchored frames as graphics file s)
WriteAllGraphics = Yes

5.7.2.2.4 Specifying graphic output format and DPI

To specify the output format for graphics produced with FrameMaker export filters:
[Setup]
GraphicExportFormat = format

where format is one of the following:
BMP, TIFF , WMF, JPEG, PNG, EPS, PICT, CGM, GIF, IGES

The default format depends on the output type:

You can set the DPI for the FrameMaker export filter to use. However, specifying DPI
does not change the resolution of the image; all it does is scale the image to another size.
Deviations from 96 DPI (especially small deviations) can make graphic text unreadable.
You might have to experiment with different DPI settings to get the best graphic quality.

To specify DPI for graphics produced with FrameMaker export filters:
[Setup]
; GraphicExportDPI = number (from 50 to 1200, defau lt 96)
GraphicExportDPI = 96

For HTML output, you can override the GraphicExportDPI value with a different
DPI value; see §23.9 Scaling images for HTML on page 719.

5.7.2.3 Using third-party graphics converters

Several graphics programs, such as the following, can convert images from one format to
another:

RTF output: GraphicExportFormat = BMP

HTML output: GraphicExportFormat = JPEG

Graphic Workshop Pro http://www.mindworkshop.com

Adobe Illustrator http://www.adobe.com/products/illustrator/main.html

Corel Paint Shop Pro http://www.jasc.com/ (redirect)

http://www.mindworkshop.com
http://www.adobe.com/products/illustrator/main.html
http://www.jasc.com/

5 SETTING BASIC CONVERSION OPTIONS PROCESSING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 131

You can use third-party tools only on graphics that exist as separate external files; you
cannot use them directly on embedded graphics or on FrameMaker vector graphics.
However, you can run Mif2Go to export embedded graphics, then use third-party tools to
convert them:

1. Run Mif2Go to export embedded graphics as separate files; see §5.7.3.2 Processing
embedded graphics separately on page 132.

2. Use a third-party graphics program to alter or replace the graphics; save each using the
same file name as the original (referenced) or exported (embedded) graphic, but with a
different extension.

3. If you specified ASCII DCL as the output type when you exported graphics, to avoid
rewriting graphics and recreating DCL files, do one of the following:

 • In the Mif2Go Export dialog, check Use Existing DCL file, if any .
 • In the configuration file, set the following option:

[Setup]
UseExistingDCL = Yes

4. In the configuration file, set the following options:
[Graphics]
UseGraphicPreviews = No

[Setup]
WriteEquations = Yes
WriteAllGraphics = No

5. RTF output. Indicate that you want file names to be mapped, and specify both old
and new file extensions (without leading periods):

[Graphics]
FileNames = Map

[GraphFiles]
old_extension = new_extension

6. HTML output . Indicate that you want to keep the original file names, and specify the
new extension:

[Graphics]
UseOriginalGraphicNames = Yes
GraphSuffix = new_extension

7. Run Mif2Go again.

8. Remember to uncheck Use Existing DCL file, if any (or set UseExistingDCL=No)
for later runs, if you change any text in your FrameMaker document.

See also §31.3 Replacing and relocating graphics files on page 887.

5.7.3 Choosing when to convert graphics

Former versions of Mif2Go processed all graphics in a FrameMaker document before
carrying out the rest of the conversion. The current version of Mif2Go first identifies
which graphics actually need attention; then, after the rest of a file is converted, processes
only those graphics. For example, a reference-page graphic is produced only if it is
actually used on a body page, and if its use in the output is not suppressed by some other
configuration setting.

In this section:
§5.7.3.1 Processing all graphics first on page 132

GhostScript/GhostView http://www.cs.wisc.edu/~ghost/ (for EPS graphics)

http://www.cs.wisc.edu/~ghost/

PROCESSING GRAPHICS MIF2GO USER’S GUIDE

132 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§5.7.3.2 Processing embedded graphics separately on page 132

5.7.3.1 Processing all graphics first

In either of the following circumstances you might want Mif2Go to process graphics
before processing the rest of your document:

 • Your workflow relies on an older Mif2Go method for RTF output that processed all
graphics first.

 • You want all graphics written out to files, whether or not the graphics are used in your
document or will be included in the output.

To have Mif2Go process graphics before converting the rest of the document:
[Setup]
; GraphicsFirst = No (default, write only needed gr aphics, after DCL
; process), or Yes (old way, write graphics of the types specified,
; before DCL process)
GraphicsFirst = Yes

When GraphicsFirst=Yes , if you also direct Mif2Go to use FrameMaker export
filters, Mif2Go writes out to files all graphics in anchored frames on body pages, and all
graphics in frames on reference pages, whether or not they are used in your document.
This process can take quite awhile, and use a staggering amount of disk space. Sometimes
reference and master pages contain a lot of unused graphics, which Mif2Go normally
avoids converting.

See also:
§5.7.3.2 Processing embedded graphics separately on page 132
§38.4.3 Exporting embedded graphics via ASCII DCL output on page 1012

5.7.3.2 Processing embedded graphics separately

You can create external graphics files from images that were originally copied into a
FrameMaker document, without converting the document itself, when you specify ASCII
DCL as the output type. If you have copied-in graphics, and need to modify them, this
method can get the graphics out of your document with minimum fuss, saving most of the
time it would take to run a full conversion.

Image quality is
retained; size and

added elements
are not

Because Mif2Go uses native graphics export for this purpose, the full original quality of
each graphic, whatever it was during import, is retained for each image. However:

 • Images are not scaled to the size displayed in FrameMaker, so they might be larger or
smaller than you expect.

 • The exported graphics do not include any transformations or elements added in
FrameMaker after import.

Elements added
in FrameMaker

are not exported

This method does not work to export compound graphics: embedded or referenced images
with elements added in FrameMaker, using FrameMaker drawing tools. All you get is the
original imported image, in its original size and shape, without whatever was added in
FrameMaker.

Steps to export
embedded

graphics

To export embedded graphics to external files:

1. Open the FrameMaker document.

2. From the FrameMaker File menu, choose Set Up Mif2Go Export...

3. Create a project to output ASCII DCL; see §38.2.2 Setting up a FrameMaker MIF
project on page 1006.

4. Specify the following settings in your project configuration file:

5 SETTING BASIC CONVERSION OPTIONS PROCESSING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 133

[Setup]
GraphicsFirst = Yes

[GraphExport]
ImportGraphics = Export

5. Save your project configuration file.

6. From the FrameMaker File menu, choose Save Using Mif2Go...

7. In the Mif2Go Export dialog:
7.1. Choose Write graphics for equations .
7.2. Do not check Write only graphics, no text .
7.3. Click OK.

All graphics
become files

Mif2Go exports to individual files all graphics that were copied into your FrameMaker
document, including OLE objects. Mif2Go extracts a WMF from each OLE object and
exports the WMF as an individual file; see §31.2.4 Exporting images and creating files
from OLE objects on page 881.

Exported files get
arbitrary names

Each new file is named with the first few letters of the FrameMaker file name, followed by
a number, and with the correct extension for the type of graphic. You can specify how
many letters and digits to use in the graphics file names; see §5.7.4.2 Naming files
produced from embedded graphics on page 134.

Once you have the graphics in separate files, you can use a third-party graphics program to
batch-convert them to an appropriate format for the type of output you want Mif2Go to
generate. See §31.3 Replacing and relocating graphics files on page 887.

See also:
§3.7.4 Figuring out graphics export options on page 85
§5.7.3.1 Processing all graphics first on page 132
§38.4.3 Exporting embedded graphics via ASCII DCL output on page 1012
§31.2.3 Exporting and converting embedded graphics on page 877.

5.7.4 Identifying exported graphics files

Mif2Go creates a name for each graphic file generated from your FrameMaker document.
How the file name is constructed depends on the origin of the graphic and the method used
to create the file.

In this section:
§5.7.4.1 Naming files produced by FrameMaker export filters on page 133
§5.7.4.2 Naming files produced from embedded graphics on page 134
§5.7.4.3 Naming external graphic metafiles on page 134

5.7.4.1 Naming files produced by FrameMaker export filters

Mif2Go can create graphics files via FrameMaker export filters; see §31.2.5 Converting
graphics with FrameMaker export filters on page 883 for more information.

The graphic file name consists of the FileID (if you have chosen to use FileIDs), followed
by the FrameMaker ObjectID of the graphic. You can specify whether to use FileIDs and
how many ObjectID digits to include:

[Setup]
; UseGraphicFileID = Yes (default) or No (single-fi le projects only)
UseGraphicFileID = Yes

PROCESSING GRAPHICS MIF2GO USER’S GUIDE

134 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; GraphicNameDigits = 6 (default), range 4 to 8
GraphicNameDigits = 6

See §5.3 Identifying files and objects on page 117 for information about FileIDs and
ObjectIDs.

5.7.4.2 Naming files produced from embedded graphi cs

Mif2Go can create files from graphics that were copied into FrameMaker, to make those
graphics accessible to other converters, such as Graphic Workshop (see §31.2.3 Exporting
and converting embedded graphics on page 877). Because FrameMaker does not retain the
original names of embedded graphics, Mif2Go must create new names for the resulting
graphics files. Each appearance of a graphic produces a new file, even if the same graphic
has appeared before.

By default, Mif2Go uses the first four characters of the FrameMaker file name, and adds a
four-digit number. You can specify different numbers of characters and digits for names of
exported graphics files:

[GraphExport]
; ExportNameChars = chars from base file name
; to use in export file names
ExportNameChars = 4
; ExportNumDigits = number of digits to use in expo rt file names
ExportNumDigits = 4

Make sure file
names are unique

If you have more than 9,999 instances of graphics that were copied into a FrameMaker
file, you must increase the number of digits used. If you are trying to keep to 8.3 file
names, you might need to reduce the number of letters accordingly.

If your conversion project includes FrameMaker files whose names do not differ in the
first four characters, you must increase the number of characters to use. For example, if
your FrameMaker files are named Chapter1.fm , Chapter2.fm , and so on, you must
use all eight letters to avoid name conflicts between graphics from different files. In that
case you will not be able to keep to 8.3 names.

Better to import
by reference

Better to take the newly exported graphics files, give them proper names, and go back into
FrameMaker and import them by reference in place of the original embedded images,
being careful to select the image itself for replacement and not the anchored frame; then
run the conversion again.

Why not to
embed graphics

Why not embed graphics? Besides making your FrameMaker files very large, embedded
graphics can be irretrievably lost when you save a FrameMaker file that contains them.
The problem is the size available for the Windows TEMP directory, which by default is
located on the disk drive that tends to have the least available space, usually the C drive.
While saving a document file FrameMaker writes out an expanded version of every
embedded graphic to a temporary file in the TEMP directory, then reads them all back in
while writing the .fm file. If you run out of room on the drive containing the TEMP
directory, FrameMaker merrily continues saving without complaint, but is no longer able
to write the graphics back into the saved file.

5.7.4.3 Naming external graphic metafiles

Mif2Go generates external metafiles for WinHelp; see §31.2.6 Embedding bitmap
graphics in WMF for WinHelp on page 886 for more information.

By default, Mif2Go uses the first five characters of the base file name, and adds a three-
digit number. You can change the number of characters and digits:

[Graphics]
; MetaNameChars = chars from base file name

5 SETTING BASIC CONVERSION OPTIONS CONVERTING STRUCTURED DOCUMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 135

; to use in external WMF file names
MetaNameChars = 5
; MetaNumDigits = number of digits
; to use in external WMF file names
MetaNumDigits = 3

Each appearance of a graphic produces a new file, even if the same graphic has appeared
before; and for WinHelp each subscript, superscript, and symbol also produces a metafile.
To decide how many characters and digits to specify, consider all of the following:

 • If a FrameMaker file you are converting to WinHelp contains more than 999 images,
you must increase the number of digits used.

 • If you are trying to keep to 8.3 file names, you might have to reduce the number of
letters accordingly.

 • If your conversion project includes FrameMaker files whose names do not differ in the
first three characters, you must increase the number of characters to use.

5.8 Converting structured documents
Mif2Go can convert Structured FrameMaker documents. However, the conversion is
based on paragraph and character formats, not on elements, so you must use distinct
format names to get distinct effects in the output. Specify a different format in your
FrameMaker EDD for each element type that needs to be visually distinct in the output,
rather than using Body with overrides for everything. In other words, use the EDD to
create exactly the sort of formatting used in unstructured files.

Overrides require
font tags for

HTML output

If you are converting to HTML and you are stuck with a one-format EDD, you can retain
in the HTML most (but not all) of the overrides; however, you have to accomplish this
with font tags and align attributes, which makes CSS pretty much useless for the resulting
HTML.

Cross references
rely on element

attributes

Mif2Go supports cross references in Structured FrameMaker documents by relying on
attributes of the referenced element, instead of on paragraphs and markers. To convert
cross references in Structured FrameMaker files, by default Mif2Go uses the value of
element attribute Id as the target for cross references, and recognizes elements with
attribute Idref as references to element IDs. If your Structured FrameMaker files use
attributes with other names for these purposes, you must tell Mif2Go what names to look
for; otherwise the cross references Mif2Go generates will not work as expected.

To specify the names of cross-reference and element ID attributes in your Structured
FrameMaker document:

[HTMLOptions] or [WordOptions]
; IDAttrName = name of structured-element ID attrib ute, default "Id"
IDAttrName = Id
; IDRefAttrName = name of structured-element cross- reference
; attribute, default "Idref"
IDRefAttrName = Idref

By default, Mif2Go does not use structure tags and attributes for any other purpose.

Map attributes to
markers

To capture the values of other Structured FrameMaker attributes, you can map the
attributes to FrameMaker markers. For example, if the linkref attributes in your
Structured FrameMaker document contain names you want to use for HTML split files:

[AttributeMarkers]
; Structured FrameMaker attribute name = FrameMaker marker name
linkref = FileName

See §34.8.3 Using custom markers to name output files on page 947.

CONVERTING EQUATIONS MIF2GO USER’S GUIDE

136 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See also:
§29 Working with FrameMaker markers on page 831

5.9 Converting equations
In this section:

§5.9.1 Understanding how equations are processed on page 136
§5.9.2 Specifying equation size and DPI on page 136
§5.9.3 Specifying equation output format on page 137
§5.9.4 Providing a file-name suffix for equations on page 137
§5.9.5 Positioning equations in RTF output on page 137

5.9.1 Understanding how equations are processed

Mif2Go produces graphics for FrameMaker native equations, essentially screen
renderings in WMF or bitmap form. The content is not editable as such, but the rendition
appears correctly in all output types.

For DITA XML output, equations become <image> elements in a <fig> element; see
§15.7.5 Including MathFullForm equations in <alt> elements on page 518. For DCL
representation, Mif2Go keeps both the native FrameMaker MathFullForm and the graphic
rendering. Although all current output types except DITA use only the graphic, the
MathFullForm is available also, in DCL.

Mif2Go always uses FrameMaker export filters to write native FrameMaker math
equations as graphics, whether or not you direct Mif2Go to use those filters for graphic
images in your document.

Despite the unfortunate key name, the following setting does not actually affect the
production of equations; provisionally, it affects the production of graphics:

[Setup]
; WriteEquations = No (default) or Yes (write equat ions as graphics)

When WriteEquations=No , equations (and graphics, provided
[Graphics]UseGraphicPreviews=Yes) are converted with FrameMaker export
filters.

When WriteEquations=Yes , only equations are converted with FrameMaker export
filters. Unless [Graphics]UseGraphicPreviews=Yes , the graphics in your document
are processed some other way, or not at all.

The purpose of WriteEquations=Yes is to allow you to experiment with settings for
equations without processing the rest of the document. Usually you would not change this
setting in the configuration file. Instead you would use the Mif2Go Export dialog; see
§5.9.2 Specifying equation size and DPI on page 136.

See also:
§3.7.4 Figuring out graphics export options on page 85

5.9.2 Specifying equation size and DPI

Native FrameMaker export uses 72 DPI as a default for equations. This is much too small,
and produces unreadable text for all equation sizes except the largest. The best DPI value
varies; bigger is not always better. Generally, a value between 100 and 150 yields
acceptable results. Equations need bigger values than other graphics.

5 SETTING BASIC CONVERSION OPTIONS CONVERTING EQUATIONS

ALL RIGHTS RESERVED. MAY 18, 2013 137

To adjust the size and resolution of equations:
[Setup]
; EquationExportDPI = number (from 50 to 1200, defa ult 120)
EquationExportDPI = 120
; EquationFrameExpand = percentage of original size (default 125)
EquationFrameExpand = 125

For best results, set EquationFrameExpand to a value about 4% greater than the value
for EquationExportDPI .

To experiment with different values without converting the whole document over and over
again, in the Mif2Go Export dialog choose the following:
 • Write graphics for equations
 • Write only graphics, no text .

See §3.7.4 Figuring out graphics export options on page 85.

5.9.3 Specifying equation output format

For RTF output, the default format for equations is WMF, which is a vector format that
generally gives the best rendition. However, if equations do not look right in WMF, try
BMP instead. No other choice would give better results. BMP might result in poorer print
rendition of equation text, but visual rendition should be nearly as good as WMF:

[Setup]
; GraphicExportFormat = BMP, TIFF, WMF (RTF default),
; JPEG (HTML default), GIF, PNG, EPS, PICT, CGM, o r IGES
GraphicExportFormat = BMP

For HTML output, the default format for equations is JPEG.

See §31.2.5.5 Specifying graphic output format and DPI on page 884.

5.9.4 Providing a file-name suffix for equations

If you need to isolate equation image files from other generated graphics for
postprocessing, you can specify a file-name suffix for equations, to be inserted before the
file extension:

[WordOptions] or [HelpOptions] or [HTMLOptions]
; EqSuffix = suffix followed by period followed by file extension
EqSuffix = eq.jpg

For example, with this setting a generated equation file name would look like:
aa1234567.eq.jpg

When you specify a value for EqSuffix you must include the file extension, which
overrides the extension implied by the setting for GraphicExportFormat ; see §5.9.3
Specifying equation output format on page 137.

5.9.5 Positioning equations in RTF output

By default, for RTF output Mif2Go embeds equations in Windows Metafiles (WMFs), so
in-line equations can be positioned correctly in WinHelp. This is not essential for Word
RTF, or for equations that are not in line, because other methods are available for
alignment. However, you can adjust equations horizontally only if they are in WMFs.

To adjust the scale and position of equations in RTF output:
[WordOptions] or [HelpOptions]
; EmbedEqsInWMFs = Yes (default, scale to size usin g WMFs) or No

CREATING HOTSPOTS FOR HYPERTEXT LINKS MIF2GO USER’S GUIDE

138 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

EmbedEqsInWMFs = Yes
; EqVertAdjust = half-points to adjust equations do wn
; (negative for up)
EqVertAdjust = 8
; EqHorAdjust = half-points to adjust equations rig ht
; (negative for left)
EqHorAdjust = 2

These equation settings are not available for HTML output.

5.10 Creating hotspots for hypertext links
When you insert a FrameMaker hypertext marker in a paragraph to create a link, you can
create a visible hotspot for the link.

Note: A hotspot can contain only one marker. If you need different hypertext markers for
different output types, duplicate the entire hotspot, and use conditional text to hide
all but one at a time of the duplicated hotspots.

In this section:
§5.10.1 Delimiting a hotspot with a character format on page 138
§5.10.2 Making an entire paragraph into a hotspot on page 138
§5.10.3 Delimiting a hotspot with a color on page 139

See also:
§7.8.2 Defining a pop-up hotspot on page 226
§8.9.3 Creating hotspots for jumps and pop-ups in WinHelp on page 274
§19.5.2 Converting FrameMaker hypertext links to HTML on page 619

5.10.1 Delimiting a hotspot with a character forma t

You can create a hotspot for a hypertext link by applying a character format to just those
words you want highlighted and activated. The span of the hotspot (the active area of the
link) is determined by the span of the character format in which you place the marker.

Sometimes by accident a marker is placed just before, or just after, character-formatted
text; Mif2Go watches for this situation, and treats such markers as though they were
inside the formatted area. However, if the marker is not in or adjacent to the formatted
text, the unformatted part of the paragraph where the marker is located becomes the
hotspot, which is practically never what you want. Also, if character formats have been
applied to any part of a paragraph, the link extends both ways from the marker, until the
character format changes.

5.10.2 Making an entire paragraph into a hotspot

When you insert a marker in a paragraph to which no character formats have been applied,
the entire paragraph becomes a link.

If a paragraph includes character formatting, but you want the entire paragraph to be the
hotspot, assign property ParaLink to the paragraph format:

[HTMLParaStyles] or [HelpStyles] or [WordStyles]
; paragraph format = ParaLink
; ParaLink prevents any char formats in the named p ara format from
; affecting the hotspot area for a link in that para .

5 SETTING BASIC CONVERSION OPTIONS REPURPOSING FRAMEMAKER MARKERS

ALL RIGHTS RESERVED. MAY 18, 2013 139

This is especially handy for entries in converted FrameMaker-generated files. In generated
files, entries that include a format change have their associated hypertext links truncated at
the point of change. For example, in the TOC for your document you might have a
definition like this:

<SomeFormat><$paranum> <Default Para Font><$paratext> <$pagenu m>

The active portion of the link would be only the paragraph number. To make the entire text
of all TOC entries work as hypertext links:

[HTMLParaStyles] or [HelpStyles] or [WordStyles]
*TOC = ParaLink

5.10.3 Delimiting a hotspot with a color

To make colored text a hotspot when only the text color changes, and the color is applied
with an override instead of a character format, set the following option:

[HTMLOptions] or [HelpOptions]
; UseHyperColor = No (default) or Yes (treat any no n-black as hyper)
UseHyperColor = Yes

5.11 Repurposing FrameMaker markers
You can reuse the content of most FrameMaker markers, and also make new custom
marker types, by remapping a marker type to one or more other marker types. See §29
Working with FrameMaker markers on page 831 for more information.

The standard FrameMaker marker types are as follows:

Any marker name not listed here is the name of a custom marker type.

Many custom
marker types

have predefined
effects

Because many marker types have a dedicated purpose or require specific content, you
must be careful about remapping to custom marker types. Table 29-1 on page 832 lists the
custom marker types predefined for Mif2Go conversions. For example, if you expect to
convert your FrameMaker document to any HTML output type, do not try to remap to
marker types that are predefined for WAI support; see §34.1.2 Using markers to add links
and instructions on page 935.

To remap a marker type to one or more other marker types:
[Markers]
; marker type name = one or more marker type names
FM_Marker = OtherMarker AnotherMarker ...

The original marker type is no longer in effect after remapping, unless you remap it to
itself.

Author
Comment
Conditional Text (cannot be cloned or redefined)

Cross-Ref
Equation
Glossary
Header/Footer $1
Header/Footer $2
HTML Macro
Hypertext
Index
Subject

REPURPOSING FRAMEMAKER MARKERS MIF2GO USER’S GUIDE

140 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You must observe the following restrictions:

 • The Conditional Text marker type cannot be remapped.
 • Names of marker types you are remapping to (names to the right of the = sign) may

not contain spaces or commas (those to the left of the = may contain spaces and
commas).

You can remap any marker type (except Conditional Text) to:

 • one or more existing or predefined marker types
 • any new marker type(s) you name to the right of the = sign.

For example, to add all FrameMaker Subject markers to the index, and also clone them as
ALink markers for their help topics (custom marker type ALink is predefined by Mif2Go):

[Markers]
Subject = Index ALink

You can also remap most of the Hypertext subtypes; see §29.3 Remapping marker types
and hypertext commands on page 836.

(No illustrations)

ALL RIGHTS RESERVED. MAY 18, 2013 141

6 Converting to print RTF

This section shows you how to specify options for converting to Microsoft Word, or to
WordPerfect; most settings apply to both. The RTF produced for Word can also be viewed
in OpenOffice and StarOffice. Topics include:

§6.1 Converting to Word: a one-way street on page 141
§6.2 Setting up a print RTF project on page 145
§6.3 Adjusting output for different versions of Word on page 149
§6.4 Converting a FrameMaker book to print RTF on page 150
§6.5 Specifying document layout options on page 151
§6.6 Converting system variables to text for RTF on page 157
§6.7 Converting paragraph and character formats on page 158
§6.8 Converting tabs and spaces on page 163
§6.9 Specifying font usage on page 166
§6.10 Modifying text appearance on page 170
§6.11 Converting cross references and hypertext links on page 174
§6.12 Converting generated files to print RTF on page 181
§6.13 Converting tables to print RTF on page 184
§6.14 Managing graphics for print RTF on page 186
§6.15 Including RTF code for Word output on page 194
§6.16 Turning on revision tracking in Word on page 194
§6.17 Managing Word output after conversion on page 195
§6.18 Converting to OpenOffice or StarOffice on page 197

See also:
§2.2 Naming FrameMaker formats on page 66, for usages to avoid in your
FrameMaker document.

If you are creating WinHelp, see:
§7 Producing on-line Help on page 199
§8 Generating WinHelp on page 243

You must use a separate project directory and separate configuration files for WinHelp;
Word and WinHelp RTF files are not compatible.

6.1 Converting to Word: a one-way street
The intended purpose of Mif2Go conversion from FrameMaker to print RTF is to support
review of FrameMaker-maintained documents by reviewers who use only Word.
Converting Mif2Go -generated RTF files back to FrameMaker is not a viable option.
When Mif2Go converts a FrameMaker document to Word, you lose a lot of FrameMaker
features; some are converted to plain text, and others are merely simulated in Word.

Word output can be challenging, especially if you must support multiple versions of Word.
Microsoft changes the semantics of RTF control words regularly, without documenting
these changes.

In this section:
§6.1.1 Understanding differences in implementation on page 142

CONVERTING TO WORD: A ONE-WAY STREET MIF2GO USER’S GUIDE

142 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§6.1.2 Understanding differences in file sizes on page 143
§6.1.3 Understanding why round-tripping is not an option on page 143
§6.1.4 Migrating a document from FrameMaker to Word on page 144
§6.1.5 Developing a workflow using Word for reviews on page 144

6.1.1 Understanding differences in implementation

Word is not FrameMaker. Although Mif2Go does a good job of emulating FrameMaker
features that do not exist in Word, there are limits. You can easily create in FrameMaker
constructs that are beyond the capabilities of Word.

When Mif2Go converts a document to Word, differences in implementation between
FrameMaker and Word can cause loss of formatting, or require workarounds for some
features. These features include:

Autonumbers
Format names
Page layouts
Rotated text or tables
Sidehead formats
Text in anchored frames
Frame Above/Below
Inter-paragraph spacing
Headers and footers
Equations
Change bars

Autonumbers FrameMaker and Word implement autonumbering quite differently. By default,
autonumbers become plain text in Word. For review purposes, what is important is the
accurate text depiction of autonumbers in Word. When Mif2Go renders autonumbers as
plain text, the numbers stay fixed, even if a reviewer interpolates a new list item. You do
not want the numbers changing in a review situation; it makes the real changes harder to
find among the artifacts. However, Mif2Go can generate live autonumbers in Word, as
SEQ fields; see §6.7.5 Converting autonumbered formats on page 160.

Format names Some FrameMaker formats are renamed by Word itself, not by Mif2Go . For example, if
you have paragraph formats Heading and heading in your FrameMaker document, Word
calls the second format heading1, because in this respect Word is not case sensitive. Also,
if you have a character format with the same name as a paragraph format, Word treats
them the same; in Word, it is just one namespace.

Page layouts Many common FrameMaker page layout features, such as headers that extend down next
to the body text, do not work in Word. You might have to redesign master pages, or
replace master pages temporarily by importing a conversion template. See §6.5.1
Understanding page layout restrictions on page 151.

Rotated text or
tables

Word does not support rotated text or rotated tables. Word does not even support rotated
table cells; but see §6.13 Converting tables to print RTF on page 184 for a workaround.

Sidehead formats Sideheads go into RTF text boxes. This works well when the text box is created in RTF;
but try creating another like it in Word, or even try adjusting its position in Word, and you
get a real mess. If you want to be able to add new sideheads in Word, you have to convert
existing sideheads from FrameMaker as plain left-aligned heads. If your sideheads are in
text frames inside anchored frames, each such text frame has to be alone in its anchored
frame.

6 CONVERTING TO PRINT RTF CONVERTING TO WORD: A ONE-WAY STREET

ALL RIGHTS RESERVED. MAY 18, 2013 143

Text in anchored
frames

By default, anchored frames are rendered as graphics in Word. You can tell Mif2Go to
render anchored frames as text when possible; see §31.5.6.3 Converting graphic text to
text on page 902. Although this works when there is a single text frame in the anchored
frame, it does not work when the anchored frame contains multiple text frames or both
text and graphics. Word cannot nest text boxes.

Frame
Above/Below

Word does not support Frame Above or Frame Below paragraph properties. To emulate
these properties in Word, for each such frame Mif2Go inserts a small metafile in the RTF
output; see §6.7.7 Converting reference frames for Word on page 162 for a way to
eliminate the frames instead.

Inter-paragraph
spacing

Word and FrameMaker compute the vertical space between paragraphs differently; it is
not always possible to achieve an exact match. See §6.10.2 Adjusting paragraph spacing
on page 170.

Headers and
footers

Converting FrameMaker master-page content to Word header/footer content is the most
problematic part of a Word conversion. See §6.5.1 Understanding page layout restrictions
on page 151 and §6.5.9 Converting headers and footers on page 154.

Equations The equation engine in FrameMaker actually models the mathematics; equations in Word
are for display only. WMF images created by FrameMaker (and by Mif2Go) for equations
produce sharp images. Mif2Go uses FrameMaker graphic export filters to make an image
(WMF, for Word) of the frame containing the equation, then embeds that WMF in the
Word RTF at a size based on the FrameMaker original, scaled as you specify. By default,
Mif2Go enlarges equations a bit to improve readability; you can specify exactly how
much. See §5.9 Converting equations on page 136.

Change bars Unlike FrameMaker, Word does not include change bars as a text property. Instead, Word
uses Revision Tracking, which is a far more complex way of identifying changes.
Revision Tracking requires information that FrameMaker does not include. Therefore,
Mif2Go support for converting FrameMaker change bars is limited to giving Deleted text
the strike-through property in Word. To make this work, you would have to Show (rather
than Hide) the Deleted conditional text in FrameMaker, possibly by using a conversion
template; see §2.4 Importing formats from a conversion template on page 67. Mif2Go
does not identify Inserted text; you would have to use a character format.

6.1.2 Understanding differences in file sizes

The RTF files Mif2Go produces can be quite large if the document you are converting
contains bitmap graphics. You can minimize the size of RTF files by using 256-color
bitmaps (instead of 24-bit true color), but even 256-color bitmaps do not compress well in
RTF. However, once an RTF file is loaded in Word, Word can use internal compression
methods to store the images more efficiently; then, when you save the file as .doc , the
size will be smaller.

For files containing only text, the opposite holds: an RTF file is smaller than the .doc
version of the same file.

6.1.3 Understanding why round-tripping is not an o ption

Mif2Go developers have conducted design studies to determine what it would take to
round-trip between FrameMaker and Word. Their conclusion: round-tripping a document
of any complexity from FrameMaker to Word and back is not feasible. Too much is lost.
The time you “save” by bringing a Word document into FrameMaker is greatly exceeded
by the time it takes to rebuild what you need in FrameMaker from the resulting rubble.

CONVERTING TO WORD: A ONE-WAY STREET MIF2GO USER’S GUIDE

144 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Use Word for
review

If your purpose is review, use Mif2Go to produce Word files with Track Changes locked
on (see §6.16 Turning on revision tracking in Word on page 194), then examine the
changes in Word and edit the FrameMaker file by hand. Do you really want reviewers to
add writing mistakes and style blunders that you might not notice? If you must copy/paste
anything, use one of the plain-text add-ons, or paste into Notepad and recopy before
pasting into FrameMaker. (If you paste RTF directly into FrameMaker you will pay (and
pay, and pay) forever after, because Word artifacts cause issues in FrameMaker you cannot
fathom.)

Migrate from
Word to

FrameMaker

If you need to go through this process only once, to get a legacy Word document into
FrameMaker, use plain text and tag it all from scratch. Recreate indexing, hypertext links,
cross references, and tables, and import graphics by reference. It might take a while, but
the result will be a nice stable FrameMaker document. Do this for every review cycle? No
one would even try.

6.1.4 Migrating a document from FrameMaker to Word

If you plan to maintain your document in Word instead of in FrameMaker, the transition is
not simple. Numerous FrameMaker features that Mif2Go emulates in Word, such as
sideheads, are not maintainable in Word; see§6.1.1 Understanding differences in
implementation on page 142.

Mif2Go can convert numbering to an active form for Word, but not to the numbering
Word normally uses. Instead Mif2Go creates SEQ fields; see §6.7.5 Converting
autonumbered formats on page 160. This is because Word normal numbering is notorious
for failing in large files, requiring hours of work to recreate. Although the SEQ fields are
stable, you must copy/paste them into new paragraphs that you create.

TOC generation in Word is entirely different from TOC generation in FrameMaker. A
Word TOC depends on fixed style names Heading1 through Heading9. You would have to
map the FrameMaker paragraph formats that you want included in the TOC to one of
those heading styles. And of course Word knows nothing about FrameMaker options for
formatting a TOC.

Migrating from FrameMaker to Word has a very high price. Make sure you are willing to
pay (and pay, and pay) before you go down that hard road.

6.1.5 Developing a workflow using Word for reviews

If you make style changes in Word after conversion, you have to do this task over and
over, each time you revise the document. Instead, make all changes in FrameMaker itself,
before conversion, and use a conversion template to change styles; see §2.4 Importing
formats from a conversion template on page 67. Mif2Go imports the template during
conversion, without altering your original FrameMaker files; only the MIF used by
Mif2Go is affected by the import.

Do not try to maintain in Word any documents Mif2Go converts from FrameMaker. The
conversion is fast and easy; do your ongoing document work in FrameMaker, and produce
Word copies on demand for reviewers, following these guidelines:

 • Make sure reviewers turn on revision tracking in Word; or turn it on for them (see
§6.16 Turning on revision tracking in Word on page 194).

 • Make sure reviewers turn off View > Hidden Text in Word. Mif2Go uses Word
hidden text to emulate some FrameMaker features; see §6.10.8 Hiding content in
Word on page 173.

 • When you get an edited file back, open it in Word and look at the changed areas.

6 CONVERTING TO PRINT RTF SETTING UP A PRINT RTF PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 145

 • To bring new material into your FrameMaker document, copy and paste as Plain Text.
 • Handle all formatting in FrameMaker.
 • Import any new graphics by reference from their original graphics files, not from the

images in Word.

Writers should evaluate each Word revision, then incorporate acceptable changes into
FrameMaker using plain-text (not rich-text) copy/paste. This does not take as long as you
might think, and it is a very good idea for writers to review changes carefully. Editing
changes back into the FrameMaker document ensures that this important step is carried
out with the authorial attention it needs.

See also:
§34.6 Supporting document review in Word on page 943

6.2 Setting up a print RTF project
When you set up a print RTF project from within FrameMaker, if configuration file
_m2rtf.ini is not already present in the project directory, Mif2Go creates this file for
you; see §3 Converting a book or document on page 77.

To add or change any of the options described in this section, edit configuration file
_m2rtf.ini , located in the project directory.

In this section:
§6.2.1 Creating a print RTF project on page 145
§6.2.2 Choosing set-up options for a print RTF project on page 146
§6.2.3 Specifying output file extension on page 147
§6.2.4 Specifying the default output language and code page on page 147
§6.2.5 Constraining the number of bookmarks in Word on page 148
§6.2.6 Importing a Word template on page 148

6.2.1 Creating a print RTF project

To create a print RTF project:

1. Create a project directory for RTF files, separate from the directory where your
FrameMaker document is DITA files are located.

2. With your FrameMaker book or document file open, choose File > Set Up Mif2Go
Export ; the Choose Project dialog opens.

3. Name your print RTF project, and browse to the project directory you created in
Step 1 (see §3.3 Creating a Mif2Go conversion project on page 78).

4. Select one of the following output types:
Word 7/95 Print RTF
Word 8/97 Print RTF
WordPerfect Print RTF

5. Choose options in the Set Up Print RTF Project dialog (see §6.2.2 Choosing set-up
options for a print RTF project on page 146).

6. Dismiss the Conversion Designer dialog.

7. Use a text editor to refine your choices in the resulting _m2rtf.ini configuration file
(see §4.1 Working with Mif2Go configuration files on page 91).

SETTING UP A PRINT RTF PROJECT MIF2GO USER’S GUIDE

146 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

6.2.2 Choosing set-up options for a print RTF proj ect

When you select Word or WordPerfect as the output type for a new project, the Set Up
dialog shown in Figure 6-1 opens. Table 6-1 shows the corresponding settings in the
configuration file.

See also:
§3.4 Choosing project set-up options on page 79

Figure 6-1 Set Up Print RTF Project

Table 6-1 Print RTF set-up options and configuration settings

Set-up dialog Configuration file
Option Section Setting Default Ref.

Import Word Template [WordOptions] Template= filename.dot No default 6.2.6

Path to template file [WordOptions] Template= filename.dot No default 6.2.6

Word Template auto update [WordOptions] TemplateAutoUpdate=Yes Yes 6.2.6

Use frames for sideheads [WordOptions] Sideheads=Frame No default 6.7.3

Use indents for sideheads [WordOptions] Sideheads=Indent No default 6.7.3

Set sideheads flush left [WordOptions] Sideheads=Left No default 6.7.3

Write full headers/footers [WordOptions] HeadFoot=Standard Standard 6.5.9.5

Write only text for head/foot [WordOptions] HeadFoot=Text Standard 6.5.9.5

Do not write headers/footers [WordOptions] HeadFoot=None Standard 6.5.9.5

Use frames for head/foot [WordOptions] HFFramed=Yes Yes 6.5.9.5

6 CONVERTING TO PRINT RTF SETTING UP A PRINT RTF PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 147

6.2.3 Specifying output file extension

By default, Mif2Go produces RTF files with extension .rtf .

To specify a different file extension for RTF files:
[Setup]
FileSuffix=. ext

All versions of Word support RTF input. To produce .doc or .docx files, the RTF files
Mif2Go produces must be loaded in Word and then saved as the desired output; see
§6.17.1 Supporting more than one version of Word on page 195.

If you are converting to WordPerfect, also specify:
[WordOptions]
; WordPerfect = No (default) or Yes to override all features
; WP does not tolerate
WordPerfect = Yes

6.2.4 Specifying the default output language and c ode page

If you plan to produce Word output in a language other than US English, you can specify
the following for several languages:

Language or locale identifier
Code page.

Language or
locale identifier

To specify a language or locale identifier for print RTF output:
[Defaults]
; Language is the decimal Unicode language, or hexa decimal locale
; identifier, for the RTF default language, overrid ing the type in
; the source doc if given.
Language = 0x409

The default language is US English (Language=1033 or Language=0x409). If you
specify a value for Language , that value overrides any language specification in your
FrameMaker document.

You can use the following decimal Unicode values:

Mif2Go supports the following hexadecimal locales (always include the 0x):

Code page To specify the Windows ANSI code page to use:

US English 1033 (default)
UK English 2057

Oz English 3081

German 1031

US English 0x409 (default)

Greek 0x408

Russian 0x419

Turkish 0x41F

Czech (for CE) 0x405

Japanese 0x411

Traditional. Chinese 0x404

Simple Chinese 0x804

Korean 0x412

SETTING UP A PRINT RTF PROJECT MIF2GO USER’S GUIDE

148 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[Defaults]
; CodePage is the Windows ANSI code page number
CodePage = 1252

The value of CodePage is the Windows ANSI code page number, one of the following:

To specify whether to include a space after Unicode characters:
[Defaults]
; SpaceAfterUnicode = No (default, good for Cyrilli c and Greek),
; or Yes (best for Asian languages)
SpaceAfterUnicode=No

6.2.5 Constraining the number of bookmarks in Word

By default, Mif2Go includes bookmarks in Word for all references between documents,
and for all index ranges. However, Word has a limit of 16,379 bookmarks per document. If
you are converting a very large document with many references, you might need to reduce
the number of bookmarks.

To omit bookmarks in Word for index ranges:
[WordOptions]
BookmarkIXRanges = No

To omit bookmarks in Word for interfile references;
[WordOptions]
ExternalXrefs = No

When ExternalXrefs=No , if you are converting a multi-chapter FrameMaker book,
cross references between chapters will no longer update. However, jumps between
chapters will still work. See §6.11.5.2 Creating Word bookmarks for interfile cross
references on page 179.

6.2.6 Importing a Word template

Importing a Word template is a last-resort procedure. It is much safer to modify formatting
as needed by importing a FrameMaker template (see §2.4 Importing formats from a
conversion template on page 67), so the output from Mif2Go is already the way you want
it to look. The RTF Mif2Go produces is correct and valid, but what Word does with it
during template import is way beyond our control.

Although a Word template updates only style definitions, you can use a single entry in a
Word template to alter the properties of all FrameMaker formats merged to the same RTF
style. However, when it comes to affecting Word through its own methods, what Mif2Go
can do is limited. If you can produce the Word styles you need by using a FrameMaker
conversion template instead of a Word template, that is a much safer approach. Some

English 1252 (default)
Greek 1253

Russian 1251

Turkish 1254

Czech 1250

Japanese 932

Traditional Chinese 950

Simple Chinese 936

Korean 949

6 CONVERTING TO PRINT RTF ADJUSTING OUTPUT FOR DIFFERENT VERSIONS OF WORD

ALL RIGHTS RESERVED. MAY 18, 2013 149

FrameMaker features, such as sideheads, simply cannot be handled by a Word template.
See §2.4 Importing formats from a conversion template on page 67.

If your Word template has headers and footers, for example, they will not appear in the
output, because Word headers and footers work differently from FrameMaker headers and
footers. Word template headers and footers are used when you create new documents in
Word, but not when you apply the template to an existing Word document. If you want
headers and footers in the Word output from Mif2Go , you must supply them in a
FrameMaker template instead. Do whatever you must in FrameMaker to get them to come
out the way you want them to look in Word, regardless of how awful they look in
FrameMaker. See §6.5.9 Converting headers and footers on page 154.

To import a Word template.
[WordOptions]
; Template = name or full path of template file to attach
Template= MyWordTemplate.dot
; TemplateAutoUpdate = Yes (default, use template s tyle defs) or No
TemplateAutoUpdate=Yes

Unless both options are set, the properties of the original style remain as is in the text.

If setting TemplateAutoUpdate=Yes does not apply the styles, after converting the
document you might have to choose Tools > Templates and Add-Ins... in Word, and
check Automatically update document styles .

6.3 Adjusting output for different versions of Wor d
Microsoft makes significant changes to the underpinnings of every new version of Word.
RTF output from Mif2Go that looks fine in one version of Word might not look quite right
in another version. One of the most highly visible differences is the scaling of images. If
the graphics in your FrameMaker document look much too large or much too small in
Word, see §6.14.7 Preserving graphics scale in Word on page 191.

Consider which version(s) of Word will be used to view your Mif2Go print RTF output:
Word 2003 (the default)
Word 7/95 and earlier versions
Word 8/97 and later versions
Multiple versions of Word

Word 2003 (the
default)

By default, Mif2Go produces RTF output tuned for Word 2003. If you are running
Mif2Go from within FrameMaker, this is what you get when you choose Word 8/97 in the
Choose Project dialog (see §3.3 Creating a Mif2Go conversion project on page 78).

Word 7/95 and
earlier versions

If your RTF output files will be viewed in a version of Word earlier than Word 8/97, set
the following option:

[WordOptions]
; Word8 = Yes (default, for Word8/Office97 and late r) or No (earlier)
Word8 = No

Table 6-2 lists the main differences in the RTF code that Mif2Go generates, based on the
value specified for Word8.

CONVERTING A FRAMEMAKER BOOK TO PRINT RTF MIF2GO USER’S GUIDE

150 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Word 8/97 and
later versions

If your RTF output files will be viewed in a version of Word later than Word 8/97, use the
default value (Word8=Yes), and consider which of the following additional options you
might need:

[WordOptions]
; Word2000 = No (default) or Yes (for Word 9/2000)
; Word2002 = No (default) or Yes (for Word 10/XP)
; Word2003 = Yes (default) for Word 11/2003 or No
; Word2007 = No (default) or Yes (for Word 12/2007)
; Word2009 = No (default) or Yes (for Word 13/2009)
; Word2010 = No (default, or Yes (for Word 14/2010)

In practice, Word2003 through Word2010 produce the same output; if any one of these is
set to Yes , the result is the same. However, specifying either Word2000=Yes or
Word2002=Yes (or both) and not any of Word2003 through Word2010 will produce
graphics scaled in himetric units rather then twips; see §6.14.7 Preserving graphics scale
in Word on page 191.

Differences in how Word interprets RTF code are particularly noticeable in the following
document features:

Multiple versions
of Word

If your RTF output files will be viewed in multiple versions of Word, see §6.17.1
Supporting more than one version of Word on page 195.

6.4 Converting a FrameMaker book to print RTF
Word becomes unstable at much smaller document sizes than are typical for FrameMaker
books. Combining FrameMaker files into a single RTF file usually results in a file that
crashes Word. Word is limited to a maximum of about 150 pages per file, though you
might get away with larger files, or fail with smaller files. So merging the (usually larger)
FrameMaker files is a risky proposition. This is true especially if FrameMaker files
contain graphics; Word keeps a local copy of every referenced graphic in the document
file, so file sizes can become huge very quickly.

If you really must produce a single RTF file from a FrameMaker book, you can do so:

 • in FrameMaker before conversion:

Table 6-2 RTF differences between Word 7/95 and later versions

Feature Word 7/95 Word 8/97 and later versions Ref.

Hypertext fields Not produced Produced by default 6.11

Table straddles Column only Row and column 6.13

Table cell vertical alignment No Yes 6.13

Graphics scale units twips himetric (Word 8, 9, and 10 only) 6.14.7

Image field name IMPORT INCLUDEPICTURE 6.14.2.3

Graphics Scaling units vary among Word versions; see §6.14.7 Preserving
graphics scale in Word on page 191.

Tables Straddled rows and rotated text are supported only by some Word
versions; see §6.13 Converting tables to print RTF on page 184.

Links Cross references and hypertext links can be made active and updatable
in later versions of Word; see §6.11 Converting cross references and
hypertext links on page 174.

Revision
tracking

Revision tracking can be turned on automatically in some versions of
Word; see §6.16 Turning on revision tracking in Word on page 194.

6 CONVERTING TO PRINT RTF SPECIFYING DOCUMENT LAYOUT OPTIONS

ALL RIGHTS RESERVED. MAY 18, 2013 151

§2.5.6 Producing a single output file from a FrameMaker book on page 73

 • in Word after conversion:
§6.17.4 Combining RTF files into a Word master document on page 197.

6.5 Specifying document layout options
You might have to experiment with page-layout settings to achieve correct spacing in
Word. For most layout changes in FrameMaker, Mif2Go starts a new section in Word.

In this section:
§6.5.1 Understanding page layout restrictions on page 151
§6.5.2 Eliminating large top or bottom margins on page 151
§6.5.3 Using text frames to solve spacing problems on page 152
§6.5.4 Maintaining pagination in Word on page 152
§6.5.5 Managing page and section breaks on page 152
§6.5.6 Specifying columns and gaps on page 153
§6.5.7 Adjusting sidehead width for Word on page 153
§6.5.8 Converting footnotes on page 153
§6.5.9 Converting headers and footers on page 154
§6.5.10 Converting special text flows for RTF output on page 156
§6.5.11 Handling different page size or orientation on page 157

6.5.1 Understanding page layout restrictions

Word does not cope well with varying page layouts. While it is possible to alter the header
and footer for the first page, it is not possible to alter other page layout features the way
you can in FrameMaker You must observe the following layout restrictions in your
FrameMaker document:

 • Use only First , Left , and Right master pages, and no others.
 • Keep all master-page body frames exactly the same size, at the same vertical position.

(Mirroring for left-right is acceptable; so is using a fixed gutter.)
 • Make sure that no part of the header extends below the top of the body frame, and that

no part of the footer extends above the bottom of the body frame.
 • Keep the header and footer simple: only one text frame each, with any graphics in

anchored frames.

If your FrameMaker document has a more complex layout, you might have to use a
conversion template to create an intermediate layout that conforms to these restrictions;
see §2.4 Importing formats from a conversion template on page 67.

6.5.2 Eliminating large top or bottom margins

An unusually tall top or bottom margin in Word is almost always caused by a master-page
element in your FrameMaker document; see §6.1.1 Understanding differences in
implementation on page 142. In Word, the body area must be entirely below the header
and above the footer; this means that some FrameMaker layouts cannot be reproduced in
Word.

The remedy is to use a FrameMaker conversion template; see §2.4 Importing formats from
a conversion template on page 67. The template must include replacement master pages
that do not have whatever element is causing the large top or bottom margin. Make sure

SPECIFYING DOCUMENT LAYOUT OPTIONS MIF2GO USER’S GUIDE

152 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

master pages are imported from the template, with a configuration setting; see §30.7.1
Specifying conversion-template settings on page 864.

Note: A Word template will not help with this problem.

6.5.3 Using text frames to solve spacing problems

When text flows through an extra frame, as in a lift or insert, Mif2Go tries by default to
make a Word text box the same size, containing the text. When this works, it looks good.
When it does not work, it makes a mess, and you are better off just having the content in
the regular body text stream:

[WordOptions]
; UseTextFrames = Yes (default, to emulate framing) or No
UseTextFrames=Yes

Experiment with the following option when you are trying to solve bizarre spacing
problems around text frames, such as when they push other text and frames far, far away:

[WordOptions]
; WrapAroundTextFrames = Yes (default, leave room a round) or No
WrapAroundTextFrames=Yes

The default is to omit the RTF \nowrap property; when WrapAroundTextFrames=Yes ,
Mif2Go uses \nowrap .

6.5.4 Maintaining pagination in Word

Word copyfits more loosely than FrameMaker, and tends to break pages earlier. To
maintain in Word the same pagination as in FrameMaker, you might have to create a
conversion template (see §2.4 Importing formats from a conversion template on page 67),
and tune the template so page breaks occur at the same places in Word as in FrameMaker.

A conversion template might have to include format tweaking to maintain the same
pagination in Word. Probably you would want to reduce default table cell margins, and
space above and below tables, to make the tables in your document fit the same amount of
space. Sometimes a reduction of 5% in the type size, such as changing 11 pt. to 10.5 pt. for
Word output, brings the appearance of the document in Word closer to its appearance in
FrameMaker. Also, a fractional reduction of paragraph spacing seems to help.

See also:
§6.5.5 Managing page and section breaks on page 152

6.5.5 Managing page and section breaks

You can have Mif2Go remove all page breaks, keep those specified via the paragraph
format’s Pagination setting (Top of: Page, Left Page, or Right Page), or keep all hard page
breaks (the default). Normal keeps them all, including those inserted with overrides;
Format does away with the overrides:

[WordOptions]
; PageBreaks =
; Normal (retain),
; Format (only in format def), or
; Remove
PageBreaks=Normal

Word uses section breaks to permit the kind of format changes FrameMaker handles with
a new master page, such as a change of header/footer. When Mif2Go encounters a page
(after the first) that does not use the default left and right master pages, Mif2Go starts a

6 CONVERTING TO PRINT RTF SPECIFYING DOCUMENT LAYOUT OPTIONS

ALL RIGHTS RESERVED. MAY 18, 2013 153

new output section with that page, and sets a new first-page header and footer according to
the FrameMaker master page used; see §6.5.9.4 Converting headers and footers on
different master pages on page 155.

To prevent section breaks when the master page changes in FrameMaker:
[WordOptions]
; KeepSectBreaks = Yes (retain, Word default) or No (remove)
KeepSectBreaks=No

If you like what you get when KeepSectBreaks=Yes , use this setting; if not, set
KeepSectBreaks=No .

6.5.6 Specifying columns and gaps

You can specify the number of columns to appear on an output page and the gap between
columns. If you use the default values (zero), the number of columns and the size of the
intercolumn gap stays the same as specified for the Right master page in FrameMaker:

[WordOptions]
; PageColumns = 0 (default, set per Right master) o r number to use
PageColumns=0
; PageColGap = 0 (default, set per Right master) or twips to use
PageColGap=0

Mif2Go tries to determine reasonable values based on analysis of the master page text-
frame geometry, which does not always come out right when you have a complex multi-
flow layout.

6.5.7 Adjusting sidehead width for Word

If your FrameMaker document uses more than one master page, and one or more master
pages specify different sidehead widths, tables that are oriented across all columns might
appear distorted in Word output; this is because Mif2Go uses the sidehead width specified
on the first master page for the entire document. If that width is inappropriate for the
remainder of the document, you can specify a standard sidehead width in twips (twentieths
of a point) for Mif2Go to use for the entire output.

For example, to specify a sidehead width of 1.1 inches and a gap of 0.15 inch:
[WordOptions]
; SHWidth = 0 (default, set per first usage) or twi ps to use
SHWidth=1584
; SHGap = 0 (default, set per first usage) or twips to use
SHGap=216

A better approach is to use a conversion template to establish a standard layout for Word
output.

See also:

§2.4 Importing formats from a conversion template on page 67
§6.1.1 Understanding differences in implementation on page 142, Sidehead formats
§6.5.1 Understanding page layout restrictions on page 151

6.5.8 Converting footnotes

Word handles footnotes differently from FrameMaker. Mif2Go outputs FrameMaker
asterisk footnotes as a count of asterisks. Subscripts and superscripts follow the
FrameMaker document settings for relative size and position. The default configuration

SPECIFYING DOCUMENT LAYOUT OPTIONS MIF2GO USER’S GUIDE

154 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

setting for numbered footnotes uses fixed numbers, emulating FrameMaker’s footnote
handling: cross references to footnotes are correct, and the numbers stay the same.

If you need to add or delete footnotes in the output Word document, and you want auto-
renumbering to work, you can take your chances with “real” Word footnotes:

[WordOptions]
; Footnotes = Standard (Word default), Embed (betwe en []), None, or
; Variable (using real Word footnotes, so xrefs to them are wrong)
Footnotes=Variable

6.5.9 Converting headers and footers

Usually the best approach to converting headers and footers is to determine what you want
to see in Word, then create FrameMaker content that produces that result on conversion,
regardless of what the master page looks like in FrameMaker. Use the resulting master
pages in a conversion template, which is a necessity for Word conversions involving
complex header/footer usage.

In this section:
§6.5.9.1 Understanding how Mif2Go treats header and footer text on page 154
§6.5.9.2 Converting headers and footers for WordPerfect on page 154
§6.5.9.3 Adjusting headers and footers for conversion on page 154
§6.5.9.4 Converting headers and footers on different master pages on page 155
§6.5.9.5 Positioning header and footer text and graphics on page 155
§6.5.9.6 Converting alternate running headers and footers on page 156
§6.5.9.7 Eliminating missing-formats error messages on page 156

See also:
§2.4 Importing formats from a conversion template on page 67
§30.7 Applying FrameMaker conversion templates on page 863

6.5.9.1 Understanding how Mif2Go treats header and footer text

Mif2Go outputs the actual FrameMaker header and footer content (and any master-page
graphics) in Word absolute-positioned frames, anchored in the Word header and footer
areas. The only way to change header and footer content in Word is with a section break.
For conversion to Word, your FrameMaker master pages can alter header and footer
content for left, right, and first pages, but the header and footer text frames must be
identical across all pages.

6.5.9.2 Converting headers and footers for WordPer fect

WordPerfect cannot handle RTF frames; for WordPerfect, Mif2Go writes FrameMaker
header and footer text without frames. When you specify WordPerfect as the output type,
Mif2Go automatically sets HeadFoot to Text and HFFramed to No:

[WordOptions]
; HeadFoot = Standard, Text (no graphics), or None (for WinHelp)
HeadFoot=Text
; HFFramed = Yes (default) to position headers/foot ers using frames
HFFramed=No

6.5.9.3 Adjusting headers and footers for conversi on

Headers and footers often need adjustment for conversion to Word. For example:

6 CONVERTING TO PRINT RTF SPECIFYING DOCUMENT LAYOUT OPTIONS

ALL RIGHTS RESERVED. MAY 18, 2013 155

 • A running header or footer in Word can reference only one paragraph format, not a list
of alternate formats.

 • Master-page elements in Word cannot go down the side of the page; all header
material must be above any body material, and all footer material must be below the
body.

You might have to prepare a conversion template (see §2.4 Importing formats from a
conversion template on page 67) to apply before converting your document, to make
headers and footers comply with the following requirements:

 • Header elements must not extend below the top edge of the body frame.
 • Footer elements must not extend above the bottom edge of the body frame.
 • Top and bottom of the body frame must be in the same position on all pages

(including the first).
 • All header text must be in one header frame, and all footer text in one footer frame.
 • Graphics must be in anchored frames, and must not extend outside the header or footer

frame.

If the header extends downward or the footer extends upward (often along the side edge in
FrameMaker), you might find that Word forces a page break, so that there is only one line
per page. In Word, the body text has to start below the lowest point in the header, and end
above the highest point in the footer. When that is not possible, Word puts out a minimum
of one line anyway.

6.5.9.4 Converting headers and footers on differen t master pages

When the first page uses a master page different from the normal left and right, Mif2Go
identifies the master page, creates the required header and footer (if used), and picks up
any first-page graphics and untagged text frames.

Word uses section breaks to permit the kind of format changes FrameMaker handles with
a new master page, such as a change of header/footer. When Mif2Go encounters a page
(after the first) that does not use the default left and right master pages, Mif2Go starts a
new output section with that page, and sets a new first-page header and footer according to
the FrameMaker master page used. See §6.5.5 Managing page and section breaks on
page 152.

6.5.9.5 Positioning header and footer text and gra phics

By default, Mif2Go uses text frames to position headers and footers in the output. You can
specify whether to let framed header/footer text wrap, and you can adjust the space around
the frames:

[WordOptions]
; HFFramed = Yes (default) to position headers/foot ers using frames
HFFramed=Yes
; WrapAroundHFFrames = Yes (default, let text wrap around) or No
WrapAroundHFFrames=Yes
; HFGap = twips to space around header/footer frame s, default none
HFGap=0

Aligning headers
and footers with

graphics

If you have graphic elements placed directly on the master page in the header and footer
areas, the text in the header/footer text frames might not align vertically with those
elements, because FrameMaker and Word calculate frame positions differently. To correct
the positioning, you can set a vertical adjustment value (positive to move down, negative
to move up) for the text. The default setting is 100 twips (twentieths of a point), which
moves the text down 5 points:

SPECIFYING DOCUMENT LAYOUT OPTIONS MIF2GO USER’S GUIDE

156 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[WordOptions]
; HFVertAdjust = twips to move header/footer text d own
; (negative for up)
HFVertAdjust=100

Eliminating
graphics from
headers and

footers

If you do not want to retain FrameMaker header/footer graphics in Word, you can specify
that headers and footers should be text only:

[WordOptions]
; HeadFoot = Standard (default), Text (no graphics) ,
; or None (for WinHelp)
HeadFoot=Standard

6.5.9.6 Converting alternate running headers and f ooters

Your FrameMaker document might use Running H/F variables that have alternate values,
with definitions such as the following:

<$paratext[SectTitle,ChapTitle,AppxTitle]>

Word does not support alternate text for headers and footers, so Mif2Go uses the only the
first format encountered in the definition. However, you can achieve the same effect in
Word by directing Mif2Go to map all the formats to the same Word style. For example:

[Styles]
SectTitle=Title

[StyleReplacements]
ChapTitle=Title
AppxTitle=Title

The result is {STYLEREF Title} in Word. The mapping changes the style name, but not
the format properties. If the format properties are different, ChapTitle and AppxTitle items
would keep their FrameMaker properties as overrides, unless you were to apply a Word
template to remove them. You can replace as many formats as you please this way.

6.5.9.7 Eliminating missing-formats error messages

If your headers or footers contain variables that refer to unused paragraph formats, the
following setting prevents Word from displaying an error message:

[WordOptions]
; WriteMissingForms = Yes (default), write empty hi dden paras
; at start of file for var formats that are used in headers/footers
; but not in doc)
WriteMissingForms=Yes

6.5.10 Converting special text flows for RTF outpu t

In FrameMaker you might be using a special-purpose text flow that you do not want in the
converted file. For example, you might use a different flow for starting autonumbers, in
white text so they do not show. When you convert a file with multiple flows, the added
flows come out as added sections, following the main text. This would be fine if the flow
were for a sidebar, for example, where you want to keep the text. But if it is one you would
rather lose, and it has a different Flow Tag from the text you do want to convert, you can
direct Mif2Go to skip the unwanted text flow:

[TextFlows]
; flowtags to Skip
; or to treat as Normal (to keep in same RTF secti on)
z=Skip
A=Normal
B=Normal

6 CONVERTING TO PRINT RTF CONVERTING SYSTEM VARIABLES TO TEXT FOR RTF

ALL RIGHTS RESERVED. MAY 18, 2013 157

You can also use this facility to put different flows in different RTF files, by running
Mif2Go once to create each file, editing the configuration file to skip a different set of
flows before each run.

If your FrameMaker document contains separate text flows for material you want included
in the normal flow (such as boilerplate elements), you can make the special flow part of
the normal flow by adding lines setting both flows to Normal .

Mif2Go normally processes each tagged text flow in the FrameMaker file as a separate
section in the Word file. To make the content of all flows to appear in page sequence
instead:

[WordOptions]
; SingleFlow = No (default, handle flows separately) or Yes
SingleFlow=Yes

6.5.11 Handling different page size or orientation

If the master pages in your document are of different sizes, and you are converting to
Word, Mif2Go starts a new Word section each time the page size changes. For example, if
your First master page has a body text frame that is a different size from the body text
frames on Left and Right pages, in Word you will get a section break between first and
second pages; probably not what you want. You have two choices:

 • Use a conversion template that has all master-page body text frames the same size (see
§2.4 Importing formats from a conversion template on page 67).

 • Use paragraph spacing and Frame Above / Frame Below in FrameMaker to get the
desired effect on the First page, but keep the body-text frame the same size as for Left
and Right pages.

If you use landscape pages for large tables, as long as no text flows across the page breaks
before and after each table, the effect should look the same in Word as in FrameMaker. A
change to or from landscape can happen only at a section break in Word.

6.6 Converting system variables to text for RTF
The only way Mif2Go can get the text content of FrameMaker system variables (such as
date and time) that appear on body pages into RTF output is to convert these variables to
text. Other variables are already available in a usable form, in the MIF files.

To convert date/time and file-name system variables, that appear on body pages in
FrameMaker, to text in the output, specify the following setting:

[Setup]
; ConvertVariables = No (default) or Yes (convert t o plain text)
ConvertVariables=Yes

For example, you might want to use this setting to get the value of Creation Date or
Modification Date to appear in the output.

Note: You do not need this setting for system variables that appear on master pages;
Mif2Go converts those variables to their Word field equivalents. For Running H/F
variables, see §6.5.9.6 Converting alternate running headers and footers on
page 156.

Note: For system variables to show up in the MIF files, Mif2Go must read your original
FrameMaker files. If you specify Use existing MIF on the Export dialog or in
your project configuration file, system variables are not converted.

CONVERTING PARAGRAPH AND CHARACTER FORMATS MIF2GO USER’S GUIDE

158 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

6.7 Converting paragraph and character formats
Sometimes differences in available formats between FrameMaker and Word can make
precise conversions tricky. You might have to experiment with different settings to get the
appearance you want.

In this section:
§6.7.1 Mapping paragraph formats to RTF styles on page 158
§6.7.2 Merging paragraph formats on page 159
§6.7.3 Converting sidehead formats on page 159
§6.7.4 Converting run-in headings on page 160
§6.7.5 Converting autonumbered formats on page 160
§6.7.6 Converting bulleted formats on page 162
§6.7.7 Converting reference frames for Word on page 162
§6.7.8 Converting character formats on page 163
§6.7.9 Removing unused formats on page 163

6.7.1 Mapping paragraph formats to RTF styles

You can remap formats to have other names in the output file. One reason for doing this
might be to enable the use of Word’s paragraph autonumbering facility, which requires use
of the predefined Heading 1 through Heading 9 styles:

[Styles]
; Document para format name = RTF style name (affec ts name only)
; Always use the remapped (RTF) name in the HelpSty les sections
; the RTF name must be unique; some examples are sh own below
; the Heading N styles support Word outline and aut onumber features
ChapTitle=Title
Heading1=Heading 1
Heading2=Heading 2
Heading3=Heading 3
Heading4=Heading 4
Heading5=Heading 5
HeadingRunin=Heading 6
Numbered1=Heading 7
Numbered=Heading 8
Heading9=Heading 9

You cannot use
[Styles] to merge

formats

Even though in FrameMaker the Numbered1 and Numbered formats are really at the same
level, they are not assigned the same name in the output file. Each style name used for the
RTF file must be unique; you cannot use the [Styles] section to merge styles. If you try
to do so, Word unmerges them for you, by adding a digit after the repeating name. For
example, if you specify both Numbered1=Heading 7 and Numbered=Heading 7 ,
Word renames the second style Heading 71 . Use the [StyleReplacements] section
to map multiple formats to a single style; see §6.7.2 Merging paragraph formats on
page 159.

You cannot map
to Normal style

For the same reason, avoid mapping any format to Normal , which Word uses for its first
style. Word renames such mapped styles Normal1 , Normal2 , and so on.

Null mappings are
ignored

Mif2Go ignores any assignment in the [Styles] section that has no entry to the right of
the equals sign.

6 CONVERTING TO PRINT RTF CONVERTING PARAGRAPH AND CHARACTER FORMATS

ALL RIGHTS RESERVED. MAY 18, 2013 159

6.7.2 Merging paragraph formats

To merge formats, use the [StyleReplacements] section to map each format to an
existing RTF style. For example:

[StyleReplacements]
; Document para format name = replacement existing RTF style name
; the RTF name need not be unique, and may be creat ed in [Styles]
; the properties of the original style remain as-is in the text
; unless Template and TemplateAutoUpdate are set i n [WordOptions]
HeadingRunIn=Heading 2
SubHead=Heading 2

Mif2Go ignores any assignment in the [StyleReplacements] section that has no entry
to the right of the equals sign.

6.7.3 Converting sidehead formats

If your document uses FrameMaker sideheads, you have some choices to make, because
Word does not support sideheads as such. Mif2Go offers four options:

[WordOptions]
; Sideheads = Left (simplest), Indent, Frame (most accurate),
; or Normal

Options for Sideheads have the following effects:

Fine-tune
sideheads

You can specify additional fine-tuning options to position sideheads in the output
document. If you specify a value other than No for ForceSideHeadPos , that value
applies if you have also specified Indent or Frame for Sideheads :

[WordOptions]
; ForceSideHeadPos = No (default), Left, Right, Inn er, or Outer
ForceSideHeadPos=No

Span all columns If your document uses a FrameMaker paragraph format that spans all columns including
sideheads, Mif2Go inserts an anchor paragraph, so the text box containing the spanning
paragraph does not become entwined with the text box containing a directly following

Left Sets the sideheads flush left in the main text column, which is widened to
the full page width (less margins).

Indent Uses left and right indents to create a sidehead-column effect. The
sideheads are all right-indented, and the body is left-indented. Heads that
span both columns continue to do so. The sideheads are aligned with their
bottoms, instead of their tops, even with the top of their related text.

Frame (Not available for WinHelp) Does an excellent emulation of FrameMaker
sideheads most of the time, provided the sideheads are always on the left;
do not even try it if you have sideheads set to “Inside” or “Outside”. This
option works by placing all sideheads in text-relative Word frames, and
narrowing the text column to duplicate the FrameMaker layout. Mif2Go
undertakes some serious reformatting to achieve this effect. For example,
the Space Above for both the sidehead and its text paragraph must be set to
0; otherwise they will not align correctly if they happen to fall at the top of
a page. Mif2Go changes the Space Below of the previous paragraph to
compensate. The spanning heads are also in frames, anchored to a dummy
paragraph in the text column so that they do not conflict with any
following sideheads.

Normal Uses whatever the paragraph format specifies, which is usually the wrong
thing to do.

CONVERTING PARAGRAPH AND CHARACTER FORMATS MIF2GO USER’S GUIDE

160 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

sidehead. If there is always body text in between, Mif2Go anchors the text box for the
spanner to the body paragraph. (Word does not handle correctly two text boxes anchored
to the same place):

[WordOptions]
; SHSpannerAnchors = Yes (default,
; anchor paras after framed spanners)
SHSpannerAnchors=Yes

Align sideheads You can attempt to improve the way sidehead text boxes align to body paragraphs:
[WordOptions]
; SHVertAdjust = twips to move sidehead framed text down (neg for up)
SHVertAdjust=0

6.7.4 Converting run-in headings

Word does not support run-in headings as such; however, Mif2Go can emulate
FrameMaker run-in headings in RTF output:

[WordOptions]
; RunInHeads = Runin (Word default) or Normal (help default)
RunInHeads=Runin

RunInHeads=Runin , the default value for Word output, produces what appear to be run-
in headings in Word. However, if a run-in heading occurs at end-of-flow in a table cell or
text frame, and therefore has no following paragraph, Mif2Go treats the run-in heading as
a normal paragraph regardless of the value of RunInHeads .

6.7.5 Converting autonumbered formats

To successfully convert FrameMaker autonumbers, it is best to use FrameMaker
paragraph numbering facilities consistently. For example, if you use <$chapnum> for
some paragraph formats in a given autonumber series, use it for all formats in that same
series.

In this section:
§6.7.5.1 Understanding autonumbering options in Word on page 160
§6.7.5.2 Converting autonumbers to Word SEQ fields on page 161
§6.7.5.3 Converting autonumbers via Word style sheet on page 161

6.7.5.1 Understanding autonumbering options in Wor d

By default, Mif2Go converts FrameMaker autonumbers to text in Word output; this is
consistent with the objective of providing read-only output for Word. See §6.1 Converting
to Word: a one-way street on page 141.

Instead of converting autonumbers to plain text, you can have Mif2Go do either of the
following:

Convert autonumbers to Word SEQ fields
Replace autonumbers with Word native numbering.

Convert
autonumbers to

Word SEQ fields

If you are migrating FrameMaker documents to Word instead of using Word only for
review, converting FrameMaker autonumbers to Word SEQ fields gives you “live”
autonumbers in Word. Unlike Word style sheet-based numbering, Word SEQ fields are
stable, and can represent any FrameMaker autonumber sequence. You get a flexible
numbering system in Word that gives you exactly what you want, rather than the limited
options available from the Word Bullets and Numbering dialog. See §6.7.5.2 Converting
autonumbers to Word SEQ fields on page 161.

6 CONVERTING TO PRINT RTF CONVERTING PARAGRAPH AND CHARACTER FORMATS

ALL RIGHTS RESERVED. MAY 18, 2013 161

Replace
autonumbers with

Word native
numbering

You can have Mif2Go apply a Word template that replaces FrameMaker autonumbers
with Word style sheet-based autonumbers; however, this method is not supported, and not
recommended. FrameMaker has much more reliable and flexible autonumbering than
Word, and only in the most trivial cases can you duplicate FrameMaker numbering using
Word native autonumbering. See §6.7.5.3 Converting autonumbers via Word style sheet
on page 161.

6.7.5.2 Converting autonumbers to Word SEQ fields

To convert FrameMaker autonumbers to Word SEQ fields, set the following options:
[WordOptions]
; WriteAnums = Yes (default, write per SeqAnums) or No (omit entirely,
; used when having a Word style sheet add them for selected styles)
WriteAnums = Yes
; SeqAnums = No (default, write as text) or Yes (wr ite as SEQ fields)
SeqAnums = Yes

When WriteAnums=Yes (the default) and SeqAnums=Yes, Mif2Go converts
FrameMaker autonumbers to Word SEQ fields.

When WriteAnums=No , the value of SeqAnums is ignored, and FrameMaker
autonumbers are omitted in favor of whatever Word stylesheet you supply. This is not a
recommended option, because Word style-based numbering is very problematic.

If you find that non-numbered paragraphs also get numbered when you set WriteAnums=
Yes and SeqAnums=Yes, look at the FrameMaker numbering properties of the format(s)
in question. Sometimes people add numbering properties such as A:< =0> to the Body
paragraph format, for example, to reset numbering for list formats; Mif2Go does not add
numbering beyond what is specified in your FrameMaker document.

To eliminate unwanted autonumbers, you can import a FrameMaker conversion template
to change the definitions of formats that should not be numbered in RTF output; see §2.4
Importing formats from a conversion template on page 67.

To insert a new item in a SEQ field-based autonumber sequence in Word, the best practice
is to copy and paste an instance of that number style, either from the same sequence or
from a Word template. You cannot include in a Word style SEQ fields (or bullets) as such.

6.7.5.3 Converting autonumbers via Word style shee t

Before attempting to use Word native autonumbering, consider the following:

 • Many FrameMaker autonumber sequences cannot be represented this way.
 • All FrameMaker-generated autonumbers in your document will be omitted from Word

output, including autonumbers in cross-reference formats.
 • Word-generated autonumbers might not be the same as the FrameMaker-generated

autonumbers; the Word numbering system is notoriously buggy.
 • Setting up a .dot template for style sheet-based autonumbers in Word is not a trivial

exercise.
 • Mif2Go does not support Word native autonumbering; if you use this method, you are

on your own getting the numbers right using Word styles.

If you still want to take a chance with Word native autonumbering, make a Word template
(a .dot file) with numbering set for the styles you wish; see §6.2.6 Importing a Word
template on page 148. When you convert your document, Mif2Go attaches the .dot file
to the Word .rtf file and makes it active.

In the Mif2Go configuration file, specify the following options:

CONVERTING PARAGRAPH AND CHARACTER FORMATS MIF2GO USER’S GUIDE

162 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[WordOptions]
; WriteAnums = Yes (default, write per SeqAnums) or No (omit entirely,
; used when having a Word style sheet add them for selected styles)
WriteAnums=No
; SeqAnums = No (default, write as text) or Yes (wr ite as SEQ fields)
SeqAnums=No

When WriteAnums=No , Mif2Go omits FrameMaker autonumbers from RTF output, so
Word style sheet autonumbers can be applied from a Word template. Autonumbers also
disappear from any cross references in your document.

When WriteAnums=Yes , if you use Word autonumbering in your Word template, you
will see both the Word autonumbers and the converted-to-text FrameMaker autonumbers
in the output.

When you open the RTF file in Word, Select All (Ctrl-A) then update (F9), and the regular
Word autonumbers should appear throughout the document. Thereafter, when you add a
new numbered paragraph, the number appears automatically. You must use Ctrl-A /F9 to
get the numbers that follow to update; that is how style sheet-based numbering works in
Word.

6.7.6 Converting bulleted formats

Bulleted lists in FrameMaker should convert to their RTF equivalents without a problem,
except in the following circumstance:

 • You are converting to Word 97.
 • The FrameMaker format name for a bulleted paragraph starts with the word “bullet”

followed by a space.

When a Word style has a name that starts with “bullet ”, Word 97 helpfully supplies a
bullet as a prefix; the result is two bullets in front of each item. The problem does not
occur in later versions of Word, and does not affect format names such as Bulleted.

If the RTF files you produce will be viewed in Word 97, you can rename the problem
formats in the configuration file. For example:

[Styles]
Bullet Open=Bull Open
Bullet Sq=Bull Sq
Bullet Sq Indent=Bull Sq Indent

6.7.7 Converting reference frames for Word

You can choose whether or not to include reference frames defined for paragraph formats,
and if so, whether to use the actual reference-page graphic or just its name. (You might
want the name if it is descriptive, such as “Note” or “Caution”). If you specify Text to
include just the name, also specify a format (FrameMaker paragraph format) for the name:

[WordOptions]
; RefFrames =
; Graphic (show Frame Above and Below),
; Text (name only), or
; None
RefFrames=Text
; RefFrameDefFormat = the format to be used for Tex t reference frames
RefFrameDefFormat= AlertHead

You can override the RefFrames settings for individual named reference frames:
[RefFrameFormats]
; override default RefFrames setting here for speci fic frame names

6 CONVERTING TO PRINT RTF CONVERTING TABS AND SPACES

ALL RIGHTS RESERVED. MAY 18, 2013 163

; give the frame name with no style, or "Graphic", after the "=" to
; keep the frame as a graphic, specify a style name to make it text,
; or use "None" to eliminate it altogether
Hints=Title 2

6.7.8 Converting character formats

Mif2Go can output FrameMaker character formats as Word character styles, instead of as
overrides. This is sometimes difficult for Word to handle, however, so use this feature only
if you anticipate needing to revise the Word text:

[WordOptions]
; CharStyles sets char properties in styles (causes problems with WP)
CharStyles=Yes
; CharStylesUsedInText = No (default); or Yes, use cs codes in text
CharStylesUsedInText=Yes

Style names only,
not properties

Be aware that if Mif2Go does not output style properties explicitly, they do not appear in
Word. That is, the style name appears, but the actual properties are all Word defaults. That
is why Mif2Go puts out what in FrameMaker would be overrides: there is no choice, in
Word.

6.7.9 Removing unused formats

Mif2Go keeps track of which paragraph and character formats are actually used in the
output file, and can remove unused formats. The default is to leave them in:

[WordOptions]
; RemoveUnusedStyles = No (default for Word) or Yes
RemoveUnusedStyles=No

If your document contains variables that refer to unused paragraph formats, the following
setting prevents Word from displaying an error message:

[WordOptions]
; WriteAllVarForms = No (default) or Yes (write emp ty hidden paras
; for all var formats even if they appear to be use d in doc body)
WriteAllVarForms=Yes

6.8 Converting tabs and spaces
Mif2Go uses font metrics (see Table 6-3 on page 167) to convert from FrameMaker’s
absolute tabs to Word’s relative tabs. Mif2Go uses these metrics to compute tabs in
graphics as well as in text.

In this section:
§6.8.1 Understanding differences in tab behavior on page 163
§6.8.2 Understanding differences in spaces on page 164
§6.8.3 Altering tab behavior for Word output on page 164
§6.8.4 Altering font metrics to adjust tabs on page 165

6.8.1 Understanding differences in tab behavior

FrameMaker uses absolute tabs; Word uses relative tabs:

Absolute: Tab stops are specified at fixed positions; if the line before a tab runs past
the tab position, the tab has no effect.

CONVERTING TABS AND SPACES MIF2GO USER’S GUIDE

164 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

To determine how many relative tabs to put out for RTF, Mif2Go must know two things:

 • the intended tab position
 • the current tab position.

Mif2Go stores the intended position. The current position must be computed, based on
character size, character spacing, expansion and compression, and so forth.

Font metrics Computing character size for tab spacing is problematic. Because the combined font-
metric information for all available fonts would exceed the capacity of many hard drives,
Mif2Go simplifies font metrics by using PostScript relative-character-width rules and a
single number, which you can specify in the configuration file; see §6.8.4 Altering font
metrics to adjust tabs on page 165.

Unused tabs If a FrameMaker paragraph format (for example, Header 1) includes unused tabs, and the
text before an unused tab ends very close to the position of that tab, Mif2Go might
calculate that the text extends beyond the tab, while Word calculates that it stops before
the tab, and therefore uses the “wrong” tab. The best way to correct this problem is to
remove the unused tab from the FrameMaker format. The other remedy is to import a
FrameMaker conversion template that defines the format in question without the unused
tab; see §2.4 Importing formats from a conversion template on page 67.

6.8.2 Understanding differences in spaces

Unlike FrameMaker, Word does not have a “thin space”. The smallest space in Word is a
nonbreaking space, so Mif2Go converts each thin space in your FrameMaker document to
a nonbreaking space in Word. However, a Word nonbreaking space is twice the width of a
FrameMaker thin space. If you include a series of thin spaces followed by a tab, for
example in an autonumber format, the converted autonumber can extend past the tab
setting; the result is that the tab is dropped in Word (see §6.8.1 Understanding differences
in tab behavior on page 163).

Thin spaces can
affect Word tabs

To avoid overrunning tabs in Word, either reduce the number of thin spaces (for example,
in an autonumber format change \st\st\st to \st\st or to \sn\st), or set the
following option to force a space between the number and the following text:

[WordOptions]
OccludedTabs=Space

See also:
§6.7.5 Converting autonumbered formats on page 160
§6.8.3 Altering tab behavior for Word output on page 164

6.8.3 Altering tab behavior for Word output

You can modify some aspects of tab behavior in Word:
Tab width
Hidden tabs
Right tabs
Trailing tabs
Underlined tabs
Comparing underlined vs. trailing tabs.

Relative: Wherever you are in a line, a tab causes a move to the next tab stop. Add
or delete a few letters, and the text at the end (after all the tabs) can jump
to the wrong columns.

6 CONVERTING TO PRINT RTF CONVERTING TABS AND SPACES

ALL RIGHTS RESERVED. MAY 18, 2013 165

Tab width You can specify a default tab width in twips (twentieths of a point):
[WordOptions]
; DefTabWidth = 0 (default, ignore undefined tabs)
; or twips (720 for 0.5")
DefTabWidth = 0

Hidden tabs You can choose to remove tabs that have no effect in a FrameMaker paragraph (because
their nominal ruler positions are hidden by text), replace each with a space, or keep them
in the output document:

[WordOptions]
; OccludedTabs = Remove (normal), Space, or Tab
OccludedTabs = Remove

Right tabs You can specify how to treat right-alignment tabs:
[WordOptions]
; RMarginTabs =
; Left (return),
; Right (keep in col),
; Both (default),
; None
RMarginTabs = Both

Trailing tabs To preserve trailing tabs; for example, if you use a trailing tab to insert a signature line:
[WordOptions]
; TrailingTabs = No (default, omit trailing tabs) o r Yes
; (preserve trailing tabs in Word output)
TrailingTabs = Yes

Underlined tabs If you have underlined text in FrameMaker, and you tab within the text, FrameMaker does
not continue the underline under the tabbed area (Word works the opposite way:
underlines continue). By default, Mif2Go turns off the underline for the tabbed areas in
Word output, which is not what you want if you are making up a form, with ruled lines
made from the underlines.

To underline tabbed areas that follow underlined text:
[WordOptions]
; UnderlineTabs = No (default, normal FrameMaker be havior) or Yes
UnderlineTabs = Yes

Comparing
underlined vs.

trailing tabs

These two settings (TrailingTabs and UnderlineTabs) are entirely different.
Normally, at the end of a paragraph, Mif2Go simply cancels any leftover tabs. With
TrailingTabs , Mif2Go writes them instead. With UnderlineTabs , Mif2Go does not
write them.

To emulate FrameMaker behavior, Mif2Go turns off the underline just before the (first)
tab, unless UnderlineTabs is set. TrailingTabs has no effect on that action.

6.8.4 Altering font metrics to adjust tabs

You might need to adjust font metrics if you find that the effect of tabbing in the RTF file
does not match the effect in FrameMaker. The Mif2Go font metric value is an
approximation; if the metric:

 • underestimates text width, the result might be an extra tab
 • overestimates text width, a needed tab might not be put out.

Missing tabs,
extra tabs

Generally only very small adjustments (one unit at a time) are needed:

 • If a tab is missing that should be present, reduce the metric value for the font used for
that line.

 • If an extra tab is present, increase the metric.

SPECIFYING FONT USAGE MIF2GO USER’S GUIDE

166 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

To specify font metrics:
 [FontWidths]
; RTF font name = relative width, to compute line l ength for tabs
; reduce if needed tabs omitted, increase if extra tabs present
; add entries for any additional fonts used in RTF documents
Times New Roman=90

Table 6-3 on page 167 lists the default metrics for common fonts.

Note: Altering font metrics has no effect on the output of normal text; the metrics are
used only to calculate tab positions, and to process text lines in graphics that
include font changes.

Use tables
instead

The font metric value does not affect tabs at the start of a line, but only tabs positioned
after some text. Often the best way to avoid trouble for such tabs is to use a FrameMaker
table instead.

Another way to avoid trouble is to ensure the following:

 • only tab stops that are actually used are present
 • no tab stop is “too close” to the end of text in the previous column.

Worst case is when you have tabs set every half inch all the way across the page, with tight
columns; you might not be able to find font-metric values that makes them all work.

6.9 Specifying font usage
In this section:

§6.9.1 Setting default font parameters on page 166
§6.9.2 Remapping fonts on page 166
§6.9.3 Specifying font types on page 167
§6.9.4 Specifying font encoding for non-Western characters on page 168
§6.9.5 Specifying font encoding for FrameMaker 8 Unicode on page 169
§6.9.6 Removing unused fonts on page 170

6.9.1 Setting default font parameters

You can specify a default output font, and set default height and width values for the font:
[Defaults]
FontName=Times New Roman
; FontSize is in twips, 240 = 12pt
FontSize=220
; FontWidth is width in twips for a 12pt en space
FontWidth=144

6.9.2 Remapping fonts

You can remap fonts the same way you remap formats. The default values map common
FrameMaker PostScript fonts to their TrueType equivalents:

[Fonts]
; Document font name = RTF font name
; for winhelp, stick to TT fonts in the RTF
; MS Serif and MS Sans Serif are always available,
; but only at 8, 10, 12, 14, 18, and 24pt sizes
; these change from PS fonts to the corresponding T T:
Helvetica-Narrow=Arial Narrow
Helvetica=Arial

6 CONVERTING TO PRINT RTF SPECIFYING FONT USAGE

ALL RIGHTS RESERVED. MAY 18, 2013 167

Times*=Times New Roman
Courier=Courier New
Century Schoolbook=NewCenturySchlbk
Common Bullets=CommonBullets
MyriaMM*=Arial

You can add to this list as you please; the names on the left must be unique, but those on
the right can appear any number of times; that is, you can map several FrameMaker fonts
to a single RTF font. You can use wildcards: ? to match any one character, and * to match
zero or more characters. This can be useful when you have several font variations that start
with the same characters, that should be remapped the same way; for example,
MyriaMM*=Arial . You can use this feature even if some names contain * or ?, because
Mif2Go always tries for an exact character match first.

6.9.3 Specifying font types

Font types are critical to correct Word handling of characters in fonts that FrameMaker
considers to be “symbol”, but that are not among the common symbol fonts (Symbol,
WingDings, and Zapf Dingbats). This font-type information is essential in the RTF font
list; Word might produce errors if the information is incorrect. Mif2Go provides default
font types for the fonts listed in Table 6-3.

Table 6-3 Default font types and metrics for RTF

Font Type Metric

Arial 2 138

Arial Narrow 2 115

AvantGarde 2 144

Bookman 1 150

Bullets 5 180

CommonBullets 5 180

Courier 3 144

Courier New 3 144

Dingbats 5 180

Garamond 1 145

Helvetica 2 138

Helvetica-Black 2 155

Helvetica-Light 2 130

Helvetica-Narrow 2 115

Korinna 1 140

MS Serif 1 144

NewCenturySchlbk 1 135

Palatino 1 141

Symbol 6 130

Times 1 134

Times New Roman 1 120

Webdings 5 180

Wingdings 5 180

ZapfChancery 4 121

ZapfDingbats 5 180

SPECIFYING FONT USAGE MIF2GO USER’S GUIDE

168 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Mif2Go uses the font metrics shown in Table 6-3 to convert tabs; see §6.8.4 Altering font
metrics to adjust tabs on page 165.

If your document contains fonts other than those listed in Table 6-3, you can determine
their types as follows:

1. In Word, create a document that uses those fonts.

2. Save the document as RTF.

3. Look at the RTF in a text editor to find the RTF type number and name associated with
each font. The font table is at the start of the RTF, and looks something like this:
{\fonttbl
{\f1 \froman \fcharset0 Times New Roman;}
{\f2 \fswiss \fcharset0 Arial Rounded MT Bold;}
{\f3 \fswiss \fcharset0 Arial;}
{\f4 \fmodern \fcharset0 Courier New;}
{\f5 \fswiss \fcharset0 Arial Narrow;}
{\f6 \ftech \fcharset2 Symbol;}
{\f7 \fdecor \fcharset2 Wingdings;}}

The \f N number at the beginning of each entry is the type number. Table 6-4 shows
the type number, type name, font family, and character-set encoding for each font
type.

4. Specify the font name and type number in the configuration file. For example:
[FontTypes]
; Font name = type number (0 to 7)
Arial Rounded MT Bold=2

See also:
§6.9.4 Specifying font encoding for non-Western characters on page 168
§6.9.5 Specifying font encoding for FrameMaker 8 Unicode on page 169

6.9.4 Specifying font encoding for non-Western cha racters

To produce RTF output that includes non-Western characters (text in which the “high
ASCII” character set contains characters other than the European accented characters),
you might have to specify an encoding value for a Windows font that contains the
characters you need at the same code points as the font you use in FrameMaker.

Note: If you are using FrameMaker version 8.x, see §6.9.5 Specifying font encoding for
FrameMaker 8 Unicode on page 169, for methods to convert Unicode characters
to the Windows encodings needed by Word.

Table 6-4 RTF font types and font families

Type
Type
name Font family Encoding

0 fnil Unknown or default fonts fcharset0

1 froman Roman, proportionally spaced serif fonts fcharset0

2 fswiss Swiss, proportionally spaced sans serif fonts fcharset0

3 fmodern Monospaced serif and sans serif fonts fcharset0

4 fscript Script fonts fcharset0

5 fdecor Decorative fonts fcharset2

6 ftech Technical, symbol, and mathematical fonts fcharset2

7 fbidi Arabic, Hebrew, and other bidirectional fonts fcharset0

6 CONVERTING TO PRINT RTF SPECIFYING FONT USAGE

ALL RIGHTS RESERVED. MAY 18, 2013 169

The RTF font table (see §6.9.3 Specifying font types on page 167) shows an encoding
value for each font, as fcharset N. The value of N for the Western character set is 0 (zero)
for font types 1 through 4 and font type 7 (see Table 6-4 on page 168). To determine the
correct value of N for your language, use a text editor to examine the RTF font-table
entries for a file that Word renders correctly in your language. Some fcharset N values:

For example, to specify Cyrillic font encoding:
[FontEncoding]
; Font name = value to use in font table for fchars et
Times New Roman CYR = 204

This setting tells Word to display Cyrillic characters in place of accented characters for the
high ASCII code points.

Sometimes Word gets it right without this clue, but it never hurts to be explicit. Mif2Go
simply passes the number through to the RTF font table, so you can use any number that
you find works for you in Word (or in WinHelp).

See also:
§6.9.3 Specifying font types on page 167

6.9.5 Specifying font encoding for FrameMaker 8 Un icode

For FrameMaker version 8.x Unicode, at present Mif2Go supports Cyrillic 204, Central
European 238, Greek 161, and Turkish 162 character sets. The font encoding for these
character sets for Times New Roman, Arial, and Courier New is built in for FrameMaker 8
conversions, and need not be specified. For Asian fonts, the supported encodings are 128
for Japanese (Shift-JIS), 136 Traditional Chinese, 134 Simple Chinese, and 129 Korean.

For other conversions from FrameMaker 8 Unicode, the default fonts used for characters
that are not in the Windows ANSI encoding are as follows:

In each case, the encoding identifier (Cyr , CE, Greek , or Tur) is added to the font name.

To use different fonts for one or more of font types froman , fswiss , or fmodern , map
them to the default fonts. For example:

[DefaultUnicodeFonts]
Times New Roman Cyr = Century Cyr

Make sure the font you specify really contains the characters for the encoding you
indicate.

Character set fcharset N
Baltic 186

Central European 238

Cyrillic 204

Greek 161

Johab 130

Mac 77

Thai 222

Turkish 162

Vietnamese 163

Font type Font used
froman Times New Roman

fswiss Arial
fmodern Courier New

MODIFYING TEXT APPEARANCE MIF2GO USER’S GUIDE

170 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See also:
§6.9.3 Specifying font types on page 167
§6.9.4 Specifying font encoding for non-Western characters on page 168

6.9.6 Removing unused fonts

Mif2Go keeps track of which fonts are actually used in a file, and can remove unused
fonts:

[WordOptions]
; RemoveUnusedFonts = No (default for Word) or Yes
RemoveUnusedFonts = Yes

Generally, you would want to keep all fonts in a document, so the Word default is to leave
them in.

6.10 Modifying text appearance
In this section:

§6.10.1 Adjusting line spacing on page 170
§6.10.2 Adjusting paragraph spacing on page 170
§6.10.3 Adjusting small caps on page 172
§6.10.4 Specifying a style for quotes on page 172
§6.10.5 Mapping high ASCII characters for RTF output on page 172
§6.10.6 Specifying text color on page 172
§6.10.7 Hiding white text on page 173
§6.10.8 Hiding content in Word on page 173
§6.10.9 Omitting content from RTF output on page 174
§6.10.10 Replacing content in RTF output on page 174

6.10.1 Adjusting line spacing

The default setting for line spacing allows Word to expand lines to accommodate taller
characters, such as embedded bitmaps. If you prefer that Word use exact line spacing, set
the following option:

[WordOptions]
; ExactLineSpace = No (default, variable line height allowed) or Yes
ExactLineSpace=Yes

You can also set a default line space for the output, in twips (twentieths of a point):
[Defaults]
; LineSpacing is in twips, 240 = 12pt
LineSpacing=240

6.10.2 Adjusting paragraph spacing

In this section:
§6.10.2.1 Understanding inter-paragraph spacing differences on page 171
§6.10.2.2 Keeping or reducing space above paragraphs on page 171
§6.10.2.3 Keeping or removing empty paragraphs on page 171
§6.10.2.4 Adjusting paragraphs in extra text frames on page 172

6 CONVERTING TO PRINT RTF MODIFYING TEXT APPEARANCE

ALL RIGHTS RESERVED. MAY 18, 2013 171

6.10.2.1 Understanding inter-paragraph spacing dif ferences

Word inter-paragraph spacing for versions of Word up to Word 2003 was additive: the
space between two paragraphs was equal to the space below the first paragraph plus the
space above the second paragraph. FrameMaker inter-paragraph spacing equals the space
below the first paragraph or the space above the second paragraph, whichever is greater.
To make Word and FrameMaker inter-paragraph spacing equivalent, you would have to
set space above to zero for all paragraph formats in FrameMaker, and just use space below.

In addition, FrameMaker cancels the space above the first paragraph in a frame, such as at
the top of a page; Word does not. Again, using zero space above is the only way to get the
equivalent in Word; but then you have a problem with headings that do not start new
pages.

You might think you could import a Word template to correct spacing for selected
paragraph styles (see §6.2.6 Importing a Word template on page 148). However, applying
a Word template does not remove overrides.

6.10.2.2 Keeping or reducing space above paragraph s

By default, Mif2Go adds overrides in Word to make spacing come out the same as in
FrameMaker; that is, Mif2Go reduces space before in the RTF output (though not in the
style definition) to simulate FrameMaker’s larger-of-two-values rule instead of Word’s
sum-of-two-values rule.

To direct Mif2Go to use the Word sum-of-two-values rule instead of the FrameMaker rule
for inter-paragraph spacing:

[WordOptions]
; ParaSpace = Normal (retain above & below) or Fram e (adjust above)
ParaSpace=Normal

When ParaSpace=Normal , Mif2Go uses both space above and space below in RTF
output. This can result in overlarge spacing.

When ParaSpace=Frame (the default), Mif2Go checks adjacent paragraphs case by
case, and alters the space above the second paragraph of each pair (often to zero) as an
override, in an attempt to match Word spacing to FrameMaker spacing. However, an exact
match is not always possible.

6.10.2.3 Keeping or removing empty paragraphs

By default, Mif2Go removes empty paragraphs. If you use empty paragraphs in
FrameMaker for their spacing effect, and the result in Word is insufficient space without
them, you can specify keeping the anchors:

[WordOptions]
; KeepAnchorParagraphs = No (default),
; Yes keeps anchor paras as spacers
KeepAnchorParagraphs=Yes

To keep empty paragraphs above selected paragraph formats only, instead of setting
KeepAnchorParagraphs=Yes you could use a macro to put the empty paragraph back
in the RTF output just for those formats. For example:

[WordStyles]
ChapTop = CodeBefore

[ParaStyleCodeBefore]
ChapTop = \pard \s0 \sa240 \par

MODIFYING TEXT APPEARANCE MIF2GO USER’S GUIDE

172 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

These settings would put an empty paragraph before each ChapTop paragraph in RTF. The
RTF code \sa240 would add 240 twips (twentieths of a point) of space below the empty
paragraph. You can adjust this number to suit. See §28.9.3 Surrounding or replacing text
with code or macros on page 822.

6.10.2.4 Adjusting paragraphs in extra text frames

If you have a text frame on a body page other than the normal body frame (often the case
on a “First” page when the title is positioned using such a frame), and there is more than
one paragraph in the frame, the paragraphs might wind up on top of each other. If the
massive chunk of Mif2Go code that tries to detect and fix this fails, you can give this
setting a shot:

[WordOptions]
; UseParaAnchors = No (default),
; Yes for successive paras in same frame
UseParaAnchors=Yes

6.10.3 Adjusting small caps

Word sometimes has difficulty producing text in Small Caps style. The text might be too
small to read easily, reducing the size of the original caps. If this happens, you can turn off
the Small Caps style. Or, you can make the Small Caps in Word follow the FrameMaker
size rules:

[WordOptions]
; SmallCaps = Standard (default), Frame (using FM s izing), or None
SmallCaps=Frame

6.10.4 Specifying a style for quotes

Converting to Word for print output, you might choose to use keep FrameMaker “smart
quotes” (curly quotes); or, set Quotes to Help to convert them all to vertical quote marks:

[WordOptions]
; Quotes = Help (only " and ') or Standard (allow l eft/right quotes)
Quotes=Standard

6.10.5 Mapping high ASCII characters for RTF outpu t

Changing the following option to Yes suppresses the remapping of high-bit-set ASCII
characters (typically accented characters) from FrameRoman, forcing their literal use. If
you find that such characters are turning into unwanted different characters in the output,
setting NoSymMap=Yes can fix the problem; if not, setting NoSymMap=Yes will cause the
problem instead:

[WordOptions]
; NoSymMap = No (default, map text chars from Frame set)
; or Yes (unmapped)
NoSymMap=No

6.10.6 Specifying text color

Mif2Go converts FrameMaker color definitions from CMYK to RGB, and adds them to
the RTF color table so that they look the same in Word. You can choose whether to retain
text colors:

[WordOptions]
; TextColor = 0 (all black) or 1 (as is, the defaul t)
TextColor=1

6 CONVERTING TO PRINT RTF MODIFYING TEXT APPEARANCE

ALL RIGHTS RESERVED. MAY 18, 2013 173

If you use text colors only for ease of editing in FrameMaker, and want them to come out
black in the converted files, set TextColor=0 (this is the default for WinHelp
conversions.) You can keep text colors as they are, with TextColor=1 .

Note: The TextColor setting does not affect the use of color in graphics, including
graphics text (such as callouts). The RTF color table also does not affect the
colors used in graphics; color information is embedded in the graphic metafile.

6.10.7 Hiding white text

One way to put “invisible” text into FrameMaker is to make the text white, so that
FrameMaker does not display the text unless it is against a dark background. To make
Mif2Go ignore white text, so that paragraphs containing only white text are removed
entirely, set this option to Yes (the default is No):

[WordOptions]
; HideWhiteText removes any white text (standard Fr ameMaker behavior)
HideWhiteText=Yes

If your FrameMaker document contains any white text you want to retain, use the default
setting HideWhiteText=No , and get rid of unwanted instances of white text by one of the
following methods:

 • Assign their formats the [WordStyles]Delete property (see §6.10.9 Omitting
content from RTF output on page 174).

 • Apply FrameMaker conditional text to hide them.

6.10.8 Hiding content in Word

To convert content so it becomes hidden text in Word, a unique paragraph format for the
material in FrameMaker, and assign the following property to the format:

[WordStyles]
; Hide makes the content Word hidden text.
ParaFmt=Hide

When you assign the Hide property to a paragraph format, all text in that format remains
hidden in Word unless the user chooses to view hidden text. This setting is meant for Word
output only; the Hide property is ignored in WinHelp.

If you really want the content not to be included at all in Word, see §6.10.9 Omitting
content from RTF output on page 174.

Anchor at
insertion point

If content to be hidden includes graphics or other items in anchored frames, the frame
anchors must be placed “at insertion point” in the anchoring paragraph. If you give an
anchored frame any other position, its contents remain visible in Word.

Mif2Go uses
hidden text

Mif2Go uses Word hidden text to emulate several FrameMaker features. If you have other
plans for hidden text in Word, and you do not want Mif2Go codes visible in Word when a
user views hidden text, you must disable the following conversion features:

 • Word-generated index; see §6.17.2 Including index terms in Word on page 195.
 • Live cross references; see §6.11.2.2 Making cross references active and updatable on

page 175.
 • Live page numbers in interfile links; see §6.11.5.3 Making page numbers in interfile

links updatable on page 180.

CONVERTING CROSS REFERENCES AND HYPERTEXT LINKS MIF2GO USER’S GUIDE

174 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

6.10.9 Omitting content from RTF output

To prevent text from appearing in RTF output, you can use conditional text, or you can do
the following:

1. Use a special value of @outputclass (for example, onlineonly)

1. Use a special paragraph format (for example, OnlineOnly) for all instances of the
unwanted text in your document.

2. In the configuration file, assign property Delete to the paragraph format:
[WordStyles]
; format (char or para) = keyword
; Delete is used to remove displayable text
OnlineOnly=Delete

If a table or graphic is anchored in a paragraph whose format is assigned the Delete
property, the table or graphic is retained, and only the text of the paragraph is deleted.

To remove unwanted blank paragraphs at the end of topics:
[WordOptions]
; FrameEndPara = Yes (default, preserve empty parag raph at end of text
; frame) or No (remove empty final paragraph)
FrameEndPara = No

6.10.10 Replacing content in RTF output

This method is deprecated in favor of the CodeReplace property described in §28.9.3
Surrounding or replacing text with code or macros on page 822.

You can direct Mif2Go to replace the content of a paragraph, or of a character-formatted
span of text, with arbitrary RTF code:

[WordStyles]
; format (char or para) = keyword
; Replace deletes, and also puts out the RTF in [W ordReplacements]
Parafmt = Replace

You specify the replacement RTF code as a property of the format to which you assigned
the Replace property:

[WordReplacements]
; Replace causes the insertion of raw RTF code
; in place of the original content of the named pa ra or char format
Parafmt = { some arcane string of RTF code}

See also:
§6.10.2.3 Keeping or removing empty paragraphs on page 171
§28.3.7.2 Inserting code with the CodeStore property on page 804.

6.11 Converting cross references and hypertext lin ks
In this section:

§6.11.1 Including ObjectIDs for Word links and cross references on page 175
§6.11.2 Converting cross references to Word on page 175
§6.11.3 Converting hypertext links to Word on page 178
§6.11.4 Locking hypertext links to allow revision tracking on page 178
§6.11.5 Enabling interfile cross references and hypertext links on page 179
§6.11.6 Replacing building blocks in master-page references on page 181

6 CONVERTING TO PRINT RTF CONVERTING CROSS REFERENCES AND HYPERTEXT LINKS

ALL RIGHTS RESERVED. MAY 18, 2013 175

6.11.1 Including ObjectIDs for Word links and cros s references

For active cross references and hypertext links in Word output, FrameMaker ObjectIDs
must be included in RTF output.

To specify whether Mif2Go should include the FrameMaker ObjectIDs from your
document:

[WordOptions]
; ObjectIDs = Referenced (default, used by TOC or I X), None, or All
ObjectIDs=Referenced

ObjectIDs values have the following effects:

The default setting allows you to have active contents, index, cross-reference, and
hypertext links in Word.

For information about ObjectIDs in FrameMaker, see §5.3 Identifying files and objects on
page 117.

6.11.2 Converting cross references to Word

Cross references can become active links in Word, and they can be updated in Word.

In this section:
§6.11.2.1 Understanding how Mif2Go converts cross references on page 175
§6.11.2.2 Making cross references active and updatable on page 175
§6.11.2.3 Weighing cross-reference behavior trade-offs on page 177
§6.11.2.4 Producing numeric vs. full-text cross references on page 177
§6.11.2.5 Omitting cross references from RTF output on page 177

6.11.2.1 Understanding how Mif2Go converts cross r eferences

When you specify Word output, cross references in your FrameMaker document become
Word bookmarks and bookmark-references, precisely emulating the way FrameMaker
uses <$paratext> , <$paranum> , and <$paranumonly> ; Word has no direct
equivalents for these constructs. If you subsequently make changes to the text or number
of a source paragraph in Word, the cross reference also changes, after you update all fields.

By default, Mif2Go also wraps cross references as Word hypertext links.

6.11.2.2 Making cross references active and updata ble

For Word output, by default Mif2Go converts cross references to hypertext links, then
makes them act like cross references implemented as Word bookmarks:

[WordOptions]
; Xrefs = Standard (default, working), or None (pla in text)
Xrefs=Standard
; XrefHyper = Yes (default, make xrefs work as hype rlinks) or No
XrefHyper=Yes
; LockXrefs = Yes (default, faster load)

Referenced (Default) Mif2Go includes in the output every ObjectID in your
document that serves as a target of a link.

None FrameMaker ObjectIDs are omitted from the output. The result is
that no links are active in Word.

All Every Objecting your document ends up in the output.

CONVERTING CROSS REFERENCES AND HYPERTEXT LINKS MIF2GO USER’S GUIDE

176 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; or No (allow updating of xrefs)
LockXrefs=Yes

The default values for these settings have the following effects:

When Xrefs=None , cross references are converted to text, and are not updatable; but if
XrefHyper=Yes , they work as clickable links.

When XrefHyper=No , cross references do not work as links; but if Xrefs=Standard ,
they can be updated to match the source text.

When LockXrefs=No , you can update all cross references in Word without unlocking
them first. However, what you lose is accurate page numbers in references. If your cross
references do not include page numbers, this does not matter. If your cross references do
include page numbers, there is little to gain by setting LockXrefs=No , because all you
save in Word is a single click to unlock a reference for updating.

Table 6-5 summarizes the effects of these settings.

Note: The former FieldHyper setting is deprecated (and is replaced by XrefHyper),
but still works; the former Xrefs=Fields is replaced by Xrefs=Standard .

References
between files

If you are converting more than one FrameMaker file (typically a FrameMaker book), and
there are cross references between files, to make those cross references work as expected
you might need additional settings; see §6.11.5 Enabling interfile cross references and
hypertext links on page 179.

Referencing page
numbers in

different files

Word does not support page references for cross-reference destinations in a different file,
so Mif2Go produces a workaround in Word output. If you display hidden text in Word
after converting cross references, immediately following each heading you will see a
(hidden) page number; this is a Word PAGEREF field that points to the main bookmark for
the heading. The PAGEREF field is bookmarked also. This way, references to the heading
from other files can include dynamically updated page numbers.

Xrefs=Standard Changing the source text in Word, then updating the cross-
reference field, changes the text in the reference.

XrefHyper=Yes Clicking the reference in Word (Ctrl -clicking in Word 2003)
takes you to the source of the reference.

LockXrefs=Yes Updating a cross reference to reflect changes to the source text
requires unlocking the reference first.

Table 6-5 Effects of cross-reference settings in Word

Configuration settings Cross references in Word

Xrefs= XrefHyper= LockXrefs= Updatable? Active link? Pag e #s OK?

Standard Yes Yes Unlock first Yes Yes

No Yes Yes No

No Yes Unlock first No Yes

No Yes No No

None Yes Yes No Yes Yes

No No Yes No

No Yes No No Yes

No No No No

6 CONVERTING TO PRINT RTF CONVERTING CROSS REFERENCES AND HYPERTEXT LINKS

ALL RIGHTS RESERVED. MAY 18, 2013 177

6.11.2.3 Weighing cross-reference behavior trade-o ffs

Every version of Microsoft Word seems to behave differently with respect to cross
references. To ensure accurately displayed cross references, you might have to target a
single version of Word, and you might have to give up one or more of the following:

 • revision tracking
 • updating cross references
 • using cross references as live links.

Wrapping cross references as hypertext links avoids some problems, causes others:
[WordOptions]
; WrapXrefs = Yes (default, wraps full xref format content as
; hyperlink, but displays xrefs as errors on Word 20 00) or No
WrapXrefs=Yes

When WrapXrefs=Yes , cross references look and work as expected, but updating an
interfile reference might cause a cannot-open-file error message to replace the text of the
reference in Word 2000, even though the referenced file is present.

When WrapXrefs=No and LockXrefs=Yes , cross references are not active.

When WrapXrefs=No and LockXrefs=No , only the following cross references are
active:

 • Word 2000: cross references to target markers within the same file.
 • Word 2003 and later versions: cross references to target markers in other files.

6.11.2.4 Producing numeric vs. full-text cross ref erences

By default, cross references use FrameMaker numeric ObjectIDs instead of the full cross-
reference text; full-text cross references are not active in Word:

[WordOptions]
; XrefType = = Numeric (default) or Full (use only to eliminate dupes)
XrefType=Numeric

When XrefType=Numeric , only the ObjectID is included in the reference, rather than
the full text of the referenced source.

When XrefType=Full , Mif2Go includes the full text of cross references in RTF
bookmarks, which breaks the cross references. The only time you might need this setting
would be if your document contains two cross references with the same starting number
(followed by other differences) in the two markers; this is even less likely than finding
duplicate ObjectIDs in a document. The preferred remedy is to delete and recreate the less
used of the two markers, then resolve all references to that marker. Use XrefType=Full
only as a last resort, if both markers have thousands of references and resolving them is
too onerous. The result will be inactive cross references in Word.

6.11.2.5 Omitting cross references from RTF output

To actually omit cross references from RTF output, you must specify the following
property for each cross-reference format you want omitted:

[XrefStyles]
; xref format name = properties (Delete or Text),
; if omitted treated as link
XrefFormat=Delete

See also §6.2.5 Constraining the number of bookmarks in Word on page 148.

See also §6.11.5 Enabling interfile cross references and hypertext links on page 179.

CONVERTING CROSS REFERENCES AND HYPERTEXT LINKS MIF2GO USER’S GUIDE

178 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

6.11.3 Converting hypertext links to Word

By default, Mif2Go creates active links in Word from hotspots with hypertext markers in
your FrameMaker document:

[WordOptions]
; UseHyperlinks = Yes (default) or No (ignore all h yperlinks)
UseHyperlinks=Yes

When UseHyperlinks=Yes , hotspots with hypertext markers become active, clickable
links in Word.

When UseHyperlinks=No , hypertext hotspots are not clickable in Word. Nor are
contents or index entries clickable; see §6.12 Converting generated files to print RTF on
page 181.

Problems can arise when a hypertext hotspot includes other markers. Mif2Go handles
some of these problems; you might have to deal with others:

Alert markers with tilde are ignored
Index marker ObjectIDs are excluded
Ignore selected marker types
Ignore individual markers

Alert markers with
tilde are ignored

Mif2Go ignores hypertext Alert markers if the marker content starts with a tilde (~), as
used by MicroType TimeSavers.

Index marker
ObjectIDs are

excluded

Unless you are converting the FrameMaker index, by default Mif2Go turns off
FrameMaker Index marker ObjectIDs. To restore use of ObjectIDs for Index markers:

[WordOptions]
; KeepIXMarkerIDs = No (default, keep only if [Setu p]UseFrameIX) or
; Yes (always keep Unique ObjectIDs for Index marke rs)
KeepIXMarkerIDs=Yes

Ignore selected
marker types

To have Mif2Go ignore markers of a particular type, you can remap such marker types.
For example:

[Markers]
alert=Delete
openObjectId=Delete

See §29.3 Remapping marker types and hypertext commands on page 836.

Ignore individual
markers

To have Mif2Go ignore an individual hypertext marker, you must make the marker
conditional, and hide its condition before converting your document. You can do this with
a conversion template; see §2.4 Importing formats from a conversion template on page 67.

6.11.4 Locking hypertext links to allow revision t racking

You can lock hypertext links:
[WordOptions]
; LockHyper = No (default, allow edit) or Yes (when revision tracking)
LockHyper=Yes

When LockHyper=No , hypertext links are active in Word, and they are updatable in
Word. On the other hand, every hypertext link is marked with a change bar in Word when
revision tracking is on; see §6.16 Turning on revision tracking in Word on page 194.

When LockHyper=Yes , hypertext links are neither active nor updatable in Word;
however, at least in some versions of Word, locking them might avoid having every link
marked with a change bar when revision tracking is on.

6 CONVERTING TO PRINT RTF CONVERTING CROSS REFERENCES AND HYPERTEXT LINKS

ALL RIGHTS RESERVED. MAY 18, 2013 179

6.11.5 Enabling interfile cross references and hyp ertext links

In this section:
§6.11.5.1 Identifying Word link destinations with FileIDs on page 179
§6.11.5.2 Creating Word bookmarks for interfile cross references on page 179
§6.11.5.3 Making page numbers in interfile links updatable on page 180
§6.11.5.4 Mapping file names, extension, or location on page 180
§6.11.5.5 Using hypertext “message” commands for external links on page 181

6.11.5.1 Identifying Word link destinations with F ileIDs

For active interfile links in Word, link code must include file identification. The following
default setting ensures that cross references and hypertext links in your document include
FileIDs:

[WordOptions]
; UseFileIDs = Yes (default, needed for identifying xrefs) or No
UseFileIDs=Yes

When UseFileIDs=Yes , Mif2Go includes a FileID in the link code, so links do not get
confused if a cross-reference number or ObjectID is not unique. Mif2Go assigns FileIDs
to your FrameMaker files; see §5.3.4 Working with Mif2Go FileIDs on page 119.

Keeping or
replacing FileIDs

Suppose you are still using an RTF conversion project that has FileIDs listed under
[FileIDs] in your configuration file; you can either continue using the existing FileIDs,
or switch to the newer (preferred) method.

To continue using FileIDs listed in your configuration file, specify the following option:
[Setup]
; UseLocalFileID = No (default, use IDFile IDs)
; or Yes (use [FileIDs] here)
UseLocalFileID=Yes

See §5.3.4.4 Keeping legacy FileIDs in the configuration file on page 122.

To switch to mif2go.ini FileIDs, stay with the default, UseLocalFileID=No ; and update
settings in any configuration sections that reference the original FileIDs, such as the
[Graph*] sections. See §5.3.4.3 Updating files and references when FileIDs change on
page 121.

6.11.5.2 Creating Word bookmarks for interfile cro ss references

By default, Mif2Go reproduces FrameMaker cross references between files in RTF
output:

[WordOptions]
; ExternalXrefs = Yes (default, create all of the b ookmarks for each
; para that has an xref marker in it, for links fro m ext files) or No
; (create xref bookmarks only as required by refs i n the current file)
ExternalXrefs=Yes

When ExternalXrefs=Yes , Mif2Go creates bookmarks around all possible cross-
reference sources (<$paratext> , <$paranum> , and <$paranumonly>) in all
paragraphs that contain cross-reference markers, because there is no way to determine
which sources and which markers are actually referenced. In Word you can INCLUDE
and specify a bookmark, and get exactly the same effect as with an interfile REF system.
And, if Word cannot find the referenced file, no error message appears.

When ExternalXrefs=No , Mif2Go creates bookmarks only for cross-reference markers
that are referenced from within the same file. You could set ExternalXrefs=No to

CONVERTING CROSS REFERENCES AND HYPERTEXT LINKS MIF2GO USER’S GUIDE

180 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

decrease file size. However, this is useful only if your FrameMaker document has both of
the following characteristics:

 • many paragraphs with cross-reference markers
 • no external files that reference those markers.

6.11.5.3 Making page numbers in interfile links up datable

By default, Mif2Go makes page numbers in external references updatable:
[WordOptions]
; ExtXrefPages = Yes (default, make page refs to ex ternal files into
; updatable fields), or No (just put page numbers a s plain text)
ExtXrefPages=Yes

When ExtXrefPages=Yes , external cross references with page numbers get the page
number from the external file. However, if that file has not itself had its fields locked or
updated (see §6.11.2.2 Making cross references active and updatable on page 175), the
page-number value might not be correct. Once you update the page-number field in the
referenced file, and then in the referencing file, you should get the right page number in
the cross reference. Or, make sure LockXrefs=Yes (the default setting).

6.11.5.4 Mapping file names, extension, or locatio n

In most situations, interfile cross references and hypertext links function as active,
updatable links in Word with just the default settings for cross references and hypertext
links, provided your RTF output file names have both of the following characteristics:

 • extension .rtf (see §6.2.3 Specifying output file extension on page 147)
 • the same base names as the corresponding FrameMaker input files.

However, in the following situations you must specify additional settings to make interfile
references work:

 • You specified an extension other than .rtf for output files (see §6.2.3 Specifying
output file extension on page 147).

 • You specified names for output files that differ from names of the corresponding input
files (see §37.6 Specifying output file paths and names on page 1002).

 • After conversion, the file names or extension will change in a post-processing step; for
example, someone will load the output files in Word and then save them for further
use with an extension other than .rtf .

For interfile cross references and hypertext links you can specify the following:
Different file extension
Different file names
Default file location

Different file
extension

To specify the file extension to use in cross references and hypertext links:
[WordOptions]
; XrefFileSuffix = suffix to use to convert [WordXr efFiles] xrefs
XrefFileSuffix= ext

This setting specifies the extension to use in Word INCLUDE fields and HYPERLINK fields
when these fields reference a file other than the current file.

If you change the output file extension in a post-Mif2Go step, for example by saving the
files as .doc from within Word, specify the final extension you expect the files to have at
the time the cross references and hypertext links are used.

Different file
names

To map input-file base names to corresponding output-file base names:

6 CONVERTING TO PRINT RTF CONVERTING GENERATED FILES TO PRINT RTF

ALL RIGHTS RESERVED. MAY 18, 2013 181

[WordXrefFiles]
; file name in xref = file name for Word interfile xref
fchap1=wchap1

List mappings in the form oldfile=newfile, without file extension.

Default file
location

For some versions of Word, you might have to specify the default document location to be
the path to the directory where your converted files are located. From the top menu bar in
Word, go to: Tools > Options... > File Locations > Documents .

6.11.5.5 Using hypertext “message” commands for ex ternal links

Mif2Go produces links to external sources from hypertext markers in your document that
contain the following types of hypertext “message” commands:

message URL
message openfile

When a message openfile link specifies an absolute path (which must start with a drive
letter), Mif2Go removes any “file:/// ” URL prefix to the path, which is not needed in
RTF. For example:

message openfile file:///g:/omnisys/ug/out/ugmif2go .pdf

becomes (in Word 2003):
{*\fldinst {HYPERLINK {g:/omnisys/ug/out/ugmif2go. pdf}\\n }}

6.11.6 Replacing building blocks in master-page re ferences

Word does not have equivalents to <$paranum> and <$paranumonly> . When these
building blocks are used in cross references to text that appears on FrameMaker master
pages (such as in references to page numbers), by default Mif2Go substitutes a #
character. You can specify the correct number (or other text sequence) based on the name
of the FrameMaker file being converted:

[WordSectionFiles]
; file name = text for <$paranum> or <$paranumonly> , default "#"
chap1=1
intro=2
config=3

Mif2Go assumes that a single FrameMaker file will produce a single Word section, at
least with respect to page numbering. It does not matter if there are really ten Word
sections for a FrameMaker chapter; all will have the same chapter number. This is like the
<$chapnum> building block in FrameMaker 6+, specified for each FrameMaker file.

6.12 Converting generated files to print RTF
In this section:

§6.12.1 Specifying which generated files to convert on page 182
§6.12.2 Activating links in converted index and list files on page 182
§6.12.3 Making the entire text of each list entry an active link on page 182
§6.12.4 Ensuring link targets are present in RTF output on page 183
§6.12.5 Correcting <$nopage> index links on page 184

See also:
§6.17.2 Including index terms in Word on page 195

CONVERTING GENERATED FILES TO PRINT RTF MIF2GO USER’S GUIDE

182 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

6.12.1 Specifying which generated files to convert

To have Mif2Go convert FrameMaker TOC, IX, and other generated files, do one of the
following:

 • Check appropriate file options in the Set Up dialog; see §6.2.2 Choosing set-up
options for a print RTF project on page 146.

 • Include appropriate settings in the configuration file; see §5.5 Converting
FrameMaker-generated files on page 124.

Ensuring
accuracy of page

numbers

When you convert a FrameMaker-generated file to Word, such as a TOC or IX, Mif2Go
does not recompute page numbers. If you want those generated files to be useful in Word,
you might have to shrink the contents; see §6.5.4 Maintaining pagination in Word on
page 152. Or, you can make the index page numbers into active links; see §6.12.2
Activating links in converted index and list files on page 182.

6.12.2 Activating links in converted index and lis t files

For links in FrameMaker-generated files to become active links in Word, the following
default value must be in effect:

[WordOptions]
; UseHyperlinks = Yes (default) or No (ignore all h yperlinks)
UseHyperlinks=Yes

When UseHyperlinks=Yes , links in FrameMaker-generated files become active,
clickable links in Word. See §6.11.3 Converting hypertext links to Word on page 178.

When UseHyperlinks=No , links in FrameMaker-generated files are converted to plain
text.

Index files To get active links for multiple-page entries in output from FrameMaker IX files, you
must apply a character format to the page numbers; without the character format, multiple
page references for an index entry might cause a crash when UseHyperlinks=Yes . See
§5.5.3 Activating hypertext links in a converted index on page 125.

List files Because links in generated list files are by nature external to the files they reference, you
might have to provide additional settings to identify the files involved. See §6.11.5
Enabling interfile cross references and hypertext links on page 179 and §6.12.4 Ensuring
link targets are present in RTF output on page 183.

6.12.3 Making the entire text of each list entry a n active link

In FrameMaker-generated list files, entries that include a format change have their
associated hypertext links truncated at the point of change. For example, if an entry
includes a word to which a character format has been applied, the only part of the entry
that is an active link would be the text that precedes the character-formatted word.

To make the entire text of every entry an active link regardless of character format
changes, assign property ParaLink to the paragraph format. For example:

[WordStyles]
; paragraph format = ParaLink
; ParaLink prevents any char formats in the named p ara format from
; affecting the hotspot area for a link in that para .
*TOC = ParaLink
*LOF = ParaLink
*LOT = ParaLink

See also:
§5.10.2 Making an entire paragraph into a hotspot on page 138

6 CONVERTING TO PRINT RTF CONVERTING GENERATED FILES TO PRINT RTF

ALL RIGHTS RESERVED. MAY 18, 2013 183

6.12.4 Ensuring link targets are present in RTF ou tput

If the target of a link from a FrameMaker-generated list (such as TOC, LOF, or LOT) is
not referenced from any other point in your document, the ObjectID for that target might
not be present in Word output. This is because the default is to retain only referenced IDs
(see §5.3 Identifying files and objects on page 117). Mif2Go cannot tell from a file itself
whether any ObjectIDs are being referenced from other files.

Note: This is a problem only for converted lists; targets of links from converted indexes
are always present in RTF output.

To ensure that converted-list link targets are present, you have a couple of options:
Include all ObjectIDs
Assign a format property.

The following method is deprecated:
Assign a “level” number.

Include all
ObjectIDs

To include all ObjectIDs in RTF output:
[WordOptions]
ObjectIDs=All

Including all ObjectIDs can increase the size of each output file, by providing a Word
bookmark for every item. However, this setting does guarantee that links can be
completed. See §6.11.1 Including ObjectIDs for Word links and cross references on
page 175.

Assign a format
property

To assign an ObjectID-creating format property to each referenced paragraph format (for
example):

[WordStyles]
; KeepID retains the Frame ObjectID, so hyperlinks in Frame-generated
; files (TOC, LO*, IO*) work in Word; not needed for IX files.
ChapTitle=KeepID
Head1=KeepID
Head2=KeepID
Figure=KeepID
Table=KeepID

These settings cause Mif2Go to retain paragraph ObjectIDs for the formats listed. (The
same is true for the deprecated [WordStyles]Contents property.)

Note: Sometimes character formats can interfere with paragraph ObjectIDs. If any target
paragraphs have character formats applied, you might have to use the first method
instead: Include all ObjectIDs.

Assign a “level”
number

This method is deprecated; use one of the others instead. To assign an ObjectID-creating
“level” number to referenced paragraph formats (for example):

[WordCntStyles]
; style = 0 (the default), or 1 to create link targ ets
Figure=1
Table=1

The integer after the equals sign can be any integer greater than zero; the actual value does
not matter. Assigning a non-zero integer causes Mif2Go to retain paragraph ObjectIDs for
the formats listed.

CONVERTING TABLES TO PRINT RTF MIF2GO USER’S GUIDE

184 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

6.12.5 Correcting <$nopage> index links

A FrameMaker-generated index includes, for every <$nopage> entry, a link to the
original marker location in the document. The Sundorne Communications IndexRef plug-
in can change the links for <$nopage> See and See also entries in FrameMaker, so the
links point to the referenced index entries instead. See:

http://www.sundorne.com/FrameMaker/IndexRef/indexref.htm

When you convert a generated index to Word, Mif2Go converts any IndexRef-created
links properly. If you do not use IndexRef, links for See and See also entries in Word point
to the original location of the <$nopage> index markers in your document.

6.13 Converting tables to print RTF
In Word, tables are not objects. They are just paragraphs with border properties that make
them look like rows. Therefore, converted tables might not look quite the same in Word as
they do in FrameMaker. For example, titles of tables that span all columns and sideheads
in FrameMaker might not line up with the left edge of the table in Word. And multiple
table header rows might be split across page boundaries.

You might have to use a conversion template (see §30.7 Applying FrameMaker
conversion templates on page 863) to reduce font sizes in table cells, and reduce cell
margins, by 5% to 10%, to keep pagination the same as in FrameMaker; see §6.5.4
Maintaining pagination in Word on page 152.

To prevent table titles from being separated from their tables across Word page
boundaries, and to keep header rows together, in FrameMaker set Keep With: Next Pgf
for all table-title and table-header paragraph formats.

You can use configuration settings to control some table characteristics for RTF output:
Table title
Graphics in tables
Table indents
Cell properties
Straddled columns

For other differences you might have to supply a conversion template (see §2.4 Importing
formats from a conversion template on page 67), or modify table formats in your
FrameMaker document:

Space after tables
Rotated cell content
Straddled rows
Landscape tables
Tables with too many columns

If you use conditional text to hide all the rows in a table (but not the table anchor), you will
see extra space in the RTF output where the table would have been displayed. To avoid
this space, be sure to hide the table anchor.

Table title To reposition table titles, and specify whether to remove table variables:
[Tables]
; TableTitles = 0 to leave alone, 1 to put at top, 2 to put at bottom
TableTitles=0
; TableContinued = No (default) to remove variable from table titles
TableContinued=No

http://www.sundorne.com

6 CONVERTING TO PRINT RTF CONVERTING TABLES TO PRINT RTF

ALL RIGHTS RESERVED. MAY 18, 2013 185

; TableContVar = name of the variable used for tabl e (continued)
TableContVar=Table Continuation
; TableSheet = No (default) to remove this variable from table titles
TableSheet=No
; TableSheetVar = name of the variable used for tab le (Sheet m of n)
TableSheetVar=Table Sheet

In Word, table titles are not always positioned the same horizontally as in FrameMaker. To
try to force table titles to maintain FrameMaker positioning in Word (this does not always
work):

[Tables]
; TitleInRow = No (default), or Yes (puts table tit le in a row sized
; according to Frame's implicit rules for table tit le boxes)
TitleInRow=Yes

Graphics in tables To reposition graphics in table cells:
[Tables]
; TableGraphics = Standard (default, in cell), None , or Outside
; applies only to non-inline and non-runin frames a nchored in cell
TableGraphics=Standard

FrameMaker allows a graphic to overflow its table cell, and overlap cells to the right;
Word does not. If your document has tables that contain graphics, make sure any cells
under the graphics are straddled.

Table indents To remove table indents:
[Tables]
;ShiftWideTablesLeft = Yes (default, unindent overw idth tables) or No
ShiftWideTablesLeft=Yes

Cell properties To adjust cell properties for all tables:
[Tables]
; TableRules = Cell (standard default), None (help default), or one
; of the Box types: Box, Double, Thick, Shadow, P ara (variable)
TableRules=Cell
; TableFill = AsIs (default), ColorOnly, ShadingOnl y, None
TableFill=AsIs

Cell properties set in [Tables] apply to all tables in your document.

If TableRules has any value except Cell , Mif2Go does not write borders. If
TableFill=None or ColorOnly , Mif2Go ignores the table-format configuration
settings for shading.

Space after tables If your FrameMaker table format includes a space-below value greater than zero, Mif2Go
adds a blank “spacer” paragraph after the table in the RTF output, because Word has no
way to represent the space-below feature of a FrameMaker table.

Rotated cell
content

Word 9/2000 and earlier versions cannot handle rotated table cells, unless you put the
content of each cell in an anchored frame and rotate it inside the frame. The text will
appear correctly in Word unless you try to edit the picture created from the anchored
frame; then Word remembers that it cannot rotate text, and unrotates everything. Word
10/XP does allow rotated text in selected table cells, but does not allow rotation of a whole
table.

Straddled
columns

Given the opportunity, Word handles table cells that straddle columns by combining the
cells involved in the straddle into a single cell. Because this might not be what you want in
Word output, by default Mif2Go does not combine the cells; however, you can override
the default. To combine column-straddling cells into a single cell:

MANAGING GRAPHICS FOR PRINT RTF MIF2GO USER’S GUIDE

186 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[Tables]
; MergeStradCells = No (default) or Yes (combine co l-straddling cells)
MergeStradCells=Yes

Note: For WinHelp output, the default value of MergeStradCells is Yes (the opposite
of the default for Word); see §8.5.2 Adjusting table appearance on page 261.

Straddled rows Word 8/97 and later versions can handle straddled rows in tables; Word 7/95 cannot.

Landscape tables Word never allows a landscape table on a portrait page, with headers and footers in normal
portrait positions. If you have a landscape page, you get headers and footers running the
long way.

Tables with too
many columns

Word seems incapable of handling tables that have more than 63 columns. Such a table
ends up in Word with all columns beyond the 63rd merged into the last column allowed,
making that cell much taller than the rest, in every row. As a workaround, you can save the
FrameMaker file that contains the table as plain text, with tab delimiters for the table cells
and hard returns for the rows. Discard everything in the resulting.txt file except the
table, and import the file into Excel. Select all columns, resize their widths if necessary,
and print to PDF, reducing the size if necessary. Then import the PDF into Word.

6.14 Managing graphics for print RTF
In this section:

§6.14.1 Understanding graphics requirements for Word on page 186
§6.14.2 Converting referenced graphics on page 187
§6.14.3 Converting embedded graphics on page 189
§6.14.4 Limiting bitmap resolution and color depth on page 190
§6.14.5 Managing callouts added to graphics on page 190
§6.14.6 Positioning graphics and wrapping text on page 191
§6.14.7 Preserving graphics scale in Word on page 191
§6.14.8 Accommodating graphics in multiple versions of Word on page 192
§6.14.9 Including file names of referenced graphics in Word on page 192
§6.14.10 Linking instead of embedding referenced graphics on page 193
§6.14.11 Embedding graphics in converted RTF files on page 193
§6.14.12 Updating fields in Word to show linked graphics on page 193

See also:
§5.7 Processing graphics on page 126
§31 Working with graphics on page 869

6.14.1 Understanding graphics requirements for Wor d

To produce properly scaled images in Word at the best resolution, you need BMP (for
bitmap) or WMF (for vector) versions of the images in your FrameMaker document. Word
allows images to be scaled (to match their sizes in FrameMaker) only if the images are
embedded as WMFs. Only WMF or BMP images can be embedded as WMFs in Word.
Mif2Go wraps BMPs in WMFs for scaling purposes.

This is the only way to set the image scale and position in RTF.

Therefore, even though you can insert other types of graphics into a Word document,
images to be transferred from your FrameMaker document (or substituted for the images
in your FrameMaker document) must be in either BMP or WMF format. Also, Word

6 CONVERTING TO PRINT RTF MANAGING GRAPHICS FOR PRINT RTF

ALL RIGHTS RESERVED. MAY 18, 2013 187

requires a viewable WMF of each image to be present in the document file, even if you
“link” to the image.

Because Microsoft tinkers with the poorly documented WMF format, if your graphics do
not embed correctly, you might have to make do with referencing them in Word via
INCLUDEPICTURE field. See §6.14.10 Linking instead of embedding referenced graphics
on page 193

Mif2Go processes directly the following types of images in your FrameMaker document:

 • referenced or embedded WMF or BMP images that are alone in their anchored frames
(without callouts or other added elements)

 • embedded FrameImage graphics
 • vector images created with FrameMaker drawing tools.

Other images that are not WMF or BMP must be converted; the method depends on how
the images are included in your FrameMaker document:

Referenced graphics
Embedded graphics

Or, you can supply WMF or BMP equivalents for those images; see §31.3.2.1 Substituting
graphics files for RTF on page 890.

Use WMF only for
vector images

The bitmap part of each image must be in BMP format; use WMF only for real vector
graphics, not for bitmaps. Converting bitmap graphics to WMF increases processing time
dramatically, because Mif2Go has to take each such WMF graphic apart and adjust many
settings before embedding the image.

Referenced
graphics

If your FrameMaker document references graphics that are neither BMP nor WMF, you
must provide BMP or WMF replacements for the graphics files; see §6.14.2 Converting
referenced graphics on page 187.

For referenced graphics in other formats, Mif2Go puts each image file name in a Word
INCLUDEPICTURE field. What Word does with these images depends on which version of
Word is used to view the images. Because Word provides no way to specify scaling in an
INCLUDEPICTURE field, images in formats other than BMP or WMF are seldom the
proper size, unless they were included in FrameMaker at 96 DPI; see §6.14.2.3 Leaving
graphics unconverted for Word (no scaling) on page 188, and §6.14.12 Updating fields in
Word to show linked graphics on page 193.

Embedded
graphics

If your FrameMaker document includes embedded graphics that are neither BMP nor
WMF, by default Mif2Go exports those graphics and saves them as external graphics
files. See §6.14.3 Converting embedded graphics on page 189.

6.14.2 Converting referenced graphics

If your document references graphics that are not in BMP or WMF format, those graphics
must be converted to BMPs, to embed the images in Word. They do not have to be
processed every time you run the conversion, but only when graphics change.

In this section:
§6.14.2.1 Converting referenced graphics before Mif2Go (best quality) on page 188
§6.14.2.2 Converting referenced graphics with Mif2Go (least effort) on page 188
§6.14.2.3 Leaving graphics unconverted for Word (no scaling) on page 188

See also:
§6.14.10 Linking instead of embedding referenced graphics on page 193

MANAGING GRAPHICS FOR PRINT RTF MIF2GO USER’S GUIDE

188 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

6.14.2.1 Converting referenced graphics before Mif 2Go (best quality)

If you want properly scaled images in Word at the best resolution, use a third-party
graphics converter to make matching BMP images for referenced graphics that are in other
formats. This gives the best quality.

Note: This is your only choice if you are running Mif2Go via command line.

Although Mif2Go can create BMP images from other formats, that process uses the
FrameMaker graphic export filters, which are limited to screen resolution. This is
acceptable for documents viewed only on screen, but the images look fuzzy when printed.
Preconverting preserves the original resolution. It also allows Mif2Go to include any
callouts or other FrameMaker additions as vector elements in the WMF wrapper.

Replacements in
project directory

Put the resulting .bmp files in the project directory, and set the following options in the
configuration file:

[Graphics]
FilePaths=None
FileNames=Map

Replacements in
original directory

As an alternative, put the resulting .bmp files in the same directory with the original
graphics, and use the following options instead:

[Graphics]
FilePaths=Retain
FileNames=Map

See §31.3.2.1 Substituting graphics files for RTF on page 890.

Map old
extension to new

For each of the formats you are converting, specify the before and after formats. For
example:

[GraphFiles]
eps=bmp
gif=bmp

See §5.7 Processing graphics on page 126.

6.14.2.2 Converting referenced graphics with Mif2G o (least effort)

You can have Mif2Go convert referenced graphics using FrameMaker graphic export
filters. You get screen resolution and rather poor quality (especially for EPS; see §31.2.2.3
Converting EPS graphics on page 875), but this is the easiest choice.

Note: For graphics that are not alone in their anchored frames, this is the only choice.

In the Export dialog, choose Write for anchored frames . Mif2Go uses FrameMaker
graphic export filters to convert each anchored frame to a WMF, which is subsequently
embedded in the Word RTF file. This is a one-click solution, but it results in graphics that
are at screen resolution, and therefore might not print as well in Word as those produced
by a third-party converter. For example, screenshots will not be as sharp.

See §5.7.2.2 Using FrameMaker graphic export filters on page 129.

6.14.2.3 Leaving graphics unconverted for Word (no scaling)

If a graphics file imported into (or exported from) your FrameMaker document is in a
format other than BMP, WMF, RF (FrameImage), or FrameMaker native vector, and you
do not specify how it should be converted or mapped, by default Mif2Go plunks the name
of the graphics file into the RTF output file and lets Word try to cope. Sometimes it can.

For each such graphic, Mif2Go embeds an INCLUDEPICTURE field in the Word file, and
leaves it to Word to import the graphic. There is no way to specify scaling. Word imports

6 CONVERTING TO PRINT RTF MANAGING GRAPHICS FOR PRINT RTF

ALL RIGHTS RESERVED. MAY 18, 2013 189

the graphic at its “native” size, based on 96 DPI. If you imported the graphics by reference
into FrameMaker at 96 DPI, the scaling should come out right. See §6.14.12 Updating
fields in Word to show linked graphics on page 193.

Word does not like file paths in INCLUDEPICTURE fields, so you might want to set the
following option:

[Graphics]
FilePaths=None

See also §31.6 Converting graphics with Microsoft Word filters on page 904.

6.14.3 Converting embedded graphics

If your FrameMaker document contains embedded graphics that are not in BMP or WMF
format, usually those graphics should be converted to BMPs. By default, Mif2Go exports
such graphics and saves them in your project directory as external graphics files, in their
original formats, each with a name that starts with the name of the FrameMaker file from
which it was exported, and ends with a string of digits (see §5.7.4.2 Naming files produced
from embedded graphics on page 134).

After you have run the conversion and the automatically exported graphics are in your
project directory, you have pretty much the same choices as for referenced graphics; see
§6.14.2 Converting referenced graphics on page 187.

In this section:
§6.14.3.1 Converting exported graphics outside of Mif2Go on page 189
§6.14.3.2 Using exported graphics in their original format on page 190

See also:
§31.2.3 Exporting and converting embedded graphics on page 877

6.14.3.1 Converting exported graphics outside of M if2Go

You can convert automatically exported graphics files to BMPs with a graphics program;
see §5.7.2.3 Using third-party graphics converters on page 130. Give the converted files
the same file names as the exported graphics, but with extension .bmp , and leave them in
the project directory. Then, in your configuration file specify the following options:

[Graphics]
FileNames=Map
FilePaths=None

[GraphFiles]
oldext=bmp

For example, if the original graphics are in JPEG format, you would substitute jpg for
oldext:

[GraphFiles]
jpg=bmp

Now rerun the conversion. This time Mif2Go will use the .bmp files instead of their
embedded counterparts, and will include the BMP graphics in your .rtf output.

See also:
§5.7.3.2 Processing embedded graphics separately on page 132

MANAGING GRAPHICS FOR PRINT RTF MIF2GO USER’S GUIDE

190 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

6.14.3.2 Using exported graphics in their original format

If the original graphics embedded in your document are photographs in JPEG format,
converting to BMP degrades the quality of the image. You might consider leaving the
exported graphics in their original formats.

Automatically exported graphics will be referenced in RTF provided you load the graphics
in Word while the graphics files are still in the project directory. However, the scaling used
in FrameMaker is not preserved, so you might have to resize each image in Word. The
advantage is better image quality; the downside is the manual work.

See also:
§6.14.2.3 Leaving graphics unconverted for Word (no scaling) on page 188

6.14.4 Limiting bitmap resolution and color depth

Graphics destined for print look best at a resolution of 300 to 1,200 DPI. However, you
cannot use FrameMaker to increase the DPI of an existing bitmap image: the upper limit
of resolution is the DPI of the original graphic.

Use 256-color (8-
bit) BMP images

where possible

The number of colors in bitmap images should be 256 or less, because the size increase for
more colors can make files too large for Word to load. If you use 24-bit color, conversion
can be slower and the resulting .rtf files much larger. This is because Mif2Go has to use
embedded WMFs to get the images into Word, and 24-bit bitmaps do not compress in
WMFs. If you are using 256 colors (8-bit bitmaps), conversion is faster and output file size
smaller. However, reducing a photographic image to 256 colors degrades its appearance.

Save Word files
with 24-bit BMP
images as .doc

RTF lacks compression for 24-bit BMP images (which include “millions of colors”).
Every pixel takes 3 bytes. At 300 DPI for acceptable print quality, a 3.25" x 3.5" image
would contain 1,023,750 pixels, requiring about 3 MB in a binary format. However,
because RTF represents each byte with two hexadecimal digits, the actual size would be
6 MB. On the other hand, if you are able to load an RTF file containing such an image into
Word, you can save the file as a Word .doc file. Then Microsoft uses a proprietary
compression method to shrink the size drastically. Unfortunately, Mif2Go cannot legally
use this method, thanks to the Digital Millennium Copyright Act (DMCA).

See also:
§31.2.1.2 Converting bitmap graphics for print RTF on page 873

6.14.5 Managing callouts added to graphics

To keep callout text from reflowing, Mif2Go renders as text lines any callouts that consist
of FrameMaker paragraphs inside text frames. In some cases this can cause poor results if
you use Save as PDF in Word 2007. If the converted files must go from Word to PDF, print
to postscript from Word instead of using Save as PDF.

For WMF or BMP graphics, callouts inserted with FrameMaker drawing tools should
convert without a problem, unless the callouts involve one or more of the following:

White text
Rotated text
Multiple fonts

White text If the callouts are in white text, make sure the following default setting is in force:
[WordOptions]
HideWhiteText=No

6 CONVERTING TO PRINT RTF MANAGING GRAPHICS FOR PRINT RTF

ALL RIGHTS RESERVED. MAY 18, 2013 191

Rotated text The WMF format used by Word does not support rotated text. You will see the text rotated
in the WMF image, but if you try to edit the image, that text will unrotate itself, and you
cannot put it back as it was.

Multiple fonts If there are font changes within a text line, you might have to adjust character metrics to
avoid spacing anomalies at the point of change. See §6.8.4 Altering font metrics to adjust
tabs on page 165.

6.14.6 Positioning graphics and wrapping text
Specifying a

paragraph format
for graphics

You might want to override the default positioning of all regular anchored frames (such as
screen shots), so you can make them more consistent; for example:

[WordOptions]
; FrameStyle = para style for non-in-line anchored frames
; default is not to specify, which uses the previou s para style
FrameStyle= Picture

The default is not to specify a format, which causes graphics to use the previous paragraph
format.

Specifying text
wrapping

Word does not handle text wrapping the same way as FrameMaker. If text is not wrapping
properly around a graphic, experiment with the following setting:

[WordOptions]
; WrapAroundTextFrames = Yes (default, leave room a round) or No
WrapAroundTextFrames=No

The default is Yes, set for text to wrap.

6.14.7 Preserving graphics scale in Word

Between Word versions 7/95 and 8/97 Microsoft changed the size of a graphics scale unit
from twips (twentieths of a point: 1,440 per inch) to himetric (hundredths of a millimeter:
2,400 per inch). For Word 7/95, Mif2Go computes the value in twips; for Word 8/95 and
later versions, in himetric; until Word 2003, when Microsoft changed the (non-user-
settable) graphics scale unit back to twips.

Table 6-6 shows what happens to the apparent size of an embedded image viewed in
Word, depending on which version of Word you specify as the Mif2Go output type, and
which version of Word you use to view the RTF output. The rightmost column shows the
settings required to preserve scale for those versions of Word that display images at other
than 100%. These settings affect only images embedded in Word. Linked images cannot
be scaled; see §6.14.10 Linking instead of embedding referenced graphics on page 193.

The remedy depends on which problem you observe in Word:
Embedded images are much too small
Embedded images are much too large
Embedded images are still a little off

Table 6-6 Graphics scale percentages for Word versions

Project
output type

Image scale for RTF viewed in Word, by version [Word Options]
remedial setting
to achieve 100%7/95 8/97 9/2000 10/XP 11/2003+

Word 7/95 100% 60% 60% 60% 100% Word8 = Yes

Word 8/97 167% 100% 100% 100% 167% Word2003 = Yes

MANAGING GRAPHICS FOR PRINT RTF MIF2GO USER’S GUIDE

192 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Embedded
images are much

too small

If you specify Word 7/95 as the output type when you set up your conversion project, then
convert your document and load the resulting RTF file(s) in Word 8/97, Word 9/2000, or
Word 10/XP, your graphics will appear at 60% of the correct size. If you are converting
from within FrameMaker, the remedy is to change the output type in the Choose Project
dialog (see §3.3 Creating a Mif2Go conversion project on page 78) to Word 8/97 , and
click Modify . To make the change persist, also specify this setting in the configuration file:

[WordOptions]
Word8 = Yes

Embedded
images are much

too large

If you specify Word 8/97 as the output type when you set up your conversion project, then
convert and load the output into Word 7/95 or Word 11/2003, your graphics will appear at
167% of their original size. To correct this problem, add the following setting:

[WordOptions]
Word2003 = Yes

Embedded
images are still a

little off

For Word versions that use a default graphic unit of “himetric” instead of “twips” (Word
8/97, 2000, and 10/XP), the correctly computed scaling factor of 176 does not always look
right. To adjust the scaling factor:

[WordOptions]
; PicScale = 176 (default), percentage to expand gr aphics for Word
; 8/97, 9/2000, and 2002/XP to compensate for redef ined Word default.
PicScale = 176

Adjust as needed; for example, Word 9/2000 seems to do better with PicScale=178 .

6.14.8 Accommodating graphics in multiple versions of Word

If your converted files are to be used in a later version of Word (or in several versions),
and you expect problems with missing or incorrectly scaled graphic elements, do the
following for each RTF file:

1. Load the file into the version of Word you specified for the conversion.

2. Save the file as .doc.

Use the .doc file instead of the RTF file in later versions of Word.

See also:
§6.17 Managing Word output after conversion on page 195
§6.3 Adjusting output for different versions of Word on page 149.
§6.14.10 Linking instead of embedding referenced graphics on page 193.

6.14.9 Including file names of referenced graphics in Word
Name and

graphic
To include the original file names of FrameMaker referenced graphics in Word output, so
reviewers can refer to graphics by name:

[Graphics]
; NameGraphics = No (default)
; or Yes (for Word only, put original Frame graphic name in an
; INCLUDEPICTURE field, with the WMF in the result p art of the field,
; so that the name is shown by showing Field Codes)
NameGraphics=Yes

When NameGraphics=Yes , Mif2Go inserts a Word field that has the following content:

 • the file name of the graphic in the INCLUDEPICTURE field instructions
 • the corresponding WMF in the field result part.

The entire field is locked so it cannot be updated accidentally. Reviewers can view the
names of graphics in the Word document via Tools > Options > View > Field Codes .

6 CONVERTING TO PRINT RTF MANAGING GRAPHICS FOR PRINT RTF

ALL RIGHTS RESERVED. MAY 18, 2013 193

Name only To include and display graphics file names but omit the graphics themselves, see §31.3.2.5
Excluding graphics from RTF output on page 895.

6.14.10 Linking instead of embedding referenced gr aphics

You can use Mif2Go to produce RTF output with linked graphics instead of embedded
graphics (in fact, that is what you get by default when no BMP or WMF versions of
referenced graphics are present). Usually this is not a good idea, because Word does not
permit scaling linked graphics in RTF. For an image to appear at the correct size, it must
be in an embedded WMF; see §6.14.1 Understanding graphics requirements for Word on
page 186.

To create RTF files without embedding referenced graphics, so that Word can link to the
graphics files instead, make sure that Mif2Go can neither find nor generate WMF or BMP
versions of those graphics. Make sure no referenced graphics are in the project directory.
Then Mif2Go will create INCLUDEPICTURE references to the graphics instead of
embedding them; see §6.14.2.3 Leaving graphics unconverted for Word (no scaling) on
page 188.

After converting your document, place the graphics files to be linked in the same directory
as the RTF files. To see the graphics in Word, go to Edit > Links... , select each graphics
link, uncheck Save picture in document , and click Update Now .

See also:
§6.3 Adjusting output for different versions of Word on page 149
§6.14.9 Including file names of referenced graphics in Word on page 192
§6.14.11 Embedding graphics in converted RTF files on page 193

6.14.11 Embedding graphics in converted RTF files

If your conversion project is set up so that Mif2Go inserts field references to graphics
instead of the graphics themselves (because they are not in WMF or BMP format, for
example), you might want to do the following:

1. Open the .rtf file in Word. When you do so, Word imports all the graphics named in
the fields, if possible.

2. Save the file as .doc . The .doc file includes the graphics, and you do not need to
provide the graphics files themselves along with the Word file.

If you provide only the .rtf file, you have to provide any graphics files also. To find out
if the .rtf file contains graphics, check the size: files containing graphics are much larger
than files that only reference graphics.

See also:
§6.14.9 Including file names of referenced graphics in Word on page 192
§6.14.10 Linking instead of embedding referenced graphics on page 193

6.14.12 Updating fields in Word to show linked gra phics

When your graphics end up in INCLUDEPICTURE fields, you have to update all fields in
Word to show the images; this is a limitation of Word. Use Ctrl-A then F9 in Word to
update an entire Word file. If you have a large number of files to do this for, you might
want to create a VBA macro in Word to do the updating and then save each file in .doc
format, so that you do not have to do it again. You should be able to set Word to do the
updating on load, as a Word Auto* macro.

INCLUDING RTF CODE FOR WORD OUTPUT MIF2GO USER’S GUIDE

194 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

6.15 Including RTF code for Word output
If you want to do complicated things with RTF, you need to know the coding rules.
Microsoft provides very little in the way of documentation, and the specification is
incomplete. The best approach is to do what you want in a tiny file in Word itself, save as
RTF, and use the Omni Systems pretty-print utility to make the result readable:

pprtf myfile.rtf > myfile.txt

Study what Word did to produce that output. Make sure the braces {} are balanced in the
fragment you extract from the Word output, and double the backslashes.

For example, suppose you want to use a Mif2Go macro to pull an image into the title page
for your Word document, so in RTF you get an INCLUDEPICTURE field:

{ INCLUDEPICTURE "MyLogo.bmp" * MERGEFORMAT \d \x \y }

Because backslash is meaningful both in RTF code and in Mif2Go macros, you must
double any backslashes within fields and then double them again for the macro; so you
end up with something like this to get what you want into RTF:

{\\field {*\\fldinst INCLUDEPICTURE "MyLogo.bmp" \\\\d \\\\x \\\\y
 * MERGEFORMAT }{\\fldrslt }}

If you look at the resulting RTF with a text editor after you run the Mif2Go conversion,
you should see:

{\field {*\fldinst INCLUDEPICTURE "MyLogo.bmp" \\d \\x \\y
 * MERGEFORMAT }{\fldrslt }}

Line breaks are acceptable in RTF code.

6.16 Turning on revision tracking in Word
To turn on revision tracking in Word for Mif2Go RTF output files:

[WordOptions]
; RevTrack = No (default) or Yes (turn on Word revi sion tracking)
RevTrack=No
; RevProt = No (default) or Yes (locks on Word revi sion tracking so
; that user cannot turn it off, also sets RevTrack= Yes)
RevProt=No

When RevTrack=Yes (or RevProt=Yes), if you leave cross references unlocked (see
§6.11.2 Converting cross references to Word on page 175), you get change bars in Word
for every cross reference; and if you also specify live hypertext links (see §6.11.3
Converting hypertext links to Word on page 178), you get change bars in Word for every
hypertext link. You can lock cross references and hypertext links:

[WordOptions]
; LockXrefs = Yes (default, faster load)
; or No (allow updating of xrefs)
LockXrefs=Yes
; LockHyper = No (default, allow edit) or Yes (when revision tracking)
LockHyper=Yes

When you lock cross references, they still work, but you have to unlock them to update
them in Word; when you lock hypertext links, the links no longer work in Word.

In some versions of Word, even setting both options does not turn off revision marking of
links.

6 CONVERTING TO PRINT RTF MANAGING WORD OUTPUT AFTER CONVERSION

ALL RIGHTS RESERVED. MAY 18, 2013 195

6.17 Managing Word output after conversion
In this section:

§6.17.1 Supporting more than one version of Word on page 195
§6.17.2 Including index terms in Word on page 195
§6.17.3 Producing ASCII text from a converted Word document on page 196
§6.17.4 Combining RTF files into a Word master document on page 197
§6.17.5 Checking print RTF output files for Mif2Go version on page 197

6.17.1 Supporting more than one version of Word

If you are trying to support multiple users who have a variety of Word versions, you
cannot just give them RTF files; Microsoft made sure of that. Instead, you must provide
documents in .doc or .docx format.

To produce Word files in .doc or .docx format from RTF files generated by Mif2Go :

1. Load each generated RTF file into the version of Word for which Mif2Go produced it;
see §6.3 Adjusting output for different versions of Word on page 149).

2. Wait until Word has counted up pages to the end, and stops; watch the counter in the
status bar.

3. Select all (Ctrl+A).

4. Update fields (F9).

5. Save the file from Word as .doc (or .docx for Word 2007 and later versions).

Automate the
process

Or, you can create a Word VBA macro that will do all that for you. In Mif2Go you would
use a SystemEndCommand (see §34.4.1 Specifying system commands on page 938) to
open RTF files in Word and invoke a Word macro like the following macro for .doc
output:

Sub LoadRtfFile()
'
' LoadRtf2007 Macro
' Macro recorded 5/31/2010 by Omni Systems
'
 Dim nameStr As String
 Selection.WholeStory
 Selection.Fields.Update
 nameStr = Replace(ActiveDocument.FullName, ".rtf ", ".doc")
 ActiveDocument.SaveAs FileFormat:=wdFormatDocume nt, _
 FileName:=nameStr, LockComments:=False
 Selection.StartOf
End Sub

See the Word VBA reference for details. Word files in .doc or .docx format can be
distributed to users who have any version of Word.

The value of SystemEndCommand would look like this:
path/to/winword.exe /mLoadRtfFile path/to/<$$_basename>.rtf

6.17.2 Including index terms in Word

To have Mif2Go include index terms in RTF output:
[WordOptions]
; Index = Standard (Word index markers), or None
Index=Standard

MANAGING WORD OUTPUT AFTER CONVERSION MIF2GO USER’S GUIDE

196 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When Index=Standard , Mif2Go creates a Word {xe} field for each index marker. This
happens whether or not you also convert a FrameMaker index, which does not use {xe}
fields for index references.

Note: Word uses the character formatting in effect at the {xe} field itself for the entire
index item. To avoid unwanted formatting, place index markers at the very end of
a paragraph. (Or at the very beginning; though if the paragraph format itself
includes bold or italic, those effects will apply to the index item.)

When Index=None , Word {xe} fields are not created.

“See also” index
references

See also” type index references are not supported by Word index generation, and Word has
no concept of omitting page numbers from the indexes it produces.Mif2Go cannot prevent
the bogus page number in a <$nopage> see-also index link from appearing in a Word-
generated index, because Word has no field switch for that purpose. However, when you
specify Index=Standard you can direct Mif2Go to refrain from converting <$nopage>
index markers to Word {xe} fields:

[WordOptions]
; NoSeeAlso = No (default, keep See Also markers)
; or Yes (remove them)
NoSeeAlso=Yes

When NoSeeAlso=No , <$nopage> index markers are converted to {xe} fields in RTF
output files. When you generate an index in Word, unless you used IndexRef before
converting (see §5.5.4 Making See and See also index entries into useful links on
page 125), the corresponding entries appear with links to the pages where the {xe} fields
are located: bogus references.

When NoSeeAlso=Yes , <$nopage> index markers are not converted to {xe} fields in
RTF output.

This option has no effect on indexes that Mif2Go converts to Word from the FrameMaker
IX file; see §6.12 Converting generated files to print RTF on page 181.

6.17.3 Producing ASCII text from a converted Word document

If your reason for converting a document from FrameMaker to Word is to take advantage
of the Text with Layout converter available from http://www.gmayor.com/downloads.htm,
you might have to provide some extra settings to cope with differences in how Word treats
such things as tabs and cross references.

Replace missing
tabs with extra

spaces

The Text with Layout converter drops tabs from headings and numbered or bulleted
formats. To get around this, for each such format specify one or more fixed spaces to
follow the number or bullet. For example:

[CodeAfterAnum]
Bulleted = \~\~
Heading* =\~\~
Numbered* = \~\~

See §28.9.3 Surrounding or replacing text with code or macros on page 822.

Remove
unwanted page

references

Unwanted numbers might appear at the ends of headings; for example, “Known Issues”
might appear as “Known Issues26”. These numbers are hidden-text page numbers that
Mif2Go uses to emulate dynamic cross references to pages. To omit these numbers:

[WordOptions]
ExtXrefPages = No

See §6.11.5.3 Making page numbers in interfile links updatable on page 180.

http://www.gmayor.com/downloads.htm

6 CONVERTING TO PRINT RTF CONVERTING TO OPENOFFICE OR STAROFFICE

ALL RIGHTS RESERVED. MAY 18, 2013 197

6.17.4 Combining RTF files into a Word master docu ment

To produce a single RTF file from multiple RTF files:

1. Convert all FrameMaker chapters as usual (from the book, one operation).

2. In Word, create a “master document”.

3. Import each converted RTF file into the master document in Word.

This might be a slow process if you have large chapters, and you might encounter stability
problems with Word master documents.

6.17.5 Checking print RTF output files for Mif2Go version

If you recently installed a Mif2Go upgrade or beta version, after you run Mif2Go , check
to make sure the latest version was actually used to produce RTF output. Windows
sometimes caches DLLs, and does not always use a newly replaced DLL until after the
system is rebooted.

Open an RTF output file in Word and choose File > Properties > Comments . You should
see a line like the following:

DCL filter dwrtf, Ver 3.3 m194b r278b

The last two entries identify the build numbers of the Mif2Go drmif.dll and
dwrtf.dll components that were used to create the RTF file. See §D.2.9 Check your
version of Mif2Go on page 1034.

6.18 Converting to OpenOffice or StarOffice
OpenOffice.org Writer and StarOffice can open the RTF files that Mif2Go converts from
FrameMaker to Word 97 or Word 2000. However, not all features are supported.
According to OpenOffice.org 2.0 Help:

OpenOffice.org can automatically open Microsoft Office 97/2000/XP documents.
However, some layout features and formatting attributes in more complex Microsoft
Office documents are handled differently in OpenOffice.org or are unsupported. As a
result, converted files require some degree of manual reformatting. The amount of
reformatting that can be expected is proportional to the complexity of the structure
and formatting of the source document.

If you load the RTF output files in Word and save them as .doc first, then open the .doc
files in OpenOffice, results are much improved.

CONVERTING TO OPENOFFICE OR STAROFFICE MIF2GO USER’S GUIDE

198 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 199

7 Producing on-line Help

You can use Mif2Go to generate various forms of on-line Help. Special settings are
available for Microsoft Windows Help (WinHelp), Microsoft HTML Help, OmniHelp,
Oracle Help for Java, and JavaHelp. This section addresses issues that are common to
most or all Help systems. Topics covered:

§7.1 Weighing Help-system alternatives on page 199
§7.2 Setting up a Help system project on page 203
§7.3 Producing contents and index for Help systems on page 204
§7.4 Configuring contents entries for Help systems on page 209
§7.5 Configuring index entries for Help systems on page 211
§7.6 Providing related-topic links for Help systems on page 219
§7.7 Jumping to secondary windows in Help systems on page 224
§7.8 Creating pop-up topics for Help systems on page 225
§7.9 Including expandable sections in Help topics on page 226
§7.10 Setting up Context Sensitive Help (CSH) on page 239
§7.11 Setting up a dynamic modular Help system on page 241

For strategies and configuration settings that are specific to a particular Help system, see
the following:

§8 Generating WinHelp on page 243
§9 Generating Microsoft HTML Help on page 295
§10 Generating OmniHelp on page 341
§11 Generating JavaHelp or Oracle Help on page 373
§12 Generating Eclipse Help on page 403

7.1 Weighing Help-system alternatives
Most users expect three navigation elements in a Help system:

 • Table of Contents (TOC), preferably in an expanding and collapsing tree form, that
tracks your position in the Help system

 • Index (IX), with multiple levels and See/See Also capabilities
 • Full-Text Search (FTS) that gets you directly to each occurrence of a word or phrase.

You could use generic HTML for a Help system as is, especially with framesets (see
§13.14 Using framesets on page 450). JavaScript-based TOC templates are available on
the Web, and an index is not hard to create. But the search engine is harder. So it is a good
idea to consider the existing alternatives for Help systems. Keep in mind that users might
run into security issues with any browser-based help system; all such systems use
JavaScript.

In this section:
§7.1.1 Considering Help-system features on page 200
§7.1.2 Understanding the effects of mid-topic links on page 200
§7.1.3 Evaluating Microsoft Windows Help (WinHelp) on page 200
§7.1.4 Evaluating Microsoft HTML Help on page 201
§7.1.5 Evaluating WebHelp on page 201
§7.1.6 Evaluating OmniHelp on page 202

WEIGHING HELP-SYSTEM ALTERNATIVES MIF2GO USER’S GUIDE

200 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§7.1.7 Evaluating JavaHelp and Oracle Help for Java on page 202
§7.1.8 Evaluating Eclipse Help on page 202

7.1.1 Considering Help-system features

For HTML-based Help systems, Mif2Go can produce any specialized form of HTML you
need, including those that work with proprietary DLLs.

If you have the eHelp (RoboHelp) license that permits you to redistribute the appropriate
eHelp DLL, you can use Mif2Go to produce WinHelp 2000. You generate WinHelp, then
add the eHelp data to the WinHelp project file before you compile; see §8.2.12 Integrating
WinHelp from RoboHelp on page 250. Also, you can generate HTML Help as a precursor
to using RoboHelp to generate WebHelp; see §7.1.5 Evaluating WebHelp on page 201.

If you need something similar to WebHelp or Web Works Help, try generating OmniHelp;
see §7.1.6 Evaluating OmniHelp on page 202. Otherwise you would have to roll your
own, which you could do with Mif2Go frameset support; see §13.14 Using framesets on
page 450. OmniHelp provides a simpler and faster solution.

If you need Microsoft Help Viewer 1.x (the successor to Microsoft Help 2), you can
generate HTML Help with Mif2Go and then use mshcMigrate (part of the Helpware FAR
tool set) to convert the resulting .chm file:

Microsoft Help Viewer 1.x is the local Help that ships with Visual Studio 2010 and its
associated MSDN Library; see:

http://www.helpware.net/mshelp3/

See also §7.5.2 Preparing index entries for Microsoft Help Viewer on page 211.

To produce electronic books and content for mobile devices, see §13.1 Deciding which
type of output to produce on page 424.

7.1.2 Understanding the effects of mid-topic links

If your FrameMaker document features cross references to items other than titles of topics,
be aware of the limitations this level of reference granularity imposes on the Help system.

Several of the HTML-based Help systems are not designed to support large files with
many mid-topic links. These Help systems are intended for, and some are optimized for,
single-topic files. In OmniHelp, mid-topic links cause problems with navigation; for
example, the Prev /Next buttons do not work as expected. HTML Help, Eclipse Help, and
JavaHelp also have trouble with mid-topic links. In HTML Help, for example, the TOC
does not synchronize with the topic being displayed.

7.1.3 Evaluating Microsoft Windows Help (WinHelp)

WinHelp is a very old format, and is not supported on versions of Windows later than
Windows XP, and Microsoft Help Workshop is no longer available to compile WinHelp.
Your users would have to individually download the WinHelp reader from Microsoft; you
are prohibited from redistributing the reader. Many products that originally supported
WinHelp dropped it once Microsoft made it effectively impossible to use.

WinHelp
drawbacks

Although WinHelp works on all flavors of Microsoft Windows, users must go through a
multiple-step validation process to use WinHelp on Windows versions later than Windows

mshcMigrate http://mshcmigrate.helpmvp.com/home

FAR http://www.helpware.net/FAR/index.html

http://mshcmigrate.helpmvp.com/home
http://www.helpware.net/FAR/index.html
http://www.helpware.net/mshelp3/

7 PRODUCING ON-LINE HELP WEIGHING HELP-SYSTEM ALTERNATIVES

ALL RIGHTS RESERVED. MAY 18, 2013 201

XP. WinHelp does not work on any system other than Microsoft Windows, except through
a Windows emulator.

WinHelp does not support mouseovers, and supports Flash movies only with difficulty.
Text formatting is limited (especially for tables), you cannot customize index sort order,
and there is no tri-pane display.

The WinHelp compiler, which predates Unicode, does not recognize Unicode characters,
which instead are in a proprietary Microsoft encoding.

WinHelp
advantages

WinHelp provides the fast response needed for Context Sensitive Help (CSH). You can
use WinHelp for initial CSH calls, and WinHelp can, in turn, link to HTML Help or
OmniHelp for further information. Also, WinHelp produces decent pop-ups.

See §8 Generating WinHelp on page 243.

7.1.4 Evaluating Microsoft HTML Help

HTML Help from Microsoft does a thorough job, even though it is slow and has numerous
defects.

Some disadvantages:

 • Your users cannot access compiled HTML Help on a network drive; the CHM file
must be local.

 • HTML Help does not perform exactly as documented. Some features are missing,
others have defects, and the software is no longer being maintained.

 • HTML Help requires Internet Explorer 4.x or a later version. HTML Help uses most
of the guts of Internet Explorer, which opens the user’s system to numerous security
hazards via ActiveX features.

 • The compressed .chm files can be used only on Windows systems, not on Macintosh
or UNIX, because the Java applet is poorly implemented. This is the main reason
other Help-authoring-tool vendors use their own proprietary Java applets to provide a
tri-pane window and search functionality, which you need for cross-platform
applications.

 • Pop-ups are just plain text: no font variations appear at all, not even bold or italic.
 • Opening Context Sensitive Help the first time can be very slow.

On Windows 2000, Microsoft itself gets around the last two problems by using WinHelp
for Context Sensitive Help and pop-ups, HTML Help for the rest.

7.1.5 Evaluating WebHelp

WebHelp is a proprietary Help format; to generate WebHelp, you must have RoboHelp
installed on your system. To produce WebHelp-compatible output with Mif2Go , you
generate HTML Help, then import the HTML Help project file into RoboHelp.

Generating HTML Help produces contents and index files; when you import the HTML
Help project file into RoboHelp, you get the whole contents and index. However, index
links in WebHelp can point only to the beginning of a topic. When an indexed item can be
displayed at the top of the screen after a jump, users do not have to guess why this
particular topic came up for that index entry; this is especially important for topics that
contain long tables of values. WebHelp deprives you of that option; see §7.5.8 Specifying
index link destinations for HTML-based Help on page 215.

WEIGHING HELP-SYSTEM ALTERNATIVES MIF2GO USER’S GUIDE

202 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

7.1.6 Evaluating OmniHelp

If you need cross-platform compatibility and easy localization, and you can manage with a
JavaScript-based Help system, consider OmniHelp. You can read the OmniHelp Design
Report here:

http:/.mif2go.com

Unlike JavaHelp, Oracle Help, or Eclipse Help, on the client side OmniHelp is based
entirely on JavaScript. OmniHelp uses only JavaScript, framesets, and CSS; and therefore
works on any operating system, with any current browser. For international use, if you
furnish translated versions of text contained in three small JavaScript files, you have a
localized interface. A technical writer can edit the text in these files without disturbing the
JavaScript code.

OmniHelp provides contents and index, full-text Boolean search with JavaScript-style
regular expressions, Context Sensitive Help, related-topic links, pop-ups, and secondary
windows.

See §10 Generating OmniHelp on page 341.

7.1.7 Evaluating JavaHelp and Oracle Help for Java

For pure Java applications, consider Oracle Help for Java.

Oracle Help for
Java

Oracle Help for Java, from Oracle, is an excellent choice if the application for which you
are preparing Help is written in Java, especially if you need cross-platform compatibility.
It is a better alternative to Sun Microsystems JavaHelp. Mif2Go writes Oracle Help for
Java files in Oracle Help preferred format, rather than just JavaHelp format. You can use
most of the features Mif2Go supports for JavaHelp. However, you might not be able to
create a usable JAR file from an Oracle Help for Java helpset.

JavaHelp JavaHelp from Sun Microsystems is another choice if your application is written in Java,
and if you can tolerate limited CSS support, no support for related-topic linking, only one
topic per index entry, and slow performance.

Other Java-based systems can be worth considering, also; see the HelpMaster site for
information:

http://www.helpmaster.info/

See §11 Generating JavaHelp or Oracle Help on page 373.

7.1.8 Evaluating Eclipse Help

Eclipse Help is specific to the open-source Eclipse Platform. Eclipse is built on a
mechanism for integrating and running modules the Eclipse Community calls plugins. An
Eclipse plugin connects to an Eclipse Platform at an extension point, providing
information about itself in an XML manifest file. For information about Eclipse, see:

http://www.eclipse.org/

Eclipse Help is based on an XML table of contents that specifies the structure of the Help
system and references content in standard HTML files. Eclipse Help plugs into an Eclipse
Platform, which provides the viewer. Eclipse Help can provide context-sensitive help (in
the form of “infopops”) for other Eclipse applications.

Eclipse Help can be challenging to set up, and it is poorly documented as a Help format. It
makes most sense if you are documenting an Eclipse plugin, where the environment is
already installed on users' systems.

http://mif2go.com
http://www.helpmaster.info/
http://www.eclipse.org/

7 PRODUCING ON-LINE HELP SETTING UP A HELP SYSTEM PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 203

7.2 Setting up a Help system project

In this section:
§7.2.1 Checking automatic Help topic assignments on page 203
§7.2.2 Configuring run-in paragraphs on page 203
§7.2.3 Specifying additional processing after conversion on page 203
§7.2.4 Compiling and distributing Help systems on page 204

7.2.1 Checking automatic Help topic assignments

When you set up a Mif2Go Help project in FrameMaker, Mif2Go tries to determine
which paragraph formats (usually headings) are most likely to start new topics; see §1.5
How Mif2Go works on page 62.

Mif2Go uses a heuristic weighting formula to automatically assign topic levels to
paragraph formats, taking into account factors such as centering, font size, indents,
bold/italic, and so forth; and then ranks the results, grouping close rankings together. Then
Mif2Go lists, in the following configuration-file sections, the paragraph formats chosen to
start new topic files:

Check topic
levels!

These topic-level assignments are only a first approximation, and Mif2Go is easily fooled.
Be sure to inspect the proposed assignments, and correct any that are inappropriate. Also
check the corresponding contents-level settings; see §7.4 Configuring contents entries for
Help systems on page 209.

7.2.2 Configuring run-in paragraphs

By default, for Help systems Mif2Go separates each run-in heading from its following
paragraph. To direct Mif2Go to emulate FrameMaker run-in headings in Help output:

[HTMLOptions] or [HelpOptions]
; RunInHeads = Normal (default for Help systems) or Runin
RunInHeads = RunIn

When RunInHeads=Normal , Mif2Go inserts a carriage return between the run-in
heading and the paragraph that follows.

When RunInHeads=Runin , the following paragraph starts on the same line as the run-in
heading, as it does in FrameMaker.

7.2.3 Specifying additional processing after conve rsion

When you set up a new Help project, Mif2Go includes a few postprocessing settings in
your newly created configuration file.

Some Help systems require running additional programs after files are converted from
FrameMaker: either to compile the output (WinHelp or HTML Help), or to create a search
index (JavaHelp or Oracle Help). When you first set up a Mif2Go project to generate one
of these Help systems (see §3.4 Choosing project set-up options on page 79), you can
check an option to have Mif2Go run the additional program after conversion.

Help type Section
WinHelp [HelpStyles]

HTML-based Help [HTMLParaStyles]

PRODUCING CONTENTS AND INDEX FOR HELP SYSTEMS MIF2GO USER’S GUIDE

204 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

WinHelp, HTML
Help

If you check Compile when you set up a WinHelp or HTML Help project,Mif2Go adds
the following settings to your configuration file:

[Automation]
CompileHelp = Yes
WrapAndShip = Yes

If you do not check Compile , you get the following settings instead:
[Automation]
CompileHelp = No
WrapAndShip = No

JavaHelp, Oracle
Help

Whether or not you check Make FTS for JavaHelp or Oracle Help, Mif2Go includes the
following setting in your new configuration file:

[Automation]
WrapAndShip = Yes

OmniHelp,
Eclipse Help

For OmniHelp or Eclipse Help, Mif2Go includes the following setting:
[Automation]
WrapAndShip = No

All output types Mif2Go also includes the following settings in every new project configuration file:
[Automation]
WrapPath = ._wrap
ShipPath = ..\.._ship

If CompileHelp=Yes or WrapAndShip=Yes , after generating output files Mif2Go
copies distributable files to the directory designated by WrapPath (or in the case of
JavaHelp or Oracle Help, a directory structure under the directory designated by
WrapPath). If you want your final Help files to go somewhere other than subdirectory
_wrap , change the value of WrapPath in your configuration file. See §7.2.4 Compiling
and distributing Help systems on page 204.

7.2.4 Compiling and distributing Help systems

After generating Help output files, Mif2Go can do the following:

 • Create a directory (or a directory structure) for assembling the output.
 • Copy the necessary files to the new directory or directory structure.
 • Run the appropriate Help compiler, if there is one.
 • Create a shipping directory.
 • Archive the files required for distribution (not usually necessary for compiled Help).
 • Place the compiled and/or archived Help system in the shipping directory.

See §35 Producing deliverable results on page 955.

See also:
§8.2.13 Compiling a WinHelp project on page 250
§9.14 Compiling and testing HTML Help on page 333
§10.13 Assembling OmniHelp files for viewing on page 369
§11.3.7 Creating a directory structure for JavaHelp / Oracle Help on page 378
§12.8 Packaging Eclipse Help files on page 419

7.3 Producing contents and index for Help systems
By default, Mif2Go generates both contents and index for Help systems:

 • Contents entries are based on topic headings in your FrameMaker document.

7 PRODUCING ON-LINE HELP PRODUCING CONTENTS AND INDEX FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 205

 • Index entries are produced from FrameMaker index markers.

However, you can choose to exclude contents or index or both.

In this section:
§7.3.1 Understanding how Mif2Go produces contents and index on page 205
§7.3.2 Including FrameMaker TOC and IX in Help systems on page 205
§7.3.3 Grouping contents entries on page 206
§7.3.4 Modifying contents or index production for HTML-based Help on page 206
§7.3.5 Modifying contents or index production for WinHelp on page 208

7.3.1 Understanding how Mif2Go produces contents a nd index

How Mif2Go generates contents (and index, for HTML-based Help) depends on which of
the following you are converting:

FrameMaker book
Chapter of a previously converted book
Single-file document

FrameMaker
book

When you convert a FrameMaker book, Mif2Go produces the following:
 • for WinHelp:

*.btc , a separate contents data file for each chapter file

 • for HTML-based Help:
*.bhc , a separate contents data file for each chapter file
*.bhk , a separate index data file for each chapter file
MyDoc.lst , a file that contains a list of the chapter files in book order

After all chapters are processed, Mif2Go combines entries from the chapter data files to
create the final contents (and for HTML-based Help, the final index).

For HTML-based Help, Mif2Go recreates list file MyDoc.lst each time you run a
conversion from the book file. Mif2Go uses MyDoc.lst to merge data files and produce
the final contents and index files. See also §7.3.4.2 Maintaining the list file when the book
file changes on page 208.

Chapter of a
previously

converted book

If the book file is open in FrameMaker when you convert a single chapter, Mif2Go
produces from the chapter a contents data file (and for HTML-based Help, an index data
file); then merges these data files with any from other chapters to regenerate the final
contents (and index).

Single-file
document

When you convert a document that consists only of a single FrameMaker file, Mif2Go
produces final contents (and index) directly, omitting intermediate data files.

7.3.2 Including FrameMaker TOC and IX in Help syst ems

Mif2Go produces contents and index for Help systems, so you do not need the TOC and
IX files generated by FrameMaker. These files are excluded by default when you specify a
Help system output type; see §5.5 Converting FrameMaker-generated files on page 124.

To include FrameMaker-generated TOC and IX files in a Help system:
[Setup]
; UseFrameTOC = Yes (default, except for Help forma ts),
; or No (default for Help formats)
UseFrameTOC=Yes
; UseFrameIX = Yes (default, except for Help format s),
; or No (default for Help formats)
UseFrameIX=Yes

PRODUCING CONTENTS AND INDEX FOR HELP SYSTEMS MIF2GO USER’S GUIDE

206 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

If you do include these files, they become ordinary Help topics. If you include them and
then change your mind after you have generated the Help system at least once, you must
delete the resulting topic file(s) from the project directory, or they will remain in the Help
project next time you generate output using Mif2Go .

For HTML-based Help, if you include TOC or IX files (or other FrameMaker-generated
files) as topics, you must provide titles for them; for example:

[Titles]
MyProjTOC=Contents
MyProjIX=Index

See §13.4.5 Specifying page titles for HTML output files on page 433.

7.3.3 Grouping contents entries

Suppose you want to group the chapters in your document so that each group appears in
the contents with its own “book” icon, in effect creating an additional contents level above
the chapter level, and thus providing a more compact table of contents when only the first
level is displayed in a Help viewer.

In your FrameMaker book (or a clone of the book intended for Help output), add a new
chapter before the first chapter of each group. Give the titles of these new chapters a new
format; for example, PartTitle. You can include summary text under the title, or leave the
title as the only content.

In your project configuration file, edit the entries under [HelpContentsLevels] so that
PartTitle is at a higher level than the chapter titles. If not all chapters are to be included in
such a group, change the title format of the chapters that are in groups; for example, from
ChapterTitle to SubChapterTitle; and give SubChapterTitle a setting that places it just below
PartTitle. So you might have:

[HelpContentsLevels]
PartTitle=1
SubChapterTitle=2
ChapterTitle=1
 ...

You may need to adjust subhead levels also, if you have chapters at different contents
levels.

7.3.4 Modifying contents or index production for H TML-based Help

You can use a configuration setting to override the default production method for contents
or index or both; however, usually there is little reason to change the default method. You
can also omit production of contents or index.

In this section:

§7.3.4.1 Choosing contents and index methods for HTML-based Help on page 207
§7.3.4.2 Maintaining the list file when the book file changes on page 208
§7.3.4.3 Merging contents and index files from the command line on page 208

See also:
§7.4 Configuring contents entries for Help systems on page 209
§7.5 Configuring index entries for Help systems on page 211
§9.9.1 Choosing how to generate HTML Help contents and index on page 319
§10.6 Choosing navigation features for OmniHelp on page 356
§11.4.5 Locating JavaHelp or Oracle Help contents and index files on page 387

7 PRODUCING ON-LINE HELP PRODUCING CONTENTS AND INDEX FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 207

§12.4.1 Choosing contents and index methods for Eclipse Help on page 411

7.3.4.1 Choosing contents and index methods for HT ML-based Help

To specify whether contents, index, or both should be generated for HTML-based Help:
[MSHtmlHelpOptions] or
[OmniHelpOptions] or
[JavaHelpOptions] or
[OracleHelpOptions]
; ListType (for filter to create) = Both (default), Contents, or Index

To specify how contents and/or index should be generated for HTML-based Help,
depending on the value of ListType :

[MSHtmlHelpOptions] or
[OmniHelpOptions] or
[JavaHelpOptions] or
[OracleHelpOptions]
; RefFileType = Full, Body, or None

RefFileType values have the following effects:

You might set RefFileType=None if you are repeatedly re-running a conversion to tune
something in text, and you do not want the (small) overhead of writing out the contents
and index information every time.

Note: If you set RefFileType=Full when you are converting a FrameMaker book,
you will get contents and index entries only for the last chapter file in the book.

HTML Help For HTML Help, you can specify one additional value for RefFileType . See §9.9.1
Choosing how to generate HTML Help contents and index on page 319.

OmniHelp For OmniHelp, whether contents and index are displayed (as opposed to generated) is
determined by another setting; see §10.6 Choosing navigation features for OmniHelp on
page 356

Eclipse Help For Eclipse Help, the default value of RefFileType is Full , regardless of whether you
are converting a FrameMaker book or a single-file document. See §12.4.1 Choosing
contents and index methods for Eclipse Help on page 411.

Body Default for books. Mif2Go creates the following:
 • MyDoc.lst , if you are converting a book
 • Chapter.bhc for each chapter (if ListType=Contents or Both)
 • Chapter.bhk for each chapter (if ListType=Index or Both).

If you are converting a book, or if you are converting a chapter and the
book file is open in FrameMaker, Mif2Go merges files to create the
following:

 • a combined contents file from all .bhc files (if ListType=
Contents or Both)

 • a combined index file from all .bhk files (if ListType=Index or
Both).

Full Default for single-file documents. Mif2Go creates final contents and index
files directly, depending on the value of ListType .

None No list, contents, or index files are produced.

PRODUCING CONTENTS AND INDEX FOR HELP SYSTEMS MIF2GO USER’S GUIDE

208 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

7.3.4.2 Maintaining the list file when the book fi le changes

For HTML-based Help, if you add a FrameMaker file to a book, or remove a file from a
book, you must update MyDoc.lst (see §7.3.1 Understanding how Mif2Go produces
contents and index on page 205). You can do this either of the following ways:

 • rerun Mif2Go on the entire book
 • use a text editor to add/remove file names, and rerun Mif2Go on added files.

If you delete MyDoc.lst , then generate output from individual chapter files, Mif2Go
does not update the final contents or index. Final contents and index are not updated until
you either convert the whole book or recreate MyDoc.lst some other way.

7.3.4.3 Merging contents and index files from the command line

For HTML-based Help, you can merge contents and index data files from the command
line, as part of a batch process such as a product build. For example, to merge contents and
index for HTML Help:

dcl -f MB MyDoc.lst

See §37 Converting via DCL on page 995.

The first line in file MyDoc.lst must begin with LIST , and each subsequent line must
name a FrameMaker .mif file included in the project, in the order in which the files
should appear in the contents. You must execute the dcl command in the same directory
as the .lst file.

See §37.2.5 Merging ancillary Help files with DCL on page 997.

7.3.5 Modifying contents or index production for W inHelp
Contents To specify how (and whether) contents entries are generated for WinHelp:

[HelpContents]
; CntType = None, Full (single file), or Body (head ings, topics only)

CntType values have the following effects:

Index To specify whether index entries are generated for WinHelp from FrameMaker index
markers:

[HelpOptions]
; Index = Help (make into K footnotes) or None (rem oved)

See also:
§8.12 Configuring index entries for WinHelp on page 287
§8.13 Configuring contents for WinHelp on page 288

Body Default for books. Mif2Go creates a .btc file for each chapter. If you are
converting a book, or if you are converting a chapter and the book file is
open in FrameMaker, Mif2Go merges *.btc files to create a combined
contents file.

Full Default for single-file documents. Mif2Go creates the final contents file,
MyDoc.cnt , directly.

None No .lst , .bct , or .cnt files are produced.

7 PRODUCING ON-LINE HELP CONFIGURING CONTENTS ENTRIES FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 209

7.4 Configuring contents entries for Help systems
In this section:

§7.4.1 Understanding how contents levels are assigned on page 209
§7.4.2 Setting contents levels for WinHelp on page 209
§7.4.3 Including contents entries in HTML-based Help on page 209
§7.4.4 Setting contents levels for HTML-based Help on page 210

7.4.1 Understanding how contents levels are assign ed

When you set up a Mif2Go Help project from FrameMaker, Mif2Go automatically
assigns contents levels to heading paragraphs, as a first approximation. Be sure to check
these assignments, and correct any that are not what you want. Contents levels are
assigned to paragraph formats in the following configuration-file sections:

Levels in the contents might not correspond exactly to heading levels in your FrameMaker
document, but they should be self consistent.

Avoid skipped
contents levels

Hardly any Help systems allow skipped levels in the TOC. This usually happens when
your FrameMaker document includes a sub subheading directly under a major heading,
before the first subheading. Avoid this pattern; at the very least, exclude such sub
subheadings from the TOC. By default, Mif2Go inserts the missing level, which works for
some Help systems, but not for Eclipse Help. Skipped contents levels result in a warning
in the Mif2Go log file.

7.4.2 Setting contents levels for WinHelp

For WinHelp, you specify the contents levels for your headings here:
[HelpCntStyles]
; format = H (heading), T (topic), or B (both), + l evel (1..9)
Heading 1=B2

See §8.13.2 Specifying heading formats and levels for contents on page 289.

Each entry in [HelpCntStyles] must correspond to an entry with property Contents
in [HelpStyles] ; for example:

[HelpStyles]
Heading 1=Topic Contents

See §8.8.2 Assigning properties to formats for topics and hotspots on page 268.

See also:
§8.13 Configuring contents for WinHelp on page 288

7.4.3 Including contents entries in HTML-based Hel p

Headings that start topics are automatically included as contents entries in HTML-based
Help. A paragraph format is included in contents when you assign any of the following to
the format:

[HTMLParaStyles]
ParaFmt = Split

Help type Section Reference
WinHelp [HelpCntStyles] 7.4.2
HTML-based Help [HelpContentsLevels] 7.4.3

CONFIGURING CONTENTS ENTRIES FOR HELP SYSTEMS MIF2GO USER’S GUIDE

210 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[HTMLParaStyles]
ParaFmt = Contents

[HelpContentsLevels]
ParaFmt = n

Avoid mid-topic
links from TOC

It is best to assign the [HTMLParaStyles]Split property to every heading that you
want to appear in the contents; see §18.2.1 Designating split points on page 586. Contents
links to mid-topic locations can be problematic in some Help systems. For example, you
cannot include mid-topic links in the TOC for HTML Help projects that are to be merged.
In Java Help 1, the viewer cannot find mid-topic links at all.

Splitting on every heading provides faster loading of help topics, because they are shorter.

See also:

§7.4.1 Understanding how contents levels are assigned on page 209
§7.4.4 Setting contents levels for HTML-based Help on page 210
§9.9.5 Configuring contents entries for HTML Help on page 322
§10.7 Configuring contents and index for OmniHelp on page 357
§11.4.1 Configuring contents entries for JavaHelp or Oracle Help on page 385
§19.5.3 Including ObjectID anchors as link targets on page 620

7.4.4 Setting contents levels for HTML-based Help

To specify contents levels, assign level numbers to heading formats that start topics, and
also to formats to which you have assigned the Contents property; see §7.4.3 Including
contents entries in HTML-based Help on page 209. Level 1 is the top level; each higher
level number represents another level of indentation in the TOC.

For example:
[HelpContentsLevels]
; FM paragraph format name = TOC level
PrefTitle = 1
ChapTitle = 1
AppxTitle = 1
Head1 = 2
Head2 = 3
Head3 = 4
AppxHead1 = 2
AppxHead2 = 3

You can specify any paragraph format, and all text in that format will appear in the table of
contents. You are not restricted to paragraph formats that are mapped to HTML Hn tags
(see §21.3.1 Assigning HTML tags and attributes to paragraph formats on page 646).

Skipping a level between headings in your FrameMaker document can cause a TOC
problem, especially for Eclipse Help and in Java Help. For example, suppose in one place
in your document successive sections are organized like this:

Head1
Head3

Head2
Head2

Head3

A Head3 section, which is at level 4, immediately follows a Head1 section, which is at
level 2. To correct this anomaly for the TOC, you would place a marker of type
HTMConfig in the Head3 paragraph, with the following content:

[HelpContentsLevels]=3

7 PRODUCING ON-LINE HELP CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 211

See §33.2 Overriding settings with markers or macros on page 920.

See also:
§7.4.1 Understanding how contents levels are assigned on page 209

7.5 Configuring index entries for Help systems
In this section:

§7.5.1 Understanding how Mif2Go creates Help index entries on page 211
§7.5.2 Preparing index entries for Microsoft Help Viewer on page 211
§7.5.3 Limiting length of index entries for HTML Help or WinHelp on page 212
§7.5.4 Omitting intermediate index-range entries on page 212
§7.5.5 Treating commas as potential index level separators on page 213
§7.5.6 Combining index levels for HTML-based Help on page 213
§7.5.7 Configuring See and See also entries for HTML-based Help on page 214
§7.5.8 Specifying index link destinations for HTML-based Help on page 215
§7.5.9 Customizing index sort order on page 216

See also:
§8.12 Configuring index entries for WinHelp on page 287
§9.9.8 Customizing contents and index for HTML Help on page 324
§10.7.6 Redirecting See and See also index entries on page 359
§11.4.3 Configuring index entries for JavaHelp or Oracle Help on page 386

7.5.1 Understanding how Mif2Go creates Help index entries

Mif2Go processes FrameMaker index markers to create the index for a Help system.
Because Mif2Go operates only on catalogued formats, any character formats used in
index markers must be present in the character catalog of each FrameMaker file where the
index markers appear.

For HTML-based Help, Mif2Go usually builds the index, so you can customize several
aspects of index organization.

For WinHelp, Microsoft Help Workshop always builds the index, so there is little Mif2Go
can do to customize it.

7.5.2 Preparing index entries for Microsoft Help V iewer

Microsoft Help Viewer 1.x requires extra meta elements for index terms, so converting
FrameMaker index markers to HTML or XHTML is not enough.

To have Mif2Go prepare index entries for eventual use in Microsoft Help Viewer 1.x:
[Index]
; UseHVIndex = No (default) or Yes, prepare meta el ements for use
; with Microsoft Help Viewer 1.x
UseHVIndex = Yes

You must also remap index markers as follows:
[Markers]
Index = HVIndex

Mif2Go will also carry out normal index processing for HTML-based output if you clone
index markers as well as remapping them:

CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS MIF2GO USER’S GUIDE

212 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[Markers]
Index = Index HVIndex

See §29.3.1 Remapping and cloning marker types on page 836.

When UseHVIndex=Yes , Mif2Go processes FrameMaker HVIndex marker content as
follows:

 • Removes the sequences <...> and [...] .
 • Converts commas to %2C.
 • Converts colons to commas (with added space if needed).
 • Passes through UTF-8 (from FrameMaker version 8 and later versions).
 • Splits at semicolons.
 • Respects backslash escapes.
 • Produces five XML entities where needed.

Numeric character references are not needed, because Mif2Go uses UTF-8 for all non-
ANSI characters.

Index terms for Microsoft Help Viewer 1.x look like this:
<meta name="Microsoft.Help.Keywords" content="Marke r, Plain index" />
<meta name="Microsoft.Help.Keywords" content="Unico de%2C mañana…" />
<meta name="Microsoft.Help.Keywords" content="Index marker, First" />
<meta name="Microsoft.Help.Keywords" content="Index marker, Second" />

7.5.3 Limiting length of index entries for HTML He lp or WinHelp

Mif2Go enforces a limit on length of index entries for the following Help systems:
HTML Help
WinHelp

HTML Help For HTML Help, the default limit is 488 characters:
[MSHtmlHelpOptions]
; KeywordLimit = 488 (default), max length of Help index entries
KeywordLimit=488

FrameMaker has a smaller effective limit, so the default setting is not likely to cause
problems.

WinHelp For WinHelp, the default length is more conservative, because too many characters in a
keyword can negatively affect the Help compiler. WinHelp documentation says the limit is
255 characters. Mif2Go sets the default to 64, based on experience:

[HelpOptions]
; KeywordLimit = max characters total (all levels) in keywords
KeywordLimit=64

You can test the limit yourself, watching for compiler errors as you increase the setting.

7.5.4 Omitting intermediate index-range entries

By default, Mif2Go produces a separate index entry for every topic that falls within an
index range; that is, Mif2Go creates an index entry for each topic that occurs in your
FrameMaker document between matching <$startrange> and <$endrange> index markers.
The following limitations apply:

 • If you have more than one identical <$startrange> entry, the corresponding
<$endrange> entry terminates all matching <$startrange> entries.

7 PRODUCING ON-LINE HELP CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 213

 • If matching <$startrange> and <$endrange> entries are in different FrameMaker files,
Mif2Go creates topic entries only up to the end of the file in which the <$startrange>
entry occurs.

If your FrameMaker index includes broad ranges that span many topics (such as an entire
chapter), you might not want every single topic title to appear in the generated index.

To omit all but the first and last topic references in each index range:
[HTMLOptions] or [HelpOptions]
; IndexRanges = Yes (default, include ref to every topic within range)
; or No (use only refs to topics at start and end of range in IX)
IndexRanges=No

You cannot eliminate the last entry in the range.

7.5.5 Treating commas as potential index level sep arators

By default, Mif2Go treats commas in FrameMaker index entries as potential level
separators for indexes, even though commas serve only a grammatical function in a
FrameMaker-generated index. However, Mif2Go breaks an index entry at a comma (or at
any other level separator) only when there is at least one more entry that is an exact match
up to the comma.

You can direct Mif2Go not to treat commas in index entries as level separators. The
method depends on which type of Help system you are generating:

HTML-based Help
WinHelp

HTML-based
Help

To prevent use of commas as index level separators in HTML-based help:
[Index]
; UseCommaAsSeparator = Yes (default) or No (never break at comma)
UseCommaAsSeparator=No

When UseCommaAsSeparator=Yes , Mif2Go breaks an index entry either at a comma
or at an unescaped colon to add another level, but only if the text of two or more such
index entries match up to the comma or colon.

When UseCommaAsSeparator=No , Mif2Go does not break any index entry at a comma.
Index entries are broken only at unescaped colons, and only when two or more entries
match up to a colon; but also see §7.5.6 Combining index levels for HTML-based Help on
page 213 and §7.5.7.2 Specifying level breaks for See and See also index entries on
page 215.

WinHelp To prevent use of commas as index level separators in WinHelp:
[HelpOptions]
; IdxColon = No (default, allow colon and comma as level delimiters)
; or Yes (use only colon as delimiter, treat comma as regular text)
IdxColon=Yes

See §8.12.1 Designating index level separators on page 287.

7.5.6 Combining index levels for HTML-based Help

Suppose you have a two-level index entry, with only one instance of a second level for the
first-level text. In printed books, the usual practice is to combine the first- and second-
level text into one first-level entry. By default, Mif2Go follows this practice for HTML-
based Help indexes. If you expect to merge indexes from two or more Help projects, you
might not want the levels combined.

CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS MIF2GO USER’S GUIDE

214 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

To keep Mif2Go from combining levels for such index entries:
[Index]
; CombineIndexLevels = Yes (default) or No (always break at colon)
CombineIndexLevels=No

When CombineIndexLevels=Yes , if there is only one item at the last level of a series of
multi-level index entries, Mif2Go removes the colon before the last item and replaces it
with one of the following, depending on what character immediately precedes (or follows)
the level-break colon:

 • nothing, if a space precedes or follows the colon
 • a space, if punctuation (such as an escaped colon or a comma) precedes the colon
 • a comma followed by a space, if an alphanumeric character precedes the colon.

For example, suppose an index marker contains:
tomatoes:Cherokee Purple

and there are no other first-level index entries for “tomatoes”. This entry would become:
tomatoes, Cherokee Purple

in the Help index.

When CombineIndexLevels=No , Mif2Go breaks index entries at all unescaped colons.

7.5.7 Configuring See and See also entries for HTML-based Help

If you tell Mif2Go the words used to introduce redirect references in your FrameMaker
index entries, Mif2Go can use this information to sort entries, to determine index level
breaks, and (for some Help systems) to create live links to the referenced index entries.

In this section:
§7.5.7.1 Identifying See and See also index references on page 214
§7.5.7.2 Specifying level breaks for See and See also index entries on page 215
§7.5.7.3 Choosing where to sort See also index references on page 215

7.5.7.1 Identifying See and See also index references

To make sure Mif2Go recognizes See and See also entries in your FrameMaker index, you
can specify the words used as starting terms in those entries. Mif2Go uses this information
for sorting (see §7.5.7.3 Choosing where to sort See also index references on page 215)
and for merging (see §7.11 Setting up a dynamic modular Help system on page 241).

To specify the words used for See and See also in your FrameMaker index:
[Index]
; SeeTerm = word(s) used as the start of a See inde x entry, default
; "See" without the quotes, case is significant
SeeTerm=See
; SeeAlsoTerm = word(s) used as the start of a See also entry, default
; "See also" without the quotes, case is significan t
SeeAlsoTerm = See also

These settings allow you to designate different terms, perhaps in another language, or to
specify a different case. For example, if you always capitalize both words in your See also
index entries:

[Index]
SeeAlsoTerm = See Also

Mif2Go recognizes See and See also entries that include multiple references, provided the
references are separated by semicolons. For example:

7 PRODUCING ON-LINE HELP CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 215

pome fruits, see apples; pears

includes two references, one to the index entry for “apples” and one to the entry for
“pears”.

Links are active in
OmniHelp and

HTML Help

For OmniHelp, Mif2Go redirects both See and See also links to their targets in the index
itself; see §10.7.6 Redirecting See and See also index entries on page 359. Microsoft
HTML Help Workshop also redirects these links. However, there may be no visual clue
that the links are there; you might have to double-click an index entry to activate the link.

Note: See/See also references that are not an exact match to a level 1 index term are
omitted.

7.5.7.2 Specifying level breaks for See and See also index entries

By default, Mif2Go forces an index level break for a See or See also index entry. For
example, this index entry in FrameMaker:

pome fruits, see apples; pears

would become:

pome fruits
see apples; pears

To prevent arbitrary index level breaks for See and See also entries
[Index]
; LevelBreakForSee = Yes (default, always force a l evel break before
; See and See also entries), or No (break only for explicit colon)
LevelBreakForSee=No

When LevelBreakForSee=No , a level break occurs for a See or See also index entry
only if an unescaped colon precedes the See or See also clause. See §7.5.5 Treating
commas as potential index level separators on page 213.

7.5.7.3 Choosing where to sort See also index references

By default, Mif2Go places See also references last at any given index level. However, you
can change the sort order so that See also references come first at any given index level.

To make See also entries sort first, ahead of other entries at the same index sublevel:
[Index]
; SortSeeAlsoFirst = No (default, put See also entr ies after any other
; index subentries), or Yes (put them first after the parent entry)
SortSeeAlsoFirst = Yes

Only OmniHelp and HTML Help actually honor this setting; JavaHelp and Oracle Help
ignore it.

7.5.8 Specifying index link destinations for HTML- based Help

KeywordRefs applies only when Mif2Go generates index entries for Help systems,
based on markers in your FrameMaker document. This setting does not apply when
Mif2Go converts an existing FrameMaker index.

To specify where an index-entry link should point:
[Index]
; KeywordRefs = Keyword (default), File, or Para (a t start)
KeywordRefs = Keyword

Selecting an item in the resulting index takes you to one of the locations listed in
Table 7-1, depending on the setting you specified for KeywordRefs .

CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS MIF2GO USER’S GUIDE

216 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Note: KeywordRefs applies only when Mif2Go generates index entries for Help
systems, based on markers in your FrameMaker document. This setting does not
apply when Mif2Go converts an existing FrameMaker index.

When you specify KeywordRefs=Keyword or KeywordRefs=Para , Mif2Go generates
index link destinations of the following form:

topicfile.htm# objectID

When KeywordRefs=Para , also make sure you use the following (default) setting:
[HtmlOptions]
ObjectIDs=All

Otherwise, some or all mid-topic targets might be missing from the generated HTML See
§13.8.2.2 Including paragraph references on page 445 and §19.5.3 Including ObjectID
anchors as link targets on page 620.

RoboHelp lacks
mid-topic index

links

RoboHelp does not recognize the mid-topic hash (fragment) identifiers that specify mid-
topic index destinations. Therefore, you must use the following setting if you plan to use
RoboHelp to generate WebHelp:

[Index]
KeywordRefs=File

As a result, index links always put you at the beginning of the referenced topic in
WebHelp.

Merged CHM files
cannot use index

anchors

When an index entry in HTML Help points to more than one topic, the viewer displays a
Topics Found dialog box that lists the topics by name. However, in merged CHM files, if
the index entries for a slave file point to anchored locations (topicfile.htm# anchor),
the Topics Found dialog box displays the index entry instead of the destination. To avoid
this problem, use the following setting:

[Index]
KeywordRefs=File

7.5.9 Customizing index sort order

For stand-alone (unmerged) HTML Help and for OmniHelp, Mif2Go can control the
order of index entries and subentries. Merged HTML Help requires a binary index, which
ignores Mif2Go settings. JavaHelp and Oracle Help tend to ignore any sort order Mif2Go
produces.

In this section:
§7.5.9.1 Listing characters to ignore in index sort order on page 217
§7.5.9.2 Choosing case sensitivity of indexed terms on page 217
§7.5.9.3 Specifying index sort type and locale on page 218
§7.5.9.4 Choosing whether to use FrameMaker index sort strings on page 218

Table 7-1 Index link options for KeywordRefs in HTML-based Help

Option Destination format Location with respect to in dex marker

Keyword topicfile.htm# objectID Exact location of the marker; works well when index
markers are placed just before the words they reference.

Para topicfile.htm# objectID Start of the paragraph containing the marker; use when
other index markers occur in the same paragraph.

File topicfile.htm Start of the file containing the marker; use if all index
markers are at the end of their topics; also for WebHelp and
for merged HTML Help CHM files.

7 PRODUCING ON-LINE HELP CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 217

§7.5.9.5 Defining Japanese index sort order on page 218

See also:
§7.5.7.3 Choosing where to sort See also index references on page 215

7.5.9.1 Listing characters to ignore in index sort order

To specify which characters Mif2Go should ignore when ordering index entries for
HTML Help or OmniHelp, use one or both of the following settings:

[Index]
; IgnoreCharsIX = characters to exclude when sortin g index entries
; (en dash, em dash, and nonbreaking hyphen are al l converted to
; hyphens first)
IgnoreCharsIX=-[]()<>_
; IgnoreLeadingCharsIX = characters to exclude if a t the beginning of
; the entry when sorting index entries; multiples like $$ or .. are
; all excluded
IgnoreLeadingCharsIX=.$

By default, when sorting index entries Mif2Go ignores the following characters:

 • anywhere in an entry:
- hyphen, nonbreaking hyphen, en dash, em dash
[] left and right square brackets
() left and right parentheses
< > left and right angle brackets
_ underscore .

 • as the leading character(s) in an indexed term:
. period(s)
$ dollar sign(s).

If you do not include any settings for IgnoreCharsIX or IgnoreLeadingCharsIX ,
Mif2Go uses these defaults. Characters specified for IgnoreCharsIX affect the sorting
of sublevels; those specified for IgnoreLeadingCharsIX do not.

Suppose you provide no setting at all for IgnoreCharsIX , and just specify this setting:
[Index]
IgnoreLeadingCharsIX=?

In this case all of the following characters would be ignored for index sorting:

 • any number of ? at the beginning of any indexed term
 • any number of - , [,] , (,) , <, >, or _ anywhere in any entry.

To have only leading question marks ignored, you would specify:
[Index]
IgnoreCharsIX=
IgnoreLeadingCharsIX=?

To exclude all characters from the “ignore” sets, so all index entries that start with
punctuation appear at the beginning of the Help index:

[Index]
IgnoreCharsIX=
IgnoreLeadingCharsIX=

7.5.9.2 Choosing case sensitivity of indexed terms

If your FrameMaker document is heavily indexed on case-sensitive terms, you might want
to make sure the Help index keeps terms separate if they differ only in case:

CONFIGURING INDEX ENTRIES FOR HELP SYSTEMS MIF2GO USER’S GUIDE

218 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[Index]
; CaseSensitiveIndexCompare=No (default)
; or Yes (treat words that differ only in the case of their first
; letter as different)
CaseSensitiveIndexCompare=Yes

The default is to ignore case sensitivity, which can cause terms that differ only in the case
of the first letter to be grouped in the Help index as though they are the same term.

7.5.9.3 Specifying index sort type and locale

To ensure that accented or non-Western characters sort the way you want them to in the
index, you might have to specify a different sort type, or a non-English locale:

[HtmlOptions]
; IndexSortType = Numeric (default, code-point orde r),
; Lexical (using MS strcoll functions), or
; Alpha (sort accented letters as though they are un accented).
IndexSortType=Numeric
; IndexSortLocale = language to use for sorting ind ex.
; When IndexSortType is Lexical, default is current
; OS country setting. Uses MS language names.
;IndexSortLocale=English

For example, to make accented letters sort as though unaccented, specify the following:
[HtmlOptions]
IndexSortType = Alpha

Alpha works only with the Windows Western character set and the Unicode character set.
Specify Lexical for Central European or Cyrillic locales; Alpha does not handle those.
However, Mif2Go does support multibyte sorting when you specify the index locale.

If you use Mif2Go to produce HTML Help in an Asian or Cyrillic language, also specify
the Help-file language; see §9.13 Generating HTML Help in non-Western languages on
page 331.

7.5.9.4 Choosing whether to use FrameMaker index s ort strings

The sort strings you can include in brackets in FrameMaker index markers (for example,
[peaches:aaa]) rarely work well for Help systems. By default, Mif2Go ignores any
sort strings present in index markers, and generates sort strings anew. Although you can
direct Mif2Go to use FrameMaker sort strings, we do not recommend it.

To make Mif2Go use FrameMaker index sort strings:
[Index]
; UseSortString = No (default)
; or Yes (use Frame sort string if present)
UseSortString = Yes

When UseSortString=Yes , Mif2Go honors sort strings in FrameMaker index markers.
When UseSortString=No , Mif2Go ignores FrameMaker sort strings, and instead
generates new sort strings for Help index entries.

Sort strings are not allowed at all in Microsoft Help Viewer 1.x. This means it is
impossible to get a proper Asian sort, especially for Japanese.

7.5.9.5 Defining Japanese index sort order

Japanese is not sorted by the Unicode character order of the displayed glyphs, which are
usually katakana. Instead, it is sorted according to the pronunciation of the words, as given
in a different script, kanji. Mif2Go has no idea what the kanji is, so you have to provide it

7 PRODUCING ON-LINE HELP PROVIDING RELATED-TOPIC LINKS FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 219

by the usual FrameMaker sort order method, in square brackets for every single index
entry. Naturally this requires a Japanese native speaker. Once you have all the kanji, and
have the Japanese version of the SortOrderIX entry on the FrameMaker index reference
page, you should be able to produce a sorted index in Japanese.

You might be able to convert the katakana to kanji with software assistance; see:
http://kakasi.namazu.org/

If you are adept at Perl programming, you might be able to adapt the following Perl
module for this purpose:

http://search.cpan.org/~dankogai/Text-Kakasi-2.04/Kakasi.pm

7.6 Providing related-topic links for Help systems
You can include links to related topics several ways. According to usability studies, the
best way is also the simplest: create lists of cross references (perhaps under a Related
Topics heading) in your FrameMaker document files. Mif2Go converts these cross
references to links.

Mif2Go also supports dedicated related-topic links:

 • associative links (ALinks) for all Help systems except WinHelp 3 and JavaHelp
 • keyword links (KLinks) for HTML Help and OmniHelp.

Dedicated related-topic links are typically displayed in a menu or pop-up window, or in a
navigation pane. With limited screen estate, they offer the advantage of not cluttering the
topic pane with See and See also entries.

In this section:
§7.6.1 Understanding related-topic links on page 219
§7.6.2 Understanding how ALinks work on page 220
§7.6.3 Understanding how KLinks work on page 221
§7.6.4 Adding related-topic link keywords in FrameMaker on page 221
§7.6.5 Adding ALink and KLink jumps in FrameMaker on page 222
§7.6.6 Creating target-and-jump ALinks for HTML-based Help on page 224
§7.6.7 Specifying ALink and KLink list-link destinations on page 224

7.6.1 Understanding related-topic links

Related-topic links you can produce with Mif2Go come in two flavors:

 • associative link (ALink)
 • keyword link (KLink).

Each consists of a jump from one topic to a list of links to other topics. The listed links are
members of a set of links that share a common identifier, or link keyword. KLink
keywords are actually index entries, while ALink keywords are subject terms embedded in
the member topics. ALink keywords are not ordinarily visible to users, except in
OmniHelp (see §10.8 Providing related-topic links in OmniHelp on page 359).

Link keywords You embed ALink keywords in target topics, using FrameMaker markers or dedicated
FrameMaker formats; KLink keywords are already present, in the form of index markers.
ALink and KLink keywords are case sensitive. Each ALink keyword must consist of a
single alphanumeric term. Punctuation is not allowed; however, spaces are allowed in
ALink keywords in some Help systems.

http://kakasi.namazu.org/
http://search.cpan.org/~dankogai/Text-Kakasi-2.04/Kakasi.pm

PROVIDING RELATED-TOPIC LINKS FOR HELP SYSTEMS MIF2GO USER’S GUIDE

220 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Related-topic
jumps

You insert ALink and KLink jumps with FrameMaker hypertext Go to URL markers (see
§34.1.2 Using markers to add links and instructions on page 935); or, you can roll your
own using Mif2Go macros (for HTML-based Help) or WinHelp macros (for WinHelp 4).

Bullet-proof links Why use ALinks and KLinks if your document already includes cross references, See also
lists, and other hypertext links? Unlike other links, an ALink or KLink jump can go (via
the list of links) to multiple target topics, yet does not require the presence of any topic.
Therefore, you can do the following without disturbing related-topic links:

Run-time
activation

ALinks and KLinks are especially useful if you expect to merge Help projects (see §7.11
Setting up a dynamic modular Help system on page 241), for the following reasons:

 • If other Help projects are merged with the main project at run time, and topics in the
merged projects contain KLink or ALink keywords that appear in the main project,
links to those topics are included in the relevant ALink and KLink lists in the main
project.

 • If a section (or a whole subproject) is not found at run time because it was not
installed, any ALink or KLink references to topics in that section quietly disappear
from the main project, whereas regular links would yield error messages.

KLinks access
merged topics

If you merge your Help project with another Help project built by someone else, possibly
using other tools, KLinks can provide the only way to add links to topics in the other
project, assuming the other project has a thorough index.

7.6.2 Understanding how ALinks work

Associative links (ALinks) connect a given topic to one or more other topics that share the
same ALink keyword. When you are viewing a topic that contains an ALink jump, you
can click the ALink jump hotspot (or related-topics button) to see a list of links to
associated topics. The list of links is displayed either in a navigation pane (as in
OmniHelp), or in a pop-up menu or dialog (as in WinHelp 4, HTML Help, and Oracle
Help for Java).

The following Mif2Go -generated Help systems support ALinks:
WinHelp 4
HTML Help
OmniHelp
Oracle Help for Java

ALink keyword You insert an ALink keyword in a topic, to accomplish the following:

 • assign membership of that topic in an ALink set
 • provide a destination for corresponding links from an ALink list, which is accessed

from an ALink jump.

The ALink set is identified by the ALink keyword. In effect, you label the topic with an
ALink keyword.

ALink jump In some other topic, you insert an ALink jump that specifies the same ALink keyword;
when a user clicks that ALink jump, the corresponding ALink list of links to all topics in
the set is displayed.

Add a topic: Existing ALink and KLink jumps automatically pick up any
relevant link keywords in the new topic.

Remove a topic: If no link keywords exist in the remaining topics for a given
ALink or KLink jump, instead of triggering an error message, the
jump does nothing.

7 PRODUCING ON-LINE HELP PROVIDING RELATED-TOPIC LINKS FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 221

Bi-directional
ALinks

OmniHelp supports a variation: all topics that share the same ALink keyword belong to
the same “pool” of topics. When any topic that is a member of a pool is displayed, links to
all other members of that pool are automatically listed in the navigation pane when you
click Related . See §7.6.4.1 Adding related-topic link keywords via markers on page 221.

For a similar approach in HTML Help and Oracle Help for Java, see §7.6.6 Creating
target-and-jump ALinks for HTML-based Help on page 224.

7.6.3 Understanding how KLinks work

Keyword links (KLinks) are based on index entries. When you are viewing a topic that
contains a KLink jump, you can click the jump hotspot (or related-topics button) to
display a list of links to all topics that are indexed on the keyword(s) specified in the jump.

The following Mif2Go -generated Help systems nominally support KLinks, though only
for index entries that meet assorted restrictions:

HTML Help
OmniHelp
WinHelp 4

You insert in a topic a KLink jump that specifies the content of one or more entries in the
index. When a user selects the KLink jump, all index entries with the same content, and
with the same links as in the index, are displayed in a list.

Use KLinks only
as a last resort

KLinks are high-maintenance items for documents where index entries are subject to
change when the document is revised. An index term in a KLink jump must match exactly
a term in the index itself; if the term is changed in the index, you must make the identical
change in any KLink jump that references that index term, or the jump will not generate a
link to the corresponding topic; and in some systems, it might yield an error message
instead. Help-system implementation of KLinks is uneven. KLinks have proved to be
problematic in all Mif2Go -generated Help systems where they are nominally supported.

7.6.4 Adding related-topic link keywords in FrameM aker

In this section:
§7.6.4.1 Adding related-topic link keywords via markers on page 221
§7.6.4.2 Adding related-topic keywords via format properties on page 222

See also:
§7.6.6 Creating target-and-jump ALinks for HTML-based Help on page 224

7.6.4.1 Adding related-topic link keywords via mar kers

You can use FrameMaker ALink markers to insert ALink keywords. The content of the
marker is an ALink keyword that identifies the ALink set to which the topic belongs. An
ALink keyword is case sensitive, and must consist of a single alphanumeric term, without
punctuation. However, in OmniHelp (only), spaces are allowed in ALink keywords, and
you can include as many keywords as you want in a single marker, separated by
semicolons.

If your FrameMaker document already has an index, you do not need to insert keywords
for KLink jumps; the keywords are already present in your FrameMaker index markers.

You can provide markers to use for ALink keywords in any of the following ways:

 • Add custom marker type ALink to your FrameMaker document; see §29.2 Adding
custom marker types on page 832.

PROVIDING RELATED-TOPIC LINKS FOR HELP SYSTEMS MIF2GO USER’S GUIDE

222 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • Clone an existing marker type; see §5.11 Repurposing FrameMaker markers on
page 139

 • For HTML-based Help only, redefine the behavior of an existing marker type; see
§29.4 Defining and redefining marker behavior on page 838.

For example, to use Subject markers for ALinks, you could specify the following:
[Markers]
Subject = ALink

Then, any Subject markers in your document whose content conforms to the requirements
for ALink keywords can serve as ALink keyword markers. To make those Subject
markers serve as KLink keyword markers also, you could specify the following:

[Markers]
Subject = ALink Index

Then, the content of any Subject markers in your document would also show up in the
FrameMaker index (if any), and would be included in KLink lists.

Note: For WinHelp, you need additional settings for ALink keyword markers; see
§8.11.2 Adding ALinks and KLinks with markers on page 285.

7.6.4.2 Adding related-topic keywords via format p roperties

You can assign a property to a FrameMaker format to make the text of every instance of
that format act as a related-topic keyword. Create and catalog a special format to use for
this purpose.

WinHelp For WinHelp, you can use either a character format or a paragraph format for related-topic
keywords. For example, if an ALink keyword (“A” footnote) appears as a word in topic
text, you can apply a special character format to the word, and in the configuration file
assign property AKey to the format:

[HelpStyles]
ALinkCharFmt = AKey

Or, you can insert an ALink keyword in a paragraph by itself, apply a special paragraph
format (or special character format, provided you do not use the same format to mark
words in topic text), and also assign property Delete to the format:

[HelpStyles]
ALinkParaFmt = AKey Delete

See §8.11 Creating related-topic links in WinHelp on page 285.

HTML-based
Help

For HTML-based Help you must use a paragraph format (as opposed to a character
format) for related-topic keywords. For example, you can put an ALink keyword in a
paragraph by itself, apply a special paragraph format, and in the configuration file assign
property ALink to the format (and property Delete , if you do not want the paragraph to
appear in topic text):

[HTMLParaStyles]
; ALink, effective for MS HTML, OH, and Oracle Help , uses the contents
; of the para for the value of the ALink Name parame ter of an ALink
; object.
ALinkParaFmt = ALink Delete

7.6.5 Adding ALink and KLink jumps in FrameMaker

Use hypertext Go to URL markers to insert ALink and KLink jumps in your document.
See §34.1.2 Using markers to add links and instructions on page 935.

7 PRODUCING ON-LINE HELP PROVIDING RELATED-TOPIC LINKS FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 223

In this section:
§7.6.5.1 Configuring ALink jumps on page 223
§7.6.5.2 Configuring KLink jumps on page 223

See also:
§5.10 Creating hotspots for hypertext links on page 138
§7.6.6 Creating target-and-jump ALinks for HTML-based Help on page 224

7.6.5.1 Configuring ALink jumps

An ALink jump specifies one or more ALink keywords; clicking an ALink jump hotspot
displays a list of links to any other topics that contain any of the same ALink keywords.
Some restrictions:

 • WinHelp and Oracle Help for Java restrict each ALink jump to a single ALink
keyword.

 • HTML Help and Oracle Help for Java restrict each ALink keyword to a single word
(no spaces).

To add an ALink jump in FrameMaker, insert a hypertext Go to URL marker with content
like the following:

message URL alink: keyword

No spaces are allowed after the colon that follows alink . URL must be capitalized.

If you specify multiple ALink keywords (which you can for OmniHelp or HTML Help),
separate the identifiers with semicolons (no spaces!). For example:

message URL alink:curry;chicken;turmeric

7.6.5.2 Configuring KLink jumps

A KLink jump can specify one or more index terms; this should give you, in effect, one or
more links to any other topics for which there are index entries that consist of those terms.
In FrameMaker, that would be any other topic that contains an Index marker (or another
type of marker cloned to Index) that has the same content as a term specified in the KLink
jump.

JavaHelp and Oracle Help for Java do not support KLink jumps. Although HTML Help,
OmniHelp, and WinHelp 4 nominally support KLink jumps, the jumps actually work only
in restricted circumstances. KLink jumps are problematic at best, and should be tested
individually.

To add a KLink jump in FrameMaker, insert a hypertext Go to URL marker with content
like the following:

message URL klink: index term1; index term2;...

URL must be capitalized. Separate index terms from each other with semicolons (no
spaces). Index terms can contain spaces; however, no spaces are allowed after the colon
that follows klink .

Commas or
colons for level

separators

Mif2Go treats commas and colons in FrameMaker index markers as exactly equivalent,
and changes all colons to commas. If there is no space after a colon or comma, Mif2Go
adds a space. After changing colons to commas and sorting index entries, Mif2Go treats
commas as level separators if two successive entries match through a comma, or if the
shorter entry ends at a comma in the longer entry.

Exact match
required

The text of each index term in a KLink jump must match exactly, including case, the text
of the corresponding entry in the index, with the following restrictions:

alink:ALinks
klink:KLinks:understanding;KLinks:OmniHelp, support for;backslash:escape character:in KLink jumps;links:related-topic:ALinks and KLinks;KLinks:WinHelp, limitations of;KLinks:maintenance issues

JUMPING TO SECONDARY WINDOWS IN HELP SYSTEMS MIF2GO USER’S GUIDE

224 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • Escape double quotes. If an index entry contains double quotes, you must escape
each double quote with a backslash in the KLink jump

 • Eschew semicolons as punctuation. Because semicolons are always index-term
separators, a KLink jump cannot specify an index term that contains a semicolon; the
semicolon cannot be escaped with a backslash.

7.6.6 Creating target-and-jump ALinks for HTML-bas ed Help

You can insert ALink information in FrameMaker that serves as both an ALink-list target
and an ALink jump, so that all ALink instances with the same keyword belong to a “pool”
of ALinks; clicking any one of them displays a list of links to all other topics that have the
same keyword.

OmniHelp For OmniHelp, just inserting ALink keyword markers has this effect. Whenever the
OmniHelp navigation control is set to Related , if the currently displayed topic contains an
ALink keyword marker, the navigation pane displays a list of links to all other topics that
contain ALink markers with the same keyword.

HTML Help,
Oracle Help for

Java

For HTML Help or Oracle Help for Java, you use a paragraph format to specify ALink
keywords, and supply macro code to surround the paragraph for the ALink jump. When
you assemble ALink jumps using macros, you are not making use of any Mif2Go code to
interpret the alink protocol; whatever you build is passed through to the Help system,
unaltered.

HTML Help For HTML Help, the ALink jump code can produce a button; see §9.7.4 Rolling your own
macros for ALink jumps in HTML Help on page 312.

Oracle Help for
Java

For Oracle Help for Java, the ALink jump code creates a hotspot; see§11.10 Creating
ALinks for Oracle Help on page 399.

7.6.7 Specifying ALink and KLink list-link destina tions

For WinHelp 4, HTML Help, and OmniHelp, links from related-topic lists always go to
the beginning of the topic.

For Oracle Help for Java, you can determine whether ALinks go to the beginning of the
referenced topic file, or to the beginning of the paragraph that contains the ALink
keyword; see §11.10 Creating ALinks for Oracle Help on page 399.

7.7 Jumping to secondary windows in Help systems
To cause a jump to go to a secondary window, assign the name of the target window to the
character or paragraph format you use for the jump hotspot. Any jumps from text in the
specified format go to the window you assigned rather than to the current window.

In this section:
§7.7.1 Assigning secondary windows for WinHelp on page 224
§7.7.2 Assigning secondary windows for HTML-based Help on page 225

7.7.1 Assigning secondary windows for WinHelp

For WinHelp, assign the name of a secondary window to a hotspot paragraph or character
format in [HelpWindowStyles] , and assign the Window property to the same format in
[HelpStyles] ; for example:

[HelpStyles]
JumpToExtra = JumpHot Green Window

7 PRODUCING ON-LINE HELP CREATING POP-UP TOPICS FOR HELP SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 225

[HelpWindowStyles]
JumpToExtra = extra

See §8.9.7 Specifying jumps to secondary windows in WinHelp on page 277.

7.7.2 Assigning secondary windows for HTML-based H elp

For HTML-based Help, assign the name of a secondary window to a hotspot paragraph or
character format in [SecWindows] ; for example:

[SecWindows]
; doc format = name of secondary window to use for jumps from
; within the span marked by this style (same as Wi nHelp usage).
ProcWin = proc

For Oracle Help, JavaHelp, and OmniHelp, reserved window name Popup specifies a
pop-up window; see §7.8 Creating pop-up topics for Help systems on page 225. For
OmniHelp, you can include optional window parameters in the assignment.

See also:
§9.8 Using secondary windows in HTML Help on page 317
§10.9 Jumping to secondary windows in OmniHelp on page 360
§11.8.3 Jumping to secondary windows in JavaHelp or Oracle Help on page 399
§19.4 Creating jumps to particular windows for HTML on page 616

7.8 Creating pop-up topics for Help systems
You can use Mif2Go to create pop-up topics in any of the Help formats.

In this section:
§7.8.1 Understanding pop-up hotspots, links, and topics on page 225
§7.8.2 Defining a pop-up hotspot on page 226
§7.8.3 Displaying a topic in a pop-up window on page 226

7.8.1 Understanding pop-up hotspots, links, and to pics

In FrameMaker, you delimit a pop-up hotspot by applying a dedicated character or
paragraph format to text from which the topic is to be accessed. You provide a link to the
pop-up topic with either of the following:

 • a cross reference (except for HTML Help) from the hotspot
 • a hypertext link inserted in the hotspot.

Do not place any other markers within the hotspot area.

Properties you assign to the hotspot format cause a new window to pop up, displaying the
referenced topic, when you click the hotspot.

Except in HTML Help, you define pop-up topics like any other topics; only the way they
are displayed makes them different from “normal” topics.

Note: If you are using JavaHelp 2 to view this information, the only active part of the
hotspot is an icon that immediately precedes the hotspot text. See §11.8.1.4
Specifying window-access object properties on page 395.

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS MIF2GO USER’S GUIDE

226 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

7.8.2 Defining a pop-up hotspot

To define a hotspot, in FrameMaker apply a dedicated character or paragraph format to
either of the following:

 • the text of a cross reference
 • text that contains a hypertext link.

If you want content (or an autonumber, or a page reference) from the pop-up material to
appear as a hotspot, use a cross reference; if not, use a hypertext link.

Cross reference If you use a cross reference for a hotspot, make sure the hotspot character format is
applied to the reference string (<$paratext>) in the cross-reference definition. If another
character format intervenes (for example, if your cross-reference format is defined as
<HotspotFmt><Bold><$paratext>), the intended hotspot format is turned off before
it can be used.

Entire paragraph
(by accident)

If you do not apply a character format to hotspot text for a hypertext link, the entire
paragraph becomes a hotspot.

Entire paragraph
(on purpose)

If you use a paragraph format (such as the text of a generated-file reference) for a hotspot,
and some of the text in the paragraph has a character format applied, you must assign
property ParaLink to the paragraph format.

See §5.10 Creating hotspots for hypertext links on page 138.

7.8.3 Displaying a topic in a pop-up window
WinHelp For WinHelp, to make a topic pop up, assign property PopOver to the hotspot format:

[HelpStyles]
PopCharFmt = PopOver

See §8.9 Creating jumps and pop-ups for WinHelp on page 272.

HTML-based
Help

If your HTML-based Help system has a Mif2Go -generated browse sequence, to avoid
including pop-up topics in the browse sequence you must declare these topics to be
extracts instead of splits; see §18.3 Extracting files on page 591.

HTML Help For HTML Help, all you get is plain-text pop-ups, unless you use a third-party tool. To
create a pop-up link in HTML Help, put the entire pop-up content (plain text only) in a
FrameMaker hypertext alert marker embedded in the hotspot.

See §9.5 Creating pop-ups for HTML Help on page 305.

OmniHelp,
JavaHelp, Oracle

Help for java

For OmniHelp, JavaHelp, and Oracle Help for Java, you can use any HTML in pop-up
topics, including graphics and jumps. To make a topic pop up, assign reserved window
name popup to the hotspot format:

[SecWindows]
PopCharFmt = popup

See:
§10.9 Jumping to secondary windows in OmniHelp on page 360
§11.8 Defining windows for JavaHelp or Oracle Help on page 393.

7.9 Including expandable sections in Help topics
For OmniHelp and HTML Help (and for HTML and XHTML), you can use a combination
of JavaScript and Mif2Go macros to create one or more expandable drop-down sections in
a topic.

7 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 227

In this section:
§7.9.1 Understanding Mif2Go expandable drop-down sections on page 227
§7.9.2 Setting up expandable sections for your document on page 227
§7.9.3 Delimiting expandable drop-down sections on page 228
§7.9.4 Configuring drop-down links on page 230
§7.9.5 Configuring drop-down blocks on page 233
§7.9.6 Providing CSS for drop-down links and blocks on page 233
§7.9.7 Deploying JavaScript code for drop-down sections on page 234
§7.9.8 Emulating Web Works Publisher drop-down hotspots on page 237

7.9.1 Understanding Mif2Go expandable drop-down se ctions

An expandable drop-down section allows a user to click a link to optionally display
additional material; then click the link again (or click the displayed material) to collapse
the section and hide the material.

For Mif2Go output, the link can be based on any of the following:

 • a special paragraph format dedicated to drop-down links
 • an existing paragraph format in your document, such as a figure title or table title
 • a graphic icon, with or without accompanying text
 • a button, instead of text
 • a fixed text string.

A drop-down section has four main parts: link start, link end, block start, and block end.
Each new drop-down link gets a new value for predefined macro variable <$$_DropID> ,
which is used in all following blocks until the next link, or until the end of the HTML file.
This means that a single link can optionally control multiple blocks; the blocks do not
have to be contiguous.

Each link/block set is independent of other sets. Opening one block does not close other
blocks that might have been opened from other links.

Mif2Go provides built-in macros to use for drop-down sections, and settings to enable and
deploy the macros. To use the built-in Mif2Go macros as is for drop-down sections, you
do not have to include their definitions in your configuration file. Include a drop-down
macro definition only to edit or replace the macro.

In its simplest form, a Mif2Go drop-down section needs only one [HTMLParaStyles]
format property assigned in the configuration file, and rarely more than two; but has
enough configurable options to do almost anything you might want.

7.9.2 Setting up expandable sections for your docu ment

To enable expandable drop-down sections in the HTML output from your FrameMaker
document:

[DropDowns]
; UseDropDowns = No (default) or Yes (enable use of dropdowns)
UseDropDowns = Yes

Simple drop-
down sections

To provide simple drop-down sections:

 • Use a dedicated paragraph format for material you want to allow users to expand.
 • Assign property DropDown to the format.
 • Let Mif2Go supply the drop-down links.

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS MIF2GO USER’S GUIDE

228 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For example, suppose you apply paragraph format ExpandThis to each paragraph to be
expanded. You would include the following setting in your project configuration file:

[HTMLParaStyles]
ExpandThis = DropDown

With this setting, Mif2Go would insert a drop-down link in HTML output just before each
ExpandThis paragraph, and hide the paragraph when a user first displays the topic. The
user clicks the link to show the paragraph; then clicks the link again (or clicks the
paragraph) to hide it again.

Multiple drop-
down paragraphs

To include multiple paragraphs in an expandable section, or to include material in some
other format, surround the material to be expanded with Code markers in otherwise empty
paragraphs; see §7.9.3 Delimiting expandable drop-down sections on page 228.

Customized drop-
down section

To position drop-down links yourself, or to use existing text in your document for the
links, or both:

 • Place a paragraph in a dedicated format wherever you want a drop-down link; or
choose an existing paragraph format (such as a heading or figure title) for this
purpose, or even a character format.

 • Assign a drop-down link format property to the format, and a corresponding drop-
down block format property to the format of material to be expanded; see §7.9.3.1
Delimiting drop-down links and blocks with paragraph formats on page 228.

 • For any existing link text that is not in the drop-down link format, surround the link
text with Code markers that invoke drop-down link macros; do the same for blocks
that are not in the drop-down block format, invoking the corresponding drop-down
block macros. See §7.9.3.2 Delimiting drop-down links and blocks with markers on
page 229.

 • Specify display options for drop-down links and blocks; see §7.9.4 Configuring drop-
down links on page 230 and §7.9.5 Configuring drop-down blocks on page 233.

7.9.3 Delimiting expandable drop-down sections

Creating drop-down links and expandable blocks involves surrounding material in your
document with built-in Mif2Go macros for link start, link end, block start, and block end.
You can assign these macros as properties of paragraph formats, or you can use Code
markers to insert the macros, or alternate the use of both methods.

In this section:
§7.9.3.1 Delimiting drop-down links and blocks with paragraph formats on page 228
§7.9.3.2 Delimiting drop-down links and blocks with markers on page 229

7.9.3.1 Delimiting drop-down links and blocks with paragraph formats

The following settings use built-in Mif2Go macros to surround paragraphs in the
designated formats with code to produce the link and expanding block:

[HTMLParaStyles]
; Paragraph format = DropDown, DropDownLink, DropDo wnBlock,
; DropDownStart, or DropDownEnd.

or, for the link, to surround character spans:
[HTMLCharStyles]
; Character format = DropDownLink, DropDownStart

Which format properties to assign depends on the type of link and arrangement of material
to be expanded:

 • Use DropDownLink (for the link) and DropDownBlock (for the block) together.

7 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 229

 • Use DropDownStart (for the link) and DropDownEnd (for the block) together.
 • Use DropDown (for the block) by itself; Mif2Go generates the link paragraph.

To expand a single-paragraph block using a Mif2Go -inserted link:
[HTMLParaStyles]
BlockFormat = DropDown

To use an existing paragraph for the link, and a single paragraph for the block:
[HTMLParaStyles]
LinkFormat = DropDownLink
BlockFormat = DropDownBlock

To make a single- or multiple-paragraph drop-down block start right after the link
paragraph:

[HTMLParaStyles]
LinkFormat = DropDownStart
BlockEndFormat = DropDownEnd

If you use empty paragraphs for BlockEndFormat, assign format property Raw to the
format:

[HTMLParaStyles]
BlockEndFormat = DropDownEnd Raw

Format property Raw is needed only if you are using an empty paragraph to delimit the
drop-down block.

Table 7-2 shows the effects of these format properties.

7.9.3.2 Delimiting drop-down links and blocks with markers

You can use Code markers to surround drop-down links and expandable blocks with built-
in Mif2Go macro code.

To delimit links and blocks with Code markers, place a Code marker in each of the
following places, with the indicated content:

Table 7-2 Effects of drop-down format properties

Drop-down style Format property Effect

Mif2Go -supplied link,
single-paragraph block

DropDown Treats the current paragraph as the block to be expanded.
Places macros <$DropLinkPara> and
<$DropBlockStart> before the paragraph,
<$DropBlockEnd> after the paragraph.

Variable-text link,
single-paragraph block

DropDownLink Treats the current paragraph or character span as the link.
Places macro <$DropLinkStart> before the text in the
paragraph or character span, <$DropLinkEnd> after the
text.

DropDownBlock Treats the current paragraph as the block to be expanded.
Places macro <$DropBlockStart> before the
paragraph, outside its tags, and <$DropBlockEnd> after
the closing tags of the paragraph.

Variable-text link,
multiple-paragraph
block

DropDownStart Treats the current paragraph as the link, and the next
paragraph or paragraphs as the block. Places macro
<$DropLinkStart> before the text in the current
paragraph, <$DropLinkEnd> after the text, then
<$DropBlockStart> after the paragraph.

DropDownEnd Treats the current paragraph as the last paragraph in the
block to be expanded. Places macro <$DropBlockEnd>
after the current paragraph.

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS MIF2GO USER’S GUIDE

230 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • At the beginning of the link paragraph before any text, with content that depends on
the type of drop-down link:

(See §7.9.4.1 Specifying the type of link for drop-down sections on page 230.)

 • At the end of the link paragraph, after any text:
<$DropLinkEnd>

 • In a dedicated paragraph before the block:
<$DropBlockStart>

 • In a dedicated paragraph after the block:
<$DropBlockEnd>

The macros for a drop-down block must be outside any paragraph tags. Put the Code
markers in otherwise empty paragraphs of their own, just before the first block paragraph
and just after the last block paragraph. Use a dedicated paragraph format for the markers,
and assign the following property to the format:

[HTMLParaStyles]
CodeMarkerFmt = Raw

See §21.3.6 Stripping paragraph properties on page 650.

7.9.4 Configuring drop-down links

By default, Mif2Go uses icons for the drop-down link for an expandable section.
Optionally, an icon can be followed by text: either fixed text, or an existing paragraph or
character span in your document. Instead of icons or icons plus text, you can use text only,
or buttons.

In this section:
§7.9.4.1 Specifying the type of link for drop-down sections on page 230
§7.9.4.2 Configuring icons for drop-down links on page 231
§7.9.4.3 Configuring buttons for drop-down links on page 232
§7.9.4.4 Configuring text for drop-down links on page 232
§7.9.4.5 Modifying code for drop-down links on page 232

7.9.4.1 Specifying the type of link for drop-down sections

To specify the type of drop-down link to use for an expandable section:
[DropDowns]
; DropLinkType = Icon (default, optional text), But ton, or Text (only)
DropLinkType = Icon

When DropLinkType=Icon , Mif2Go inserts an icon at the start of each drop-down link
paragraph. You can specify the graphics to use for icons, and you can modify the alt text;
see §7.9.4.2 Configuring icons for drop-down links on page 231.

When DropLinkType=Button , Mif2Go inserts a button in each drop-down link
paragraph. You can specify the label on the button; see §7.9.4.3 Configuring buttons for
drop-down links on page 232.

DropLinkType Starting Code marker content
Icon <$DropLinkStart><$DropOpenIcon><$DropCloseIcon>

Button <$DropLinkStart><$DropButton>

Text <$DropLinkStart>

7 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 231

When DropLinkType=Text , the link consists only of text: either default text, or the text
of a paragraph or character span in your document; see §7.9.4.4 Configuring text for drop-
down links on page 232.

Regardless of link type, Mif2Go inserts icon, button, or default text ahead of whatever
text is already present in each drop-down link paragraph. If you have not designated a
drop-down link paragraph, Mif2Go creates a paragraph for the link, just before each drop-
down block.

By default, Mif2Go includes JavaScript code that works for all types of drop-down links.
However, you can choose to have Mif2Go include JavaScript code only for the type of
link you specify via DropLinkType ; this results in slightly less JavaScript code.

To restrict JavaScript drop-down code to the link type specified by DropLinkType :
[DropDowns]
; UseCompositeDropJS = Yes (default, use JS that wo rks for all
; settings of DropLinkType), or No (use JS specifi c to current
; DropLinkType setting, slightly less JS code)
UseCompositeDropJS = No

When UseCompositeDropJS=No , all drop-down sections in a given FrameMaker file
must use the same type of drop-down link, because the type determines the JavaScript that
is included or referenced in the output. See §7.9.7 Deploying JavaScript code for drop-
down sections on page 234.

7.9.4.2 Configuring icons for drop-down links

When DropLinkType=Icon , each drop-down link starts with an icon. If you provide text
content for the link paragraph or character span, the text follows the icon.

Mif2Go can provide a default icon pair:

To have Mif2Go write these default icon files to the project directory:
[DropDowns]
; WriteDropIconFiles = No (default) or Yes (write t o project
directory)
WriteDropIconFiles = Yes

When WriteDropIconFiles=Yes , Mif2Go creates default drop-down icons in the
project directory. When WriteDropIconFiles=No , you must provide the icon files. If
you want the icons in a directory other than the project directory, perhaps with other
graphics, you must place the icon files there yourself, and specify a relative path to their
location.

To rename or relocate drop-down icon files:
[DropDowns]
DropOpenIconFile = path/to/dropopen.gif
DropCloseIconFile = path/to/dropclose.gif

The default location is the project directory. If you specify a relative path, it is relative to
the project directory. Do not use an absolute path.

To specify different alt text for the icons:
[DropDowns]
DropOpenIconAlt = Click to open.
DropCloseIconAlt = Click to close.

Icon Icon graphic file Alternate text
dropopen.gif Click to open.
dropclose.gif Click to close.

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS MIF2GO USER’S GUIDE

232 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

To change the macro code that displays icons, see §7.9.4.5 Modifying code for drop-down
links on page 232.

7.9.4.3 Configuring buttons for drop-down links

When DropLinkType=Button , each drop-down link consists of a button, with a text
label on the button itself. The default label text is More when the drop-down section is
closed, Less when the section is open.

To change the default button labels:
[DropDowns]
DropButtonOpenLabel = More
DropButtonCloseLabel = Less

To change the macro code that displays buttons, see §7.9.4.5 Modifying code for drop-
down links on page 232.

7.9.4.4 Configuring text for drop-down links

When DropLinkType=Text , the link consists only of text: either fixed text, or existing
text in a paragraph or character span in your document.

Fixed text For fixed text, by default Mif2Go inserts a paragraph with content “Click here. ” as the
link. To specify different fixed text for the link:

[DropDowns]
DropText = Click here.

Existing text To use existing text for the link, delimit the text with link-start and link-end macros; see
§7.9.3 Delimiting expandable drop-down sections on page 228.

To change the macro code that displays fixed text, see §7.9.4.5 Modifying code for drop-
down links on page 232.

7.9.4.5 Modifying code for drop-down links

You can redefine any of the built-in drop-down link macros by changing the default code
that is assigned to the macro name. Each macro name serves as a keyword in your project
configuration file; you change the definition by assigning replacement code to the macro
name. When you assign code to a macro name in the configuration file, the entire setting
must be all on one line, even if it does not look that way here.

Ordinarily you should not need to include any of the settings described in this section.

Link ID prefix Because an ID used in JavaScript must start with a letter, by default Mif2Go prefixes the
incremental value of the drop-down link ID with drop . To change the drop-down link ID
prefix:

[DropDowns]
DropIDPrefix = drop

Link macros To change the code for creating drop-down links, include the following settings to redefine
the built-in macros:

[DropDowns]
; Default macros for link start/end:
DropLinkStart = <a class="<$DropClass>"\n <$DropLin kAttr>>
DropLinkAttr = href="javascript:doSection('<$$_Drop ID>');void 0;"
DropLinkEnd =

If you use DropLinkStart , include CSS for the text to match its content; also see:§7.9.6
Providing CSS for drop-down links and blocks on page 233:

7 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 233

[DropDowns]
DropLinkParaStart = <p class="<$DropClass>">
DropLinkParaText = <$DropText>
DropLinkParaEnd = </p>

<$DropLinkStart> follows <$DropLinkParaStart> . If DropLinkType=Icon , both
icons follow <$DropLinkStart> . Unless DropLinkType=Button , next come
<$DropLinkParaText> then <$DropLinkEnd> .

Icon macros To change the code for drop-down icons:
[DropDowns]
DropOpenIcon = <img\n src="<$DropOpenIconFile>" id= "io<$$_DropID>"

style="border:0;" alt="<$DropOpenIconAlt>">
DropCloseIcon = <img\n src="<$DropCloseIconFile>" i d="ic<$$_DropID>"

style="display:none;border:0;" alt="">\n

Button macros To change the code for drop-down buttons:
[DropDowns]
DropButton = \n<button type="button" class="<$DropC lass>" id=

"bu<$$_DropID>" <$DropButtonAttr>><$DropButtonOpenL abel></button>\n
DropButtonAttr = onclick="doSection('<$$_DropID>')"

Text macro To change the code for fixed-text links:
[DropDowns]
DropLinkPara = <p class="<$DropClass>">

<$DropLinkStart><$DropText><$DropLinkEnd></p>

7.9.5 Configuring drop-down blocks

To specify whether clicking inside an open drop-down block should close the block:
[DropDowns]
; ClickBlockToClose = Yes (default)
; or No (use if any links inside block)
ClickBlockToClose = Yes

If any of your drop-down blocks contain links, set ClickBlockToClose=No .

To change the code for creating drop-down blocks, include the following settings to
redefine the built-in macros:

[DropDowns]
DropBlockStart = <div class="<$DropClass>" id="<$$_ DropID>"

style="display:none;" <$DropDivAttr>>\n
; If ClickBlockToClose=No, this is omitted:
DropDivAttr = onclick="noSection('<$$_DropID>')"
DropBlockEnd = </div>\n

Each setting must be all on one line in your configuration file, even if it does not look that
way here. Ordinarily you should not need to include these settings.

7.9.6 Providing CSS for drop-down links and blocks

By default, the CSS class for links and blocks is dropdown . To specify a different class:
[DropDowns]
DropClass = dropdown

The same class name can serve for all link types, and also for blocks. Use CSS to
differentiate:

p. dropdown { drop-link text stuff }
a. dropdown { drop-link icon stuff }
button. dropdown { drop-link button stuff }
div. dropdown { drop block stuff }

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS MIF2GO USER’S GUIDE

234 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See §22 Setting up CSS for HTML on page 681.

7.9.7 Deploying JavaScript code for drop-down sect ions

Based on the configuration settings you specify for drop-down links and blocks, Mif2Go
creates a macro that contains the JavaScript code for the drop-down sections. You can
modify this code, and rename, relocate, or replace the code.

In this section:
§7.9.7.1 Naming the JavaScript macro for drop-down sections on page 234
§7.9.7.2 Locating JavaScript code for drop-down sections on page 234
§7.9.7.3 Directing Mif2Go to write drop-down JavaScript code on page 235
§7.9.7.4 Inspecting the JavaScript code for drop-down sections on page 235

7.9.7.1 Naming the JavaScript macro for drop-down sections

By default, the name of the JavaScript macro is $DropJS . To specify a different name for
this macro, and by implication, to supply your own macro body:

[DropDowns]
; This is the code that goes in the <head> or in a JS file:
DropJSCode = <$DropJS>

Enclose the macro name in angle brackets. Including this setting is tantamount to saying:
Do not write this macro; I am supplying my own version.

If you specify a value for DropJSCode , you must provide the named macro in your
configuration file or in a macro library.

If you do not specify a value for DropJSCode , or if you do not provide the named macro,
Mif2Go includes either the composite JavaScript code (see §7.9.4.1 Specifying the type of
link for drop-down sections on page 230) or one of four built-in versions of this macro;
see §7.9.7.4 Inspecting the JavaScript code for drop-down sections on page 235.

7.9.7.2 Locating JavaScript code for drop-down sec tions

By default, for most output types Mif2Go inserts JavaScript code for drop-down sections
in the <head> section of each HTML file that contains one or more drop-down sections.
For OmniHelp, Mif2Go includes the JavaScript code in viewer files ohctrl.js and
ohmain.js . For any output type, you can direct Mif2Go to reference the code in a
separate JavaScript library instead.

To specify where the JavaScript code resides:
[DropDowns]
; DropJSLocation = Head (to insert the code in <scr ipt> tags),
; None (if the code is included elsewhere, as for OmniHelp),
; or a filename to reference in a JS link in the <h ead>.
DropJSLocation = Head

When DropJSLocation=Head , Mif2Go places JavaScript code in the <head> section
of each output HTML file that includes at least one drop-down section:

<script language="JavaScript" type="text/javascript ">
<!--
<$DropJS>
//-->
</script>

Macro $DropJS is expanded when Mif2Go writes the output HTML file.

7 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 235

When DropJSLocation=None , Mif2Go assumes you are supplying a JavaScript library
for which a reference already exists, possibly configured as part of a value for Head in the
[Inserts] section. See §28.9.2 Invoking macros at predetermined points in output on
page 821.

When DropJSLocation= filename, Mif2Go places the following reference in the
<head> section:

<script language="JavaScript" type="text/javascript "
 src="<$DropJSLocation>"></script>

Macro $DropJSLocation is expanded when Mif2Go writes the output HTML file. The
file specification you provide for filename can include a path relative to the project
directory. Although you can specify an absolute path, we advise against it. Also, a path
that includes a drive specification will not work.

7.9.7.3 Directing Mif2Go to write drop-down JavaSc ript code

By default, Mif2Go does not create an external version of the drop-down JavaScript code.
To have Mif2Go write the JavaScript code to a file in the project directory, when you
specify a file for DropJSLocation :

[DropDowns]
; WriteDropJSFile = No (default, you provide it) or Yes
WriteDropJSFile = Yes

When WriteDropJSFile=No , Mif2Go assumes that the file you specified for
DropJSLocation is an existing JavaScript library that you do not want overwritten.

When WriteDropJSFile=Yes , Mif2Go overwrites the file you specified for
DropJSLocation if it is in the project directory, or creates the file if it does not already
exist in the project directory.

WriteDropJSFile takes effect only when DropJSLocation= filename (see §7.9.7.2
Locating JavaScript code for drop-down sections on page 234). And while any path
information included in filename is used in the link in the <head> section, Mif2Go
writes the file itself to the project directory, for security reasons. This means that if
DropJSLocation specifies a location other than the project directory, you must move
the file to the other directory, with a SystemEndCommand setting; see §34.4.1 Specifying
system commands on page 938.

7.9.7.4 Inspecting the JavaScript code for drop-do wn sections

The JavaScript functions included in macro $DropJS differ according to whether
UseCompositeDropJS=Yes or No; and if No, according to the link type.

In this section:
§7.9.7.4.1 JavaScript code when UseCompositeDropJS=Yes on page 235
§7.9.7.4.2 JavaScript code when DropLinkType=Icon on page 236
§7.9.7.4.3 JavaScript code when DropLinkType=Button on page 237
§7.9.7.4.4 JavaScript code when DropLinkType=Text on page 237

See also:
§7.9.4.1 Specifying the type of link for drop-down sections on page 230.

7.9.7.4.1 JavaScript code when UseCompositeDropJS= Yes
[DropJS]
function doSection(id){
 var but = document.getElementById("bu" + id)

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS MIF2GO USER’S GUIDE

236 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 var imop = document.getElementById("io" + id)
 var imcl = document.getElementById("ic" + id)
 var idiv = document.getElementById(id)
 if (idiv.style.display=="none") {
 idiv.style.display=""

if (but != null)
but.innerHTML="<$DropButtonCloseLabel>"

if (imop != null)
imop.style.display="none"

if (imcl != null)
imcl.style.display=""

 } else {
 idiv.style.display="none"

if (but != null)
but.innerHTML="<$DropButtonOpenLabel>"

if (imop != null)
imop.style.display=""

if (imcl != null)
imcl.style.display="none"

 }
 return false;
}
function noSection(id){
 var but = document.getElementById("bu" + id)
 var imop = document.getElementById("io" + id)
 var imcl = document.getElementById("ic" + id)
 var idiv = document.getElementById(id)
 if (idiv.style.display=="") {
 idiv.style.display="none"

if (but != null)
but.innerHTML="<$DropButtonOpenLabel>"

if (imop != null)
imop.style.display=""

if (imcl != null)
imcl.style.display="none"

 }
}

7.9.7.4.2 JavaScript code when DropLinkType=Icon
[DropJS]
function doSection(id){
 var imop = document.getElementById("io" + id)
 var imcl = document.getElementById("ic" + id)
 var idiv = document.getElementById(id)
 if (idiv.style.display=="none") {

idiv.style.display=""
imop.style.display="none"

 imcl.style.display=""
} else {

idiv.style.display="none"
imop.style.display=""

 imcl.style.display="none"
}
 return false;
}
function noSection(id){
 var imop = document.getElementById("io" + id)
 var imcl = document.getElementById("ic" + id)
 var idiv = document.getElementById(id)
 if (idiv.style.display=="") {

idiv.style.display="none"
imop.style.display=""

7 PRODUCING ON-LINE HELP INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 237

 imcl.style.display="none"
}
}

7.9.7.4.3 JavaScript code when DropLinkType=Button
[DropJS]
function doSection(id){
 var but = document.getElementById("bu" + id)
 var idiv = document.getElementById(id)
 if (idiv.style.display=="none") {
 idiv.style.display=""

but.innerHTML="<$DropButtonCloseLabel>"
 } else {
 idiv.style.display="none"

but.innerHTML="<$DropButtonOpenLabel>"
 }
 return false;
}
function noSection(id){
 var but = document.getElementById("bu" + id)
 var idiv = document.getElementById(id)
 if (idiv.style.display=="") {
 idiv.style.display="none"

but.innerHTML="<$DropButtonOpenLabel>"
 }
}

7.9.7.4.4 JavaScript code when DropLinkType=Text
[DropJS]
function doSection(id){
 var idiv = document.getElementById(id)
 if (idiv.style.display=="none") {
 idiv.style.display=""
 } else {
 idiv.style.display="none"
 }
 return false;
}
function noSection(id){
 var idiv = document.getElementById(id)
 if (idiv.style.display=="") {
 idiv.style.display="none"
 }
}

7.9.8 Emulating Web Works Publisher drop-down hots pots

To create expandable drop-down sections in Web Works Publisher, you map a paragraph
that you want to be expandable to one of two WWP styles:

 • DropDownClosed to make the hotspot closed by default
 • DropDownOpen to make the hotspot open by default.

Everything following the hotspot paragraph is included in the drop-down content up to the
next paragraph mapped to DropDownClosed, DropDownOpen, or one of the standard WWP
heading styles. You can emulate this method using Mif2Go macros, either with or without
built-in Mif2Go drop-down controls. Jim Owens has kindly allowed us to present the
macros he developed for this purpose.

INCLUDING EXPANDABLE SECTIONS IN HELP TOPICS MIF2GO USER’S GUIDE

238 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

In this section:
§7.9.8.1 Creating drop-down hotspots with Mif2Go controls and macros on page 238
§7.9.8.2 Creating drop-down hotspots with Mif2Go macros only on page 238

7.9.8.1 Creating drop-down hotspots with Mif2Go co ntrols and macros

The following settings use Mif2Go format property DropDownLink and two macros to
handle open/close actions for dedicated drop-down paragraph format DropPara.

[HTMLParaStyles]
DropPara = DropDownLink CodeBefore CodeAfter

[ParaStyleCodeBefore]
; At the start of any of the following paragraphs,
; close any open drop-down blocks:
DropPara = <$DropDownBlockClose>
; List any other paragraphs that should end a drop- down block:
H1 = <$DropDownBlockClose>
H2 = <$DropDownBlockClose>
H3 = <$DropDownBlockClose>
H4 = <$DropDownBlockClose>
H5 = <$DropDownBlockClose>

[ParaStyleCodeAfter]
DropPara = <$DropDownBlockOpen>

[Inserts]
; At end of body, close any open drop-down blocks:
Bottom = <$DropDownBlockClose>

[DropDownBlockOpen]
; After DropPara, insert javascript to open a new d rop-down block,
; and set a flag to signify that the block is open. The javascript
; includes a counter to identify the drop-down sect ion:
<$$DropDownCount++>
; Strip leading zeroes:
<div class="dropdown" id="drop<$$DropDownCount as % 0.1d>"
style="display:none;"
onclick="noSection('drop<$$DropDownCount as %0.1d>')">
<$$Flag_DropDownBlockOpen = 1>

[DropDownBlockClose]
; Before DropPara or H1 through H5 or </body>,
; check a flag to see if a drop-down block is open;
; if so, close the drop-down block and clear the fl ag:
<$_if ($$Flag_DropDownBlockOpen)>
</div>
<$$Flag_DropDownBlockOpen = 0>
<$_endif>

[MacroVariables]
; Put any macro definition sections before this sec tion.
Flag_DropDownBlockOpen = 0
DropDownCount = 0

7.9.8.2 Creating drop-down hotspots with Mif2Go ma cros only

The following settings use three macros to handle open/close actions for dedicated drop-
down paragraph format DropPara.

[HTMLParaStyles]
DropPara = CodeBefore CodeStart CodeAfter

[ParaStyleCodeBefore]
; At the start of any of the following paragraphs,

7 PRODUCING ON-LINE HELP SETTING UP CONTEXT SENSITIVE HELP (CSH)

ALL RIGHTS RESERVED. MAY 18, 2013 239

; close any open drop-down blocks:
DropPara = <$DropDownBlockClose>
; List any other paragraphs that should end a drop- down block:
H1 = <$DropDownBlockClose>
H2 = <$dropdownblockclose>
H3 = <$DropDownBlockClose>
H4 = <$DropDownBlockClose>
H5 = <$DropDownBlockClose>

[ParaStyleCodeStart]
; Before the DropPara text, insert a drop-down link :
DropPara = <$DropDownLinkOpen>
[ParaStyleCodeAfter]
DropPara = <$DropDownBlockOpen>

[Inserts]
; At end of body, close any open drop-down blocks:
Bottom = <$DropDownBlockClose>
[DropDownLinkOpen]
; Before DropPara text, set a new drop-down link:
<$$DropDownCount++>
<a class="dropdown"
 href="javascript:doSection('drop<$$DropDownCount>');void 0;">
<img src="dropopen.gif" id="iodrop<$$DropDownCount> "
 style="border:0;" alt="Click to open.">
<img src="dropclose.gif" id="icdrop<$$DropDownCount >"
 style="display:none;border:0;" alt="Click to close .">

[DropDownBlockOpen]
; After DropPara, insert javascript to open a new d rop-down block,
; and set a flag to signify that the block is open. The javascript
; includes a counter to identify the drop-down sect ion:
<div class="dropdown" id="drop<$$DropDownCount>" st yle="display:none;"
onclick="noSection('drop<$$DropDownCount>')">
<$$Flag_DropDownBlockOpen = 1>

[DropDownBlockClose]
; Before DropPara or H1 through H5 or </body>,
; check a flag to see if a drop-down block is open;
; if so, close the drop-down block and clear the fl ag:
<$_if ($$Flag_DropDownBlockOpen)>
</div>
<$$Flag_DropDownBlockOpen = 0>
<$DropDownLinkOpen>
<$_endif>

[MacroVariables]
; Put any macro definition sections before this sec tion.
Flag_DropDownBlockOpen = 0
DropDownCount = 0

7.10 Setting up Context Sensitive Help (CSH)
Creating a link from an application program to a topic in your Help file is pretty much the
same process for all flavors of WinHelp and HTML-based Help. Differences among the
tools used to develop the application dictate minor differences in the process.

In this section:
§7.10.1 Understanding how CSH works on page 240
§7.10.2 Specifying CSH mappings on page 241

SETTING UP CONTEXT SENSITIVE HELP (CSH) MIF2GO USER’S GUIDE

240 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See also:
§9.12 Setting up CSH for HTML Help on page 326
§10.11 Setting up CSH for OmniHelp on page 364
§11.12 Setting up CSH for JavaHelp or Oracle Help on page 401

7.10.1 Understanding how CSH works

When an application program calls on a Help system to display a topic, the program might
pass a number to the Help system to identify the requested topic; this is usually the case
for HTML Help, and always for WinHelp. The Help system, however, uses a name to
identify a topic; in fact, a topic can have any number of names. In the application for
which you are creating CSH, each click of a Help button calls a number (a numeric ID),
and each number has to be mapped to a Help topic name (a symbolic ID). A map file
provides the necessary links from program to Help system; for some Help systems, an
alias file associates each symbolic ID with the name of the Help file:

For HTML Help, the program can pass a file name instead of a number, eliminating the
need for map and alias files, but this is rarely done. For JavaHelp, Oracle Help for Java,
and OmniHelp, the program can pass a name instead of a number.

Numeric ID A numeric ID is usually an integer. You might specify the numeric IDs for the developer
of the application program, or the developer might specify them; which way depends on
development tools and project work flow. If the application program is developed in
Visual Basic, the developer enters the numbers on a form; if in Visual C/C++, what the
developer does depends on which API call variant is in use.

Symbolic ID A symbolic ID consists of the following:

 • a special prefix, either IDH_ or HIDC_, that identifies the symbolic ID as a CSH
destination

 • a name, usually furnished by the application developer, for the application feature
involved (such as a button, dialog, or text box).

Each symbolic ID must be unique in your Help project.

Compilers have built-in support for IDH_ , so use that prefix if possible. If the developers
are using Microsoft Foundation Classes, HIDC_ works also. For HTML Help and
OmniHelp, you specify in the configuration file which prefix(es) you are using. WinHelp
also uses prefixes, IDH_ in particular; and reports any such entries in your map file for
which you did not provide a destination in a topic.

Map file A map file is an ASCII file that contains a line for each link from program to Help system.
In some programming environments, such as Visual C/C++, this file is produced for you;
in others, such as Visual Basic, you create the map file yourself. For C or C++ the map file
is usually named resource.h . For JavaHelp and Oracle Help for Java, Mif2Go creates
the map file (with extension .jhm), and writes the symbolic IDs to the file. No map file is
needed for OmniHelp.

Alias file An alias file is an ASCII file that contains a line for each symbolic ID, associating that ID
with the name of the Help file that contains the relevant CSH destination. For HTML Help
and OmniHelp, you identify each symbolic ID as an alias, which gets listed in the alias
file; Mif2Go can generate the alias file for you. WinHelp links automatically, without an
alias file; no additional author actions are required. Help Workshop provides the prefixes.

Program Map file Help file
Numeric ID > Symbolic ID > Help topic

7 PRODUCING ON-LINE HELP SETTING UP A DYNAMIC MODULAR HELP SYSTEM

ALL RIGHTS RESERVED. MAY 18, 2013 241

7.10.2 Specifying CSH mappings

To provide CSH when Mif2Go generates Help files for your project:

1. Give each target topic a TopicAlias marker that contains a symbolic ID.
In your FrameMaker document, insert a TopicAlias marker in each topic that will be
the target of a call from the application program. The content of the marker is the
symbolic ID for the topic. Insert a separate TopicAlias marker with a unique symbolic
ID for each call from the application. Put the marker at the start of the text you want
displayed. To insert a TopicAlias marker, see§34.1.2 Using markers to add links and
instructions on page 935.

2. Create or obtain a map file (possibly except JavaHelp and Oracle Help for Java; see
§11.12 Setting up CSH for JavaHelp or Oracle Help on page 401).

3. Specify prefixes that identify CSH links (HTML Help or OmniHelp).
List topic-name prefixes in the configuration file, to identify TopicAlias markers
intended for CSH use. If you do not specify any prefixes, all TopicAlias markers are
included.

4. Map the appropriate application-provided number to each symbolic ID.
For C/C++ applications, usually the developer provides a map file. If not, for WinHelp
or HTML Help you can use a simple syntax described in the Help provided for those
Help systems. Otherwise, for each Help call in the program, add a line of the
following form to the map file:

#define symbolic_ID numeric_ID

You cannot map multiple numeric IDs to the same symbolic ID; each entry in the map
file must specify a different symbolic ID. If you need CSH links to the same Help
topic from more than one point in the application, include in the topic a separate
TopicAlias marker with a unique symbolic ID for each such Help call.

5. Add a map-file entry to the Help project file (WinHelp or HTML Help).
In the [MAP] section of the Help project file (MyDoc.hpj or MyDoc.hhp), add a line
of the following form to identify the map file:

#include MapFileName.h

Mif2Go creates a CSH link destination from each TopicAlias marker whose name starts
with one of the prefixes you specified in Step 3, or all the TopicAlias markers if you did
not specify any prefixes. Make sure the symbolic IDs in the TopicAlias markers are
spelled the same way as in the map file.

By default, Mif2Go removes punctuation and spaces from the TopicAlias marker content.
If your HTML-based Help system requires CSH IDs that use characters such as periods,
set the following option:

[HTMLOptions]
; UseRawNewlinks = No (default, remove punctuation, spaces)
; or Yes (as is)
UseRawNewlinks=Yes

7.11 Setting up a dynamic modular Help system
Suppose you are providing Help for a product with several optional modules, and you
want to supply each customer with information only about the modules licensed by that
customer. Or, suppose a user decides not to install a module, or adds a new module later.
Or, suppose you have created reusable Help modules that can be incorporated into any of a
number of main Help systems, such as “Help on Help”.

SETTING UP A DYNAMIC MODULAR HELP SYSTEM MIF2GO USER’S GUIDE

242 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Any Help system that Mif2Go generates can be made to access more than one module, yet
appear to the user as a single unit. The user accesses a single Help file, and sees integrated
contents, index, and related-topic links, containing information only for the relevant
modules. Additional modules are loaded dynamically, when a user clicks a Contents ,
Index , Related Topics , or Search entry that references a separate module.

Methods and configuration settings vary according to which type of Help system you are
generating. See the following for more information:

(No illustrations)

Help system Reference
WinHelp §8.2.11 Providing multiple .hlp files on page 249
MS HTML Help §9.15 Mapping and merging CHM files on page 336

OmniHelp §10.12 Merging OmniHelp projects on page 366
JavaHelp, Oracle Help for Java §11.11 Merging JavaHelp or Oracle Help systems on page 400
Eclipse Help §12.6 Merging Eclipse Help projects on page 415

ALL RIGHTS RESERVED. MAY 18, 2013 243

8 Generating WinHelp

Mif2Go produces RTF topic files, CNT (contents) files, and WMF graphics files for
WinHelp. Most format conversion options are the same as for print RTF. This section
addresses issues that are specific to WinHelp. Topics covered:

§8.1 Obtaining tools for WinHelp on page 243
§8.2 Setting up a WinHelp project on page 243
§8.3 Converting text on page 252
§8.4 Converting cross references on page 259
§8.5 Converting tables to WinHelp RTF on page 261
§8.6 Managing graphics for WinHelp on page 263
§8.7 Converting generated files for WinHelp on page 265
§8.8 Configuring WinHelp topics on page 267
§8.9 Creating jumps and pop-ups for WinHelp on page 272
§8.10 Invoking WinHelp macros on page 284
§8.11 Creating related-topic links in WinHelp on page 285
§8.12 Configuring index entries for WinHelp on page 287
§8.13 Configuring contents for WinHelp on page 288
§8.14 Creating browse sequences on page 292

See also:
§6 Converting to print RTF on page 141, for information about settings that work the
same way for print RTF and for WinHelp.
§7 Producing on-line Help on page 199, for information about configuring contents
and index, providing related-topics links, supporting context-sensitive help, and
merging help projects.

8.1 Obtaining tools for WinHelp
To generate WinHelp you need Microsoft Help Workshop, hcw.exe . However, this
program is no longer available. If you have Microsoft Visual Studio 2008, Help Workshop
was reportedly included in that version. If you do not have access to Help Workshop, you
must choose a Help output type other than WinHelp; see §7.1 Weighing Help-system
alternatives on page 199.

To view WinHelp, users with systems running Windows Vista or Windows 7 will have to
download a new WinHelp engine from Microsoft:

Note: The WinHelp engine, winhlp32.exe , cannot be distributed by third parties, so
do not include it when you distribute a WinHelp system. Every installation of
winhlp32.exe requires Microsoft validation.

8.2 Setting up a WinHelp project
When you specify WinHelp for output, Mif2Go produces the .hpj , the .cnt , the .wmf
graphics, and the WinHelp-coded .rtf files. You open the .hpj in Help Workshop, and
click Compile . You can view the result in Help Workshop.

Windows Vista: http://tinyurl.com/4pkahu2
Windows 7: http://tinyurl.com/67qt76f

http://tinyurl.com/4pkahu2
http://tinyurl.com/67qt76f

SETTING UP A WINHELP PROJECT MIF2GO USER’S GUIDE

244 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

In this section:
§8.2.1 Setting up a WinHelp project on page 244
§8.2.2 Choosing set-up options for a WinHelp project on page 244
§8.2.3 Deciding where to locate configuration settings on page 245
§8.2.5 Understanding initial set-up requirements on page 246
§8.2.6 Deciding whether to regenerate the WinHelp project file on page 246
§8.2.7 Accommodating platform differences on page 247
§8.2.8 Setting basic WinHelp options in the configuration file on page 248
§8.2.9 Including ObjectIDs in WinHelp on page 249
§8.2.10 Handling page breaks and section breaks on page 249
§8.2.11 Providing multiple .hlp files on page 249
§8.2.12 Integrating WinHelp from RoboHelp on page 250
§8.2.13 Compiling a WinHelp project on page 250
§8.2.14 Checking WinHelp RTF files for Mif2Go version on page 251

8.2.1 Setting up a WinHelp project

To set up a WinHelp project:

1. Create a project directory for WinHelp RTF files, separate from the directory where
your FrameMaker document is located.

2. With your FrameMaker book or document file open, choose File > Set Up Mif2Go
Export ; the Choose Project dialog opens.

3. Name your WinHelp project, and browse to the project directory you created in Step 1
(see §3.3 Creating a Mif2Go conversion project on page 78).

4. In the Choose Project dialog (see §3.3 Creating a Mif2Go conversion project on
page 78), choose WinHelp 4/95 RTF.

5. Select options in the Set Up WinHelp Project dialog (see §8.2.2 Choosing set-up
options for a WinHelp project on page 244).

6. Dismiss the Conversion Designer dialog.

7. Use a text editor to specify settings in configuration file _m2winhelp.ini (see §4.1
Working with Mif2Go configuration files on page 91).

8. Important: To make the configuration fit your usage of headings to start topics, pay
special attention to sections [HelpContentsLevels] (see §7.2.1 Checking
automatic Help topic assignments on page 203) and [HelpStyles] (see §8.8.2
Assigning properties to formats for topics and hotspots on page 268).

8.2.2 Choosing set-up options for a WinHelp projec t

When you select WinHelp as the output type for a new project, the Set Up dialog shown in
Figure 8-1 opens. Table 8-1 shows the corresponding settings in the configuration file.

See also:
§7 Producing on-line Help on page 199

8 GENERATING WINHELP SETTING UP A WINHELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 245

Figure 8-1 Set Up WinHelp Project

8.2.3 Deciding where to locate configuration setti ngs

When you set up a WinHelp project from within FrameMaker, if configuration file
_m2winhelp.ini is not already present in the project directory, Mif2Go creates this file
for you; see §3 Converting a book or document on page 77.

Table 8-1 WinHelp set-up options and configuration settings

Set-up dialog Configuration file
Option Section Setting Default Ref.

.hlp file name [HelpContents] CntBase= myfile.hlp FMbook.hlp 8.13.1

.cnt file name [HelpContents] CntName= myfile.cnt FMbook.cnt 8.13.1

Always update
combined .cnt

[HelpOptions] MakeCombinedCnt=Yes Yes 8.2.8

Compile: [Automation] CompileHelp=Yes No 8.2.13

.hpj file name [HelpOptions] HPJFileName= myproj.hpj FMbook.hpj 8.2.13

Title [HelpContents] CntTitle= My Project Your Title
Here

8.13.1

Starting topic file [HelpContents] CntTopic= myfile Book or file name 8.13.1

Copyright [HelpOptions] HelpCopyright= statement No default See
.hpj
file

Use datestamp in
copyright

[HelpOptions] HelpCopyDate=% date %date

SETTING UP A WINHELP PROJECT MIF2GO USER’S GUIDE

246 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Which
configuration file?

To configure WinHelp output, add settings to one of the following files, depending on the
desired scope of each setting:

See §30.5 Deciding which configuration file to edit on page 856.

8.2.4 Preparing a document for conversion to WinHe lp

To generate WinHelp from a FrameMaker document, observe the following guidelines:

 • Keep file names short; very long names might exceed limits in WinHelp, especially
the 64-character limit on lines in the .cnt file. See §2.2 Naming FrameMaker formats
on page 66 for additional file-name restrictions.

 • Provide a conversion template that reduces the size range of headings, and eliminates
page numbers from cross references; see §2.4 Importing formats from a conversion
template on page 67.

 • Avoid using tabs. FrameMaker uses a unique tabbing scheme, to eliminate the
dependency on font metrics that is present in Word and in WinHelp.

 • Provide versions of graphics in BMP or WMF format; see §5.7 Processing graphics on
page 126 for more information.

8.2.5 Understanding initial set-up requirements

To set up a WinHelp project and have Mif2Go create a WinHelp project file (.hpj), you
must do the following:

 • make sure no m2winhelp.ini configuration file is present in the project directory
 • run Mif2Go from within FrameMaker.

If you run Mif2Go from the command line, or if a configuration file is already present, no
.hpj file is created.

If you are creating a multi-file WinHelp project, always work from a FrameMaker book
file rather than from a single document file. If necessary, create a new book containing just
the files you want to include in WinHelp. Or, use the existing book file, if the only
difference from a print version of the book is that you are excluding the index.

To compile WinHelp, you will need Microsoft Help Workshop; see §1.3.5 Obtain tools for
Help systems or eBooks on page 58.

8.2.6 Deciding whether to regenerate the WinHelp p roject file

When you use Mif2Go to generate WinHelp from within FrameMaker, Mif2Go writes an
.hpj project file during set-up, and rewrites it later only under certain conditions.

To specify whether Mif2Go should generate the .hpj project file anew each time you run
the conversion:

[HelpOptions]
; WriteHelpProjectFile = Yes (write each time) or N o; if no setting,
; write only if the file does not already exist.
WriteHelpProjectFile = Yes

Scope Configuration file Location

Current project
only

_m2winhelp.ini Current project directory

All WinHelp
projects

local_m2winhelp_config.ini %omsyshome%\m2g\local\con fig\

8 GENERATING WINHELP SETTING UP A WINHELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 247

The values you can specify for WriteHelpProjectFile have the following effects:

Mif2Go closes the .hpj file after writing it; however, if you had the .hpj file open in
Help Workshop when Mif2Go rewrote it, you could get an access violation. (Notepad
would just rewrite the old file over the rewritten one.)

If you set WriteHelpProjectFile=Yes and then later decide to modify the .hpj file,
be sure to set WriteHelpProjectFile=No ; otherwise your edits will be wiped out the
next time you convert.

If you use Help Workshop to make changes that are not reflected in the configuration file,
and they are changes you want to keep, you can prevent Mif2Go from overwriting them
by setting WriteHelpProjectFile=No .

8.2.7 Accommodating platform differences

You must specify a few [HelpOptions] settings according to the platform on which your
WinHelp file will be used:

[HelpOptions]
; Altura = No (default) or Yes (Altura QuickHelp fo r Mac)
Altura=No
; HyperHelp = No (default) or Yes (Bristol HyperHel p for UNIX)
HyperHelp=No
; ForceBmc = No (default) or Yes (use bmc, not bml, for HyperHelp)
ForceBmc=No
; HelpSectionBreaks = Yes (default) for sect break before each topic,
; or No for Altura (filter strips table format fro m topic titles)
HelpSectionBreaks=Yes

Windows
9x/ME/NT/2000

The default settings work for all 32-bit Windows platforms:
[HelpOptions]
Altura=No
HyperHelp=No
ForceBmc=No
HelpSectionBreaks=Yes

Macintosh If you are targeting the Macintosh platform, and you are using Altura QuickHelp, set
Altura=Yes . This setting does not work for regular Windows versions, so expect to run
Mif2Go twice to produce both forms. However, you might find that Altura QuickHelp
does work when you set HelpSectionBreaks=No and Altura=No , in which case you
can get by with one version instead of two.

UNIX For UNIX users, Mif2Go has a setting for Bristol HyperHelp: HyperHelp=Yes .
Unfortunately, HyperHelp has trouble with WMF graphics. You must use a graphics
conversion program (see §5.7.2.3 Using third-party graphics converters on page 130) to
convert all WMF graphics to BMP graphics. If you choose to do this, Mif2Go can change
the file names for the graphics in the .rtf accordingly:

[Graphics]
NameWMFsAsBMPs=Yes

Also set [HelpOptions] ForceBmc=Yes , to change all bml references to bmc.

Yes If the .hpj file is present, Mif2Go overwrites it.

No Mif2Go does not overwrite the .hpj file.

(none) If the configuration file contains no WriteHelpProjectFile setting
at all, Mif2Go writes an .hpj file, but only if the .hpj file is not
already present.

SETTING UP A WINHELP PROJECT MIF2GO USER’S GUIDE

248 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

If you are using HyperHelp you might need to prevent multiple interword spacing when
there are index markers in text. If you see extra space at index markers, try
EndFtnWithSpace=No :

[HelpOptions]
; EndFtnWithSpace = Yes (Help default) or No (Hyper Help default)
EndFtnWithSpace=Yes
; FootnoteSpace = After (the } after the symbol, de fault),
; Before, or None
FootnoteSpace=After

8.2.8 Setting basic WinHelp options in the configu ration file

If you are setting up a WinHelp conversion by editing the configuration file instead of
using the Set Up WinHelp Project dialog, you must provide your own WinHelp.hpj file
(see §8.2.5 Understanding initial set-up requirements on page 246), and add or modify the
configuration settings as follows:

1. For each heading format that starts a topic, specify properties:
[HelpStyles]
; style = key list, where list members are separate d
; by spaces only
ParaFmt = Property1 Property2 Property3 ...

where:

2. For each topic-starting heading format that should appear in the .cnt file, specify a
Contents level. For example:

[HelpCntStyles]
ParaFmt=Contents level

See §8.13.2.1 Understanding WinHelp contents level numbers on page 289.

3. Specify whether you want a combined .cnt file:
[HelpOptions]
; MakeCombinedCnt = Yes (default, when processing f rom open book)
MakeCombinedCnt=Yes

4. Specify whether you want to run the help compiler automatically as the last
conversion step (not recommended for large projects); if so, provide a name for the
help project file:

[Automation]
; CompileHelp = No (default, run help compiler sepa rately), or Yes
CompileHelp=Yes

[HelpOptions]
; HPJFileName = name of .hpj to use when compiling help
HPJFileName= myproj.hpj

The default value of HPJFileName is the name of your FrameMaker book.

To have Mif2Go copy the .hpj file to another directory after generating output files,
specify the following:

[Automation]
WrapAndShip=Yes
; WrapPath = path to dir for compiling and distribu tion,
; default is output dir
WrapPath=.\help

ParaFmt is the name of the FrameMaker heading format

PropertyN is a help style attribute, such as Topic , Browse , or Key.

8 GENERATING WINHELP SETTING UP A WINHELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 249

See §35.6 Assembling files for distribution on page 961.

8.2.9 Including ObjectIDs in WinHelp

You can specify whether Mif2Go includes the FrameMaker ObjectIDs from your
document in RTF output for WinHelp, to create link targets or for other purposes:

[HelpOptions]
; ObjectIDs = Referenced (default, used by TOC or I X), None, or All
ObjectIDs=Referenced

ObjectIDs values have the following effects:

The default setting allows you to have active cross-reference and hypertext links in
WinHelp. For additional settings to activate or suppress these links, see:

§8.4 Converting cross references on page 259
§8.7 Converting generated files for WinHelp on page 265
§8.9 Creating jumps and pop-ups for WinHelp on page 272

For information about ObjectIDs in FrameMaker, see:
§5.3 Identifying files and objects on page 117

8.2.10 Handling page breaks and section breaks

WinHelp uses page and section breaks for a radically different purpose from print RTF.
Page breaks are reinterpreted to mean “start of topic”, and a definite sequence of codes
must follow the topic start in the prescribed order. Mif2Go creates this sequence
automatically when you specify [HelpStyles] ParaFmt=Topic (see §8.8.2 Assigning
properties to formats for topics and hotspots on page 268).

Section breaks are used as an undocumented modifier to page breaks; they permit the help
compiler to avoid going into convulsions if the first thing after a page break is a table (as is
often the case in FrameMaker for fancy heading designs). Unless you are converting to
WinHelp on an Altura system, use the default setting for section breaks:

[HelpOptions]
; HelpSectionBreaks = Yes (default) for sect break before each topic,
; or No for Altura (filter strips table format fro m topic titles)
HelpSectionBreaks=Yes

The following options have no use in WinHelp; set them as indicated (the WinHelp
defaults):

[HelpOptions]
PageBreaks=Remove
KeepSectBreaks=No

8.2.11 Providing multiple .hlp files

You can provide multiple .hlp files instead of a single .hlp file. You must set
configuration options to ensure the links between .hlp files work as expected. See:

§8.4.2 Specifying cross-reference destination files on page 259
§8.13.2.5 Referencing multiple help files from contents on page 291

Referenced Mif2Go includes in the output every ObjectID in your document
that serves as a target of a link.

None FrameMaker ObjectIDs are omitted from the output.

All Every ObjectID in your document is included in the output.

SETTING UP A WINHELP PROJECT MIF2GO USER’S GUIDE

250 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

As an alternative, you can provide a main .hlp file with contents entries that link to other
.hlp files; see §7.11 Setting up a dynamic modular Help system on page 241.

For more information, see Designing your Help system > Planning your Help sys tem
> Designing for multiple Help files in Help Workshop Help Topics: Help Author’s
Guide.

8.2.12 Integrating WinHelp from RoboHelp

If you have RoboHelp installed on your system, you can integrate a WinHelp DLL created
with RoboHelp into your Mif2Go -produced WinHelp project.

1. Use RoboHelp to generate a WinHelp 2000 project of any size, even one short file.

2. Open the resulting .hpj file in a text editor, and look for the sections that specify the
start-up code.

3. Copy the start-up code sections, unaltered, into the .hpj file produced by Mif2Go .

8.2.13 Compiling a WinHelp project

To compile the RTF files Mif2Go produces, you need Microsoft Help Workshop
(hcw.exe). Make sure you have the latest version of Help Workshop. If hcw.exe is not
on your system PATH, you must tell Mif2Go where to find it:

[HelpOptions]
; Compiler = path\to\hcw; can include run parameters
Compiler = hcw /c /e

You can have the compiler display a copyright statement and a compile date in the
WinHelp Version Information dialog:

[HelpOptions]
HelpCopyright = your copyright statement
HelpCopyDate = Yes

For example:
[HelpOptions]
HelpCopyright = (c) 2001-2012 Omni Systems, Inc.
HelpCopyDate = Yes

These settings resulted in the following, displayed in the WinHelp Version Information
dialog:

(c) 2001-2012 Omni Systems, Inc.
Monday, February 20, 2012 18:24:39

When you check Compile Help in the Mif2Go Export dialog (see §3.6 Converting
documents on page 82), or specify the following options in the configuration file, Mif2Go
automatically runs the WinHelp compiler after generating output files:

[Automation]
; CompileHelp = No (default, run Help compiler sepa rately), or Yes
CompileHelp=Yes

To have Mif2Go copy the .hpj file to another directory for compiling, specify the
following:

[Automation]
; WrapPath = path to dir for compiling and distribu tion,
; default is output dir
WrapPath=.\help

See §35.6 Assembling files for distribution on page 961.

8 GENERATING WINHELP SETTING UP A WINHELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 251

Compiling from
Mif2Go not

recommended

Despite the fact that a Compile Help option appears in the Mif2Go Export dialog (see
Figure 3-5 on page 83), it is not a good idea to compile help from within Mif2Go . If your
file is large, you will likely encounter a memory allocation failure.

Compile from
Help Workshop

Instead, open Help Workshop. From within Help Workshop open MyBook.hpj ; to
compile your help project, click the button that looks like a food grinder. You can keep
Help Workshop open while you are using Mif2Go , and click the compile button whenever
you make a new set of RTF files. This method is simple to use, avoids memory problems,
and shows you helpful diagnostic messages.

If you still get memory errors, or if compilation does not happen, check the version of
Help Workshop you are actually using (not just the hcw.exe you see in Explorer):
double-click MyBook.hpj and look at the number displayed when you click Help >
Version... ; it should be 4.03.0002.

Help compiler
must be on the

system PATH

That said, if you really must compile from within Mif2Go , make sure the Windows
system can find file hcrtf.exe . This is best accomplished by including the name of the
directory where you installed Help Workshop in the system PATH by modifying
environment variable PATH. Or, you can copy the .exe files (at least hcw.exe and
hcrtf.exe) and the .dll to the \windows\system directory, or to some other
directory that is already on the system PATH.

Also, you might want to specify the following setting, so you can see any error messages
that result:

[Automation]
; KeepCompileWindow = No (default)
; or Yes (so any error messages can be seen)
KeepCompileWindow=Yes

When KeepCompileWindow=Yes , a system window opens when the compiler runs. If
there are no compilation errors, you will see only a command prompt when compilation
finishes. You must dismiss the window before Mif2Go can continue processing.

Tell the Help
compiler where to

find graphics

If your graphics are in more than one place, you can add multiple BMROOT= entries to the
[OPTIONS] section of your Help Project (.hpj) file. For example:

[OPTIONS]
BMROOT=..\MyGraphics
BMROOT=..\Test\Graphics

Edit the .hpj if you
add / remove /

rename files

If you add, remove, or rename any files in your FrameMaker book after Mif2Go has
generated the .hpj file for that book, before you compile WinHelp you must edit the
[Files] section of the .hpj file to reflect those changes. Use a text editor such as
Notepad.

8.2.14 Checking WinHelp RTF files for Mif2Go versi on

If you recently installed a Mif2Go upgrade or beta version, after you run Mif2Go , check
to make sure the latest version was actually used to produce RTF output. Windows
sometimes caches DLLs, and does not always use a newly replaced DLL until after the
system is rebooted.

Open an RTF output file in Word and choose File > Properties > Comments . You should
see a line like the following:

DCL filter dwrtf, Ver 3.3 m194b r278b

The last two entries identify the build numbers of the Mif2Go drmif.dll and
dwrtf.dll components that were used to create the RTF file. See §D.2.9 Check your
version of Mif2Go on page 1034.

CONVERTING TEXT MIF2GO USER’S GUIDE

252 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

8.3 Converting text
In this section:

§8.3.1 Converting formats for WinHelp on page 252
§8.3.2 Converting special characters on page 254
§8.3.3 Removing unused formats and fonts on page 257
§8.3.4 Converting autonumbers on page 257
§8.3.5 Replacing paragraph or character content on page 257
§8.3.6 Specifying text color on page 258
§8.3.7 Converting footnotes on page 258

8.3.1 Converting formats for WinHelp

Most format settings for print RTF apply also to WinHelp RTF; these settings are
described in §6 Converting to print RTF on page 141, specifically in §6.7 Converting
paragraph and character formats on page 158. The settings described here include those
that are exclusive to WinHelp, or that differ in usage from the same-named settings for
print RTF.

Caveats Observe the following restrictions on format names in your FrameMaker document. Do
not use:

 • The same name for two different types of format; for example, a paragraph format
named Body and a character format also named Body.

 • Two formats that differ only in case or in spacing; for example, Heading 1,
Heading1, heading 1, and heading1 are identical in RTF usage.

In this section:
§8.3.1.1 Converting paragraph formats on page 252
§8.3.1.2 Suppressing unwanted paragraphs on page 253
§8.3.1.3 Converting character formats on page 254

See also:
§2.2 Naming FrameMaker formats on page 66

8.3.1.1 Converting paragraph formats

Many of the settings described in §6.7 Converting paragraph and character formats on
page 158 for print RTF apply equally to WinHelp output.

Sidehead formats In [HelpOptions] , set Sideheads=Left . This is usually the best choice for WinHelp:
[HelpOptions]
; Sideheads = Left (default), Indent (looks more li ke doc), or Normal
Sideheads=Left

Run-in headings By default, for WinHelp output Mif2Go separates each run-in heading from its following
paragraph. To have Mif2Go emulate the FrameMaker run-in heading format in WinHelp:

[HelpOptions]
; RunInHeads = Runin (Word default) or Normal (help default)
RunInHeads=Runin

When RunInHeads=Normal , for WinHelp Mif2Go inserts a carriage return between the
run-in heading and the paragraph that follows.

When RunInHeads=Runin , the following paragraph starts on the same line as the run-in
heading, as it does in FrameMaker. However, this setting does not work correctly if you

8 GENERATING WINHELP CONVERTING TEXT

ALL RIGHTS RESERVED. MAY 18, 2013 253

use the run-in heading for a WinHelp topic start, because topic-start formats disappear
from the body of the topic.

Reference frames You can choose whether or not to include reference frames defined for paragraph formats,
and if so, whether to use the actual reference-page graphic or just its name. You might
want the name if it is descriptive, such as “Note” or “Caution”.

[HelpOptions]
; RefFrames =
; Graphic (show FrameAbove and Below),
; Text (name only), or
; None
RefFrames=Graphic

If some of your paragraph formats include a line above or below, and you do not want
those lines to appear in your help file:

[HelpOptions]
RefFrames=None

If you specify Text to include just the name, also specify a format (FrameMaker
paragraph format) for the name. For example:

[HelpOptions]
; RefFrameDefFormat = the format to be used for Tex t reference frames
RefFrameDefFormat= AlertHead

Tabs Mif2Go uses font metrics (see §6.9.3 Specifying font types on page 167) to convert tabs.
You can specify a default tab width in twips (twentieths of a point):

[HelpOptions]
; DefTabWidth = 0 (default, ignore undefined tabs)
; or twips (720 for 0.5")
DefTabWidth=0

When too many tabs are defined, sometimes the Help Compiler fails with a heap
corruption error. Mif2Go provides an empirical default maximum of 32 tabs defined per
paragraph format:

[HelpOptions]
; HelpTabLimit = maximum tab definitions allowed
; in paragraph formatting
HelpTabLimit=32

If you need to increase the limit, do so gradually, and watch out for compiler errors. We
have found that 45 fails consistently.

Note: The maximum applies to number of tabs defined, even if they are never used.

8.3.1.2 Suppressing unwanted paragraphs

Suppose your FrameMaker document contains manually inserted page-oriented
navigation aids, such as the text “(Continued)” when a procedure breaks across a
FrameMaker page boundary. To prevent this text from appearing in RTF output, you can
use conditional text, or you can do the following:

1. Use a special paragraph format (for example, Continuation) for all instances of the text
in your document.

2. In the configuration file, assign property Delete to the paragraph format:
[HelpStyles]
; Delete is used to remove displayable text
Continuation=Delete

CONVERTING TEXT MIF2GO USER’S GUIDE

254 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Note: If a table or graphic is anchored in a paragraph whose format is assigned the
Delete property, the table or graphic is retained, and only the text of the
paragraph is deleted.

8.3.1.3 Converting character formats

Mif2Go can output FrameMaker character formats as Word character styles, instead of as
overrides. Use this feature only if you anticipate needing to revise the RTF text:

[HelpOptions]
; CharStylesUsedInText = No (help default, no cs co des allowed)
CharStylesUsedInText = Yes

Most character-format settings for print RTF apply also to WinHelp RTF; these settings
are described in §6.7.8 Converting character formats on page 163. The settings described
here are those that are exclusive to WinHelp, or that differ in usage from the same-named
settings for print RTF:

Small Caps
Underlining used as an override

Small Caps Text in Small Caps style might be too small to read easily, reducing the size of the original
caps. If this happens, you can turn off the Small Caps style:

[HelpOptions]
; SmallCaps = Standard (default), or None
SmallCaps=None

Underlining used
as an override

By default, Mif2Go eliminates underlining that was applied to text in FrameMaker via
format overrides; that is, underlining is removed unless it is defined to be part of a
character or paragraph format:

[HelpOptions]
; AllowLiningOverrides = No (default,
; underline change only in formats)
AllowLiningOverrides=No

This prevents confusion of random underlined text with links, which are underlined
automatically in WinHelp. When someone clicks underlined text and nothing happens, it
looks as though a link is broken. You can change this setting to Yes to keep the
underlining.

8.3.2 Converting special characters

Not all characters in FrameMaker text translate as you might expect. For example,
WinHelp has very limited capabilities for displaying symbols as part of the text, and
typically uses an embedded bitmap containing the image of the symbol.

In this section:
§8.3.2.1 Specifying font encoding for non-Western languages on page 255
§8.3.2.2 Using one character to represent all characters in a font on page 255
§8.3.2.3 Embedding bitmaps in a font on page 255
§8.3.2.4 Converting bullets on page 256
§8.3.2.5 Converting smart quotes on page 256
§8.3.2.6 Converting hard hyphens on page 257
§8.3.2.7 Converting high ASCII characters on page 257

8 GENERATING WINHELP CONVERTING TEXT

ALL RIGHTS RESERVED. MAY 18, 2013 255

8.3.2.1 Specifying font encoding for non-Western l anguages

For WinHelp (and for Word), the default font encoding for font types 5 and 6 (see
Table 6-4 on page 168) is fcharset2 ; for all other font types, the default encoding is
fcharset0 . You can specify a different font encoding for text in which the “high ASCII”
character set contains characters other than the European accented characters (represented
by fcharset0). For example, to specify Cyrillic font encoding:

[FontEncoding]
; Font name = value to use in font table for fchars et
Times New Roman CYR=204

This setting tells WinHelp to display Cyrillic characters in place of accented characters for
the high ASCII code points.

See also:
§6.9.3 Specifying font types on page 167
§6.9.4 Specifying font encoding for non-Western characters on page 168

8.3.2.2 Using one character to represent all chara cters in a font

In WinHelp 4, you can specify a normal font character to be used in place of any character
in the font; this method is typically used to set a bullet. You do this by changing the
[FontTypes] value for the font to the decimal value of the character you want to use as
the replacement, such as Wingdings=40 to use “*” in place of any Wingding character:

[FontTypes]
Wingdings=40

See §6.9.3 Specifying font types on page 167 for more information about font types.

8.3.2.3 Embedding bitmaps in a font

You can specify a font for which you want certain characters changed to in-line bitmaps in
the WinHelp file. You embed bitmaps in the font as follows:

1. Choose a font to represent bitmaps.

2. Assign a different character in that font to each bitmap.

3. Place the assigned characters—in that font—in your FrameMaker document,
wherever you want the bitmaps to appear in WinHelp.

In the configuration file you identify the font (BitmapFont= fontname), then map the
characters. You can represent a character either as itself or as its decimal numeric value.
For example:

[BitmapChars]
; BitmapFont = name of font to check for chars to m ap here
BitmapFont=Algerian
; following chars are remapped when in BitmapFont i n WinHelp only
; sample mappings are all to bitmaps supplied in He lp Workshop
; * = bullet, using the decimal numeric value of th e character
40=bullet.bmp
; A = arrow, using the character itself (printable, not ";" or "[")
A=prcarrow.bmp
; C = closed book
C=closed.bmp
; D = document
68=document.bmp
; O = open book
79=open.bmp

CONVERTING TEXT MIF2GO USER’S GUIDE

256 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; S = step
S=onestep.bmp

Add a line for each character you want to map, such as:
40=bullet.bmp

to make all asterisks in that font turn into in-line calls for a bullet image. Any characters
you do not map remain themselves. To use the semicolon “; ” or the left bracket “[”, you
must precede the character with a backslash to avoid conflict with configuration-file
conventions.

Make sure you tag only one character at a time with the bitmap font, and watch out for
preceding or following spaces in the same font, which would disable the bitmap usage.

When you use actual letters as [BitmapChars] keys, they are case insensitive; “A” is
mapped the same as “a”. Using the decimal numeric value of a character as the key
instead has two advantages:

 • You can map high-bit-set characters, which are often used for symbols.
 • You can assign different bitmaps to uppercase and lowercase characters.

8.3.2.4 Converting bullets

Bullets can be put in as characters in WinHelp 4, according to the documentation. In some
cases, bullet characters work better than bitmaps, which can interfere with paragraph
indents and spacing:

[HelpOptions]
; Bullets = Help (default, bmc reference) or Standa rd (using ‘95)
Bullets=Help
; BMPsForDingbats = No (default)
; or Yes (to use bullet.bmp for deco fonts)
BMPsForDingbats=No

The default is Bullets=Help , which uses in-line embedded bitmaps. To use characters
instead, set Bullets=Standard . Dingbats and Wingdings usually work in WinHelp 4,
but sometimes they come out as text characters. If that happens, use the bitmap instead, by
setting BMPsForDingbats=Yes .

If you want to use a different name for your bullet bitmap, you can change the name here:
[Graphics]
BulletFile= mybull.bmp

8.3.2.5 Converting smart quotes

The WinHelp 4 documentation says smart quotes (“curly” quotes) work just fine. They do
not. They often cause a spurious error message about “unmatched braces” in RTF output.
Mif2Go offers three options for dealing with this problem:

[HelpOptions]

; Quotes = Help (default), Standard (curly, may cau se errors),
; or Numeric
Quotes=Help

These settings have the following effects:

Help Changes curly quotes to straight quotes, which do work in WinHelp 4.

Standard Leaves them as curly quotes; sometimes works in very small .hlp
files.

8 GENERATING WINHELP CONVERTING TEXT

ALL RIGHTS RESERVED. MAY 18, 2013 257

8.3.2.6 Converting hard hyphens

Because WinHelp 4 does not consistently recognize hard hyphens, Mif2Go automatically
changes them to regular hyphens.

8.3.2.7 Converting high ASCII characters

If you use em dashes and many other high ASCII characters, Mif2Go must replace them
with in-line embedded bitmaps containing the image of the symbol. If you are using Help
Workshop for Win9x/ME/NT/2000-compatible .hlp files, several bitmaps are built in to
the Help Compiler; see the Help Author’s Guide (the “Help” in Help Workshop) for
details.

If you are using HC.EXE for Win3.1 compatibility, you are on your own. Mif2Go provides
bullet.bmp ; you will have to acquire or create any other bitmaps.

8.3.3 Removing unused formats and fonts

Mif2Go keeps track of which paragraph and character formats and which fonts are
actually used in the output file, and can remove unused formats and fonts. This is the
default for WinHelp, because WinHelp RTF files are rarely edited again before they are
compiled:

[HelpOptions]
; RemoveUnusedStyles = Yes (default for WinHelp) or No
RemoveUnusedStyles=Yes
; RemoveUnusedFonts = Yes (default for WinHelp) or No
RemoveUnusedFonts=Yes

8.3.4 Converting autonumbers

By default, Mif2Go includes FrameMaker paragraph autonumbers as text in WinHelp
output. To omit FrameMaker autonumbers:

[HelpOptions]
; WriteAnums = Yes (default) or No (omit FrameMaker autonumbers)
WriteAnums = No

When WriteAnums=Yes (the default), Mif2Go converts FrameMaker autonumbers to
text and includes them in WinHelp output.

When WriteAnums=No , FrameMaker autonumbers are omitted.

8.3.5 Replacing paragraph or character content

You can direct Mif2Go to replace the content of a paragraph, or of a character-formatted
span of text, with arbitrary RTF code. For example, to replace page numbers with graphics
in a generated file to be included in WinHelp output:

[HelpStyles]
; Replace deletes, and also puts out the RTF in [He lpReplacements]
IOMpgnum=Replace

You specify the replacement RTF code as a property of the format in question, in the
following section. For example:

Numeric Uses “'” syntax for the quotes, and might work for curly quotes where
Standard does not.

CONVERTING TEXT MIF2GO USER’S GUIDE

258 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[HelpReplacements]
; Replace causes the insertion of the corresponding raw RTF code below
; in place of the original content of the named p ara or char format
IOMpgnum=\ .{bmc document.bmp\ .}

This feature is used in the WinHelp version of the Mif2Go User’s Guide, to replace page
numbers in keyword indexes with bitmap graphics; see §8.7.2 Converting indexes and
lists of marker references on page 266.

8.3.6 Specifying text color

Mif2Go converts FrameMaker color definitions from CMYK to RGB, and adds them to
the RTF color table so that they look the same in WinHelp. You can choose whether to
retain text colors:

[HelpOptions]
; TextColor = 0 all black (help default) or 1 (as i s)
TextColor=0

If you use the colors only for ease of editing in FrameMaker, and want them to come out
black in the converted files, set TextColor=0 . This is the default for WinHelp
conversions, because color is used in a consistent way in WinHelp to indicate hotspots,
and other uses might confuse the reader. However, you can override the default with
TextColor=1 , so that your text colors appear in the WinHelp file.

Note: The TextColor setting does not affect the use of color in graphics, including
graphics text (such as callouts). The RTF color table also does not affect the colors
used in graphics; the color information is embedded in the graphic metafile.

8.3.7 Converting footnotes

Mif2Go can convert a FrameMaker footnote to a WinHelp jump (the default) or to a
WinHelp pop-up, instead of leaving it as a footnote:

The default is to convert footnotes to jumps. You can also specify that footnotes should
remain as is, or appear embedded in the text between brackets in place of the footnote
number:

[HelpOptions]
; Footnotes = Standard, Embed (between []), Jump, P opup, or None
; default is Jump, which looks more normal than Pop up
Footnotes=Jump

To separate footnotes from text at the end of the topic when Footnotes=Standard :
[HelpOptions]
; FootnoteSeparator = RTF to use for separator abov e footnotes at the
; bottom of the page, can be a macro reference, def ault none
FootnoteSeparator=
\n\\pard\\plain\\fs20\\emdash\\emdash\\emdash\\emda sh\\par\n

This setting must be all on one line, even though it might not appear that way here.

Jump: The footnote number is a hotspot; click it, and you jump to the footnote,
which is placed at the bottom of the topic. You can also view the
footnote by scrolling to the bottom of the page; if the topic is short, you
might not need to scroll.

Pop-up: The footnote appears in a pop-up window by itself when you click the
footnote number; it does not appear on the topic page at all. This might
be desirable in long tables, to give added bits of information for selected
items without scrolling.

8 GENERATING WINHELP CONVERTING CROSS REFERENCES

ALL RIGHTS RESERVED. MAY 18, 2013 259

8.4 Converting cross references
By default, Mif2Go converts cross references into jumps, including interfile jumps where
needed.

In this section:
§8.4.1 Creating help context markers on page 259
§8.4.2 Specifying cross-reference destination files on page 259
§8.4.3 Specifying cross-reference jump destinations on page 260
§8.4.4 Specifying WinHelp options for cross-reference formats on page 260
§8.4.5 Limiting cross-reference text on page 261

8.4.1 Creating help context markers

Mif2Go can convert cross references to help context markers; this is the default for
WinHelp:

[HelpOptions]
; Xrefs = Help (make context markers) or None (plai n text)
Xrefs=Help

You can specify whether to use the FrameMaker numeric cross-reference ID (the default),
or the full text of the cross reference:

[HelpOptions]
; XrefType = = Numeric (default) or Full (use only to eliminate dupes)
XrefType=Numeric

If you specify XrefType=Full , you get the complete referenced text in the WinHelp
context marker. Such text can easily exceed the 63-character size limit for cross-reference
IDs in WinHelp, and might contain characters that are not valid in WinHelp IDs.

If you specify XrefType=Numeric (or if you omit the setting entirely) Mif2Go uses
FrameMaker ObjectIDs instead of the full cross-reference text.

Duplicate
references

In the great majority of cases, XrefType=Numeric produces the correct result. However,
you run a very small chance of encountering duplicate cross-reference ID numbers, which
cause the WinHelp compiler to complain. If this happens, you must replace one of each
pair of duplicate ID numbers in your FrameMaker document. To find the duplicates in
FrameMaker, generate an Index of Markers (IOM) for your document, selecting only
cross-reference markers, and checking Create Hypertext Links . A duplicated number has
two references listed instead of one.

8.4.2 Specifying cross-reference destination files

If all your cross references are to sources within the same .hlp file, Mif2Go can process
them without further information from you. If you have cross references to other files, you
must specify into which .hlp files the original source files will be placed.

Single file When all source files are going into the same .hlp file, you can use a one-step setting:
[HelpOptions]
XrefFileDefault= helpfilename

Multiple files When you create multiple interlinked .hlp files, you must specify a mapping for each
external file name that is specified in the helpset (but not in the current .hlp file) to the
name of the .hlp file that contains the corresponding topic. You must insert this
information in the configuration file for each helpset in the interlinked group of helpsets.
Do not include paths or file extensions. For example:

CONVERTING CROSS REFERENCES MIF2GO USER’S GUIDE

260 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[HelpXrefFiles]
; file name in xref = file name for .hlp
intro=help1
chap1=help1
chap2=help2

Default file Mif2Go checks [HelpXrefFiles] for each cross reference to another file; if the file
name is not listed, Mif2Go retains the original file name. Therefore, it is important to list
the names of all source files included in each .hlp file.

Links to file
names

What this does is cause the .hlp file name to be added to any links that reference the
other files named. You do not need the mappings for the files going into the .hlp file you
are constructing, because those do not require the extra information. You do need the
mapping for files outside the .hlp file you are currently constructing. However, having
the entire set present for all files is harmless.

Links from
contents

If you are merging multiple help files into a set, also consider contents entries; see
§8.13.2.5 Referencing multiple help files from contents on page 291.

8.4.3 Specifying cross-reference jump destinations

Mif2Go uses a reference number to produce a jump from a cross reference. For interfile
cross references to or from the help file you are producing, you must specify the names of
all the topic files involved, in the form topicfile=helpfile; for example:

[HelpXrefFiles]
; file name in xref = file name for .hlp
chap1=chaphelp

You can specify a file extension for the destination help file; the default is hlp :
[Setup]
; FileSuffix = suffix to use (no leading dot)
; when converting [HelpXrefFiles] xrefs
FileSuffix=hlp

You can specify a name (without file extension) to use for any topic files not listed, as
XrefFileDefault= helpfilename. You can use this setting for your own usual help-
file name, so you do not have to name this file explicitly under [HelpXrefFiles] . For
example:

[HelpOptions]
; XrefFileDefault = name of file to use for missing XrefFiles
XrefFileDefault = ugmif2go

8.4.4 Specifying WinHelp options for cross-referen ce formats

You might not want every cross reference in your document to become a link in WinHelp.
You can choose to have Mif2Go delete cross references of a certain format, or convert
them to text. For example:

[XrefStyles]
; xref format name = properties (Delete or Text)
; if omitted treated as link
Heading & Page=Text
Page=Delete

In this example, Mif2Go would render any cross reference that uses the Heading & Page
format as plain text rather than as a link. Mif2Go would also delete any cross reference
that uses the Page format.

8 GENERATING WINHELP CONVERTING TABLES TO WINHELP RTF

ALL RIGHTS RESERVED. MAY 18, 2013 261

8.4.5 Limiting cross-reference text

FrameMaker cross references can be quite long. If you are using the full text, not just the
number part, referencing them can be a problem in WinHelp. You can specify a limit to the
length of cross-reference text, and Mif2Go will truncate any that are longer. Set the limit
shorter to save space, or longer to eliminate duplication when text is truncated:

[HelpOptions]
; XrefLenLimit = 64 (default max length
; for xref identifiers, truncate)
XrefLenLimit = 64

See also §8.9.3 Creating hotspots for jumps and pop-ups in WinHelp on page 274.

8.5 Converting tables to WinHelp RTF
You can adjust the way tables appear in WinHelp, to a limited extent; the RTF way of
making tables is primitive, and WinHelp takes away most of the few options. You can also
disassemble tables and convert the rows to topics.

In this section:
§8.5.1 Positioning tables and table titles on page 261
§8.5.2 Adjusting table appearance on page 261
§8.5.3 Converting table rows to topics and table cells to pop-ups on page 262

8.5.1 Positioning tables and table titles

To adjust how tables are positioned in relation to surrounding text in WinHelp:
[Tables]
; ShiftWideTablesLeft=Yes (default, unindent overwi dth tables) or No
ShiftWideTablesLeft=Yes
; TableWidthsFixed=Yes (default) or No (centered ta bles are variable)
TableWidthsFixed=Yes

Set TableWidthsFixed=No to cause tables that are centered in FrameMaker to be
adaptively sized to the window width in WinHelp. All other converted tables are left-
aligned; WinHelp does not support right-aligned tables.

Note: Setting TableWidthsFixed=No makes only centered tables adaptive in size.
This is a WinHelp rule; no other table alignment results in adaptive sizing.

Titles To position table titles:
[Tables]
; TableTitles = 0 to leave alone, 1 to put at top, 2 to put at bottom
; put at top when used as topic titles or jump targ ets
TableTitles=1

Usually the best position for WinHelp is above the table.

8.5.2 Adjusting table appearance

You can fine-tune a few aspects of table appearance in WinHelp:
Rules, fill, line breaks
Graphics
Column width
Column straddles

CONVERTING TABLES TO WINHELP RTF MIF2GO USER’S GUIDE

262 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Rules, fill, line
breaks

These settings apply to all tables in the document:
[Tables]
; TableRules = None (help default), or one of the B ox types:
; Box, Double, Thick, Shadow, Para, or Variable
TableRules=None
; TableFill = AsIs (default, shading is unavailable), ColorOnly, None
TableFill=AsIs
; ForceTableLineBreaks = No (default) or Yes (make soft breaks hard)
ForceTableLineBreaks=No

When ForceTableLineBreaks=Yes , Mif2Go turns line wraps in table cells into line
breaks in WinHelp, which often does a poor job of wrapping text in table cells.

Graphics If you have frames anchored inside a table cell that do not appear in the output, specify the
following:

[Tables]
; TableGraphics = Standard (default, in cell), None , or Outside
; applies only to non-inline and non-runin frames a nchored in cell
TableGraphics=Outside

Column width Sometimes the font used in WinHelp is larger than the original font used in FrameMaker.
The size increase can make text too large for a table cell, causing it to run into the next
table cell. Mif2Go has two settings available to fine tune the cell size when this happens.
You can adjust the table column width as a percentage of the original width, or change the
width by a number of twips (twentieths of a point):

[Tables]
; TblColWid* rescales all table column widths in th e file, using:
; Pct as the percentage to apply to the original size, 0-32766
; Add as the twips to add to the scaled result; n eg to subtract
TblColWidPct=100
TblColWidAdd=0

You can use both in combination; for example, to add 20% + 360 twips:
[Tables]
TblColWidPct=20
TblColWidAdd=360

To specify the full width of tables for which column widths are percentages:
[Tables]
; TblFullWidth is the size in twips used to compute column widths when
; widths are given as percentages, default of 9360 twips (6.5 inches).
TblFullWidth=9360

Column straddles By default, Mif2Go combines table cells that straddle columns into a single cell in
WinHelp; however, you can override the default:

[Tables]
; MergeStradCells = Yes (default, combine col-strad dling cells) or No
MergeStradCells=No

Note: For Word output, the default value of MergeStradCells is No (the opposite of
the default for WinHelp); see §6.13 Converting tables to print RTF on page 184.

8.5.3 Converting table rows to topics and table ce lls to pop-ups

Mif2Go can remove the formatting from a table and make each row into a topic:
[Tables]
; StripTables = No (default) or Yes (when every row is a new topic)
StripTables=Yes

8 GENERATING WINHELP MANAGING GRAPHICS FOR WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 263

This setting applies to all tables in a document (or in a single file, if you convert that file
separately); use it only to disassemble all the tables. The text in the first column of each
table row becomes the topic title if you designate the paragraph format used in the first
column as Topic :

[HelpStyles]
First_column_format=Topic

Before stripping a table, Mif2Go adds an RTF paragraph break (\par) to each cell to
mark the end of the cell content after the table formatting is gone. If you are using the cell
content for a pop-up (see §8.8.1 Creating WinHelp topics on page 267), the presence of
the \par causes extra space around the pop-up text. To reduce the space, you can set the
following option:

[Tables]
; StrippedCellPar = Yes (default, add \par after ce lls)
; or No (omit it)
StrippedCellPar=No

8.6 Managing graphics for WinHelp
WinHelp understands only two graphics formats: WMF and BMP. Graphics in other
formats must be converted. Although it may seem that other formats such as GIF work for
WinHelp, actually any format other than WMF or BMP is converted by the WinHelp
compiler, using a Microsoft Office filter; not the best process.

If your document contains embedded graphics (copied into FrameMaker instead of
imported by reference), Mif2Go can export the embedded graphics in their original
format; see §31.2.3 Exporting and converting embedded graphics on page 877.

To exclude graphics entirely, or display only graphics file names, see §31.3.2.5 Excluding
graphics from RTF output on page 895.

In this section:
§8.6.1 Choosing a graphics format for WinHelp on page 263
§8.6.2 Avoiding the GDI resource leak on page 264
§8.6.3 Positioning graphics in WinHelp on page 264
§8.6.4 Displaying graphics in pop-ups for WinHelp on page 265

See also:
§5.7 Processing graphics on page 126
§8.9.3.4 Embedding hotspots in graphics for WinHelp on page 275
§31 Working with graphics on page 869

8.6.1 Choosing a graphics format for WinHelp

The format WinHelp likes best is WMF, which can contain both vector and bitmap
elements. For screenshots, use the same resolution at which they were taken, 96DPI; more
or less will result in unreadable text.

WMF good
(on Win NT/2000)

If your graphics are in a vector format, the WMF equivalents that Mif2Go produces by
default as part of the conversion render better than BMP graphics. For example, using
WMF instead of BMP can make the difference between readable and not for text on a flow
chart. And WMF gives the best display, by far, for graphics to which you have added
callouts.

MANAGING GRAPHICS FOR WINHELP MIF2GO USER’S GUIDE

264 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

WMF bad
(on Win 9x/ME)

However, WMF graphics can cause serious problems for users on Windows 9x or
Windows ME systems; see §8.6.2 Avoiding the GDI resource leak on page 264.

If your graphics are in a bitmap format (other than BMP) and you convert them outside of
Mif2Go , convert to BMP and let Mif2Go wrap the images in WMF code; see §5.7.2.3
Using third-party graphics converters on page 130. Use 256-color BMPs, no higher (no
16-bit or 24-bit BMP images).

BMP good
(on UNIX or Mac)

For non-Windows WinHelp, created via Altura on Macintosh or Bristol HyperHelp on
UNIX, only BMP is supported; see §8.2.7 Accommodating platform differences on
page 247.

8.6.2 Avoiding the GDI resource leak

If the WinHelp you create is used on Windows 9x or Windows ME systems, WMF
graphics can eat up all GDI resources with amazing speed. An operating-system defect
causes a GDI resource leak, which can crash the system when a user pages through a
WinHelp file that contains WMF graphics.

The GDI resource leak happens with all WMF graphics, regardless of source. This can
rule out WMF as a graphics format if you have clients using Windows 9x or Windows ME.
The problem does not occur on Windows NT, Windows 2000, or Windows XP; nor does it
occur with formats other than WMF.

If you have FrameMaker graphics that include just a single bitmap and no other elements,
you can get around the problem by mapping any non-BMP formats to BMP (see §31.3.2
Changing graphics files for RTF output on page 890). Do not direct Mif2Go to wrap BMP
graphics in WMF (see §31.2.6 Embedding bitmap graphics in WMF for WinHelp on
page 886); that is, make sure [Graphics]EmbedBMPsInWMFs=No .

The issue becomes acute when your graphics include callouts or multiple BMP elements.
In that case, you have two choices:

 • Use Mif2Go graphics processing. This is a three-step workaround:

1. In a first conversion pass, allow Mif2Go to create WMF files from the graphics in
your FrameMaker document; see §5.7.2.1 Using Mif2Go native graphics
processing on page 128.

2. Create matching BMP files with an external program that can import the WMF
files; see §5.7.2.3 Using third-party graphics converters on page 130.

3. In a second conversion pass, set [Graphics]NameWMFsAsBMPs=Yes to make
the RTF output refer to the BMP files instead of to the WMF files; see §31.3.2.1
Substituting graphics files for RTF on page 890.

 • Use FrameMaker export filters. This is a simpler workaround, but the results might
be of poor quality:
 – Direct Mif2Go to use FrameMaker export filters to make BMP graphics instead

of WMF graphics; see §5.7.2.2 Using FrameMaker graphic export filters on
page 129.

8.6.3 Positioning graphics in WinHelp

You might want to override the default positioning of all regular anchored frames (such as
screen shots), so you can make them more consistent; for example:

[HelpOptions]
; FrameStyle = para style for non-in-line anchored frames
; default is not to specify, which uses the previou s para style
FrameStyle= Picture

8 GENERATING WINHELP CONVERTING GENERATED FILES FOR WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 265

The default is not to specify a format, which causes graphics to use the previous paragraph
format. WinHelp users can easily resize the window, so graphics and their captions should
stay consistent when that happens.

8.6.4 Displaying graphics in pop-ups for WinHelp

Suppose you want one or more of the illustrations in your document to appear only in pop-
ups, instead of in line with the text; and suppose you want the illustrations to appear only
when a user clicks the figure caption. Mif2Go provides two ways to accomplish this:

 • Insert hypertext markers in the anchor and caption paragraphs.
 • Assign additional format properties to the anchor and caption paragraphs.

The results of either method are as follows:

 • The caption becomes a hotspot.
 • The illustration appears in a pop-up window, and is displayed only when the caption is

clicked.

Note: For either method to work, graphics to appear in pop-ups must have captions
positioned below the graphics.

Using hypertext
markers

To use hypertext markers for pop-up graphics (see §8.9.5 Using hypertext links for jumps
and pop-ups on page 276):

1. Embed a hypertext newlink marker with a unique name in the paragraph that holds
the anchor for the graphic.

2. Embed a corresponding hypertext gotolink marker in the caption paragraph for the
graphic.

3. In the configuration file, set the following:
[HelpStyles]
FigAnchor=Topic Slide Scroll NoXScroll
FigCaption=PopOver Green Resume

For this to work, every graphic must have a caption paragraph after the graphic, or at least
some distinct paragraph format immediately following the graphic that can be assigned
property Resume. Otherwise, the rest of the topic also appears in the pop-up.

Using format
properties

To use format properties for pop-up graphics (see §8.9.11.6 Using unique references for
jumps and pop-ups on page 282):

1. Assign property MakeRef to the paragraph format that anchors the graphic.

2. Assign property PrevRef to the caption paragraph, which must follow the graphic.

Configuration settings are as follows:
[HelpStyles]
FigAnchor=Topic Slide Scroll NoXScroll MakeRef
FigCaption=PopOver Green Resume PrevRef

8.7 Converting generated files for WinHelp
Mif2Go generates standard WinHelp contents and index entries from your FrameMaker
TOC and index markers. However, you might want to include additional generated files in
your WinHelp output, such as lists of tables and figures (or other special-purpose
paragraph lists), and lists of markers (or other special-purpose indexes).

In this section:
§8.7.1 Converting lists of paragraph references on page 266

CONVERTING GENERATED FILES FOR WINHELP MIF2GO USER’S GUIDE

266 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§8.7.2 Converting indexes and lists of marker references on page 266

8.7.1 Converting lists of paragraph references

For FrameMaker-generated lists of references to paragraphs (such as LOF and LOT), you
must make sure the ObjectIDs of all the referenced paragraphs are preserved in WinHelp
output (see §8.2.9 Including ObjectIDs in WinHelp on page 249), with this setting:

[HelpOptions]
ObjectIDs=All

To make the list entries themselves into links, assign the [HelpStyles]ParaLink
property to the list-entry paragraph format; see §8.9.3 Creating hotspots for jumps and
pop-ups in WinHelp on page 274.

To suppress page numbers, on the FrameMaker Reference page for the generated file you
can apply a character format to <$pagenum> and to all its leading tabs, then assign that
character format the [HelpStyles]Delete property.

For example:
[HelpStyles]
FigLOF=ParaLink
LOFpgnum=Delete

In the WinHelp version of the Mif2Go User’s Guide, these features are used to make the
Figures and Tables entries into links.

8.7.2 Converting indexes and lists of marker refer ences

A list of references to markers can include links to multiple markers for each entry, so you
cannot use the [HelpStyles]ParaLink property (see §8.9.3 Creating hotspots for
jumps and pop-ups in WinHelp on page 274) to make the text of the entry the link. Instead
you can either use the original page numbers, or substitute a symbol or graphic.

To substitute something else for page numbers, you must apply a character format to
<$pagenum> on the FrameMaker Reference page for the marker list, and assign to that
format the [HelpStyles]Replace property; see §8.3.5 Replacing paragraph or
character content on page 257.

For example:
[HelpStyles]
IOMpgnum=Replace

You specify RTF code for whatever you want instead of a page number. For example:
[HelpReplacements]
IOMpgnum=\ .{bm c document.bmp\ .}

In the WinHelp version of the Mif2Go User’s Guide this setting is used to replace the
page numbers in indexes with small page icons taken from the built-in bitmap set in Help
Workshop. For other options, in Help Workshop choose Help > Help Topics > Find , type
in bull, and go to the first topic offered: “Bitmaps supplied by Help Workshop”.

For lists of references to markers, the extra ObjectIDs you must supply for lists of
paragraphs are not needed; and in fact, they interfere with the marker links. If you are
converting both paragraph lists and marker lists, you must prepare a special file-specific
configuration file for each of the marker lists, with this setting:

[HelpOptions]
ObjectIDs=Referenced

8 GENERATING WINHELP CONFIGURING WINHELP TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 267

If your document includes more than one marker list, the Help compiler might warn you
about duplicate links. This is because the newlinks generated automatically by
FrameMaker can be identical for multiple marker lists. To differentiate links, you must
specify a prefix to use for each marker list. These settings must be placed in a special file-
specific configuration file for each marker list.

For example:
[HelpOptions]
;IXnewlinkPrefix = prefix to use on newlinks, only in specific .inis
; to differentiate autogenerated newlinks in differ ent Index files
IXnewlinkPrefix=IKH_

See §33.1 Using a different configuration for selected files on page 919 for information
about creating individual configuration files.

8.8 Configuring WinHelp topics
To produce the organization and navigation features of WinHelp, you assign topic and
hotspot properties to FrameMaker paragraph, character, and cross-reference formats. The
first property assigned to each format identifies the role that all text in that format will play
in the Help system.

Note: If you are converting via FrameMaker, Mif2Go automatically makes a first-pass
determination of the most likely assignments; see §1.5 How Mif2Go works on
page 62. Be sure to check these assignments for reasonableness.

In this section:
§8.8.1 Creating WinHelp topics on page 267
§8.8.2 Assigning properties to formats for topics and hotspots on page 268
§8.8.3 Configuring topic titles for WinHelp on page 271

8.8.1 Creating WinHelp topics

To create topics, in the configuration file assign property Topic to the FrameMaker
paragraph format of the heading (or other paragraph) that starts material to be included in
a topic:

[HelpStyles]
; style = key list, where list members are separate d by spaces only
Heading_format=Topic

You can start a topic within a table only if you eliminate table structure for all tables in
your document:

[Tables]
StripTables=Yes

See §8.5.3 Converting table rows to topics and table cells to pop-ups on page 262.

The format to which you assign property Topic becomes the title of the topic in WinHelp;
see §8.8.3 Configuring topic titles for WinHelp on page 271.

You can create three kinds of WinHelp topics with Mif2Go :

Normal
topics

Usually begins with a heading in your document and continues to the next
heading; appears in a full window when you jump to it.

Sliding
topics

Occurs in the middle of a normal topic in FrameMaker, but has to look like
a separate topic in WinHelp; often a table or figure.

CONFIGURING WINHELP TOPICS MIF2GO USER’S GUIDE

268 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Normal topics A normal topic has properties such as the following:
[HelpStyles]
Heading 1=Topic Browse Key Contents

See §8.8.2 Assigning properties to formats for topics and hotspots on page 268 for
information about these and other topic properties.

Sliding topics A sliding topic has property Slide in addition to Topic and any other properties. For
example:

[HelpStyles]
TableTitle =Topic Slide Browse Key Contents

Sliding topics are meant for embedded glossary terms, tables, or figures, where you want
to lift something out of the middle of another topic and make that something a topic itself.
A sliding topic does not end the previous topic (unless it too was a sliding topic), but just
suspends the previous topic. A sliding topic ends at the next sliding topic, normal topic, or
paragraph with a format to which you have assigned property Resume. For example:

[HelpStyles]
Body=Resume

If the previous topic was a normal topic, that topic continues. This lets you handle tables,
figures, or “lifts” within normal topics separately, without breaking the flow of the normal
topic. If a sliding topic includes Browse , it appears in the browse sequence immediately
after the enclosing normal topic.

Pop-up topics A pop-up topic is a single paragraph, usually not a heading. For example:
[HelpStyles]
Description=Topic Scroll NoXScroll NoTitle

A topic designated for use as a pop-up cannot have a non-scrolling region, or it will pop up
looking empty. Pop-up topics do not have titles; however, if you do not want pop-up topic
text to appear in full-text search, you must assign property NoTitle .

See also §8.9.2 Configuring pop-up topics on page 273.

8.8.2 Assigning properties to formats for topics a nd hotspots

Assign properties for topics and hotspots as follows:
[HelpStyles]
; style = key list, where list members are separate d by spaces only
Format=StartingProperty FollowingProperty1 FollowingProperty2 ...

Properties for topics and hotspots are assigned to the following formats:

Table 8-2 shows which properties you can assign to formats as starting and following
properties for topics and hotspots. Table 8-3 shows the effects of the properties you assign.

Pop-up
topics

Appears in a small window over the current normal topic when selected;
use for definitions or glossary entries.

Topic Starting paragraph format; see §8.8.1 Creating WinHelp topics on
page 267

Hotspot Delimiting character (or paragraph) format; see §8.9.3 Creating hotspots
for jumps and pop-ups in WinHelp on page 274.

8 GENERATING WINHELP CONFIGURING WINHELP TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 269

Table 8-2 Starting and following format properties for topics and hotspots

 Type Starting Following

Topic PopContent AKey Delete Key SpKey Suffix

JumpTarget AKey Contents Delete Key Local 1 Resume SpKey Suffix

Topic AKey Browse Build Contents Delete Key Macro Ma keRef
NoScroll NoTitle NoXScroll Refer Scroll Slide SpKey
Suffix TitleSuf Window XScroll

Hotspot AKey Delete Key Resume SpKey

Delete AKey Key Resume SpKey Suffix

JumpHot AKey Delete File Green Key Local Resume SpKe y Suffix
Uline Window

Key AKey Delete Resume SpKey

MacroHot AKey Delete Green Key Resume SpKey Uline

ParaLink Resume

PopHot AKey Delete File Green Key Local Resume SpKey Suffix
Uline

PopOver AKey Delete Green 2 Key ParaLink PrevRef Resume SpKey
Suffix Uline 2

Replace AKey Key Resume SpKey Suffix

Resume Delete

SpKey AKey Delete Key Resume
1 Within current topic only. 2 Applied to cross references or hypertext links.,

Table 8-3 Effects of format properties on topics and hotspots

Property Effect

AKey Adds the topic title as an “A” footnote. See §8.11.2 Adding ALinks and KLinks with markers
on page 285.

Browse Includes the topic in the browse sequence; Mif2Go creates the “+” footnote. See §8.14
Creating browse sequences on page 292.

Build Specifies a “build tag” for the topic, defined in the .hpj file, which is used to enable
conditional compilation of different Help-file versions. The build tag name is in the
[HelpTopicBuildStyles] section, as format=buildtag ; Mif2Go creates the “* ”
footnote.

Contents Includes the topic (as a page, book, or both) in the WinHelp .cnt file produced by Mif2Go .
See §8.13 Configuring contents for WinHelp on page 288.

Delete Suppresses appearance in the output of text in the assigned format. Tables and graphics
anchored in a suppressed paragraph are retained; see §8.3.1.2 Suppressing unwanted
paragraphs on page 253.

File Directs the jump or pop-up to a topic in a different .hlp file. Mif2Go looks for the target in
the file you specify in [HelpJumpFileStyles] . See §8.9.12.2 Designating interfile jumps
and pop-ups on page 283.

Green Makes a hotspot green and underlined. See §8.9.3.1 Configuring jump vs. pop-up hotspots
on page 274.

Key Adds the topic title as a keyword, so it appears in the WinHelp index. See §8.11.3 Adding
related-topic keywords with formats on page 285.

Local Produces a reference string that is local to the topic, so the same term can be used in more
than one topic in the same .hlp file. See §8.9.12.1 Designating local-to-topic jumps and
pop-ups on page 283.

CONFIGURING WINHELP TOPICS MIF2GO USER’S GUIDE

270 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Macro Specifies an entry macro for the topic; this macro is run whenever the topic is selected. The
macro text appears in the [HelpMacroStyles] section, as format=macro ; Mif2Go
creates the “! ” footnote. See §8.10 Invoking WinHelp macros on page 284.

MakeRef Creates a unique reference tag for the current paragraph, to use as a pop-up or jump
destination for a PrevRef paragraph; see §8.6.4 Displaying graphics in pop-ups for
WinHelp on page 265.

NoScroll Prevents the topic title from scrolling; overrides [HelpOptions]TitleScroll=Yes . See
§8.8.3.2 Deciding whether to scroll titles on page 271

NoTitle Prevents the topic title from being displayed; when applied to a pop-up topic, prevents the
topic from appearing in full-text search.

NoXScroll Overrides [HelpOptions]ExtendHelpNoScroll=No for pop-ups. See §8.8.3.2
Deciding whether to scroll titles on page 271.

ParaLink Makes a full paragraph into a hotspot regardless of any character formats it includes. See
§8.9.3 Creating hotspots for jumps and pop-ups in WinHelp on page 274.

PrevRef Uses the previous unique reference (MakeRef) tag as a pop-up or jump destination for the
whole paragraph or character span; if also PopOver , it is a pop-up. See §8.6.4 Displaying
graphics in pop-ups for WinHelp on page 265.

Replace Deletes the content, which is replace by the RTF code in [HelpReplacements] .

Refer Includes the topic name in a slightly modified form as a reference string for the topic. The
modification consists of removing spaces and any characters other than letters, numbers,
and underscores. Mif2Go creates the “#” footnote for you. Omit this property if the topic is
accessed only from cross references or hypertext links, and from the Contents. See
§8.9.11.5 Assigning properties to alternative jumps and pop-ups on page 281.

Resume If the topic being processed is a sliding topic, causes that topic to end and the topic that
preceded the sliding topic to continue. See §8.8.1 Creating WinHelp topics on page 267.

Scroll Causes the topic title to scroll; overrides [HelpOptions]TitleScroll=No . See §8.8.3.2
Deciding whether to scroll titles on page 271.

Slide Makes the topic a sliding topic. See §8.8.1 Creating WinHelp topics on page 267.

SpKey Produces a keyword footnote designated with a different letter (neither “A” nor “K”) See
§8.11.3 Adding related-topic keywords with formats on page 285.

Suffix Differentiates character formats that use the same hotspot text but different references, by
adding a suffix string; use the keyword Suffix for the formats, and add entries for those
formats in [HelpSuffixStyles]format=Suffix text. See §8.9.11.5 Assigning
properties to alternative jumps and pop-ups on page 281.

TitleSuf Becomes a suffix to the topic title, to further define or categorize the topic; for example, for
glossary terms. In [HelpStyles] , use the keyword TitleSuf for the format, and add an
entry for the format in [HelpTitleSufStyles]format=Suffix text. See §8.8.3.1
Categorizing titles on page 271.

Topic Ends any prior topics and starts a new topic. Mif2Go creates the WinHelp topic start
coding, a page break, and a title ($) footnote, using the tagged text as the title. See §8.8.1
Creating WinHelp topics on page 267.

Uline Underlines a hotspot without turning it green. See §8.9.11.4 Configuring hotspot
appearance on page 281.

Window Makes the topic appear in a specific window, defined in the .hpj file, when it is accessed
from the Index or Find tabs, or from an ALink or KLink macro; but not when it is selected
from a jump or from the Contents. The name of the window appears in the
[HelpWindowStyles] section, as format=Window; Mif2Go creates the “>” footnote.
See §8.9.7 Specifying jumps to secondary windows in WinHelp on page 277.

XScroll Overrides [HelpOptions]ExtendHelpNoScroll=Yes for pop-ups. See §8.8.3.2
Deciding whether to scroll titles on page 271.

Table 8-3 Effects of format properties on topics and hotspots (continued)

Property Effect

8 GENERATING WINHELP CONFIGURING WINHELP TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 271

8.8.3 Configuring topic titles for WinHelp

In this section:
§8.8.3.1 Categorizing titles on page 271
§8.8.3.2 Deciding whether to scroll titles on page 271
§8.8.3.3 Fine-tuning title appearance on page 272

8.8.3.1 Categorizing titles

To further define or categorize a topic—for example, for glossary terms—you can add a
suffix to each topic title created with a particular format, by assigning the TitleSuf
property to the format. For example:

[HelpStyles]
GlosTerm=Topic Key TitleSuf

To specify the text of the suffix, add an entry for the format in [HelpTitleSufStyles] :
[HelpTitleSufStyles]
GlosTerm=Suffix text

8.8.3.2 Deciding whether to scroll titles

Keep title from
scrolling

A title can either scroll with the text, or remained fixed in a no-scroll region at the top of
the page. The default is for the title to remain fixed:

[HelpOptions]
; TitleScroll = Yes (title para scrolls with text),
; or No (fixed at top)
TitleScroll=No

Add to no-scroll
region

You can extend the no-scroll region to include text that follows the title by setting the
additional paragraphs to have the Keep With Next property in FrameMaker, and by
specifying the following:

[HelpOptions]
; ExtendHelpNoScroll = No (default),
; or Yes (allow Keep With Next paras)
ExtendHelpNoScroll=Yes

Override no-scroll
extension

To keep the ExtendHelpNoScroll=Yes setting but override it for particular paragraph
formats, for each such format specify the following:

HelpStyles]
YourFormat=NoXScroll

The NoXScroll property suppresses Keep With Next so that the no-scroll region is not
extended for paragraphs in that particular format.

Note: If a paragraph format is already listed under [HelpStyles] , just add the
NoXScroll property to its current list of properties; do not repeat the format
name.

Scroll title To make titles scroll with the text, specify the following:
[HelpOptions]
TitleScroll=Yes

Override scrolling You can still create a no-scroll region for such topics with this setting:
[HelpOptions]
ExtendHelpNoScroll=Yes

Pop-ups cannot
be scrolled

Pop-up topics do not have scroll bars, so you might have to override the TitleScroll
and ExtendHelpNoScroll settings. For each pop-up-topic paragraph format, add
properties Scroll and NoXScroll . For example:

CREATING JUMPS AND POP-UPS FOR WINHELP MIF2GO USER’S GUIDE

272 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[HelpStyles]
PopTopic=Topic Scroll NoXScroll

8.8.3.3 Fine-tuning title appearance

Spaces and
indents

You can allow or disallow spacing and indentation in topic titles:
[HelpOptions]
; TitleSpace = Yes (help title para can have space above/below),
; or No
TitleSpace=No
; TitleIndent = Yes (help title para can have left/ right indents),
; or No
TitleIndent=No

Hard returns in
titles

By default, Mif2Go recognizes a hard return as the end of a topic title. If any topic titles
continue past the first hard return, you can prevent this behavior:

[HelpOptions]
; HelpLineBreak = Yes (default, end topic title at hard return) or No
HelpLineBreak=No

8.9 Creating jumps and pop-ups for WinHelp
To invoke a jump or a pop-up in WinHelp, you click a hotspot: usually green underlined
text. Clicking a hotspot causes one of the following:

 • a jump, if the underline is solid: another topic replaces the topic in the current window
 • a pop-up, if the underline is dotted: a smaller window pops up over the current

window.

Mif2Go provides two systems for creating WinHelp jumps and pop-ups:

Use only the current system, unless your project requires special-case jumps or pop-ups
that cannot be produced with cross references or hypertext links. The older, alternative
system is deprecated.

In this section:
§8.9.1 Identifying WinHelp jump destinations with FileIDs on page 273
§8.9.2 Configuring pop-up topics on page 273
§8.9.3 Creating hotspots for jumps and pop-ups in WinHelp on page 274
§8.9.4 Using cross references for jumps and pop-ups on page 276
§8.9.5 Using hypertext links for jumps and pop-ups on page 276
§8.9.6 Disallowing hypertext links for jumps and pop-ups on page 277
§8.9.7 Specifying jumps to secondary windows in WinHelp on page 277
§8.9.8 Specifying jumps to external files on page 278
§8.9.9 Using the same content for both normal topics and pop-ups on page 278
§8.9.10 Creating a glossary pop-up: an example on page 280
§8.9.11 Configuring alternative jumps and pop-ups on page 280
§8.9.12 Specifying the scope of alternative jumps and pop-ups on page 283

See also:
§7.7 Jumping to secondary windows in Help systems on page 224

Current system: Based on FrameMaker cross references and hypertext links

Older system: Based on FrameMaker markers (see §8.9.11 Configuring
alternative jumps and pop-ups on page 280)

8 GENERATING WINHELP CREATING JUMPS AND POP-UPS FOR WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 273

§7.8 Creating pop-up topics for Help systems on page 225
§8.4.3 Specifying cross-reference jump destinations on page 260
§8.5.3 Converting table rows to topics and table cells to pop-ups on page 262
§8.6.4 Displaying graphics in pop-ups for WinHelp on page 265

8.9.1 Identifying WinHelp jump destinations with F ileIDs

For a jump from a hypertext link, Mif2Go uses one of the following:

 • the link text, for links within the same file
 • the ObjectID, combined with the FileID or an ad hoc unique ID, for interfile links (see

§5.3 Identifying files and objects on page 117).

Unless your project consists of only one file, with no cross references to other files, use the
following default setting:

[HelpOptions]
; UseFileIDs = Yes (default, xrefs and ObjIDs)
; or No (single topic file)
UseFileIDs=Yes

When UseFileIDs=Yes , Mif2Go includes a FileID in the link code, so links do not get
confused if a cross-reference number or ObjectID is not unique. Mif2Go assigns FileIDs
to your FrameMaker files; see §5.3.4 Working with Mif2Go FileIDs on page 119.

Keeping or
replacing FileIDs

Suppose you have an existing WinHelp conversion project that uses the FileIDs you listed
under [FileIDs] in your configuration file.

If you want to continue using the FileIDs listed in your configuration file, specify the
following option:

[Setup]
; UseLocalFileID = No (default, use IDFile IDs)
; or Yes (use [FileIDs] here)
UseLocalFileID=Yes

If you want to switch to mif2go.ini FileIDs, stay with the default, UseLocalFileID=No ;
and update settings in any configuration sections that reference the original FileIDs, such
as the [Graph*] sections.

8.9.2 Configuring pop-up topics

WinHelp pop-up topics (the contents of the small window that pops up) can be created just
like any other topic. Assign the following properties to the paragraph format for a pop-up
topic:

[HelpStyles]
Poptopicfmt=Topic Scroll NoXScroll

Suppose your document contains material that should appear in its original location in the
print version, but would work better as a pop-up in the help version. For example, you
might want “tips” to be pop-ups in WinHelp, even though in the print version they appear
interspersed with regular text, or perhaps as sidebars.

Suppose the paragraph format you use for tips is called Tip:

1. Create another paragraph format to immediately follow every instance of Tip; call it
(for example) TipEnd.

2. Make every instance of TipEnd conditional, for use only in the help version; for
example, apply condition HelpOnly .

CREATING JUMPS AND POP-UPS FOR WINHELP MIF2GO USER’S GUIDE

274 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

3. Do not include any text in the TipEnd paragraphs. Instead, use the numbering
properties of TipEnd to make the word Tip appear automatically.

4. In the configuration file, specify the following settings for Tip and TipAfter:
[HelpStyles]
Tip = Topic Slide Scroll NoXScroll Makeref
TipEnd = PopOver Green Resume PrevRef

If you show condition HelpOnly when you use Mif2Go to generate WinHelp, the word
Tip appears green and underlined in the WinHelp output. When a user clicks Tip , the text
of the tip pops up. See §8.9.11.6 Using unique references for jumps and pop-ups on
page 282.

See also:
§8.8.1 Creating WinHelp topics on page 267
§8.9.5.2 Using alert or alerttitle markers for embedded pop-ups on page 277
§8.9.10 Creating a glossary pop-up: an example on page 280
§34.1.1 Using character formats to identify Help elements on page 933

8.9.3 Creating hotspots for jumps and pop-ups in W inHelp

To create a hotspot, in FrameMakerapply a dedicated hotspot character format to either of
the following:

 • the text of a cross reference
 • text that contains a hypertext link.

Note: If hotspot text is followed immediately by a space, when your WinHelp project is
compiled the space disappears, even though it is present in the RTF output. The
workaround is to make the space a hard space in FrameMaker.

In this section:
§8.9.3.1 Configuring jump vs. pop-up hotspots on page 274
§8.9.3.2 Making a paragraph into a hotspot on page 275
§8.9.3.3 Controlling hotspot appearance on page 275
§8.9.3.4 Embedding hotspots in graphics for WinHelp on page 275

See also:
§7.8.1 Understanding pop-up hotspots, links, and topics on page 225

8.9.3.1 Configuring jump vs. pop-up hotspots

Pop-up hotspot For a pop-up hotspot, assign property PopOver to the hotspot character format:
[HelpStyles]
Hotspotfmt=PopOver

Specify PopOver as the first property to the right of the equals sign. Additional properties
can follow PopOver ; see §8.8.2 Assigning properties to formats for topics and hotspots on
page 268.

See also §8.9.11.3 Creating alternative pop-ups on page 281 for an older, alternative way
to designate a pop-up hotspot.

Jump hotspot For a jump hotspot, you do not have to assign a property to the hotspot character format;
jump is the default action for a hotspot.

See also §8.9.11.2 Creating alternative jumps on page 281 for an older, alternative way to
designate a jump hotspot.

8 GENERATING WINHELP CREATING JUMPS AND POP-UPS FOR WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 275

Cross reference
as a hotspot

When you use a cross reference for a hotspot, make sure the hotspot character format is
applied to the reference string (<$paratext>) in the cross-reference definition. If another
character format intervenes (for example, if your cross-reference format is defined as
<Hotspotfmt><Bold><$paratext></>), the PopOver property is turned off before it
can be used.

Hypertext link for
a hotspot

When you use a hypertext link to designate character-formatted text as a hotspot, do not
place any other markers within the hotspot area.

8.9.3.2 Making a paragraph into a hotspot

To make an entire paragraph into a hotspot, if some of the text has a character format
applied, you must assign the ParaLink property to the paragraph format. For example:

[HelpStyles]
; ParaLink can follow PopOver or appear alone; make s an entire para a
; hotspot for the first jump or popup ref, ignori ng char formats
FigLOF=ParaLink

Do not place any markers within a paragraph that serves as a hotspot.

One additional property, Resume, can follow ParaLink ; see §8.8.2 Assigning properties
to formats for topics and hotspots on page 268.

See also:
§5.10 Creating hotspots for hypertext links on page 138

8.9.3.3 Controlling hotspot appearance

By default, hotspot text is green and underlined. To leave the appearance of hotspot text as
is in WinHelp, set the following option:

[HelpOptions]
;UseGreen = Yes (default) or No (remove green color from all links)
UseGreen=No

When UseGreen=No , hotspot character formats to which you have not assigned jump or
pop-up properties in [HelpStyles] retain their original appearance. If you have
assigned such properties, when UseGreen=No some automatically generated links appear
underlined, but retain their original text color.

8.9.3.4 Embedding hotspots in graphics for WinHelp

To embed jump or pop-up hotspots in a graphic, you must first convert the graphic to a
WinHelp “hypergraphic” with the Help Workshop Hotspot Editor, shed.exe , to create a
.shg file from the graphic. Use the Hotspot Editor to set Hotspot IDs to the targets you
want, typically names you inserted in your FrameMaker document as hypertext newlink
markers (see §8.9.5 Using hypertext links for jumps and pop-ups on page 276), and
specify whether each hotspot should be a pop-up or a jump.

After you create a .shg file, to make Mif2Go reference the hypergraphic, specify the
following configuration settings:

[Graphics]
FilePaths=None
FileNames=Map

[GraphFiles]
myold.bmp=mynew.shg

CREATING JUMPS AND POP-UPS FOR WINHELP MIF2GO USER’S GUIDE

276 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

8.9.4 Using cross references for jumps and pop-ups
Cross references

as jumps
By default, Mif2Go converts all FrameMaker cross references into jumps for WinHelp,
including interfile jumps where needed.

Cross references
as pop-ups

To make a cross reference into a pop-up instead of a jump, assign property PopOver to the
hotspot character format; see §8.9.3.1 Configuring jump vs. pop-up hotspots on page 274.
The span of the hotspot is determined by the character format applied to the reference
string.

Disallowing cross
references as

pop-ups

To disallow using cross references for pop-ups:
[HelpOptions]
; NoXrefPopups = No (default, allow override to pop up) or yes
NoXrefPopups=Yes

8.9.5 Using hypertext links for jumps and pop-ups

By default, Mif2Go converts all FrameMaker hypertext links into jumps for WinHelp,
including interfile jumps where needed. You can insert hypertext markers in your
FrameMaker document to create additional jumps and pop-ups.

In this section:
§8.9.5.1 Using openlink and gotolink markers on page 276
§8.9.5.2 Using alert or alerttitle markers for embedded pop-ups on page 277
§8.9.5.3 Using Type 11 markers for jumps or newlinks on page 277

See also:
§34.1.2 Using markers to add links and instructions on page 935

8.9.5.1 Using openlink and gotolink markers

Use a FrameMaker gotolink or openlink marker to identify a hotspot, and type the
reference string (the newlink name) as the marker text. Place the marker anywhere in the
hotspot; the span of the hotspot is determined by the character format applied to text
containing the marker. If no character format is applied, the entire paragraph becomes a
hotspot; see §8.9.3 Creating hotspots for jumps and pop-ups in WinHelp on page 274.

Note: Do not place any other markers within the hotspot area.

openlink The syntax for openlink is ambiguous. The FrameMaker Hypertext dialog says it is:
openlink filename: linkname

which could mean either:
openlink [filename:] linkname

(link name required, file name optional) which is how gotolink works, or:
openlink filename[: linkname]

(file name required, link name optional) which is how openlink works.

gotolink Use gotolink for targets within the same FrameMaker file:
gotolink refstring

Use openlink only for targets that are not in the current FrameMaker file:
openlink filename: refstring

Include the file extension with the name of the file that contains the target. For example:
openlink chap2.fm:redwoods

8 GENERATING WINHELP CREATING JUMPS AND POP-UPS FOR WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 277

How to insert
markers

To insert openlink, gotolink, and newlink markers, see §34.1.2 Using markers to add
links and instructions on page 935.

8.9.5.2 Using alert or alerttitle markers for embe dded pop-ups

Instead of creating a pop-up topic, you can use an alert or alerttitle hypertext marker, and
provide pop-up content in the text of the marker itself.

You designate a hotspot the same way as for other hypertext links; see §8.9.5.1 Using
openlink and gotolink markers on page 276. Type the marker text in FrameMaker as a
reference string consisting of the base file name, followed by Alert , followed by a
number, starting with 0001 in each file. For example:

chap1.hlp Alert 0012

The pop-up text appears in the default format; you cannot specify a different format.

How to insert
markers

To insert alert and alerttitle markers, see §34.1.2 Using markers to add links and
instructions on page 935.

8.9.5.3 Using Type 11 markers for jumps or newlink s

If your document includes old Type 11 markers to support mid-topic jumps or context-
sensitive help, you can continue using them. The marker can refer to a mid-topic link, act
as a newlink, or be ignored.

[HelpOptions]
; MarkerType11 = Midtopic (default), Full (as newli nk), None
MarkerType11=Midtopic

To use Type 11 markers, assign one of the following characteristics to MarkerType11 :

8.9.6 Disallowing hypertext links for jumps and po p-ups

If you do not want Mif2Go to use the hypertext links in your document for jumps or pop-
ups, specify the following option:

[HelpOptions]
; UseHyperlinks = Yes (default) or No (ignore all h yperlinks)
UseHyperlinks=No

This setting causes all hypertext links to be ignored; instead the link locations are treated
as plain text in WinHelp, and are not used as hotspots.

Note: This setting does not affect cross-reference hotspots and links.

8.9.7 Specifying jumps to secondary windows in Win Help

Normally jumps make the topic you are jumping to appear in the main WinHelp window,
replacing the previous content. If you want to make the new topic appear in a different
window, assign the Window property to the hotspot character format. For example:

[HelpStyles]
JumpToExtra=JumpHot Green Window

Midtopic Markers are mid-topic links; start the marker text with the word
midtopic .

Full Markers are regular links; use the full marker text for the reference string
(similar to newlink).

None Markers are used for some other purpose; ignore Type 11 markers.

CREATING JUMPS AND POP-UPS FOR WINHELP MIF2GO USER’S GUIDE

278 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Also add the JumpHot character format to [HelpWindowStyles] , specifying the name
of the target window, exactly as specified in the .hpj file:

[HelpWindowStyles]
JumpToExtra=extra

This works for jumps, local and otherwise, but not for pop-ups.

When you specify a secondary window, you get only one instance; the next time you target
that window, you replace its previous contents and leave it in place.

8.9.8 Specifying jumps to external files

Mif2Go produces links to external sources from hypertext markers in your document that
contain the following types of hypertext “message” commands:

message URL
message openfile

When a message openfile link specifies an absolute path (which must start with a drive
letter), Mif2Go removes any “file:/// ” URL prefix to the path, which is not needed in
RTF. For example:

message openfile file:///g:/omnisys/ug/out/ugmif2go .pdf

becomes:
!EF('g:/omnisys/ug/out/ugmif2go.pdf')

Hypertext “message” commands are implemented in WinHelp with the !EF macro; see
§8.10.1 Using a hypertext marker to invoke a macro on page 284.

How to insert
markers

To insert message URL and message openfile markers, see §34.1.2 Using markers to add
links and instructions on page 935.

8.9.9 Using the same content for both normal topic s and pop-ups

Suppose you want to create pop-ups that can be accessed from hotspots with varying text
content; and suppose the text for each pop-up is already in use as a regular topic in your
document. You could do either (or both) of the following:

 • Copy the pop-up content to another file, and give the copy a different paragraph
format, so you can assign it different properties in the configuration file. See §8.9.9.1
Using a separate file for pop-ups on page 278.

 • Put the pop-up content in text insets, and thus avoid duplicating the content. See
§8.9.9.2 Using text insets for both pop-ups and normal topics on page 279.

You could use the first method for cases where you want the text to be slightly different for
topic and pop-up, and the second for true single-sourcing.

8.9.9.1 Using a separate file for pop-ups

To use the same content for both a normal topic and a pop-up, duplicating the text so you
can edit topic and pop-up separately:

1. Create a new FrameMaker file, for example Popups.fm , and include it in your book.

2. Copy each pop-up topic section from its original FrameMaker file and paste it in
Popups.fm .

3. If the heading format you use for these topics is (for example) Head2, assign normal
topic properties to Head2 in the configuration file; for example:

[HelpStyles]
Head2=Topic Browse Contents

8 GENERATING WINHELP CREATING JUMPS AND POP-UPS FOR WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 279

4. For the topics in Popups.fm , change the format name to (for example) Head2pop,
and in the configuration file assign to Head2pop the following properties:

[HelpStyles]
Head2pop=Topic Scroll NoXScroll NoTitle

This setting eliminates the no-scroll area (essential for pop-ups), and keeps the content
out of full-text search, so that a search would find only the version in the original
FrameMaker file. If the pop-up has more than one paragraph, do not assign properties
in the configuration file to any but the first paragraph.

5. In Popups.fm , add a hypertext newlink marker (see §8.9.5 Using hypertext links for
jumps and pop-ups on page 276) to the start of each Head2pop, and give each an
appropriate alphanumeric identifier.

6. At the points in your document where each pop-up is to be referenced, add a hypertext
gotolink marker with the proper identifier, and mark the hotspot span by applying a
character format. For example, if you call the character format Popup (make sure it is
in the catalog):

[HelpStyles]
Popup=PopOver Green

where Green is normal and recommended, but optional.

How to insert
markers

To insert newlink and gotolink markers, see §34.1.2 Using markers to add links and
instructions on page 935.

8.9.9.2 Using text insets for both pop-ups and nor mal topics

To use the same content for both a normal topic and a pop-up, without duplicating text:

1. Create a new FrameMaker file, for example, Popups.fm , and include this file in your
FrameMaker book.

2. Place each pop-up content chunk in a new tagged flow in Popups.fm , keeping the
original paragraph format name; for example, Head2. You must give each flow tag a
name; perhaps the same name as the identifier in the newlink marker for the pop-up.
(Flow tag names are not restricted to single letters.)

3. Import each pop-up text inset into main text flow A in Popups.fm . Yes, you can do
this, even if the insets are stored in the same file!

4. For each pop-up, do the following:
4.1. Go to the pop-up text in its own named flow in Popups.fm , and cut the

hypertext newlink marker.
4.2. Go back to main flow A in Popups.fm , and paste the marker just before the

head of the inset for that pop-up, in the same paragraph.
4.3. Go to the place in the original FrameMaker file where the pop-up content was

located, and replace that text with another import-by-reference of the pop-up
from its own flow in Popups.fm . This time you do not want the hypertext
newlink marker, and it will not be present.

5. Create a new configuration file, Popups.ini , that contains only the following setting
(and any comments you want):

[HelpStyles]
Head2=Topic Scroll NoXScroll NoTitle

This ensures that when Mif2Go processes Popups.fm , you get the pop-up properties
rather than the normal content properties for paragraph format Head2. You do not need
an entry for Head2 in _m2winhelp.ini .

CREATING JUMPS AND POP-UPS FOR WINHELP MIF2GO USER’S GUIDE

280 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

The advantage of this method is simplified maintenance. You edit the pop-up content in
only one place: its own text flow in Popups.fm .

8.9.10 Creating a glossary pop-up: an example

Suppose you want to use a glossary as a collection of pop-up topics; and suppose each
glossary entry consists of a GlossTerm paragraph followed by one or more GlossDef
paragraphs. You would assign the following properties to paragraph format GlossTerm:

[HelpStyles]
GlossTerm=Topic Scroll NoXScroll

Cross-reference
pop-up link

In the text of another topic, to reference a given term in the glossary, you could make an
instance of the term into a cross reference to that same term in the glossary; the cross-
reference format would use a character format called, for example, PopText:

<PopText><$paratext></>

Hypertext pop-up
link

Instead of using a cross reference, you could insert a newlink marker in the topic heading,
and a corresponding gotolink marker in the hotspot; see §8.9.5 Using hypertext links for
jumps and pop-ups on page 276. To insert newlink and gotolink markers, see §34.1.2
Using markers to add links and instructions on page 935.

Hotspot
appearance

If you do not want the term to look different from surrounding text in your FrameMaker
document, you could set all the properties of the PopText format to “As Is”. In the
configuration file you would assign the following properties to character format PopText:

[HelpStyles]
PopText=PopOver

This makes any instance of PopText a hot spot, which will appear green in WinHelp.
Clicking that hotspot brings up the glossary term and its definition in a pop-up window.

8.9.11 Configuring alternative jumps and pop-ups

The material in this section discusses methods and settings that are deprecated, except for
certain situations where simple FrameMaker cross references or hypertext links do not
suffice.

In this section:
§8.9.11.1 Understanding alternative jumps and pop-ups on page 280
§8.9.11.2 Creating alternative jumps on page 281
§8.9.11.3 Creating alternative pop-ups on page 281
§8.9.11.4 Configuring hotspot appearance on page 281
§8.9.11.5 Assigning properties to alternative jumps and pop-ups on page 281
§8.9.11.6 Using unique references for jumps and pop-ups on page 282

8.9.11.1 Understanding alternative jumps and pop-u ps

To create an alternative jump or pop-up, Mif2Go produces a reference string from the
hotspot text, which must match the reference string of the target topic. When you use a
character (or paragraph) format to identify a jump or pop-up, the hotspot text string must
be the same as the text of the target paragraph; Mif2Go depends on this equivalence.
Because a reference string contains the full text of the target paragraph, and the acceptable
length of a WinHelp reference string is very limited, this method is useful only for short
pop-ups or jumps to short headings.

8 GENERATING WINHELP CREATING JUMPS AND POP-UPS FOR WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 281

8.9.11.2 Creating alternative jumps

To create a jump without using a cross reference or a hypertext link, specify the following
properties:

 • Assign JumpHot to the hotspot character format.
 • Assign JumpTarget (instead of Topic) to the topic heading format.

Each must be the first property to the right of the equals sign. For example:
[HelpStyles]
Hotspotfmt=JumpHot
Althead=JumpTarget

Additional properties can follow JumpHot or JumpTarget ; see §8.8.2 Assigning
properties to formats for topics and hotspots on page 268. For example:

 • JumpHot can have Window, File or Local , Green , and Uline .
 • JumpTarget can have Contents .

8.9.11.3 Creating alternative pop-ups

To create a pop-up without using a cross reference or a hypertext link, specify the
following properties:

 • Assign PopHot (instead of PopOver) to the hotspot character format.
 • Assign PopContent (instead of Topic) to the topic heading format.

Each must be the first property to the right of the equals sign. For example:
[HelpStyles]
Hotspotfmt=PopHot
Altstuff=PopContent

Additional properties can follow PopHot or PopContent ; see §8.8.2 Assigning
properties to formats for topics and hotspots on page 268. For example:

 • PopHot can have File or Local , Green , and Uline .
 • PopContent can have Local (within current topic only).

8.9.11.4 Configuring hotspot appearance

In FrameMaker You can define a hotspot by applying only a color in FrameMaker; however, by default
Mif2Go ignores colored text. To make Mif2Go recognize colored text as a hotspot:

[HelpOptions]
; UseHyperColor = No (default) or Yes (treat any no n-black as hyper)
UseHyperColor=Yes

In WinHelp You can specify a pop-up hotspot’s appearance in WinHelp by assigning either of the
following properties to the hotspot character format:

For example:
[HelpStyles]
PopReg=PopHot Green
PopNotGreen=PopHot Uline

8.9.11.5 Assigning properties to alternative jumps and pop-ups

If the hotspot text is the same as the target’s reference string, apply a character format,
and assign that format property JumpHot for a jump or PopHot for a pop-up. For
example:

Green Makes the hotspot green and underlined.

Uline Underlines the hotspot, without turning it green.

CREATING JUMPS AND POP-UPS FOR WINHELP MIF2GO USER’S GUIDE

282 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[HelpStyles]
GlossJump=JumpHot Green Key
PopUpDef=PopHot Green Uline

If the target is a topic, its reference string is already coded: it is the same as the topic title.

If the target is not a topic, identify the target’s reference string by applying a character
format coded JumpTarget for jumps or PopContent for pop-ups. A JumpTarget ,
sometimes called a mid-topic jump, can also have the word Contents in its definition, so
that it appears in the .cnt file; see §8.13 Configuring contents for WinHelp on page 288:

[HelpStyles]
GlossTerm=JumpTarget Key Contents
LocalPop=PopContent

If the target is a fixed reference regardless of the text to which the style is applied, add
Refer to the character format coding, and add a [HelpRefStyles] entry for the
character format. For example, suppose you want to apply character format Fruits to make
“apple”, “orange”, and “pear” hotspots, but in every case jump to the topic “fruit salad”:

[HelpStyles]
Fruits=JumpHot Refer Green

[HelpRefStyles]
Fruits=fruitsalad

If the hotspot text is the same for several items but you want a JumpHot or PopHot to
go to different references, you must use four character formats, and add Suffix to the
coding for each. For example, suppose at one point you want to mark Apple to jump to
Apple Computer, and at another place in the same file you want to mark Apple to jump to
Apple Records. You could define character formats Comp, CompRef, Record, and RecRef,
and code them as follows:

[HelpStyles]
Comp=JumpHot Suffix Green
CompRef=JumpTarget Suffix
Record=JumpHot Suffix Green
RecRef=JumpTarget Suffix

[HelpSuffixStyles]
Comp=comp
CompRef=comp
Record=rec
RecRef=rec

You would apply CompRef and RecRef to the word Apple in targets Apple Computer and
Apple Records, respectively. Then wherever else you apply Comp to Apple, you get a jump
to Apple Computer; and wherever else you apply Record to Apple you get a jump to Apple
Records.

8.9.11.6 Using unique references for jumps and pop -ups

You can use a pair of format properties to do the following:

 • assign a unique reference tag to the destination paragraph
 • assign a reference to that tag to a hotspot.

For example, the following settings would make each paragraph with format Sidebar a
pop-up, and the next following SeeSidebar format a corresponding hotspot:

[HelpStyles]
; MakeRef creates a unique reference tag in the cur rent paragraph.
; PrevRef uses the previous unique reference (MakeR ef) tag as a jump
; destination for the whole paragraph; if also Po pOver, a popup.

8 GENERATING WINHELP CREATING JUMPS AND POP-UPS FOR WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 283

Sidebar=Topic Slide Scroll NoXScroll MakeRef
SeeSidebar=PopOver Green Resume PrevRef

The hotspot must follow the destination in your FrameMaker document, or the PrevRef
property will not take you there when you click the hotspot.

Note: PrevRef should not be assigned to a format that already has some other hotspot-
creating property (JumpHot , PopHot , MacroHot , a cross reference, or a
hypertext gotolink or openlink).

See §8.8.2 Assigning properties to formats for topics and hotspots on page 268

8.9.12 Specifying the scope of alternative jumps a nd pop-ups

If all the jump and pop-up link references in your document are unique, and they are all in
the same file as their corresponding hotspots, you do not have to specify a scope.

In this section:
§8.9.12.1 Designating local-to-topic jumps and pop-ups on page 283
§8.9.12.2 Designating interfile jumps and pop-ups on page 283

8.9.12.1 Designating local-to-topic jumps and pop- ups

Normally, a term used as a reference string must be unique in each .hlp file; you can
jump to a reference string from any place in the same .hlp file. However, there is a way
to use the same reference string in every topic.

If you need to use a term that appears in many places in the .hlp file, but only once in
each topic, you can assign property Local to a jump or pop-up format to produce a local
reference string. For example, you might have a catalog in which each item is in a separate
topic, but every item needs a link within its topic to its part number, price, and so on.

Assign property Local to both the hotspot format and its target format. For example:
[HelpStyles]
Specs=JumpTarget Local
JSpecs=JumpHot Local
Diagram=PopContent Local
PDiag=PopHot Local

8.9.12.2 Designating interfile jumps and pop-ups

For jumps and pop-ups to topics in a different .hlp file, assign property File to the
JumpHot or PopHot character format. For example:

[HelpStyles]
JElsewhere=JumpHot Green File
POther=PopHot File

Also assign the name of the target file to the hotspot character format. For example:
[HelpJumpFileStyles]
JElsewhere=distant.hlp
POther=distant.hlp

Also specify FileIDs; see §8.9.1 Identifying WinHelp jump destinations with FileIDs on
page 273.

INVOKING WINHELP MACROS MIF2GO USER’S GUIDE

284 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

8.10 Invoking WinHelp macros
You can invoke a WinHelp macro from a hotspot. You can use this feature to create a jump
to an external location, or to run another application from within WinHelp.

To create a macro hotspot, apply a character format to the hotspot text in FrameMaker, the
same way you would for a jump or a pop-up; see §8.9.3 Creating hotspots for jumps and
pop-ups in WinHelp on page 274.

In this section:
§8.10.1 Using a hypertext marker to invoke a macro on page 284
§8.10.2 Assigning a hotspot property to invoke a macro on page 284

8.10.1 Using a hypertext marker to invoke a macro

The simplest way to create a jump to an external file is to insert a FrameMaker Go to URL
hypertext marker where you want the link. For example, to run an .avi video clip:

message URL yourname.avi

Indicate the hotspot area with a character format that includes the marker; see §8.9.3
Creating hotspots for jumps and pop-ups in WinHelp on page 274. Mif2Go converts the
marker text to produce the required WinHelp macro invocation:

!EF(' yourname.avi')

Clicking the hotspot should display the .avi file.

See also:
§8.9.8 Specifying jumps to external files on page 278
§34.1.2 Using markers to add links and instructions on page 935

8.10.2 Assigning a hotspot property to invoke a ma cro

If you reference the same external file from several places in your document, you can
dedicate a hotspot character format to this purpose. You assign property MacroHot to the
character format, and provide a definition for the macro. For example:

[HelpStyles]
ShowAvi=MacroHot

[HelpMacroStyles]
ShowAvi=EF(' yourname.avi')

The MacroHot property works the same way as JumpHot (see §8.9.11.2 Creating
alternative jumps on page 281), except that instead of using the marked text as the
reference string for a jump, Mif2Go provides a predefined WinHelp macro. For example:

[HelpStyles]
FarTarget=MacroHot

[HelpMacroStyles]
; Topic Macro and MacroHot have a required macro co ntent
FarTarget=EF(http://www.omsys.com/)

Mif2Go supplies the leading “! ” for the macro invocation.

8 GENERATING WINHELP CREATING RELATED-TOPIC LINKS IN WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 285

8.11 Creating related-topic links in WinHelp
You can create ALink target topics in WinHelp by assigning “A” footnotes to formats, and
provide links to those topics by embedding WinHelp ALink macros in the text of your
document. Or, you can use markers for both ALink jumps and ALink-list targets.

Mif2Go constructs KLinks for WinHelp 4 automatically, from FrameMaker index
markers. You can add other “K” footnotes that do not appear in the Mif2Go -generated
index, either with formats or with markers.

Advantages of
markers

Using markers for related-topic links has some advantages:

 • The same markers work for ALinks and KLinks in all other Mif2Go -generated Help
systems that support related-topic links.

 • Mif2Go creates the WinHelp ALink or KLink macros for you when you use markers.

In this section:
§8.11.1 Understanding KLink limitations on page 285
§8.11.2 Adding ALinks and KLinks with markers on page 285
§8.11.3 Adding related-topic keywords with formats on page 285
§8.11.4 Inserting WinHelp macros for ALink jumps on page 286

See also:
§7.6 Providing related-topic links for Help systems on page 219

8.11.1 Understanding KLink limitations

Although WinHelp 4 nominally supports KLinks, the following restrictions apply:

 • Only the first index term in a KLink jump results in an active link, unless another
.hlp file is linked in the .cnt file for your project. For example:

:Link other.hlp
:Index title= other.hlp

 • When two index terms in the same KLink jump reference the same topic, the link
appears twice in the KLink list.

 • Multi-level index terms do not result in links.

8.11.2 Adding ALinks and KLinks with markers

To create ALinks and KLinks in WinHelp with markers, use the methods described in the
following sections:

§7.6.4.1 Adding related-topic link keywords via markers on page 221
§7.6.5 Adding ALink and KLink jumps in FrameMaker on page 222

8.11.3 Adding related-topic keywords with formats

You can mark text in your document to produce the “A” footnotes used by ALinks, “K”
footnotes for KLinks, or any other kind of WinHelp keyword footnote. You assign a
related-topic keyword property to a paragraph or character format, along with other
properties.

Keyword properties produce the following:

AKey an “A” footnote, for an ALink; see §7.6.2 Understanding how ALinks
work on page 220

CREATING RELATED-TOPIC LINKS IN WINHELP MIF2GO USER’S GUIDE

286 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You can apply these properties in any of the following ways:
Assign a keyword property to a paragraph format
Assign a keyword property to a character format
Assign a keyword property to hidden content
Assign a “special” keyword property to a format

Assign a keyword
property to a

paragraph format

To create a “K” footnote for each level-2 topic heading (for example), you could assign
property Key to the topic-heading paragraph format:

[HelpStyles]
Heading 2=Topic Browse Key

Assign a keyword
property to a

character format

To designate keywords in topic text, apply a character format to the relevant text, and
assign a keyword property to the character format. For example, if the name of an “A”
footnote subject appears as a word in topic text, you can apply a special character format
to that word, and assign the AKey property to the format:

[HelpStyles]
Related=AKey

Assign a keyword
property to hidden

content

To add to a paragraph a footnote that does not appear in topic text:

1. Place the footnote text at the end of the paragraph, after the last period.

2. Apply a special character format to the footnote text.

3. Assign properties AKey (for example) and Delete to the character format:
[HelpStyles]
Atag=AKey Delete

The Atag text would be put into an “A” footnote, but would not appear in the topic.

Assign a “special”
keyword property

to a format

To create a “special” footnote, assign property SpKey to a format, and also assign a letter,
other than A or K, to the same format. For example:

[HelpStyles]
xlink=SpKey

[HelpKeywordStyles]
; SpKey requires a key letter (A..Z, except K and A)
xlink=X

8.11.4 Inserting WinHelp macros for ALink jumps

You can create an authorable button (or just a hotspot) for “Related Topics” (usually either
in the no-scroll region at the top, or at the end of the topic text), and provide a WinHelp
ALink macro that lists the subject(s) to which you want link(s).

To create a jump to one or more ALink lists, insert a WinHelp ALink macro in text
wherever you want a jump to appear. For example, to add a “Related Topics” button:

{button Related Topics:AL(subject1, subject2,...)}

Key a “K” footnote, for a KLink; see §7.6.3 Understanding how KLinks work
on page 221

SpKey a “special” footnote, designated by a letter other than “A” or “K”, for a
separate index that is searchable only when WinHelp is called from a
program.

8 GENERATING WINHELP CONFIGURING INDEX ENTRIES FOR WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 287

8.12 Configuring index entries for WinHelp
Mif2Go converts FrameMaker index entries into WinHelp “K” footnotes. You can add to
the WinHelp index other text that is not part of the FrameMaker index, by assigning
properties to formats or by inserting markers.

In this section:
§8.12.1 Designating index level separators on page 287
§8.12.2 Eliminating duplicate keywords on page 287
§8.12.3 Keeping or discarding “See also” entries on page 288
§8.12.4 Using FrameMaker Index markers on page 288

See also:
§7.5 Configuring index entries for Help systems on page 211

8.12.1 Designating index level separators

Commas in FrameMaker index entries are treated as level separators in WinHelp indexes,
even though they serve only a grammatical function in your FrameMaker document.
However, Mif2Go breaks an index entry at a comma (or at any other level separator) only
when there is at least one more entry that is an exact match up to the comma. The “one
more entry” can be an entry generated by Mif2Go , depending on the setting for
DisambiguateIndex ; see §8.12.2 Eliminating duplicate keywords on page 287.

To have Mif2Go treat commas in FrameMaker index entries as regular characters instead
of index level separators, specify the following option:

[HelpOptions]
; IdxColon = No (default, allow colon and comma as level delimiters)
; or Yes (use only colon as delimiter, treat comma as regular text)
IdxColon=Yes

You must also edit the WinHelp project file, yourdoc.hpj , to specify this option:
[OPTIONS]
INDEX_SEPARATORS=":"

Use Notepad or any other plain-text editor.

8.12.2 Eliminating duplicate keywords

When a first-level index entry has second-level entries under it, to avoid repeats of the
same topic, set DisambiguateIndex=Topic :

[HelpOptions]
; DisambiguateIndex = Yes (default, always write fi rst-level keys),
; Strip (no first-level keys), Topic (only write f irst instance of
; a first-level key in each topic), No (only write first in doc)
DisambiguateIndex=Topic

The DisambiguateIndex options work as follows:

Topic Prevents duplication by suppressing repeated index markers within a
topic. When you have the same index marker in two or more places, and
pick that item in the WinHelp index, you get a dialog with a list of all the
places the item is referenced. If the same marker occurs twice in the same
topic, you get two identical entries for that topic in the dialog list.

CONFIGURING CONTENTS FOR WINHELP MIF2GO USER’S GUIDE

288 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

8.12.3 Keeping or discarding “See also” entries

You can choose to discard “See also” entries in the index; the default is to keep them:
[HelpOptions]
; NoSeeAlso = No (default, leaves See also entries in index)
; or Yes (removes them)
NoSeeAlso=No

8.12.4 Using FrameMaker Index markers

By default, Mif2Go omits the ObjectIDs of FrameMaker Index markers, unless you are
converting the FrameMaker index. To restore use of ObjectIDs for Index markers:

[HelpOptions]
; KeepIXMarkerIDs = No (default, keep only if [Setu p]UseFrameIX) or
; Yes (always keep Unique ObjectIDs for Index marker s)
KeepIXMarkerIDs=Yes

8.13 Configuring contents for WinHelp
WinHelp 4 uses a contents, or .cnt , file for each .hlp file. When you invoke Help, the
system brings up a contents page, where you see little book icons (headers) and page icons
(topics). If you click a book icon, it expands to show you the books and pages it contains;
if you click a page icon, the associated topic is displayed in a Help window.

In this section:
§8.13.1 Naming and configuring Help files and titles on page 288
§8.13.2 Specifying heading formats and levels for contents on page 289
§8.13.3 Assembling WinHelp contents from the command line on page 291

See also:
§7.3.5 Modifying contents or index production for WinHelp on page 208
§7.4 Configuring contents entries for Help systems on page 209

8.13.1 Naming and configuring Help files and title s

Mif2Go creates a WinHelp contents file for you, unless you specify no contents. Whether
the contents file is created from a single topic file or from multiple files, and how the
contents file and Help file are named, depend on the following settings:

[HelpContents]
; the optional .cnt file for HelpVer 4 is always na med after the rtf
; CntType = None, Full (single file), or Body (head ings, topics only)
; the Body type is used when combining .cnt files i n a .bat file
CntType=Full
; CntBase = helpfile.hlp (default is rtfname.hlp; s pecify for Body)

Yes Prevents duplication by eliminating repeated first-level headings in the file
(not just in the topic). When you have second-level topics under the same
first-level topic, and you click the first-level heading, you get duplication.
You need only one of the first-level headings in the file to make the index
work right (avoiding a WinHelp defect).

No Generates a first-level heading only for the first of its second-level topics.

Strip Eliminates generated first-level headings, so that only explicit headings
remain.

8 GENERATING WINHELP CONFIGURING CONTENTS FOR WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 289

CntBase= myfile.hlp
; CntName = helpfile.cnt (default is rtfname.cnt; s pecify for Body)
CntName=myfile.cnt
; CntStartFile = helpfile.bct (default is to use Cn tBase and CntTitle)
CntStartFile= myfile.bct
; CntTitle = Title for Contents (for Full .cnt)
;CntTitle= Project Name
; CntTopic = starting topic for .hpj (default: book or chapter name)
;CntTopic= myfile
; CntTopHead = 1 Text for Optional Top Head (Full . cnt, for a H1)
;CntTopHead=1 Book Title

If you have only one topic file in your Help project, in the [HelpContents] section
leave the default value, CntType=Full ; Mif2Go creates the .cnt file for you.

If you have more than one topic file in your Help project, set CntType=Body ; Mif2Go
creates part of the .cnt file for each topic file, and also produces a file named after your
topic file, with extension .bct , which contains only the header and topic lines. If you
specify CntType=Body , you can also specify the name of the contents file and the base
name of the help file. If you do not specify a base name, Mif2Go uses your topic file name
for the help file base name.

Alternatively, for multiple topic files you can set the first topic file to CntType=Full , so
it contains the Base, Title, and Top Head (if any). Or you can just prepare the first bit of
the final .cnt separately, in a text editor.

Use CntTitle to specify the text of the title for the contents file; to specify a starting
topic, set CntTopic . If you do not specify a value for CntTitle , Mif2Go uses the help
file title (in the .hpj file). The value you specify (if any) for CntTopHead is added before
the actual .cnt entry lines.

You can also create a .cnt heading for a topic file even though that heading is not in the
topic file itself:

[HelpContents]
CntType=Body

[BctFileHeads]
myfile=Text for optional top head

8.13.2 Specifying heading formats and levels for c ontents

In this section:
§8.13.2.1 Understanding WinHelp contents level numbers on page 289
§8.13.2.2 Listing topics for contents with and without subheadings on page 290
§8.13.2.3 Using different names in contents for heading and topic on page 290
§8.13.2.4 Renaming or eliminating the contents “Overview” topic on page 290
§8.13.2.5 Referencing multiple help files from contents on page 291
§8.13.2.6 Displaying contents targets in the main window on page 291

8.13.2.1 Understanding WinHelp contents level numb ers

In a WinHelp .cnt file, each heading line begins with a level number, 1 to 9, followed by
the text to display. Each topic line includes the same, and adds an equals sign, followed by
the reference string for the topic to be displayed. Mif2Go produces these lines for each
format value in [HelpStyles] that starts with Topic and includes Contents . Mif2Go
determines the type of line from the [HelpCntStyles] section where formatname=H
for top-level headings, formatname=T2 for second-level topics, or formatname=B2 to

CONFIGURING CONTENTS FOR WINHELP MIF2GO USER’S GUIDE

290 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

create a second-level heading with a third-level topic of the same name immediately
following:

[HelpStyles]
Heading 1=Topic Contents

[HelpCntStyles]
; format = H (heading), T (topic), or B (both), + l evel (1..9), as in:
; Heading 2=B3 which creates both a level 3 head an d a level 4 topic
; format V adjusts itself to be either T or B, depe nding on subheads
; all formats here must be listed in [HelpStyles] w ith Contents set
ChapName=H1
Heading 1=B2

8.13.2.2 Listing topics for contents with and with out subheadings

Suppose you use the same format for topics with subheadings and for topics without
subheadings. The possibilities include:

All “book” entries
All “page” entries
Mixed “book” and “page” entries
No subheadings? You get “page” entries
Force “book” entries

All “book” entries To list all such topics as “books” in the contents file, assign to the format a B (“both”)
level: one of [HelpCntStyles] properties B1 through B9. Mif2Go creates a “book”
contents entry and a subordinate “page” entry for each.

All “page” entries To list all such topics as “pages” in the contents file, assign to the format a T (“topic”)
level: one of [HelpCntStyles] properties T1 through T9. Mif2Go creates a “page”
contents entry for each.

Mixed “book” and
“page” entries

To list topics without subheadings as “pages”, and topics with subheadings as “books”,
assign to the format a V (“variable”) level: one of [HelpCntStyles] properties V1
through V9. You can adjust the level numbers to fit the way you use your headings; this
might take a bit of experimenting to get the effect you want.

No subheadings?
You get “page”

entries

When you assign V1 through V9, Mif2Go determines whether the format should be a
heading or a topic, based on the existence of subheadings. However, a defect in WinHelp
causes V entries without subheadings to be treated as though they were T. For example, a
chapter heading for a single-topic chapter would appear as a “page” entry under the
preceding chapter.

Force “book”
entries

To list topics without subheadings as “books” (for example, if you have a single-topic
chapter), you must assign a B level to the heading format instead of V.

8.13.2.3 Using different names in contents for hea ding and topic

When you code a format to create both a heading and a topic, the default is to use the same
text for both. To give the topic a more generic name, such as Overview or Summary, in
[HelpContents] set CntBStyleText= other topic name:

[HelpContents]
; CntBStyleText = text to use for topics created as "B" HelpCntStyles
CntBStyleText= Overview

8.13.2.4 Renaming or eliminating the contents “Ove rview” topic

When a heading has subheadings under it (so that it becomes a “book” in WinHelp),
WinHelp provides no way to get from the contents entry to any text that comes after the

8 GENERATING WINHELP CONFIGURING CONTENTS FOR WINHELP

ALL RIGHTS RESERVED. MAY 18, 2013 291

heading and before the first subheading. Therefore Mif2Go adds a dummy topic “page”
called (by default) “Overview” to permit access to this otherwise orphaned text.

You can change the name of this dummy topic to something other than “Overview”; for
example, to name it “Introduction” instead:

[HelpContents]
CntBStyleText=Introduction

If you do not want to provide access to any text in this area, you can change the setting for
the heading from V to H, keeping the same level number; for example:

[HelpCntStyles]
Heading1=H1

Then there would be no “Overview” for text that immediately follows a Heading1
paragraph. You would be able to access the text between that heading and the next only as
part of a browse sequence; see §8.14 Creating browse sequences on page 292.

8.13.2.5 Referencing multiple help files from cont ents

The lines in a .cnt file that are clickable links contain equals signs (“=”). The part to the
right of the equals sign is the reference string. For example, suppose you are making a
contents file called merged.cnt , which is your master contents file modified by inclusion
of lines such as the following:

:include someother.cnt

The reference strings in someother.cnt must specify that the topics they identify are in
someother.hlp , else they will be looked for in merged.hlp when they are accessed via
merged.cnt . This is done for you if you specify the following, in each configuration file
for a secondary .hlp file; it is not needed for the master .hlp file:

[HelpContents]
; AddCntFileName = No (default) or Yes (add to topi c ref strings)
AddCntFileName=Yes

8.13.2.6 Displaying contents targets in the main w indow

If you are using multiple windows (secondary windows), to force material called from the
contents into the main window, set AddCntWindowName=Yes ; otherwise that material
goes into the last secondary window used:

[HelpContents]
; AddCntWindowName = No (default)
; or Yes (add def >main to ref strings)
AddCntWindowName=No

Specify the name of the primary window, if it is not main :
[HelpContents]
; CntMainWindow = name for primary window in .cnt i f not "main"
;CntMainWindow= myhelpmain

8.13.3 Assembling WinHelp contents from the comman d line

When you have generated all topic files for WinHelp, so that you have all the .bct files,
you can put them together to form the full .cnt file; either with a text editor, or with the
Windows copy command. For example:

copy intro.cnt+chap1.bct+chap2.bct+appx.bct mybook.cnt

If you have set up a batch file with other DCL conversion commands, add the copy line
after the last dcl line and before the hcw line.

CREATING BROWSE SEQUENCES MIF2GO USER’S GUIDE

292 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See §37 Converting via DCL on page 995.

8.14 Creating browse sequences
WinHelp supports browse sequences among topics, and provides a pair of browse buttons,
<< and >>, on the toolbar. Each topic can belong to only one browse sequence; if you want
branching, you must use a jump to get to the first topic in the branch.

In this section:
§8.14.1 Setting up an automatic browse sequence on page 292
§8.14.2 Specifying browse numbers on page 292
§8.14.3 Setting up multi-file browse sequences on page 293
§8.14.4 Setting up branching browse sequences on page 293

8.14.1 Setting up an automatic browse sequence

The easiest way to provide a browse sequence is to use the WinHelp auto-browse feature,
which strings together all the topics in your document in their order of appearance in the
RTF files listed under [FILES] in the .hpj file.

To set up an automatic browse sequence:
[HelpBrowse]
; AutoBrowse = No (default) or Yes (an "auto" brows e
; sequence is generated with topics in the order sh own
; under [FILES] in the .hpj, in the order present w ithin
; each file; no numbers are used, and Prefix is "au to").
AutoBrowse=Yes

When AutoBrowse=Yes , you do not have to maintain browse numbers in the
configuration file. However, be aware of the following:

 • Auto-browse works only when you have a single browse sequence.
 • The browse sequence includes every topic, even pop-up topics.

8.14.2 Specifying browse numbers

You can specify a starting browse number in the configuration file; if you have more than
one file in your project, you can specify a starting number for each. You can also specify a
starting browse number in the document itself, in a configuration marker (see §33.2.2
Overriding settings with configuration markers on page 921).

To activate browse sequences for topic titles, in [HelpBrowse] specify TitleBrowse=
Yes. Specify the interval to use between browse numbers as Step=5 , or just Step=1 if
you will never need to interpolate any new ones by hand. Specify the number of digits to
use so that you have enough numbers available: Digits=3 allows for 999 topics,
Digits=4 allows 9,999. Specify the starting browse number as Start= N, and the browse
prefix as Prefix= XX. The default values are as follows:

[HelpBrowse]
; these defaults are for all files processed
; override as needed in individual filename.ini fil es
; or using configuration markers in the documents t hemselves
Step=5
Digits=4
; make sure each RTF file has a different Start val ue
; allowing room for the numbers used in the earlier files
Start=5
Prefix=HLP

8 GENERATING WINHELP CREATING BROWSE SEQUENCES

ALL RIGHTS RESERVED. MAY 18, 2013 293

8.14.3 Setting up multi-file browse sequences

If your help project contains more than one topic file, and you want to be able to browse
from one to the next (as users generally expect), you will need to specify a different
Start number for each file. You can do this in three places:

 • in the [BrowseStart] section
 • in a configuration marker in the FrameMaker file (see §33.2.2 Overriding settings

with configuration markers on page 921)
 • in a configuration file specifically for each FrameMaker file (see §33.1 Using a

different configuration for selected files on page 919).

To place the start numbers in the [BrowseStart] section:
[BrowseStart]
; overrides the [HelpBrowse] Start above for the fi le named
; filename (no extension) = start number

To use a file-specific configuration file, create a plain text file with the same base name as
the RTF file you are producing, but with extension .ini . All it needs to contain is:

[HelpBrowse]
Start= nnnn

Allow enough numeric room between successive Start settings to accommodate the
maximum number of topics you might have in each file. You can include any settings
specific to a particular file in such a configuration file; they override the corresponding
settings in the m2winhelp.ini file.

8.14.4 Setting up branching browse sequences

For branching browse schemes, use a different prefix for each branch. You can specify a
prefix in the configuration file, in a marker, or in a specific configuration file, as for start
numbers (see §8.14.3 Setting up multi-file browse sequences on page 293):

[BrowsePrefix]
; overrides the [HelpBrowse] Prefix for the file na med
; filename (no extension) = prefix string
; is overridden itself by usage in [HelpBrowsePrefi xStyles]

[HelpBrowsePrefixStyles]
; Topic Browse can have an optional prefix

CREATING BROWSE SEQUENCES MIF2GO USER’S GUIDE

294 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 295

9 Generating Microsoft HTML Help

This section addresses issues that are specific to creating Microsoft HTML Help. HTML
settings described in section 13 and sections 18 through 34 apply also. Topics include:

§9.1 Understanding how Mif2Go produces HTML Help on page 295
§9.2 Understanding why Unicode is not the answer on page 296
§9.3 Setting up an HTML Help project on page 297
§9.4 Customizing HTML Help display features on page 302
§9.5 Creating pop-ups for HTML Help on page 305
§9.6 Creating links and hypertext jumps in HTML Help on page 307
§9.7 Creating related-topic links for HTML Help on page 309
§9.8 Using secondary windows in HTML Help on page 317
§9.9 Generating contents and index for HTML Help on page 319
§9.10 Converting generated files for HTML Help on page 325
§9.11 Providing full-text search (FTS) for HTML Help on page 326
§9.12 Setting up CSH for HTML Help on page 326
§9.13 Generating HTML Help in non-Western languages on page 331
§9.14 Compiling and testing HTML Help on page 333
§9.15 Mapping and merging CHM files on page 336

See also:
§7 Producing on-line Help on page 199

To determine which configuration settings will produce the appearance and functionality
you want, see also:

§13 Converting to HTML/XHTML on page 423
§18 Splitting and extracting files on page 585
§21 Mapping text formats to HTML/XML on page 645
§22 Setting up CSS for HTML on page 681
§23 Including graphics in HTML on page 703
§24 Converting tables to HTML on page 727

For more information about HTML Help, see the Microsoft HTML Help home page,
accessible through the Microsoft Library:

http://msdn.microsoft.com/library

9.1 Understanding how Mif2Go produces HTML Help
Microsoft HTML Help is specialized for use with Microsoft HTML Help Workshop,
which is used to compile the HTML files Mif2Go generates.

Note: HTML Help does not always perform as documented; there are many defects,
some pieces are missing, and the software is no longer maintained. These are
issues that Mif2Go cannot address.

To produce HTML Help, Mif2Go does the following:

 • creates an HTML Help project file
 • generates HTML topic files from your FrameMaker document
 • optionally runs HTML Help Workshop to compile the HTML Help project.

http://msdn.microsoft.com/library

UNDERSTANDING WHY UNICODE IS NOT THE ANSWER MIF2GO USER’S GUIDE

296 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Initial project file When you create a Mif2Go HTML Help project, Mif2Go automatically generates a
starting Microsoft HTML Help project file. This file is named for your FrameMaker
document, with extension .hhp , and placed in the project directory. For example, if you
are converting MyDoc.book , Mif2Go creates an HTML Help project file named
MyDoc.hhp .

Project file can be
regenerated

The HTML Help project file contains the basic information needed to compile your
HTML Help project. Once created, Mif2Go does not touch the HTML Help project file
again, though you can tell Mif2Go to regenerate it each time you run a conversion; see
§9.3.9 Regenerating the HTML Help project file on page 301.

Project file can be
edited

You can edit the HTML Help project file yourself, either in a plain-text editor such as
Notepad, or in HTML Help Workshop. Editing in HTML Help Workshop is risky, because
the editing facility has known defects.

Compiled CHM
file is the final

output

The HTML Help project file and the generated HTML files become input for HTML Help
Workshop, which compiles all the HTML topic files into a single “Compiled HTML File”
named for your FrameMaker document, with extension .chm . The CHM file is the file
you distribute, for use with the Microsoft HTML Help viewer. You can direct Mif2Go to
run the compilation, or you can use HTML Workshop yourself to compile.

CHM files must
be “unblocked”

Microsoft introduced “security” features that require each CHM file to be explicitly
“unblocked”, something you will have to tell your users. To unblock a CHM, right-click
its icon in Windows Explorer, select Properties , and click Unblock , then click Apply ,
then OK. After that, when you double-click the CHM, it opens fine. If you select
Properties again, the area where the Unblock button was is now blank.

View compiled file
with the viewer

The only way to access all features of HTML Help is to use the HTML Help viewer; you
cannot view a CHM file with a Web browser. Neither Internet Explorer nor Firefox is able
to display the tri-pane and search windows, although Internet Explorer (but not Firefox)
can be persuaded to look inside a .chm on your local system. This is true regardless of the
tool used to generate HTML Help.

View uncompiled
files with a

browser

If you are interested only in viewing HTML topic files, without the Contents, Index,
Search, or the toolbar buttons, you can use a browser. If that is your intention, when you
use Mif2Go to generate HTML Help, choose configuration options that do not produce
<object> tags (which means no pop-ups or secondary windows); those tags appear in
Firefox as extra spaces, and do not work as intended. You are better off converting to
XHTML (or, if necessary, standard HTML); including in the conversion your
FrameMaker TOC and IX to provide Contents and Index; and adding navigation (see §20
Providing navigation in HTML on page 627) to the top and bottom of each output page.
Also see §9.6.2 Specifying href link syntax for HTML Help on page 308.

9.2 Understanding why Unicode is not the answer
Microsoft HTML Help does not use Unicode; instead it uses Windows code pages. This
means that characters with glyphs that are not present in the default code page (for
Western languages this is ANSI code page 1252) might not display correctly, and will
interfere with use of TOC, index, and search functions

People often think they can get away with using Unicode encoding instead of code-page
encoding, because the HTML Help viewer uses Internet Explorer to display the topic
pane, and Internet Explorer does understand Unicode. However, if you use any non-ANSI
(above U+007F) characters, search will not work right, and if any of your non-ANSI
characters appear in titles or in index terms, the TOC and index will not work right, either.
If you are processing a language with accented characters, such as German, you cannot get

9 GENERATING MICROSOFT HTML HELP SETTING UP AN HTML HELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 297

away with Unicode in the topic pane. For example, Unicode represents code points from
hexadecimal A0 to FF as two-byte UTF-8 sequences, and code page 1252 represents them
as single characters. So even though the code points are the same, and the display looks
fine, search fails because the single byte in the search string does not match the two bytes
in the UTF-8 encoding.

With a few isolated symbols, you might get away with Unicode content, but it is not good
practice. Mif2Go goes to considerable lengths to convert from Unicode to code page for
HTML Help. It is not trivial; for Asian languages, Mif2Go uses enormous look-up tables
and dozens of lines of C++ code. It is a Bad Idea to blow it off and use Unicode in any
form (including numeric character references) instead.

It might be easy to dismiss all this when your language is English, but the rest of the world
feels differently.

See also:
§9.13 Generating HTML Help in non-Western languages on page 331
§21.5 Assigning properties to text formats on page 653

9.3 Setting up an HTML Help project
To produce an HTML Help system you will need HTML Help Workshop, which you can
download from the Microsoft Library:

http://msdn.microsoft.com/en-us/library/ms669985.aspx

Documentation for HTML Help Workshop is available from the same site.

If you plan to generate HTML Help in non-Western languages, you will also need the ICU
library; see §9.13 Generating HTML Help in non-Western languages on page 331.

In this section:
§9.3.1 Creating an HTML Help project on page 297
§9.3.2 Choosing set-up options for an MS HTML Help project on page 298
§9.3.3 Deciding where to locate configuration settings on page 299
§9.3.4 Organizing source files for HTML Help on page 299
§9.3.5 Specifying a project title for HTML Help on page 300
§9.3.6 Deciding whether to compile HTML Help on page 300
§9.3.7 Naming project and compiled files for HTML Help on page 300
§9.3.8 Specifying a starting topic file for HTML Help on page 301
§9.3.9 Regenerating the HTML Help project file on page 301
§9.3.10 Locating graphics files for HTML Help on page 302

See also:
§7.2.1 Checking automatic Help topic assignments on page 203

9.3.1 Creating an HTML Help project

To create an HTML Help project:

1. Create a project directory for HTML files, separate from the directory where your
FrameMaker document is located. Optionally, create a subdirectory for graphics files.

2. With your FrameMaker book or document file open, choose File > Set Up Mif2Go
Export ; the Choose Project dialog opens (see §3.3 Creating a Mif2Go conversion
project on page 78).

http://msdn.microsoft.com/en-us/library/ms669985.aspx

SETTING UP AN HTML HELP PROJECT MIF2GO USER’S GUIDE

298 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

3. Name your project, and browse to the project directory you created in Step 1.

4. Choose output type MS HTML Help and click OK.

5. Check options in the Set Up MS HTML Help Project dialog (see §13.2.2 Choosing set-
up options for an HTML or XHTML project on page 425).

6. Use a text editor to edit the resulting _m2htmlhelp.ini configuration file (see §4.1
Working with Mif2Go configuration files on page 91).

7. Important: To make the configuration fit your usage of headings to start topics, pay
special attention to sections [HelpContentsLevels] (see §7.2.1 Checking
automatic Help topic assignments on page 203) and [HTMLParaStyles] (see §18.2
Splitting files on page 586).

8. Important: All the files you include in a compiled HTML Help system must be
located in or below the directory that contains the .hhp project file. See §9.3.3
Deciding where to locate configuration settings on page 299.

9.3.2 Choosing set-up options for an MS HTML Help project

When you select MS HTML Help as the output type for a new project, the Set Up dialog
shown in Figure 9-1 opens. Table 9-1 shows the corresponding settings in the
configuration file. You must edit the configuration file to specify additional options.

See also:
§3.4 Choosing project set-up options on page 79
§7 Producing on-line Help on page 199

Figure 9-1 Set Up MS HTML Help Project

9 GENERATING MICROSOFT HTML HELP SETTING UP AN HTML HELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 299

9.3.3 Deciding where to locate configuration setti ngs

When you set up an HTML Help project from within FrameMaker, if configuration file
_m2htmlhelp.ini is not already present in the project directory, Mif2Go creates this
file for you; see §3 Converting a book or document on page 77.

Which
configuration file?

To configure HTML Help output, add settings to one of the following files, depending on
the desired scope of each setting:

See §30.5 Deciding which configuration file to edit on page 856.

To determine which configuration settings will produce the appearance and functionality
you want, also see:

§13 Converting to HTML/XHTML on page 423
§18 Splitting and extracting files on page 585
§21 Mapping text formats to HTML/XML on page 645
§23 Including graphics in HTML on page 703
§24 Converting tables to HTML on page 727

9.3.4 Organizing source files for HTML Help

Compiled HTML Help has the following limitation on file placement: a CHM can contain
files located only in the same directory as the .hhp file (HTML Help project file) or in a
subdirectory. Sibling directories, parent directories, and absolute paths elsewhere do not
work. CHM content is organized in an internal file system that duplicates the external file
structure, but with the directory containing the .hhp file as the root. Therefore, references
to directories outside this structure do not work.

Table 9-1 HTML Help set-up options and configuration settings

Set-up Configuration file
Option Section Setting Default Ref.

Gen TOC [MSHtmlHelpOptions] ListType=Contents | Both
RefFileType=Body | Full

Both
Depends*

7.3.4.1
9.9.1

Gen IX [MSHtmlHelpOptions] ListType=Index | Both
RefFileType=Body | Full

Both
Depends*

7.3.4.1
9.9.1

Use FTS [MSHtmlHelpOptions] UseFTS=Yes Yes 9.11

Use Alias [MSHtmlHelpOptions] MakeAliasFile=Yes Yes 9.12.1.1

Compile: [Automation] CompileHelp=Yes No 9.14

.hhp : [MSHtmlHelpOptions] HHPFileName= MyDoc.hhp MyDoc.hhp 9.3.7

[MSHtmlHelpOptions] DefaultChmFile= MyDoc MyDoc 9.3.7

Title: [MSHtmlHelpOptions] HelpFileTitle= My Title Your Title
Here

9.3.5

Start: [MSHtmlHelpOptions] DefaultTopicFile= Filename MyDoc 9.3.5

Map: [MSHtmlHelpOptions] CshMapFile= resource.h resource.h 9.12.1.1

Overwrite .hhp [MSHtmlHelpOptions] WriteHelpProjectFile=Yes No 9.3.9

* The default is Body for FrameMaker books, Full for single document files.

Scope Configuration file Location

Current project
only

_m2htmlhelp.ini Current project directory

All HTML Help
projects

local_m2htmlhelp_config.ini %omsyshome%\m2g\local\co nfig\

SETTING UP AN HTML HELP PROJECT MIF2GO USER’S GUIDE

300 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

If your project includes FrameMaker files on different paths that reference each other, you
might have to reorganize them to conform to this HTML Help limitation. If your project
includes referenced graphics files, Mif2Go can copy the graphics files to the project
directory (or a subdirectory) before beginning the conversion. See §9.3.10 Locating
graphics files for HTML Help on page 302.

9.3.5 Specifying a project title for HTML Help

The title of your HTML Help project appears in the title bar of the HTML Help viewer.
When you set up a new HTML Help project, you can specify a title in the Set Up dialog;
see §9.3.2 Choosing set-up options for an MS HTML Help project on page 298. You can
also specify a title in the configuration file.

To specify a title for your help project:
[MSHtmlHelpOptions]
; HelpFileTitle = title to put in project file;
; default is filename or bookname
HelpFileTitle= Title of my project

If your CHM file will be used in locales other than US English, also see §9.13 Generating
HTML Help in non-Western languages on page 331.

9.3.6 Deciding whether to compile HTML Help

FrameMaker version 8 and above use Unicode. The HTML Help compiler does not
support Unicode, and instead uses code-page mappings. For compiled HTML Help,
Mif2Go maps Unicode characters to the correct code page.

If what you need is uncompiled HTML Help files in Unicode, possibly including contents,
index, and search files, you can direct Mif2Go not to compile HTML Help:

[Automation]
CompileHelp = No

To omit code-page mapping when you are not going to compile HTML Help:
[MSHtmlHelpOptions]
; UseCodePage = Yes (default, required for CHM comp ile), or No
; (for use in further processing where other encodi ngs are OK)
UseCodePage = No

To produce Japanese, Chinese, or Korean code-page output, such as for HTML Help in
Japanese, you need ICU DLLs: icudt40.dll (13MB) and icuuc40.dll (1MB). These
DLLs are available in archive icu401.zip (6 MB), which you can download from the
Omni Systems Web site. See:

§1.1.4 Languages and character sets on page 53
§9.13 Generating HTML Help in non-Western languages on page 331
§9.14 Compiling and testing HTML Help on page 333.

9.3.7 Naming project and compiled files for HTML H elp

By default, Mif2Go uses the name of your FrameMaker book or document file for both
the project file (.hhp) and the compiled file (.chm). When you set up a new HTML Help
project, you can specify a different name in the Set Up dialog; see §9.3.2 Choosing set-up
options for an MS HTML Help project on page 298. You can also specify different file
names in the configuration file; and you must do so for the CHM file, if you are reusing an
existing configuration file for a new project.

9 GENERATING MICROSOFT HTML HELP SETTING UP AN HTML HELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 301

Help project file To specify the .hhp file name:
[MSHtmlHelpOptions]
; HHPFileName = MS HTML Help project file used for compilation
HHPFileName = myproj.hhp

The default value is the name of your FrameMaker book or document file.

Note: Neither the name of the file nor the path to the file may contain spaces. Do not
enclose the name in quotes.

Compiled file To specify the CHM file name:
[MSHtmlHelpOptions]
; DefaultChmFile = name of .chm for project if not in [ChmFiles]
DefaultChmFile = myproj

If your project includes links to other HTML Help projects, also see §9.15 Mapping and
merging CHM files on page 336.

9.3.8 Specifying a starting topic file for HTML He lp

By default, Mif2Go puts the name of your FrameMaker document in the .hhp as the
name of the first page. If the first page really should be the first split file (see §18 Splitting
and extracting files on page 585), you must edit the .hhp (either in Notepad or in HTML
Help Workshop) to insert the actual name of the first-page file (which might be something
like aa123456.htm):

[OPTIONS]
Default topic= realfilename.htm

Also specify the starting topic in configuration file m2htmlhelp.ini :
[MSHtmlHelpOptions]
; DefaultTopicFile = starting topic file name (no e xtension)
DefaultTopicFile= realfilename

Then if your .hhp is rewritten, it will have the correct value.

After compiling your project, if you open the .chm in HTML Help and the first page
produces an error such as “This page cannot be displayed”, you might have to edit the
.hhp to specify the correct name for the first-page file.

9.3.9 Regenerating the HTML Help project file

When you use Mif2Go to generate HTML Help from within FrameMaker, Mif2Go writes
an .hhp project file during set-up, and rewrites it later only under certain conditions.

To specify whether Mif2Go should generate the .hhp project file anew each time you run
the conversion:

[MSHtmlHelpOptions]
; WriteHelpProjectFile = Yes (write each time) or N o; if no setting,
; write only if the file does not already exist.
WriteHelpProjectFile = Yes

The values you can specify for WriteHelpProjectFile have the following effects:

Yes If the .hhp file is present, Mif2Go overwrites it.

No Mif2Go does not overwrite the .hhp file.

(none) If the configuration chain contains no WriteHelpProjectFile setting
at all, Mif2Go writes an .hhp file, but only if the .hhp file is not
already present.

CUSTOMIZING HTML HELP DISPLAY FEATURES MIF2GO USER’S GUIDE

302 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Mif2Go closes the .hhp file after writing it; so, if you had the .hhp file open in HTML
Help Workshop when Mif2Go rewrote it, you could get an access violation. If you were
using Notepad to edit the .hhp file, on save Notepad would just write the old file over the
rewritten one.

If you use HTML Help Workshop to make changes that are not reflected in the
configuration file, and they are changes you want to keep, you can prevent Mif2Go from
overwriting them by setting WriteHelpProjectFile=No .

If you set WriteHelpProjectFile=Yes and then later decide to modify the .hhp file
directly, be sure to set WriteHelpProjectFile=No ; otherwise your edits will be wiped
out the next time you run the conversion.

If the changes you make via HTML Help Workshop are limited to defining windows, you
can add those definitions to your Mif2Go configuration file to preserve them; see §9.8.1
Defining secondary windows for HTML Help on page 317.

9.3.10 Locating graphics files for HTML Help

A .chm file can include only files that are located in the same directory as the .hhp file,
or in a subdirectory of that directory. If your graphics files are located elsewhere, they
must be copied to the .hhp directory or subdirectory. Mif2Go can do this for you.

To tell Mif2Go to fetch your referenced graphics:
[Automation]
WrapAndShip = Yes
CopyOriginalGraphics = Yes

When CopyOriginalGraphics=Yes , Mif2Go follows the file paths in your
FrameMaker source to find the graphics files to copy.

To tell Mif2Go where to put copies of the graphics (for example):
[Graphics]
GraphPath = ./graphics

The path you specify for GraphPath should be relative to the wrap directory (see §35.3
Understanding path values for deliverables on page 957). This path will be used in HTML
output, as the relative path from the HTML files to their referenced graphics. If you use
backslashes in the path, Mif2Go converts them to forward slashes before inserting the
references in your HTML output. If you specify CopyOriginalGraphics=Yes ,
Mif2Go copies graphics files to the directory specified by GraphPath , after generating
HTML files.

See also:
§9.14 Compiling and testing HTML Help on page 333
§23.3 Locating graphics files for HTML on page 704
§35.7 Placing graphics files for distribution on page 965

9.4 Customizing HTML Help display features
In this section:

§9.4.1 Using CSS and font tags with HTML Help on page 303
§9.4.2 Eliminating graphic and table indents from HTML Help on page 303
§9.4.3 Adding tabs and toolbar buttons to HTML Help on page 303
§9.4.4 Adding expandable sections to HTML Help on page 305

9 GENERATING MICROSOFT HTML HELP CUSTOMIZING HTML HELP DISPLAY FEATURES

ALL RIGHTS RESERVED. MAY 18, 2013 303

9.4.1 Using CSS and font tags with HTML Help

The Microsoft HTML Help viewer, which is based on Internet Explorer, supports CSS
(cascading style sheets); however, not every CSS feature is supported. Although CSS is
probably the best way to set display properties for HTML Help, you might have to
experiment. If a CSS feature you try does not seem to work, check the HTML Help
Workshop on-line Help, or check with Microsoft to make sure HTML Help supports that
feature.

For on-demand font resizing via the Font button (see §9.4.3 Adding tabs and toolbar
buttons to HTML Help on page 303), CSS font sizes must be in relative units: em, ex , or
%. For best practice, use em. By default, Mif2Go generates CSS entries using absolute pt
units for font size and line height. To change the units, see §22.8.3 Specifying CSS size
values and units of measurement on page 699.

If you are not using CSS, by default Mif2Go uses tags for HTML Help. That is,
when UseCSS=No, you have to turn tags off if you do not want them:

[HTMLOptions]
NoFonts=Yes

See also:
§21.7.4 Including or excluding font tags on page 665
§22.4.2 Specifying CSS options in a Mif2Go configuration file on page 684

9.4.2 Eliminating graphic and table indents from H TML Help

For HTML Help, with its narrow windows, you might want to eliminate all graphic and
table indents. Specify the following settings:

[GraphIndents]
*=0

[TableIndents]
*=0

Also, you might want to edit your .css file to eliminate most left indents in text.

9.4.3 Adding tabs and toolbar buttons to HTML Help

You can use HTML Help Workshop to enable additional tabs and toolbar buttons for
navigation and other features. For example, rather than create links for Prev and Next , you
can enable built-in browse buttons for this purpose.

Note: Enabling browse buttons requires a binary TOC, which can cause problems with
mid-topic TOC links; see §9.9.6 Providing mid-topic contents links in HTML
Help on page 323. Also, a binary TOC is not compatible with merged CHM files;
see §9.15.5 Comparing HHW settings for stand-alone vs. merged CHMs on
page 339.

To enable additional HTML Help tabs and toolbar buttons:

1. Set the following option in your project configuration file, to avoid overwriting the
changes you are about to make to the HTML Help .hhp project file:

[MSHtmlHelpOptions]
WriteHelpProjectFile=No

See §9.3.9 Regenerating the HTML Help project file on page 301

2. In HTML Help Workshop, click File > Open .

CUSTOMIZING HTML HELP DISPLAY FEATURES MIF2GO USER’S GUIDE

304 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

3. In the Open dialog, type:
I'm MSDN

(straight single quote, not curly) and click Open .

4. Select your .hhp project file.

Figure 9-2 HTML Help Workshop Project tab

5. On the Project tab toolbar, click Add/Modify window definitions , as shown in
Figure 9-2.

6. If the Add a New Window Type dialog opens, type main , and click OK; the Window
Types dialog opens, as shown in Figure 9-3 on page 304.

7. For window type choose (or specify) main .

8. To add a favorites tab to your project, select the Navigation Pane tab and check
Favorites tab .

9. To add toolbar buttons, select the Buttons tab.

Figure 9-3 HTML Help Workshop Window Types

10. Check the button types you want HTML Help to display in the toolbar. For example:

 • to add Previous and Next buttons for browsing, check Prev and Next

 • to add a Font button for text resizing, check Zoom .

9 GENERATING MICROSOFT HTML HELP CREATING POP-UPS FOR HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 305

Note: If you check Zoom , also specify relative units for font sizes in CSS; see
§9.4.1 Using CSS and font tags with HTML Help on page 303.

11. Click OK.

12. Click File > Save Project .

Browse buttons
require a binary

TOC

To use Prev and Next browse buttons in your help file, you must also compile a binary
table of contents. Under [Options] in the .hhp file, add the following line:

Binary TOC=Yes

Or, you can set this option in HTML Help Workshop:

1. Select the Project tab.

2. On the Project tab toolbar, click Change project options ; the Options dialog opens.

3. Select the Compiler tab.

4. Check Create a binary TOC .

5. Click OK.

6. Click File > Save Project .

9.4.4 Adding expandable sections to HTML Help

The HTML Help Workshop help file explains how to add the required HTML and
JavaScript code for expanding sections. With Mif2Go macros you can automate insertion
of this code in the output.

For example, suppose you want to use a link:
Click for more

which, when clicked, displays additional text:
Here is a more detailed explanation.

You could apply a special paragraph format to the link text (for example, ClickLink) and
another format to the expandable text (for example, ClickText). In your configuration file
you would include macros that contain the required HTML code for each paragraph type.
If the link text was always the same, you could include that in the macro too, and just have
the text for the expanded part in FrameMaker. Or, you could use a button (see §9.7.6
Creating buttons for other types of related-topic links on page 317).

9.5 Creating pop-ups for HTML Help
HTML Help supports only text pop-ups. By itself, HTML Help does not allow any font
changes in pop-ups, not even bold or italics; nor any images; nor any HTML code. To
include these features in an HTML Help pop-up, you need a third-party plug-in or
program, such as WinHelp.

In this section:
§9.5.1 Using HTML Help for pop-ups on page 306
§9.5.2 Using KeyHelp for pop-ups on page 306
§9.5.3 Using WinHelp for pop-ups on page 307

CREATING POP-UPS FOR HTML HELP MIF2GO USER’S GUIDE

306 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

9.5.1 Using HTML Help for pop-ups

Although you cannot specify font or text property changes within an HTML Help pop-up,
you can specify text attributes for the entire pop-up. The following settings apply to all
pop-ups. For example:

[MSHtmlHelpOptions]
; MS HTML Help Popup options, for use with Hypertex t Alert markers
; PopFont = Facename[,point size[,charset[,color
; [,PLAIN BOLD ITALIC UNDERLINE]]]]
PopFont=Helvetica,10,,PLAIN
; PopMargins = left margin, right margin (in pixels)
PopMargins=9,9
; PopColors = foreground, background (in decimal RG B, -1 is default)
PopColors=-1,-1

HTML Help text pop-ups are limited to 243 characters in length. You put the pop-up text
itself inside a FrameMaker hypertext alert marker (see §34.1.2 Using markers to add links
and instructions on page 935), and indicate the span of the hotspot with a character format
that includes the marker. If you do not use a character format, the entire paragraph
becomes the hotspot. If you are viewing this text in HTML Help, this is an example .

You can put pop-ups in image maps. In FrameMaker, an information alert box containing
the pop-up text appears when you Ctrl+Alt -click the hotspot.

9.5.2 Using KeyHelp for pop-ups

KeyHelp is a freeware DLL that is part of Ralph Walden’s Key Tools. KeyHelp allows you
to embed better pop-ups in HTML Help. For information about Key Tools, see:

http://grainge.org/pages/authoring/reverse_engineering/reverse_engineering.htm

For KeyHelp pop-ups to work, the KeyHelp ActiveX control, keyhelp.ocx , must be
installed and registered on each user’s system.

You must use Mif2Go macros (see §28 Working with macros on page 787) to construct
the HTML code that is needed around the content. For example, in your configuration file,
you could include the following settings:

[Inserts]
Head=<$KeyPopup>

[KeyPopup]
<script language="JavaScript" type="text/javascript ">
var KeyPopup;
function KeyDisplayPopup(URL) {

 if (!KeyPopup){
 KeyPopup = new ActiveXObject("KeyHelp.KeyPopup");

 }
 KeyPopup.DisplayURL(URL,-1,-1);

}
</script >

The cross-reference format you use to reference the pop-up should apply a character
format; for example, PopText:

<PopText><$paratext></>

To make the cross references call the KeyHelp DLL, include the following settings:
[XrefStyles]
PopText=LinkSrc

[XrefStyleLinkSrc]
PopText=JavaScript:KeyDisplayPopup(' myproj.chm::<$$_linksrc>')

This is what a text popup looks like in HTML Help; maximum 243 characters, single text style, no images or links.

http://grainge.org/pages/authoring/reverse_engineering/reverse_engineering.htm

9 GENERATING MICROSOFT HTML HELP CREATING LINKS AND HYPERTEXT JUMPS IN HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 307

Make sure the material to be popped up is in a file of its own. For example, if you are
using glossary entries as pop-up topics:

[HtmlStyles]
GlossaryTerm=Split Title

9.5.3 Using WinHelp for pop-ups

This is the method Microsoft uses for Office 2000. WinHelp works best when pop-ups are
called from the application, rather than from other topics in the HTML Help file. See §8.9
Creating jumps and pop-ups for WinHelp on page 272.

9.6 Creating links and hypertext jumps in HTML Hel p
In this section:

§9.6.1 Creating hypertext jumps to other CHM files on page 307
§9.6.2 Specifying href link syntax for HTML Help on page 308
§9.6.3 Linking to external files from compiled HTML Help on page 308

See also:
§9.7 Creating related-topic links for HTML Help on page 309

9.6.1 Creating hypertext jumps to other CHM files

If you are using newlinks and gotolinks to link to HTML files created from a different
FrameMaker document and compiled into a different .chm , you must specify how the
CHM files are mapped; see §9.15.1 Interlinking multiple CHM files on page 336. Then
Mif2Go can generate the proper jump reference for you.

Opening topic of
first file

To jump to the opening topic of another CHM file, the simplest method is to insert in your
document a FrameMaker hypertext marker with the following marker content:

message URL someother.chm

If someother.chm is not registered in the Windows registry, also include the path,
possibly relative. (For commercial use, it is best to register .chm s in the Windows registry
during installation.)

Opening topic of
any file

To jump to a file that is within someother.chm , add the name of the target file to the
marker content; for example, to get to the “a” anchor inside letters.htm in
someother.chm :

message URL someother.chm::/letters.htm#a

Specific topic To jump to a specific topic in someother.chm , when the topic comes from a
FrameMaker file that is being split (so you do not know the .htm file name ahead of
time), insert a regular FrameMaker cross reference. Run the Mif2Go conversion to
someother.chm first, then copy the .ref file for someother.chm into your conversion
project directory, and add this setting to the configuration file:

[ChmFiles]
letters= someother

For links to non-CHM files, see §9.6.3 Linking to external files from compiled HTML
Help on page 308.

CREATING LINKS AND HYPERTEXT JUMPS IN HTML HELP MIF2GO USER’S GUIDE

308 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

9.6.2 Specifying href link syntax for HTML Help

Links in HTML Help can be of two forms: generic HTML href links for jumps within a
single CHM file, or href links with a special syntax that includes the target.chm name for
jumps to locations in other CHM files. If you are using framesets in HTML Help, target
content might be displayed differently for these two forms of links.

By default, Mif2Go uses both forms for HTML Help:

 • generic HTML links for jumps within the CHM file you are generating
 • special syntax for jumps to other CHM files.

For links to non-CHM files, see §9.6.3 Linking to external files from compiled HTML
Help on page 308.

If your configuration file lists other CHM files in section [ChmFiles] , jumps to those
files use the special syntax that includes the .chm name. Unless you specify otherwise,
jumps within the default CHM file are of the generic form. (If you are using multiple
CHM files, this file is the DefaultChmFile listed in section [MSHtmlHelpOptions] ;
see §9.15.1 Interlinking multiple CHM files on page 336.)

Force all links to
use special

syntax

To force all links to use the special syntax that includes the .chm name:
[MSHtmlHelpOptions]
; UseChmInLinks = No (default, for same .chm or for uncompiled help,
; where normal links are needed)
; or Yes (always use ChmFormat at start of links)
UseChmInLinks=Yes

Use generic form
for single .chm,

uncompiled Help

When UseChmInLinks=No (the default), links to destinations within the default CHM
file are of the generic HTML href form; use this setting to produce either of the
following:

 • a single CHM file that does not include href links to other CHM files
 • uncompiled HTML Help that has no CHM file, and that works in a Web browser.

Use special
syntax for links to

other CHM files

When UseChmInLinks=Yes , by default all links are of the form:

For example:

Specify format for
special syntax

To specify a format for the start of the link:
[MSHtmlHelpOptions]
; ChmFormat = format to use when UseChmInLinks is s et, where
; the first %s is the chm name and the second %s is the filename
ChmFormat=mk:@MSITStore:%s.chm::/%s

For example, if all users of your compiled HTML Help system will be running Internet
Explorer 4.0 or a later version, you can direct Mif2Go to use the following form for all
links instead of the default special syntax:

[MSHtmlHelpOptions]
UseChmInLinks=Yes
ChmFormat=ms-its:%s.chm::/%s

See HTML Help Workshop for more information.

9.6.3 Linking to external files from compiled HTML Help

Compiled HTML Help allows calls to a non-CHM file only if the path to that file is
absolute. If your Help system is always installed to the same drive and path, you can
hardcode the path in the link, but that is not usually the case. Instead, you can use

9 GENERATING MICROSOFT HTML HELP CREATING RELATED-TOPIC LINKS FOR HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 309

JavaScript to determine the location of the calling CHM file at run time and prefix that
path (possibly modified with additional elements) to the target file name in the link. In
effect, this method provides a relative path. See the following MSDN article for details:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/htmlhelp/html/vsconocxscriptslinkchm.asp

The MSDN article says the external file must be in the same directory as the calling CHM
file, but that is not true. You just have to know where the external file is relative to the
calling CHM file, and use the external file name with that relative path; the JavaScript
adds the first part of the path. You can use a Mif2Go macro to provide the JavaScript; see
§28 Working with macros on page 787.

Linking to Web
sites

For external links on the Web, you can use a hypertext message URL marker with the full
Web link. However, you might encounter security issues in Internet Explorer, so test
thoroughly on machines with the latest security patches. You might have to tweak
Windows Registry settings, which you cannot do from within HTML Help. For example,
on Windows 2000:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\HTMLHelp\1.x \HHRestrictions]
"MaxAllowedZone"=dword:00000004
"EnableFrameNavigationInSafeMode"=dword:00000001

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\HTMLHelp\1.x \ItssRestrictions]
"MaxAllowedZone"=dword:00000004

9.7 Creating related-topic links for HTML Help
You can use ALinks and KLinks in compiled HTML Help. ALinks also work in
uncompiled HTML Help, provided you use the HTML Help viewer.

In this section:
§9.7.1 Adding ALink keywords for HTML Help on page 309
§9.7.2 Adding ALink and KLink jumps for HTML Help on page 309
§9.7.3 Configuring ALink and KLink jumps for HTML Help on page 310
§9.7.4 Rolling your own macros for ALink jumps in HTML Help on page 312
§9.7.5 Using the same format or marker for ALink keywords and jumps on page 312
§9.7.6 Creating buttons for other types of related-topic links on page 317

9.7.1 Adding ALink keywords for HTML Help

You can insert ALink keywords for HTML Help either with markers or with paragraph
formats; see §7.6.4 Adding related-topic link keywords in FrameMaker on page 221.
ALink keywords should be single terms; use spaces or other punctuation in ALink
keywords at your own risk.

9.7.2 Adding ALink and KLink jumps for HTML Help

You can use markers or paragraph formats for ALink and KLink jumps; however, Mif2Go
provides support only for markers. In HTML Help, a related-topic jump is implemented
with an <object> linked to the HTML Help OLE control:

Markers If you use markers for ALink or KLink jumps, Mif2Go provides the
<object> macro code automatically; see §9.7.3 Configuring ALink
and KLink jumps for HTML Help on page 310. Put the markers in
paragraphs by themselves, located where you want the jump to appear
in output.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconocxscriptslinkchm.asp

CREATING RELATED-TOPIC LINKS FOR HTML HELP MIF2GO USER’S GUIDE

310 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See also §7.6.5 Adding ALink and KLink jumps in FrameMaker on page 222.

Note: Because both ALink/KLink jumps and secondary windows/pop-ups use objects in
HTML Help, they cannot be combined; for example, you cannot display an
ALink-accessed page in a secondary window.

ALinks work in uncompiled HTML Help, if you use the HTML Help viewer instead of a
Web browser.

9.7.3 Configuring ALink and KLink jumps for HTML H elp

When you use Go to URL markers for ALink or KLink jumps (see §7.6.5 Adding ALink
and KLink jumps in FrameMaker on page 222), you can specify values in the
configuration file for several properties of the resulting <object> s that Mif2Go creates:

[MSHtmlHelpOptions]
;LinkType = Button (default), Chiclet, Graphic, Ico n, Shortcut, Text
LinkType=Button
;LinkFlags = "1" (show dialog even for one item),
; ",,1" (if no items, make button disappear), or
; empty (if only one item, take the jump directly)
LinkFlags=1
;LinkEmptyTopic = name of .htm topic file to show i f no items match
; at all; otherwise, unless LinkFlags=,,1, the Not F ound complaint
; will be used.
;LinkEmptyTopic=noitems.htm
;LinkButtonWidth = pixels, if LinkType = Button, Gr aphic, or Icon
LinkButtonWidth=100
;LinkButtonHeight = pixels, if LinkType = Button, G raphic, or Icon
LinkButtonHeight=100
;LinkButtonText = Text: plus name on button, if Lin kType=Button
LinkButtonText=Text:ALink
;LinkButtonGraphic = Bitmap: plus name of .bmp (onl y),
; if LinkType=Graphic
LinkButtonGraphic=Bitmap:mybutton.bmp
;LinkButtonIcon = Icon: plus name of .ico (only), i f LinkType=Icon
LinkButtonIcon=Icon:mybutton.ico
;LinkTextFont = same syntax as PopFont above, if Li nkType=Text
LinkTextFont=Helvetica,10,,PLAIN
; LinkText = Text: plus text to use for link, if Li nkType=Text
LinkText=Text:Related Topics

Table 9-2 on page 311 shows the properties you can configure, the values you can specify
for each property, and the effect of each value.

Prefix the
keyword

The base keyword for each property starts with Link ; for example, LinkFlags . You must
add a prefix to the base keyword to create a valid setting:

 • To specify an ALink property, prefix the base name with A; for example,
ALinkFlags=,,1 .

 • To specify a KLink property, prefix the base name with K; for example,
KLinkButtonWidth=50 .

All jumps Properties you specify this way apply to all ALink or KLink jumps in your document.

Selected jumps To configure properties for an individual ALink or KLink jump, insert a Link* marker just
before the jump marker. The Link* marker-type name is the same as the name of the
property, and the marker content is the value you want to assign to that property. For

Formats If you use paragraph formats for ALink or KLink jumps, you have to
provide macro code for the ALink object; see §9.7.4 Rolling your own
macros for ALink jumps in HTML Help on page 312.

9 GENERATING MICROSOFT HTML HELP CREATING RELATED-TOPIC LINKS FOR HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 311

example, to provide a different label for one particular text-style ALink jump, in your
FrameMaker document, just before the ALink jump marker, insert a LinkText marker
whose content is the alternate label.

Specify all
relevant

properties

For reasonable-looking output you should specify values for all properties that apply,
because the default is to include only a few properties in the <object> . For example, for
an ALink jump the default object Mif2Go generates looks like the following:

<object id="hhctrl" type="application/x-oleobject"
classid="clsid:adb880a6-d8ff-11cf-9377-00aa003b7a11 "
width="100" height="100">

<param name="Command" value="ALink">
<param name="Button" value="Text:ALink">
<param name="Flags" value="1">
<param name="Item1" value="">
<param name="Item2" value=" ALink keyword">
</object>

This gets you a button labeled ALink , probably not what you wanted.

Table 9-2 ALink and KLink jump properties for HTML Help

Property keyword* Value Effect

LinkType Button (default) Link is a button with LinkButtonWidth ,
LinkButtonHeight , and LinkButtonText
attributes:

Chiclet Link is a small button with no label:

Graphic Link is a bitmap image, specified by
LinkButtonGraphic

Icon Link is an icon, specified by LinkButtonIcon

Shortcut Link is a button with a shortcut icon:

Text Link is text, with LinkText and
LinkTextFont attributes

LinkFlags 1 (default) Show the dialog even if only one target is found

,,1 Omit the link if no targets are found

(none) Omit the dialog and jump directly if only one
target is found; show “Not Found” if no targets
are found

1,,1 Untested; should show the dialog for a solitary
target, omit the link if no targets are found.

LinkEmptyTopic noitems.htm Name of .htm topic file to show if no targets
are found

(none) Issue a” Not Found” complaint, unless
LinkFlags=,,1

LinkButtonWidth 100 (default) Width of image in pixels, when LinkType is
Button , Graphic , or Icon

LinkButtonHeight 100 (default) Height of image in pixels, when LinkType is
Button , Graphic , or Icon

LinkButtonText Text:ALink (default for
ALinks)

Text: followed by a label for the button, when
LinkType=Button

LinkButtonGraphic Bitmap: mybutton.bmp Bitmap: followed by the file name of the
graphic, whenLinkType=Graphic ; must be
.bmp

* The property keyword must be prefixed with “A” for an ALink property, or “K” for a KLink property.

CREATING RELATED-TOPIC LINKS FOR HTML HELP MIF2GO USER’S GUIDE

312 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

9.7.4 Rolling your own macros for ALink jumps in H TML Help

To use a paragraph format (for example, ALinkJump) for ALink jumps, you can assign
property CodeReplace to the format to replace the paragraph with a button for the ALink
jump:

[HTMLParaStyles]
ALinkJump=CodeReplace

[HtmlParaStyleCodeReplace]
ALinkJump=<$ALinkButton>

[ALinkButton]
<object id="hhctrl" type="application/x-oleobject"
 classid="clsid:adb880a6-d8ff-11cf-9377-00aa003b7a1 1"
 width="100" height="100">
 <param name="Command" value="ALink">
 <param name="Button" value="Text:Related topics">
 <param name="Flags" value="1">
 <param name="Item1" value="">
 <param name="Item2" value=" first ALink keyword">

. . .
<param name="Item N" value=" last ALink keyword">

</object>

"Item1" in the macro definition specifies the path to the CHM file that contains the target
topic(s); an empty value means the current CHM file.

"Item2" through "Item N" in the macro definition each specify the value of an ALink
keyword; see HTML Help Workshop Help for more information. You would have to edit
the macro for each different ALink keyword.

However, instead of dedicating a special paragraph format to ALink jumps, you can
provide additional macros to produce ALink jumps from the paragraph format (or marker
type) you use for ALink keywords; see §9.7.5 Using the same format or marker for ALink
keywords and jumps on page 312

9.7.5 Using the same format or marker for ALink ke ywords and jumps

You can use the same paragraph format, or the same marker type, both for ALink
keywords and to produce a button for an ALink jump in HTML Help. Use configuration
settings and Mif2Go macros to capture content and create a list of keywords for a topic,
then use additional macros to build an ALink button for the topic.

LinkButtonIcon Icon: myicon.ico Icon: followed by the file name of the icon,
when LinkType=Icon ; must have extension
.ico

LinkText Related Topics Text: followed by text to use for the link when
LinkType=Text

LinkTextFont Helvetica,10,,PLAIN Font to use when LinkType=Text ; syntax is
the same as for PopFont (see §9.5 Creating
pop-ups for HTML Help on page 305)

Table 9-2 ALink and KLink jump properties for HTML Help (continued)

Property keyword* Value Effect

* The property keyword must be prefixed with “A” for an ALink property, or “K” for a KLink property.

9 GENERATING MICROSOFT HTML HELP CREATING RELATED-TOPIC LINKS FOR HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 313

With this technique you can even include multiple keywords in a single paragraph or
marker. The only restriction is that ALink keyword paragraphs or markers must precede
the location in each topic where you want the ALink jump to appear.

In this section:
§9.7.5.1 Creating a list of ALink keywords from paragraphs on page 313
§9.7.5.2 Creating a list of ALink keywords from markers on page 314
§9.7.5.3 Initializing the ALink keyword list counter on page 315
§9.7.5.4 Building an ALink button object from an ALink keyword list on page 315
§9.7.5.5 Positioning the ALink button in each HTML Help topic on page 316
§9.7.5.6 Including multiple ALink keywords in a paragraph or marker on page 316

9.7.5.1 Creating a list of ALink keywords from par agraphs

Suppose you use paragraph format ALinkTarget for ALink keywords. To capture keywords
from ALinkTarget paragraphs, assign properties to extract the paragraph content:

[HTMLParaStyles]
ALinkTarget=ALink Raw CodeStore CodeAfter

ALink property The ALink property specifies that the content of each ALinkTarget paragraph is to be used
for the ALink Name property of an HTML Help ALink object (not the button object,
which you will construct with macros); see §7.6.4.2 Adding related-topic keywords via
format properties on page 222.

Raw property The Raw property suppresses any HTML tags that would otherwise be generated; see
§21.3.6 Stripping paragraph properties on page 650.

CodeStore
property

The CodeStore property causes the content of the ALinkTarget paragraph to be stored in
macro variable $$ALinkTarget . (The value of a macro variable that has the same name
as a paragraph format is the content of the current paragraph in that format; see §28.3.1
Creating and invoking macro variables on page 796.) The CodeStore property also
removes the paragraph from text output; see §28.3.7.2 Inserting code with the CodeStore
property on page 804.

CodeAfter
property

The CodeAfter property provides the means to do something further with macro variable
$$AlinkTarget , which now contains an ALink keyword, plucked from the ALinkTarget
paragraph:

[ParaStyleCodeAfter]
ALinkTarget=<$$Nkeys++><$$ALinkKeys[$$Nkeys]=$$ALin kTarget>

Store paragraph
content in a list

variable

The [ParaStyleCodeAfter] code does the following:

 • Increments a counter, Nkeys (which will be initialized to zero before each topic).
 • Uses Nkeys to index a list variable, $$ALinkKeys (see §28.4 Using multiple-value

list variables on page 806).
 • Stores the content of macro variable $$ALinkTarget in the Nkeys slot in list

variable $$AlinkKeys .

As Mif2Go processes FrameMaker input for a topic, the $$ALinkKeys list gathers
keywords from ALinkTarget paragraphs until it is time to create the ALink button object for
a topic, described in §9.7.5.4 Building an ALink button object from an ALink keyword list
on page 315.

See also:
§9.7.5.3 Initializing the ALink keyword list counter on page 315
§9.7.5.4 Building an ALink button object from an ALink keyword list on page 315
§9.7.5.5 Positioning the ALink button in each HTML Help topic on page 316

CREATING RELATED-TOPIC LINKS FOR HTML HELP MIF2GO USER’S GUIDE

314 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

9.7.5.2 Creating a list of ALink keywords from mar kers

Suppose you use a FrameMaker marker (for example, Subject) for ALink keywords. To
capture ALink keywords from Subject markers, you can remap Subject markers to a new
marker type AKey, and also clone the resulting AKey markers; see §29.3 Remapping
marker types and hypertext commands on page 836:

[Markers]
Subject=AKey ALink

When you remap a Subject marker with this assignment, both AKey and ALink markers
get copies of the content of the Subject marker.

ALink informs an
ALink object

ALink is a predefined custom marker type; see §29.2.1 Identifying dedicated custom
marker types on page 832. ALink marker content (inherited from the original Subject
markers) is used for the ALink Name property of an HTML Help ALink object (not the
button object, which you will construct with macros); see §7.6.4.1 Adding related-topic
link keywords via markers on page 221.

AKey informs an
ALink button

AKey is an ad hoc custom marker type; AKey markers inherit the content of the original
Subject markers. Assign AKey markers the Code property (see §29.4.1 Assigning
properties to marker types on page 838):

[MarkerTypes]
AKey=Code

Store marker
content in a list

variable

Assigning the Code property means that the content of each AKey marker (the ALink
keyword inherited from a remapped Subject marker) can be wrapped in “before” and
“after” code:

[MarkerTypeCodeBefore]
AKey=<$$Nkeys++><$$ALinkKeys[$$Nkeys]="

[MarkerTypeCodeAfter]
AKey=">

The “before” code does the following:

 • Increments a counter, Nkeys (which will be initialized to zero before each topic).
 • Uses Nkeys to index a list variable, $$ALinkKeys (see §28.4 Using multiple-value

list variables on page 806).
 • Provides an opening double quote for the content of the marker.

The “after” code closes the double quote after the content, and ends the list-variable
assignment. The result is code that looks like this:

<$$Nkeys++><$$ALinkKeys[$$Nkeys]=" keyword">

This code stores content taken from the original Subject marker in the Nkeys slot in list
variable $$ALinkKeys .

As Mif2Go processes FrameMaker input for a topic, the $$ALinkKeys list gathers
keywords from Subject markers until it is time to create the ALink button object for the
topic, described in §9.7.5.4 Building an ALink button object from an ALink keyword list
on page 315.

See also:
§9.7.5.3 Initializing the ALink keyword list counter on page 315
§9.7.5.4 Building an ALink button object from an ALink keyword list on page 315
§9.7.5.5 Positioning the ALink button in each HTML Help topic on page 316

9 GENERATING MICROSOFT HTML HELP CREATING RELATED-TOPIC LINKS FOR HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 315

9.7.5.3 Initializing the ALink keyword list counte r

To set the counter for ALink keyword list variable $$ALinkKeys to zero at the beginning
of each FrameMaker file:

[MacroVariables]
Nkeys=0

The [ALinkButton] macro (see §9.7.5.4 Building an ALink button object from an
ALink keyword list on page 315) sets Nkeys back to zero again after finishing each
button, to re-initialize Nkeys for the next topic.

See also:
§9.7.5.1 Creating a list of ALink keywords from paragraphs on page 313
§9.7.5.2 Creating a list of ALink keywords from markers on page 314
§9.7.5.3 Initializing the ALink keyword list counter on page 315

9.7.5.4 Building an ALink button object from an AL ink keyword list

When it comes time to output an ALink button for a topic, the following macro is invoked
to process list variable $$AlinkKeys (see §9.7.5.1 Creating a list of ALink keywords
from paragraphs on page 313 or §9.7.5.2 Creating a list of ALink keywords from markers
on page 314) and add each keyword to the button object:

[ALinkButton]
<$_if (Nkeys > 0)>

<$ALinkButtonStart><$$ALinkParamNum=1>\
<$_repeat ($$Nkeys)>\

<$$ALinkParamText=$$ALinkKeys[$$ALinkParamNum]>\
<$$ALinkParamNum++><$ALinkButtonParam>\
<$_endrepeat>\

<$ALinkButtonEnd><$$Nkeys=0>\
<$_endif>

[AlinkButton] uses two additional macro variables:

$$ALinkParamNum is initialized to 1, and then incremented before each keyword
parameter is added to the button object, because the "Item N" keyword parameters for the
button object start with N=2, not N=1 (see §9.7.4 Rolling your own macros for ALink
jumps in HTML Help on page 312).

[AlinkButton] invokes three other macros to build the button object:
Start of button object: [ALinkButtonStart]

Keyword parameters: [ALinkButtonParam]

End of button object: [ALinkButtonEnd]

Start of button
object

The first part of the ALink button object is straightforward, and uses the same code
described in §9.7.4 Rolling your own macros for ALink jumps in HTML Help on
page 312:

[ALinkButtonStart]
<object id="hhctrl" type="application/x-oleobject"
 classid="clsid:adb880a6-d8ff-11cf-9377-00aa003b7a1 1"
 width="100" height="100">
 <param name="Command" value="ALink">
 <param name="Button" value="Text:Related topics">
 <param name="Flags" value="1">
 <param name="Item1" value="">

$$ALinkParamNum Keyword parameter counter (the N in "Item N")

$$ALinkParamText Text of a keyword.

CREATING RELATED-TOPIC LINKS FOR HTML HELP MIF2GO USER’S GUIDE

316 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Keyword
parameters

Next come the "Item2" through "Item N" parameters, which are added to the button
object one by one, as list variable $$AlinkKeys is processed:

[ALinkButtonParam]
<param name="Item<$$ALinkParamNum>" value="<$$ALink ParamText>">

End of button
object

The last piece ends the button object:
[ALinkButtonEnd]
</object>

This version of the [AlinkButton] macro assumes that each item in the $$ALinkKeys
list contains a single ALink keyword. To process a list that contains multiple keywords per
list item, you would need a slightly more complex version; see §9.7.5.6 Including multiple
ALink keywords in a paragraph or marker on page 316.

See also:
§9.7.5.5 Positioning the ALink button in each HTML Help topic on page 316

9.7.5.5 Positioning the ALink button in each HTML Help topic

The macro that creates an ALink button object must be invoked after all ALink keywords
in a topic have been added to the $$ALinkKeys list. The easiest way to ensure that the
button follows all sources of keywords is to invoke the [ALinkButton] macro at the
very end of each topic. For example:

[Inserts]
Bottom=
<$ALinkButton>

See §18.5 Inserting HTML code in split and extract files on page 598.

See also:
§9.7.5.1 Creating a list of ALink keywords from paragraphs on page 313
§9.7.5.2 Creating a list of ALink keywords from markers on page 314
§9.7.5.4 Building an ALink button object from an ALink keyword list on page 315

9.7.5.6 Including multiple ALink keywords in a par agraph or marker

An enhanced version of the [ALinkButton] macro (see §9.7.5.4 Building an ALink
button object from an ALink keyword list on page 315) parses each $$AlinkKeys list
item for multiple ALink keywords, allowing you to include several keywords (separated
by semicolons) in each ALinkTarget paragraph or Subject marker.

This version of the [ALinkButton] macro uses two additional macro variables:

This button macro invokes the same [ALinkButtonStart] , [ALinkButtonParam] ,
and [ALinkButtonEnd] macros described in §9.7.5.4 Building an ALink button object
from an ALink keyword list on page 315:

[ALinkButton]
<$_if (Nkeys > 0)>

<$ALinkButtonStart><$$ALinkKeyItem=1><$$ALinkParamN um=1>\
<$_repeat ($$Nkeys)>\

<$$ALinkParamText=$$ALinkKeys[$$ALinkKeyItem]>\
<$$ALinkKeyItem++><$$ItemContent=$$ALinkParamText>\
<$_while ($$ItemContent contains ";")>\

$$ALinkKeyItem Counts $$AlinkKeys list items (while $$ALinkParamNum
counts keywords and labels the button-object keyword
parameters, as before).

$$ItemContent Holds a copy of each potentially multiple-keyword list item
for chopping into individual ALink keywords.

9 GENERATING MICROSOFT HTML HELP USING SECONDARY WINDOWS IN HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 317

<$$ALinkParamText=($$ItemContent before ";")>\
<$$ALinkParamNum++><$ALinkButtonParam>\
<$$ItemContent=($$ItemContent after ";")>\
<$_endwhile>

<$$ALinkParamText=$$ItemContent><$ALinkButtonParam> \
<$_endrepeat><$ALinkButtonEnd><$$ALinkParamCount=0> \

<$_endif>

See §28.6.4.3 Using loop structures on page 816 for an explanation of loop controls
$_repeat and $_while .

See §28.6.5 Specifying substrings in expressions on page 817 for an explanation of string
operators contains , before , and after .

9.7.6 Creating buttons for other types of related- topic links

For related-topic links other than ALinks, you would have to add to an <object> macro
an "Item N" for each type. The following example includes just one:

[ParaStyleCodeReplace]
ALinkUse=<$RelLinkButton>

[RelLinkButton]
<object id="hhctrl" type="application/x-oleobject"
 classid="clsid:adb880a6-d8ff-11cf-9377-00aa003b7a1 1"
 width="100" height="100">
 <param name="Command" value="Related Topics">
 <param name="Button" value="Text:Related">
 <param name="Item1" value="testing2;reference.htm ">
</object>

This is not a good idea, because if the file name changes as a result of a split, you would
have to remember to edit the macro by hand; though if you use the macro only to navigate
to the start of fixed files, this would not be an issue.

You would have to edit the [RelLinkButton] macro to suit your own purposes. See the
Microsoft HTML Help on-line documentation, under commands for the ActiveX control,
for information about the many parameters you can use. Also see §9.9.8 Customizing
contents and index for HTML Help on page 324 for special Mif2Go settings that provide
a way to specify contents and index parameters.

9.8 Using secondary windows in HTML Help
When you jump to a secondary window in HTML Help, you get only one instance of that
window. Whenever you target the secondary window, the window itself stays in place, and
only the content is replaced.

In this section:

§9.8.1 Defining secondary windows for HTML Help on page 317
§9.8.2 Jumping from a topic to a secondary window on page 318
§9.8.3 Jumping from contents or index to a secondary window on page 318

See also:
§7.7 Jumping to secondary windows in Help systems on page 224

9.8.1 Defining secondary windows for HTML Help

Use HTML Help Workshop to define secondary windows for HTML Help. Be sure to give
each window a name that does not exceed eight characters.

USING SECONDARY WINDOWS IN HTML HELP MIF2GO USER’S GUIDE

318 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

If you tell Mif2Go to rewrite your .hhp file each time (see §9.3.9 Regenerating the
HTML Help project file on page 301), add definitions of secondary windows to your
configuration file. The best way to do this is to define all windows in HTML Help
Workshop, save the .hhp file, then re-open it in a text editor such as Notepad, and copy
the contents of the [WINDOWS] section here:

[HHWindows]
main=
SecWin=

9.8.2 Jumping from a topic to a secondary window

You can use either a character format or a paragraph format to create a hotspot for a jump
from a topic to a secondary window. Assign the window name to the hotspot format:

[SecWindows]
; doc format = name of secondary window to use for jumps from
; within the span marked by this format (same as W inHelp usage)
HotspotFmt=wndwname

If more than one CHM file is involved in a jump, you must also specify how those files are
mapped; see §9.15.1 Interlinking multiple CHM files on page 336.

See also:
§7.7 Jumping to secondary windows in Help systems on page 224
§9.8.1 Defining secondary windows for HTML Help on page 317

9.8.3 Jumping from contents or index to a secondar y window

To create a jump to a secondary window from contents or index in HTML Help, you can
use either a paragraph format or a marker in the target topic. Using a marker allows you to
designate only selected topics to be displayed in secondary windows when those topics are
accessed from contents or index.

In this section:
§9.8.3.1 Assigning a secondary window with a paragraph format on page 318
§9.8.3.2 Assigning a secondary window with a marker on page 319

9.8.3.1 Assigning a secondary window with a paragr aph format

To use a paragraph format to force a jump from contents or index to a secondary window,
assign property Window to the format of the paragraph that is the target of the contents or
index entry (not to the paragraph format of the entry itself):

[HTMLParaStyles]
; Window specifies only that access from the conten ts or index
; opens the topic in the window named in [StyleWind ow]
TopicHeadingFmt=Window

Also assign the name of the secondary window to the target paragraph format:
[StyleWindow]
; para style = window to use in HH when accessed fr om contents
; or index
TopicHeadingFmt=wndwname

Jumps from
contents

A jump from the contents loads a topic in a secondary window only if the first paragraph
in the topic has a format assigned the Window property. However, a Window marker in the
first paragraph overrides any Window property assigned to that paragraph format.

9 GENERATING MICROSOFT HTML HELP GENERATING CONTENTS AND INDEX FOR HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 319

Jumps from index A jump from the index loads the topic in a secondary window if the Window paragraph
format appears anywhere in the topic. For paragraphs after the first in a topic, whichever
comes first, Window marker or paragraph assigned the Window property, determines
which secondary window will be used for jumps from the index.

See also:
§9.8.1 Defining secondary windows for HTML Help on page 317
§9.8.3.2 Assigning a secondary window with a marker on page 319

9.8.3.2 Assigning a secondary window with a marker

To use a marker to force a jump from contents or index to a secondary window, insert a
marker of type Window in the target topic. Supply the name of the secondary window as
the content of the Window marker.

A Window marker in the first paragraph of a topic overrides any Window property
assigned to that paragraph format, for jumps from both contents and index. See §9.8.3.1
Assigning a secondary window with a paragraph format on page 318.

Jumps from
contents

If you place a Window marker in the first paragraph of a topic, a jump from the table of
contents to that topic will load the topic in the secondary window named in the marker.
Window markers in subsequent paragraphs are ignored for jumps from contents.

Jumps from index For paragraphs after the first in a topic, whichever comes first, Window marker or
paragraph assigned the Window property, determines which secondary window will be
used for jumps from the index.

See also:
§9.8.1 Defining secondary windows for HTML Help on page 317
§9.8.3.1 Assigning a secondary window with a paragraph format on page 318
§29.2 Adding custom marker types on page 832

9.9 Generating contents and index for HTML Help
Although topics in HTML Help can display special characters, contents and index cannot.
Be aware that HTML Help Workshop settings for contents and index are different for
stand-alone versus merged CHM files.

In this section:
§9.9.1 Choosing how to generate HTML Help contents and index on page 319
§9.9.2 Choosing whether to generate binary contents or index on page 320
§9.9.3 Generating contents and index with HTML Help Workshop on page 321
§9.9.4 Generating contents and index with Mif2Go on page 321
§9.9.5 Configuring contents entries for HTML Help on page 322
§9.9.6 Providing mid-topic contents links in HTML Help on page 323
§9.9.7 Making the TOC track index links in HTML Help on page 323
§9.9.8 Customizing contents and index for HTML Help on page 324

9.9.1 Choosing how to generate HTML Help contents and index

When you first set up an HTML Help project from within FrameMaker, Mif2Go assumes
you will want Mif2Go to generate any contents or index you specified; see §7.3.4.1
Choosing contents and index methods for HTML-based Help on page 207.

To specify whether contents, index, or both should be generated for HTML Help:

GENERATING CONTENTS AND INDEX FOR HTML HELP MIF2GO USER’S GUIDE

320 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[MSHtmlHelpOptions]
; ListType = Both (default), Contents, or Index

After you set up your HTML Help project, you can choose whether contents and index
will be generated by Mif2Go or by HTML Help Workshop, or by neither. This choice is
governed by the following setting:

[MSHtmlHelpOptions]
; RefFileType = HHW (for HH Workshop), Full (single FrameMaker file),
; Body (FrameMaker book), or None (do not generate) .
RefFileType = Full

When RefFileType=Full or Body, Mif2Go generates contents and index for HTML
Help.

When RefFileType=HHW , Mif2Go removes attributes (including class) from <Hn>
tags, and leaves the task of generating contents and index to HTML Help Workshop. You
can edit the configuration file to change the value of RefFileType .

If you remove all settings for RefFileType from the HTML Help configuration chain,
the default becomes RefFileType=HHW ; therefore, if you specified that you want
contents or index generated, they will be generated by HTML Help Workshop.

The default is RefFileType=HHW only when you use the command-line version of
Mif2Go (see §37 Converting via DCL on page 995). When you set up an HTML Help
project from within FrameMaker, this default is always overridden. The Mif2Go Set Up
dialog always specifies one of the following:

RefFileType=Body (for a book, or for a chapter while the book is open)
RefFileType=Full (for a standalone FrameMaker file).

See also:
§7.3.4 Modifying contents or index production for HTML-based Help on page 206
§9.9.3 Generating contents and index with HTML Help Workshop on page 321.

9.9.2 Choosing whether to generate binary contents or index

To produce binary TOC and index for HTML Help:
[MSHtmlHelpOptions]
; BinaryTOC = No (default) or Yes (required for nat ive browse)
BinaryTOC = Yes
; BinaryIndex = No (default) or Yes (required to me rge .chm files)
BinaryIndex = Yes

These settings take effect only when WriteHelpProjectFile=Yes ; see §9.3.9
Regenerating the HTML Help project file on page 301.

Alternatively, you can specify binary TOC or index generation directly in the .hpj file,
under [Options] ; see §9.4.3 Adding tabs and toolbar buttons to HTML Help on
page 303.

There are trade-offs to generating binary navigation features for HTML Help. Table 9-3
lists the pros and cons of specifying a binary TOC or a binary index.

9 GENERATING MICROSOFT HTML HELP GENERATING CONTENTS AND INDEX FOR HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 321

9.9.3 Generating contents and index with HTML Help Workshop
Contents If you specify RefFileType=HHW , HTML Help Workshop constructs the Contents panel,

and uses your <Hn> tags as the source of the line items. This has two consequences:

 • For HTML Help Workshop to accept them, Mif2Go must treat differently the <Hn>
tags in the body file from which the .hhc file is created, by omitting all attributes,
including CSS style; therefore you lose control over much of their appearance in the
body file.

 • The sequence in which HTML Help Workshop uses the <Hn> tags is determined by
the sequence of the files listed in the .hhp file; if a file is out of order in the list, its
contents appear out of order in the .hhc file. When many of your files are created by
splitting, keeping the .hhp list up to date becomes a maintenance nightmare.

Index When HTML Help Workshop creates the index, Mif2Go embeds FrameMaker index
markers (minus the parts that HTML Help does not understand) as K-type index entries in
the .htm files. This has two consequences:

 • Selecting an index item does not take you to the place in the file where that item is
used; instead, it puts you at the start of the HTML file, even if the item sought is at the
end.

 • You have no way to control sort order.

It is best not to use HTML Help Workshop to modify the contents and index files, but to
include these files in the compilation as is, for this reason: Mif2Go uses the [sort]
information from FrameMaker to order the entries in the index file. If you regenerate this
file using HTML Help Workshop, that work is trashed, and sorting goes by text only. The
same is true if you specify a binary index.

Note: A binary index is required if you merge CHM files at run time.

See §7.5.9 Customizing index sort order on page 216.

9.9.4 Generating contents and index with Mif2Go

If you specify either RefFileType=Full or RefFileType=Body , Mif2Go creates
contents or index files or both. See §7.3.4 Modifying contents or index production for
HTML-based Help on page 206.

Table 9-3 Binary TOC/Index advantages and disadvantages for HTML Help

Binary feature Advantages and disadvantages

TOC Pros: Supports browse via Prev and Next buttons in the HTML Help viewer; see §9.4.3
Adding tabs and toolbar buttons to HTML Help on page 303.

Supports no-link entries in the TOC; see §9.9.5 Configuring contents entries for
HTML Help on page 322.

Allows the TOC to stay synchronized with topics selected via the index; see §9.9.7
Making the TOC track index links in HTML Help on page 323.

Cons: Incompatible with merging .chm files at run time; see §9.15.5 Comparing HHW
settings for stand-alone vs. merged CHMs on page 339.

Can cause problems with mid-topic TOC links; see §9.9.6 Providing mid-topic
contents links in HTML Help on page 323.

Index Pros: Supports merging .chm files at run time; see §9.15.5 Comparing HHW settings for
stand-alone vs. merged CHMs on page 339.

Cons: Prevents index customization; see §7.5.9 Customizing index sort order on page 216.

GENERATING CONTENTS AND INDEX FOR HTML HELP MIF2GO USER’S GUIDE

322 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When you use the .hhp project file to compile a CHM file, Mif2Go activates the
Contents and Index tabs in the navigation pane. The sequence of files in the .hhp file
does not matter; in fact, you can specify just *.htm , for all topic files.

When Mif2Go creates the .hhc file, you can use the align attribute and CSS classes for
tags in the body file from which the .hhc is created, and you can include any tags in the
contents. You cannot do this if you let HTML Help Workshop create the .hhc file.

9.9.5 Configuring contents entries for HTML Help

Headings that start topics, or to which you assign the Contents property or a contents
level, are automatically included in the TOC; see the following:

§7.4.3 Including contents entries in HTML-based Help on page 209.
§7.4.4 Setting contents levels for HTML-based Help on page 210.

Even if you assign the Contents property to several heading levels in the same topic, the
resulting TOC links always take you to the top of the .htm file that contains the link
destinations. You can provide true mid-topic links in the TOC, but at a cost; see §9.9.6
Providing mid-topic contents links in HTML Help on page 323.

Split at each
heading level

The best way to ensure that each TOC link goes to an exact destination is to split your
FrameMaker document at each heading level. Each heading becomes the start of a topic
instead of being in the middle of a topic, and TOC entries synchronize with topic content.

No-link entries
require a binary

TOC

To include a paragraph format in the TOC but omit the link:
[HTMLParaStyles]
; NoContLink suppresses linkage for its Contents it em in MS HTML Help;
; the item remains in the Contents pane, but clicki ng it does not
; bring up the corresponding topic in the main pane .
ParaFmt=Contents NoContLink

You can use this feature to include section headings in the TOC. To make a no-link
paragraph appear only in the TOC, and not in any topic:

[HTMLParaStyles]
ParaFmt=Contents NoContLink Delete

Note: If you specify NoContLink but you do not also specify a binary TOC in HTML
Help Workshop, the NoContLink entries disappear from the TOC; and so do any
parent entries, unless there is at least one split below the parent that does not itself
have any NoContLink subentries. This is a limitation of HTML Help.

Skipped heading
levels

If your document skips a heading level (for example, a level 3 heading follows a level 1
heading with no level 2 heading in between), HTML Help promotes the level 3 heading to
level 2 in the contents. However, HTML Help does not promote additional level 3
headings in the same subgroup: two or more level 3 headings in succession result in the
first appearing with a book icon, and the rest with page icons subordinate to the book icon.

To avoid this problem, Mif2Go moves the whole hierarchy up one level. In the example in
§9.9.4 Generating contents and index with Mif2Go on page 321, all level 3 headings in the
same subgroup that follow a level 1 heading would show the same indent in the contents;
however, that indent would not be the same as for level 3 headings that follow a level 2
heading.

See also:
§7.4 Configuring contents entries for Help systems on page 209
§9.9.6 Providing mid-topic contents links in HTML Help on page 323

9 GENERATING MICROSOFT HTML HELP GENERATING CONTENTS AND INDEX FOR HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 323

9.9.6 Providing mid-topic contents links in HTML H elp

If you provide mid-topic links in the TOC, you lose contents tracking of your current
location in the Help system. And if you specify a binary TOC in HTML Help Workshop
(which you must do to enable certain HTML Help features), mid-topic entries in the TOC
become relatively useless. These are known HTML Help problems; Mif2Go cannot fix
them.

Why not to
include mid-topic
links in the TOC

Providing mid-topic links in the TOC is generally not a good idea, for the following
reasons:

 • You cannot include any HTML Help features (such as built-in browse buttons) that
require a binary TOC.

 • The HTML Help window is usually small, perhaps six words per line; scrolling
around in a multi-topic page can take a long time.

 • Loss of synchronization can mystify users.

No binary TOC
with mid-topic

links

If you specify a binary TOC in HTML Help workshop, and you have mid-topic links in
the TOC, the name of the last TOC link to a given topic file becomes the name of all links
to the file, unless you use the following settings for all but the first heading:

[HTMLParaStyles]
Midtopichead=Contents NoContLink

However, with this setting the mid-topic entries are no longer active links, which is likely
to annoy users.

If you must have
mid-topic links in

the TOC

If you are willing to give up synchronization to get drill-down, and your project does not
require a binary TOC, do the following:

1. In [HTMLParaStyles] , assign property Split only to H1-level heading formats;
assign property Contents to other heading formats.

2. Set the following option:
[MSHtmlHelpOptions]
; ContentsNamesFileOnly = Yes (default, allows trac king)
; or No (allows direct mid-topic jumps to points w ithin files,
; but disables tracking)
ContentsNamesFileOnly=No

3. Avoid HTML Help features that require a binary TOC, and make sure your help
project file (.hhp file) does not specify Binary TOC=Yes .

TOC entries reference points inside .htm files (that is, the links have #place suffixes), so
you can drill down into the file via the TOC; but TOC entries no longer synchronize with
topic content.

9.9.7 Making the TOC track index links in HTML Hel p

If you specify a binary TOC for a stand-alone HTML Help project, you can make the TOC
stay synchronized with topics selected via the index. If you intend to merge CHM files,
see §9.15.5 Comparing HHW settings for stand-alone vs. merged CHMs on page 339.

To make the TOC track topics accessed from the index:

1. Open the .hhp file in HTML Help Workshop.

2. On the Files tab in the Options dialog delete the file name under Index file .

3. On the Files tab in the Window Types dialog, make sure each window you have
defined references the .hhk file.

4. Compile the project.

GENERATING CONTENTS AND INDEX FOR HTML HELP MIF2GO USER’S GUIDE

324 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You should notice that you can select any index entry (even entries with mid-topic links)
and the TOC will track the topic pane.

9.9.8 Customizing contents and index for HTML Help

Two settings allow you to specify additional properties for contents and index:
[MSHtmlHelpOptions]
; Properties for the .hhc and .hhk files; can conta in macros.
HHCProperties=<param name=" ContentsParamName" value=" ParamValue">
HHKProperties=<param name=" IndexParamName" value=" ParamValue">

Each setting assigns a parameter for an HTML Help contents or index properties object.
You can use Mif2Go macros to assign multiple parameters. For example:

[MSHtmlHelpOptions]
HHCProperties=<param name=" ContentsParam" value=" ContentsValue">
HHKProperties=<$HHKPropMacro>

[HHKPropMacro]
<param name=" IndexParam" value=" IndexValue">
<param name=" OtherIndexParam" value=" OtherIndexValue">

Mif2Go supplies the enclosing <object type="text/site properties"> tag.

Copy Workshop
parameters

You can choose contents or index properties in HTML Help Workshop, then specify those
same properties in the configuration file, so they will be applied every time you run the
conversion. For example, to customize contents:

1. Use Mif2Go to convert your document to HTML Help.

2. Open the HTML Help project file (myproj.hhp) in HTML Help Workshop.

3. With the Contents tab selected, click the Properties icon.

4. Set whatever properties you wish in the Table of Contents dialog, then click OK.

5. Save the project, then exit HTML Help Workshop.

6. Open the HTML Help contents file (myproj.hhc) in a text editor such as Notepad,
and find the properties object at the start of the body. For example:

<!-- Sitemap 1.0 -->
</HEAD><BODY>
<OBJECT type="text/site properties">

<param name="Window Styles" value="0x800425">
</OBJECT>

7. If there is just one <param ...> tag, copy the tag and assign it as follows:
[MSHtmlHelpOptions]
HHCProperties=<param name="Window Styles" value="0x 800425">

If there is more than one <param ...> tag, use a macro; for example:
[MSHtmlHelpOptions]
HHCProperties=<$MyHHCProps>

[MyHHCProps]
<param name="Window Styles" value="0x800425">
<param name="Background" value="0x808040">

See HTML Help Workshop Help for information about the properties you can specify.

See also:
§7.4 Configuring contents entries for Help systems on page 209
§7.5 Configuring index entries for Help systems on page 211

9 GENERATING MICROSOFT HTML HELP CONVERTING GENERATED FILES FOR HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 325

9.10 Converting generated files for HTML Help
Mif2Go generates HTML Help contents and index entries from your FrameMaker TOC
and index markers. However, you might want to include additional generated files in your
HTML Help output, such as lists of tables and figures (or other special-purpose paragraph
lists), and lists of markers (or other special-purpose indexes).

In this section:
§9.10.1 Converting lists of paragraph references on page 325
§9.10.2 Converting lists of marker references on page 325

9.10.1 Converting lists of paragraph references

For lists of references to paragraphs, you must make sure the ObjectIDs of all the
referenced paragraphs are preserved in the output (see §19.5.3 Including ObjectID anchors
as link targets on page 620), with this setting:

[HTMLOptions]
ObjectIDs=All

To make the list entries themselves into links, assign the [HTMLParaStyles]ParaLink
property to the list-entry paragraph format; see §5.10 Creating hotspots for hypertext links
on page 138.

To suppress page numbers, on the FrameMaker Reference page for the generated file you
can apply a character format to <$pagenum> and to all its leading tabs, then assign that
character format the [HtmlCharStyles]Delete property; see §13.8.2.3 Eliminating
page numbers from generated lists on page 445.

For example:
[HTMLParaStyles]
FigLOF=ParaLink

[HTMLCharStyles]
LOFpgnum=Delete

In the HTML Help version of the Mif2Go User’s Guide, these features are used to make
the Figures and Tables entries into links.

9.10.2 Converting lists of marker references

A list of references to markers can include links to multiple markers for each entry, so you
cannot use the [HTMLParaStyles]ParaLink property (see §5.10 Creating hotspots for
hypertext links on page 138) to make the text of the entry the link. Instead you can either
use the original page numbers, or substitute a symbol or graphic.

To substitute something else for page numbers, you must apply a character format to
<$pagenum> on the FrameMaker Reference page for the marker list, and assign to that
format the [HTMLCharStyles]CodeReplace and [HTMLCharStyles]KeepLink
properties; see §13.8.1.3 Replacing page numbers with symbols or images on page 442.

For example:
[HTMLCharStyles]
IOMpgnum= KeepLink CodeReplace

You specify HTML code for whatever you want instead of a page number. For example:
[CharStyleCodeReplace]
IOMpgnum=

PROVIDING FULL-TEXT SEARCH (FTS) FOR HTML HELP MIF2GO USER’S GUIDE

326 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

In the HTML Help version of the Mif2Go User’s Guide this setting is used to replace the
page numbers in keyword indexes with small book icons.

9.11 Providing full-text search (FTS) for HTML Hel p
For HTML Help, full-text search is created as part of compiling a .chm with HTML Help
Workshop; see §9.14 Compiling and testing HTML Help on page 333. With default
settings, you get FTS automatically when Mif2Go generates HTML Help.

Note: The HTML Help FTS is built entirely by the Microsoft compiler, and stored in an
undocumented binary format within the .chm file. Omni Systems cannot do
anything about problems you encounter with its operation.

Omitting FTS To prevent indexing for full-text search in HTML Help:
[MSHtmlHelpOptions]
; UseFTS = Yes (default) or No (affects Help Projec t File rewrite)
UseFTS = No

Specifying FTS in
the .hhp file

The .hhp file for your project contains the setting for FTS, which Mif2Go includes by
default while creating the .hhp file for you. If you create the .hhp some other way, you
must make sure the .hhp file (not the Mif2Go configuration file) includes the following
setting:

[OPTIONS]
Full-text search=Yes

Including topic
titles in search

results

For HTML Help to list the names of topics when a user clicks Search , you must specify
titles for all topics, normally by assigning the Title property to the formats for headings
at which you split FrameMaker files to create HTML Help topics. For example:

[HTMLParaStyles]
Heading1 = Split Title Contents
Heading2 = Split Title Contents

See §18.4.2 Specifying page titles for split or extract files on page 594.

Indexing for FTS
in another
language

If you are preparing HTML Help in another language, you must run the compiler, which
builds the FTS index, in the target locale. See §9.14.3 Compiling in a different language
on page 335.

Excluding a topic
from FTS

Mif2Go excludes a topic from full-text search by changing the topic file extension to
.xhtml , even though the file is not actually XHTML. Only files with names containing
the string .htm* get indexed (by HTML Help Workshop) for full-text search in HTML
Help.

To exclude content from full-text search in HTML Help, insert a Search marker with the
value No in FrameMaker content you want excluded from search. The value in effect at the
end of each split file determines what happens for that file. The value is reset to Yes at the
start of each split file.

9.12 Setting up CSH for HTML Help
Producing CSH for HTML Help requires:

 • CSH destination identifiers in your document
 • links from an application program
 • usually, a map file and an alias file to connect links to their destinations.

In this section:
§9.12.1 Inserting CSH destinations in your document on page 327

9 GENERATING MICROSOFT HTML HELP SETTING UP CSH FOR HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 327

§9.12.2 Determining whether you need map and alias files on page 328
§9.12.3 Specifying and generating a map file for CSH links on page 329
§9.12.4 Creating an alias file for CSH links on page 330
§9.12.5 Understanding alias-file entries on page 330
§9.12.6 Producing a list of aliases and associated topic titles on page 331

See also:
§7.10.1 Understanding how CSH works on page 240
http://helpware.net/htmlhelp/how_to_context.htm.

9.12.1 Inserting CSH destinations in your document

To insert CSH destinations in your FrameMaker document, use one of the following:

 • markers: for stand-alone Help systems and mid-topic destinations
 • special paragraphs: for pop-up help accessed only via the application.

Markers are preferred for stand-alone Help systems, and markers provide the only way to
insert mid-topic CSH destinations.

If you are creating pop-up context-sensitive help that will serve no other purpose—that is,
content will not be accessed except through links from the application—you can use
special paragraph formats.

In this section:
§9.12.1.1 Using markers for CSH destinations on page 327
§9.12.1.2 Using special paragraphs for CSH destinations on page 328

9.12.1.1 Using markers for CSH destinations

To provide a CSH destination with a marker:

1. Place a hypertext newlink marker (command Specify Named Destination in the
FrameMaker Hypertext dialog) in the text of your document where you want to
display context-sensitive help; see §34.1.2 Using markers to add links and instructions
on page 935. Markers can be anywhere in the text; a good place is at the start or end of
the heading for the topic. Each marker must be within the material you want presented
to the user.

2. Make the content of the marker a symbolic ID: a unique name with a prefix you
specify in the configuration file; see §9.12.4 Creating an alias file for CSH links on
page 330.

Mid-topic
destinations

Even if you insert the marker somewhere in the middle of a topic, clicking the associated
button in the application takes the user to the beginning of the topic. However, you can
provide mid-topic destinations by setting the following option in the configuration file:

[MSHtmlHelpOptions]
; UseAliasAName= No (default),
; or Yes (to allow midtopic jumps for CSH)
UseAliasAName=Yes

First CSH link is
to start of topic

When UseAliasAName=Yes , every CSH link except the very first goes directly to a mid-
topic destination. Because of a defect in HTML Help, the CSH link for the first symbolic
ID in your document always takes the user to the beginning of the topic that contains the
relevant marker. If this is not acceptable, you can provide a dummy first entry by inserting
a newlink marker containing a dummy symbolic ID at the start of your FrameMaker
document. Also arrange for a dummy link to this destination; see §9.12.3 Specifying and
generating a map file for CSH links on page 329.

http://helpware.net/htmlhelp/how_to_context.htm

SETTING UP CSH FOR HTML HELP MIF2GO USER’S GUIDE

328 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See §9.12.5 Understanding alias-file entries on page 330.

9.12.1.2 Using special paragraphs for CSH destinat ions

You can use special paragraphs for CSH destinations if you are creating content that will
be used only for pop-up context-sensitive help; that is, help that will serve no other
purpose: content will not be accessed except through links from the application.

To use special paragraphs:

1. Create a special paragraph format (for example, CSHFile) to use solely for CSH
destinations.

2. Insert a paragraph in format CSHFile immediately before each help-content entry in
your FrameMaker document.

3. Make the text of each CSHFile paragraph the name of an .htm file to be generated for
the entry. File names must be unique in your document.

4. Add the following setting to your project configuration file:
[HTMLParaStyles]
CSHFile=Filename Title Split Delete

Mif2Go starts a new .htm file at each CSHFile paragraph in your FrameMaker document.
Each new .htm file has the name you specified in the CSHFile paragraph that starts that
file. The title of each .htm file is the same as the file name; however, the title will not
display, because property Delete excludes the content of the CSHFile paragraph from the
.htm file.

9.12.2 Determining whether you need map and alias files

Whether you need map and alias files depends on the following:

 • the type of API call the developers use in the application program
 • the type of CSH destination you use in your document.

Table 9-4 summarizes the most likely circumstances.

Markers If you use markers for CSH destinations, you need both a map file and an alias file:

When you use markers, developers should use the HH_HELP_CONTEXT API, and specify
topics by numeric ID. You need the map and alias files to associate their numeric IDs with
your symbolic IDs. Each time you convert your FrameMaker document to HTML Help,
Mif2Go uses the symbolic IDs to generate an alias file; see §9.12.4 Creating an alias file
for CSH links on page 330. Usually the developers provide the map file.

When developers use the HH_HELP_CONTEXT API, the application must send a numeric
ID, and you must have the map file in your project to interpret the numeric ID. The
developers need only the map file. You need only to add to your HTML Help project file

Table 9-4 Map and alias files needed for CSH in HTML Help

CSH destination type Application call type Link type F iles needed

Marker HH_HELP_CONTEXT Numeric ID Map and alias

Special paragraph HH_DISPLAY_TOPIC .htm file name Alias

map file Associates each numeric ID in the application with a symbolic ID in
your document, where the symbolic ID is the relevant marker text.

alias file Associates each symbolic ID in your document with the .htm file where
the relevant marker is located.

9 GENERATING MICROSOFT HTML HELP SETTING UP CSH FOR HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 329

the name of the map file and the name of the alias file, before compiling. You can do this
via configuration setting; see §9.12.3 Specifying and generating a map file for CSH links
on page 329.

Special
paragraphs

If you use special paragraphs for CSH destinations, developers should use the
HH_DISPLAY_TOPIC API, and specify topics by file name. You do not need an alias file
or a map file. Calls from the application program reference the file names you put in the
special paragraphs directly, via the compiled help file; check HTML Help Workshop for
the correct syntax.

9.12.3 Specifying and generating a map file for CS H links

If the developers of the application for which you are providing context-sensitive help use
HH_HELP_CONTEXT and specify topics by ID number, ask them for the file that maps
symbolic IDs to numeric IDs. (You cannot go directly from numbers to files; you have to
go through the symbolic names used in the map and alias files.) For C or C++, the map file
is usually named resource.h , and contains entries such as the following:

#define IDH_Export 1090
#define IDH_CnvDsgnr 1080

The map file must be named in the [MAP] section of your .hhp file, and must be located
in or below the directory that contains your .hhp file. For example:

[MAP]
#include "resource.h"

Quotes are required around each #include d file name.

Instead of editing the [MAP] section of your .hhp file, you can specify the file name in a
configuration setting; and you can have Mif2Go generate an initial map file for you.

Specify a map file To specify the name of the map file:
[MSHtmlHelpOptions]
; CshMapFile = name of file to #include in .hhp [MA P] for CSH support
CshMapFile = resource.h

This way you will not lose the information if Mif2Go rewrites the .hhp file. However, if
you need to reference more than one map file, you must specify any additional map files in
the .hhp file, and you must prevent Mif2Go from rewriting the .hhp file. See §9.3.9
Regenerating the HTML Help project file on page 301.

Generate a map
file

While the map file normally comes from the developers, it might be necessary for the
writer to produce the first one, to let the developer know what IDs are available.

To have Mif2Go generate a map file for CSH links:
[MSHtmlHelpOptions]
; MakeCshMapFile = No (default) or Yes (generate a map file)
MakeCshMapFile = Yes
; CshMapFileNumStart = Starting number for numeric IDs, default 10000
CshMapFileNumStart = 10000
; CshMapFileNumIncrement = Increment between values , default 10
CshMapFileNumIncrement = 10

Mif2Go creates a map file of the name you assign to CshMapFile , overwriting any
existing file of the same name, and assigning an incremental numeric ID to each of the
symbolic IDs included in your document.

SETTING UP CSH FOR HTML HELP MIF2GO USER’S GUIDE

330 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

9.12.4 Creating an alias file for CSH links

When you use markers for CSH destinations, by default Mif2Go generates an alias file for
you, named after your document, with extension .hha ; for example, MyDoc.hha .
Mif2Go also creates an entry for the alias file in the HTML Help project file; for example:

[ALIAS]
#include " MyDoc.hha"

The alias file must be located in or below the directory that contains your .hhp file. The
alias file contains an entry for each symbolic ID in your document that:

 • occurs in a newlink marker, and
 • begins with one of the prefixes you specify in the configuration file.

Alias prefixes To specify prefixes for symbolic IDs:
[MSHtmlHelpOptions]
; AliasPrefix = all prefixes wanted in alias file, comma or space
; delimited; if omitted, all newlinks are included
; NOTE: wildcards do not work in prefixes
AliasPrefix=HIDC_, IDH_

With this setting, the alias file would include the content of every newlink marker in your
document that contains a name prefixed with HIDC_ or IDH_ . See §9.12.5 Understanding
alias-file entries on page 330 for examples.

No alias file To prevent Mif2Go from creating an alias file:
[MSHtmlHelpOptions]
; MakeAliasFile = Yes (default, make list of newlin ks and files) or No
MakeAliasFile=No

When MakeAliasFile=No , Mif2Go does not generate an alias file. In that case, if you
are using markers for CSH destinations, you must create the alias file manually, and
manually insert the corresponding entry in the HTML Help project file.

When MakeAliasFile=Yes , but your document contains no newlink markers that
qualify, Mif2Go does not generate an alias file.

9.12.5 Understanding alias-file entries

By default Mif2Go generates alias-file entries of the following form:
symbolic_ID=helptopicfile.htm

For example:
IDH_CnvDsgnr=02x998989.htm
IDH_Export=02x999005.htm

Mid-topic
destinations

To make a CSH link take the user directly to a mid-topic destination, the alias-file entry
for the symbolic ID must include a hash value after the file name:

symbolic_ID=helptopicfile.htm# symbolic_ID

For example:
IDH_110100=ac960367.htm#IDH_110100
IDH_110200=ac960367.htm#IDH_110200

To direct Mif2Go to generate alias-file entries of this form, specify the following option:
[MSHtmlHelpOptions]
UseAliasAName=Yes

See §9.12.1 Inserting CSH destinations in your document on page 327.

9 GENERATING MICROSOFT HTML HELP GENERATING HTML HELP IN NON-WESTERN LANGUAGES

ALL RIGHTS RESERVED. MAY 18, 2013 331

First entry cannot
have a mid-topic

destination

There is a catch: because of a defect in HTML Help alias-file processing, the very first
entry in the alias file must not have a hash value. Even when you specify
UseAliasAName=Yes , Mif2Go omits the hash value for the first entry; therefore, the
CSH link for the first symbolic ID listed in the alias file always takes you to the beginning
of the topic that contains the relevant destination. If this is not acceptable, you can provide
a dummy first entry by inserting a newlink marker containing a dummy symbolic ID at
the start of the first file in the book. This symbolic ID must also appear in a valid entry in
the map file, so you might have to get the developers to add a corresponding dummy entry
to the map file.

Even with this workaround, HTML Help Workshop will report an error on every alias with
a hash value; but the CSH links work anyway.

9.12.6 Producing a list of aliases and associated topic titles

To direct Mif2Go to prepare a list of all the CSH IDs used in your document, along with
the titles (not the file names) of the topics in which each was found:

[MSHtmlHelpOptions]
; AliasTitle = No (default) or Yes (generate .hht f ile with titles
; for all topics containing CSH aliases, like the . hha but with titles
; not filenames)
AliasTitle = Yes

When AliasTitle=Yes , Mif2Go writes to the project directory a file named
MyDoc.hht , where MyDoc is the name of your HTML Help project. Each line in the .hht
file contains an ID followed by the title of its topic. For example:

IDH_ChooseProject "Setting up a Mif2Go project"
IDH_Export "Converting documents"

9.13 Generating HTML Help in non-Western languages
HTML Help does not support Unicode well, even in the topic pane where it might appear
to do so. Topic content is rendered by the Internet Explorer HTML engine, so the topic
pages themselves could use UTF-8. However, the Search function works only on
characters that are in the Windows code pages that HTML Help supports. For example,
English text in a Japanese file can be found, but Search will not find any Japanese content.

In this section:
§9.13.1 Converting from Unicode to Windows code pages on page 331
§9.13.2 Specifying locale and language for HTML Help on page 332
§9.13.3 Preventing inclusion of Unicode numeric references on page 333
§9.13.4 Coping with FrameMaker index-entry conversion defects on page 333

See also:
§7.5.9.3 Specifying index sort type and locale on page 218
§9.3.6 Deciding whether to compile HTML Help on page 300
§9.14.3 Compiling in a different language on page 335

9.13.1 Converting from Unicode to Windows code pag es

Mif2Go can convert your document from Unicode to the appropriate Windows code pages
for HTML Help, by using the ICU library; see:

http://site.icu-project.org/

http://site.icu-project.org/

GENERATING HTML HELP IN NON-WESTERN LANGUAGES MIF2GO USER’S GUIDE

332 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

If you have not already done so, download icu401.zip from the Omni Systems Web
site. To install the ICU code pages, extract all code-page DLLs from icu401.zip , and
copy the DLLs to both of the following locations:
 • %OMYSHOME%\common\bin

 • your Windows system directory.

Mif2Go will use these code-page DLLs to prepare your HTML Help output, depending on
the locale you specify; see §9.13.2 Specifying locale and language for HTML Help on
page 332.

The complete set of Windows code pages potentially needed for CHMs can be found here:
http://msdn.microsoft.com/en-us/goglobal/bb964654

For CJK languages, you would need these four:
932 (Japanese Shift-JIS)
936 (Simplified Chinese GBK)
949 (Korean)
950 (Traditional Chinese Big5)

9.13.2 Specifying locale and language for HTML Hel p

To specify locale and language for HTML Help (for example, Japanese):
[MSHtmlHelpOptions]
; HelpFileLanguage = LCID to put in project file, d efault is for
: US English.
HelpFileLanguage = 0x411 Japanese

This is equivalent to setting the following in your .hhp file:
[OPTIONS]
Language = 0x411 Japanese

Mif2Go supports the following locales:

Each of these values sets an associated code page for all output files, and overrides any
values specified in the configuration file for the following settings in [HTMLOptions] :

Getting around a
defect in HHW in

order to display
Help title

When you specify a locale identifier (LCID) other than US English, a defect in HTML
Help Workshop prevents your Help-file title from being displayed in the CHM file;
instead, the title shows as “HTML Help”. Mif2Go provides a default workaround that sets
the HTML Help Workshop Language option to US English for initial creation of the
.hhp file. Even if the resulting CHM file will be used in other locales, a setting for

Decimal Hex Language
1033 0x409 English (United States)

1032 0x408 Greek

1049 0x419 Russian

1055 0x41F Turkish

1029 0x405 Czech (used for Central European)

1041 0x411 Japanese

1028 0x404 Chinese (Traditional)

2052 0x804 Chinese (Simplified)

1042 0x412 Korean

Encoding §13.4.3 Specifying character encoding for HTML on page 431

XMLEncoding §14.3.3 Specifying character encoding for generic XML on
page 460

http://msdn.microsoft.com/en-us/goglobal/bb964654

9 GENERATING MICROSOFT HTML HELP COMPILING AND TESTING HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 333

HelpFileLanguage is required to display the value you specified for HelpFileTitle
instead of just “HTML Help”.

Fixed spaces
cannot always be

represented

Because fixed spaces (such as non-breaking spaces and thin spaces) cannot be represented
in some code pages, if you are using (for example) the Japanese locale, Mif2Go maps all
fixed spaces to the ideographic space, U+3000 (x81 x40), for code page 932. For other
characters, see §21.5 Assigning properties to text formats on page 653.

9.13.3 Preventing inclusion of Unicode numeric ref erences

As a partial workaround for the lack of Unicode support, by default Mif2Go includes the
original Unicode as numeric character references for characters not in the current code
page. Therefore, you will get Unicode for any character that could not be rendered in the
code page you specified, unless you set the following option:

[HTMLOptions]
NumericCharRefs=No

These characters will be viewable, but will not work in Search or in the index. See §13.4.3
Specifying character encoding for HTML on page 431.

9.13.4 Coping with FrameMaker index-entry conversi on defects

If you are working with files converted from an older version of FrameMaker to version
8.0 or later, you might encounter a FrameMaker defect. When FrameMaker converts a
pre-8.0 file, it converts the content to Unicode in UTF-8 encoding. However, the index
markers are not converted correctly, at least for Japanese and probably for all DBCS
encodings (Chinese, Korean). Instead of converting character by character, FrameMaker
converts byte by byte, encoding each byte of each double-byte character in UTF-8
individually. This is not valid in any sense, and is not a recoverable error. You will have to
correct these problems in FrameMaker.

9.14 Compiling and testing HTML Help
It is best to compile HTML Help in a directory different from your Mif2Go HTML Help
project directory. You can have Mif2Go automatically copy the necessary files to a
compilation directory, then run the HTML Help compiler; or, you can include copy
commands in the configuration file, and run the HTML Help compiler yourself.

In this section:
§9.14.1 Directing Mif2Go to run the HTML Help compiler on page 333
§9.14.2 Copying output files and compiling later on page 334
§9.14.3 Compiling in a different language on page 335
§9.14.4 Testing HTML Help generation on page 335
§9.14.5 Registering your HTML Help system for network use on page 335

9.14.1 Directing Mif2Go to run the HTML Help compi ler

When you check Compile Help in the Mif2Go Export dialog (see §3.6 Converting
documents on page 82), or specify the following options in the configuration file, Mif2Go
automatically runs the HTML Help compiler after generating output files:

[Automation]
WrapAndShip = Yes
CompileHelp = Yes

COMPILING AND TESTING HTML HELP MIF2GO USER’S GUIDE

334 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For large projects, you might want to stick with CompileHelp=No ; then after Mif2Go
finishes the conversion, compile directly from HTML Help Workshop. Otherwise you
might encounter memory limitations when Mif2Go tries to run the compiler.

If the HTML Help compiler is not on your system PATH, you must tell Mif2Go where to
find it. For example:

[MSHtmlHelpOptions]
; Compiler = path to hhc.exe, not required if its d irectory is in the
; system PATH environment variable.
Compiler = D:\hh\hhc

You might also want to set the following option, so you can see any error messages that
result:

[Automation]
; KeepCompileWindow = No (default)
; or Yes (so any error messages can be seen)
KeepCompileWindow = Yes

When KeepCompileWindow=Yes , a system window opens when the compiler runs. If
there are no compilation errors, you will see only a command prompt when compilation
finishes. You must dismiss the window before Mif2Go can continue processing.

If the compiler does not run when CompileHelp=Yes , try copying hh.exe and
hhc.exe to C:\Windows , and hha.dll to C:\Windows\System32 . Then restart
FrameMaker before you run Mif2Go again.

To have Mif2Go copy the .hhp file to another directory for compiling, specify the
following:

[Automation]
WrapAndShip=Yes
; WrapPath = path to dir for compiling and distribu tion,
; default is output dir
WrapPath = .\help

See §35.6 Assembling files for distribution on page 961.

See also:
§7.2.4 Compiling and distributing Help systems on page 204
§9.3.10 Locating graphics files for HTML Help on page 302
§9.14.2 Copying output files and compiling later on page 334

9.14.2 Copying output files and compiling later

If you do not want Mif2Go to automatically copy output files and run the HTML Help
compiler, you can create a separate directory for compilation, then copy (do not move) the
required files to that directory: .htm , .hhk , .hhc , .hha , and .hhp . Because the project
directory contains a lot of other files that are all part of the conversion machinery, you
must keep a set of these files in the project directory. Also, place your CSS file in the
compilation directory.

Note: If you manually copy files to another directory for compilation, do not check
Compile Help in the Mif2Go Export dialog; that option works only on files in the
directory specified by[Automation]WrapPath (see §35.3 Understanding path
values for deliverables on page 957). Compile from HTML Help Workshop
instead.

You can use macros (see §28 Working with macros on page 787), and on some systems
you can use system commands (see §34.4 Executing operating-system commands on

9 GENERATING MICROSOFT HTML HELP COMPILING AND TESTING HTML HELP

ALL RIGHTS RESERVED. MAY 18, 2013 335

page 937), to move just the compilable HTML Help files into place after converting a
FrameMaker document.

For example, you could define macro <$SetUpHHDirs> to create the compilation
directory at the start of conversion, and macro <$CopyHHFiles> to actually copy files to
the compilation directory after conversion. You would add the following settings:

[Automation]
SystemStartCommand = <$SetUpHHDirs>
SystemEndCommand = <$CopyHHFiles>

If you copy graphics files to the compilation directory, set the following option in project
configuration file m2htmlhelp.ini , to remove path information from references to the
graphics files:

[Graphics]
StripGraphPath = Yes

When Mif2Go finishes converting your document, select the .hhp file in HTML Help
Workshop, and compile the project.

9.14.3 Compiling in a different language

To compile HTML Help in a language for a locale other than your current Windows
locale, download free command-line utility SBAppLocale from SteelBytes:

http://www.steelbytes.com/?mid=45

SBAppLocale allows you to run another executable as if you are using a different
Windows locale. For example, to compile Japanese HTML Help, you would specify:

SBAppLocale 1041 path\to\hhc.exe MyProj.hhp

The number 1041 is the decimal code for Japanese. To see a list of all the locales, run
SBApplocale with no parameters. This utility is a must-have for languages that do not use
code page 1252. For Korean and Simplified Chinese output, index entries might be
corrupted. In that case you would need to compile on a machine with the correct locale
specified.

9.14.4 Testing HTML Help generation

You can open HTML Help Workshop and leave it open while you have FrameMaker open.
After you save using Mif2Go from FrameMaker, switch to HTML Help Workshop to load
the resulting .hhp file, and click Compile (you do not need to Save first). When HTML
Help Workshop is finished, click View to see what you produced. If you find a problem,
go back and fix it in FrameMaker (or in the configuration file), rerun Mif2Go , and
recompile.

Note: If you change a setting in the .hhp file, you must close the .hhp file in HTML
Help Workshop and reopen it before compiling.

9.14.5 Registering your HTML Help system for netwo rk use

To use HTML Help over a network when the CHM file is installed on an individual
computer, you must register the CHM file in the Windows Registry. This is because
current Microsoft security features block HTML Help files viewed from a network drive.

You can use a free tool, HHReg from EC Software, to register each CHM file in the
Windows registry:

http://www.ec-software.com/products_hhreg.html

http://www.steelbytes.com/?mid=45
http://www.ec-software.com/products_hhreg.html

MAPPING AND MERGING CHM FILES MIF2GO USER’S GUIDE

336 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

CHM files viewed from local drives are not blocked by these security features.

9.15 Mapping and merging CHM files
You can create an HTML Help system that consists of multiple CHM files with interfile
links. If all the files are always present, map them. On the other hand, if you are creating a
modular Help system, one or more CHM files can be merged into a main CHM file at run
time, based only on whether or not the other files are present.

In this section:
§9.15.1 Interlinking multiple CHM files on page 336
§9.15.2 Synchronizing TOC references to slave CHM files on page 338
§9.15.3 Putting up with a binary index for merged CHM files on page 338
§9.15.4 Merging CHM files on page 339
§9.15.5 Comparing HHW settings for stand-alone vs. merged CHMs on page 339

See also:
§7.11 Setting up a dynamic modular Help system on page 241
§9.6.3 Linking to external files from compiled HTML Help on page 308
§9.15.5 Comparing HHW settings for stand-alone vs. merged CHMs on page 339
§19.6 Linking to other files and other Mif2Go projects on page 621

9.15.1 Interlinking multiple CHM files

When you create multiple interlinked CHM files, you must specify a mapping for each
external file name that is specified in the .hpj file (but not in the current CHM file) to the
name of the CHM file that contains the corresponding topic.

In this section:
§9.15.1.1 Specifying the default CHM file on page 336
§9.15.1.2 Mapping FrameMaker files to CHM files on page 337
§9.15.1.3 Requiring Mif2Go to use paths for mapped FrameMaker files on page 337

See also:
§9.6.3 Linking to external files from compiled HTML Help on page 308
§19.6 Linking to other files and other Mif2Go projects on page 621
Rob Chandler’s Web site: http://www.helpware.net/htmlhelp/linktochm.htm

9.15.1.1 Specifying the default CHM file

Tell HTML Help Workshop what CHM file you are using as the default:
[MSHtmlHelpOptions]
; DefaultChmFile = name of .chm for project if not in [ChmFiles]
DefaultChmFile = MyProj

See §9.3.7 Naming project and compiled files for HTML Help on page 300.

Mif2Go uses the default CHM file name as the destination for any FrameMaker files that
have not been mapped to other CHM file names; see §9.15.1.2 Mapping FrameMaker files
to CHM files on page 337.

To support cross references between the current CHM file and CHM files from projects in
other output directories, see §19.6 Linking to other files and other Mif2Go projects on

http://www.helpware.net/htmlhelp/linktochm.htm

9 GENERATING MICROSOFT HTML HELP MAPPING AND MERGING CHM FILES

ALL RIGHTS RESERVED. MAY 18, 2013 337

page 621. To support interproject hypertext links, see §9.6.3 Linking to external files from
compiled HTML Help on page 308.

9.15.1.2 Mapping FrameMaker files to CHM files

For CHM files other than the default file (see §9.15.1.1 Specifying the default CHM file
on page 336), specify how FrameMaker files should be mapped to the other CHM files:

[ChmFiles]
; Original or remapped filename (no ext) = chm file name (no ext)
; overrides default set by [MSHtmlHelpOptions]Defau ltChmFile
D:/MyBook/Chapter1 = MyProj

These mappings takes precedence over any default mapping of the same FrameMaker files
to the default CHM file.

No file extensions Do not include file extensions in mappings.

Specify paths to
FrameMaker files

It is best to include a path to each FrameMaker file, because you could have several files
with the same name in different books or projects from which you generate different CHM
files. Without file paths, you would have no way to differentiate these files. Although you
can use either forward slashes or backslashes in paths to FrameMaker files, forward
slashes are preferred. FrameMaker stores cross-reference paths with forward slashes, and
Mif2Go uses those cross-reference paths to find the referenced files. See §9.15.1.3
Requiring Mif2Go to use paths for mapped FrameMaker files on page 337.

Multiple paths to
a single

FrameMaker file

To handle several possible paths to the same FrameMaker file, add a line for each path.
For example:

[ChmFiles]
MyDoc1 = CHMa
MyDoc2 = CHMb
.../GroupB/MyDoc2 = CHMb
G:/test/GroupB/MyDoc2 = CHMb

Avoid paths to
CHM files

It is best not to specify paths for CHM files mapped in [ChmFiles] , because Microsoft
does not allow relative paths to CHM files. Although you can specify an absolute path,
absolute paths are not a good idea. You cannot predict where the file will be placed on
every system. When no path is specified, HTML Help uses the Windows Registry entry to
find the CHM file, provided one of the following is true:

 • the CHM file has been used at least once
 • the installer created the correct Registry entry for the CHM file.

Multiple
FrameMaker

books

To link CHM files generated from multiple FrameMaker books in different Mif2Go
projects, consider using a configuration template; see §4.1 Working with Mif2Go
configuration files on page 91. Specify [ChmFiles] mappings for all books in the
template. If a given FrameMaker file appears in more than one book, the project
configuration file for each such book must include a [ChmFiles] mapping for that file.
The project-specific mapping takes precedence over the mapping in the configuration
template.

9.15.1.3 Requiring Mif2Go to use paths for mapped FrameMaker files

When you map FrameMaker files to CHM files (see §9.15.1.2 Mapping FrameMaker files
to CHM files on page 337), by default Mif2Go first checks for the presence of a
FrameMaker file with the path specified in [ChmFiles] ; if the file is not found, Mif2Go
checks for the file without a path.

To require Mif2Go to use the path:

MAPPING AND MERGING CHM FILES MIF2GO USER’S GUIDE

338 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[MSHtmlHelpOptions]
; RemoveChmFilePaths = Yes (default) to try to matc h filenames
; without their path component in [ChmFiles] after t rying with it,
; or No to require the path (with forward slashes)
; to be present on the left-side names.
RemoveChmFilePaths = No

See also:
§9.15.1.1 Specifying the default CHM file on page 336

9.15.2 Synchronizing TOC references to slave CHM f iles

The method described in this section works only for slave CHM files that are never used
as stand-alone Help files. A simpler way to ensure TOC synchronization is to set
UseChmInLinks=Yes , as described in §9.6.2 Specifying href link syntax for HTML Help
on page 308.

When you merge CHM files, to ensure that TOC entries for topics in a slave CHM file are
synchronized, when you generate the slave .hhc file you can have Mif2Go prefix
references with master-to-slave text for the value of the Local parameter:

[MSHtmlHelpOptions]
; ContentsLocalValuePrefix = text to put before fil e references in
; .hhc, used in slave .chms that are used only with a master.chm,
; not alone
ContentsLocalValuePrefix = master.chm::/ slave.chm::/

For example, if the master is guide.chm and the slave is intro.chm , you would specify:
[MSHtmlHelpOptions]
ContentsLocalValuePrefix = guide.chm::/intro.chm::/

A reference in the slave TOC would then look like this:
 <object type="text/sitemap">
<param name="Name" value="Introduction">
<param name="Local" value="guide.chm::/intro.chm::/ Introduction.htm">
</object>

9.15.3 Putting up with a binary index for merged C HM files

When you merge CHM files, you are totally dependent on the Help Compiler to sort the
index; sort strings do not help, and Mif2Go cannot change that. This is true regardless of
how you produce the CHM. Creating your own .hhk file with the order you want does not
work, because the compiler ignores that order when creating the binary sort. The only
thing that could affect the binary sort order is the sort code in the Windows OS on the
machine where the compiler is run.

For example, to get a binary index sorted for Japanese HTML Help, you would have to
compile on a native Japanese system, not just on an English system with a Japanese IME
running. In that case, you have handed over control of sort order to Windows; you get
what it gives you, and that is that. On the other hand, so does everyone else, so users
should be used to it.

The other choice is to build the Help as a single, non-merged project, with variations for
each use case if some modules are present and others excluded for specific audiences.
That may be the only answer, if you do not like the Windows sort order. With five
modules, you would have 120 possible combinations, but perhaps not all of them are
really used. And even if they are, disk space is cheap, and you could install just the one
needed on a given user’s system.

9 GENERATING MICROSOFT HTML HELP MAPPING AND MERGING CHM FILES

ALL RIGHTS RESERVED. MAY 18, 2013 339

9.15.4 Merging CHM files

To merge CHM files at run time, you must designate one of the projects to be the main
project (master); the others are subprojects (slaves). In the configuration file for the main
project, in the [HelpMerge] section list the names of all the subproject CHM files to be
merged, omitting file extensions. For example:

[HelpMerge]
LibRef
AdvModule
HelpOnHelp

The merge process includes any subproject’s [HelpMerge] data; as a result, any other
subprojects specified for merging into a given subproject are also integrated into the main
project, allowing any degree of nesting of subprojects.

Place a HelpMerge marker in your main-project FrameMaker document for each
subproject listed in the [HelpMerge] section, to show where the subproject should be
merged into the main project, and to specify a contents level for the top TOC entry for the
subproject.

Insert the HelpMerge marker between two main-project topics, in either of the following
places:

 • at the start of the following main-project topic, before any text
 • at the end of the preceding main-project topic, after all text, in an otherwise empty

paragraph.

The content of the HelpMerge marker consists of a single-digit contents level for the top
TOC entry, followed by a space, followed by the CHM file name of the subproject,
without extension. For example:

2 HelpOnHelp

For more information about merging multiple CHM files, see Creating Help > Manage
Large Document Sets in HTML Help Workshop Help on HTML Help.

See also:
§7.4.4 Setting contents levels for HTML-based Help on page 210
§7.5.8 Specifying index link destinations for HTML-based Help on page 215
§9.15.5 Comparing HHW settings for stand-alone vs. merged CHMs on page 339
§29.2 Adding custom marker types on page 832
Rob Chandler’s Web site: http://helpware.net/htmlhelp/how_to_merge.htm

9.15.5 Comparing HHW settings for stand-alone vs. merged CHMs

You might have to experiment with HTML Help Workshop settings to achieve the best
combination of functionality and features for your particular project organization and
content. HTML Help appears to be “surprisingly complex and not overly predictable”.

For example, a binary TOC is not usually compatible with merged CHM files. However,
see:

http://msdn.microsoft.com/en-us/library/aa814522(VS.85).aspx

Table 9-5 shows the rationale for certain combinations of settings for three CHM roles.

http://helpware.net/htmlhelp/how_to_merge.htm
http://msdn.microsoft.com/en-us/library/aa814522(VS.85).aspx

MAPPING AND MERGING CHM FILES MIF2GO USER’S GUIDE

340 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Table 9-6 summarizes the settings that should work for stand-alone HTML Help projects
and for merged projects.

See also:
§9.15.4 Merging CHM files on page 339
http://www.helpware.net/htmlhelp/how_to_merge.htm
http://www.helpware.net/FAR/help/dlg_hhpedit_sec.htm
http://www.help-info.de/de/FAR/dlg_hhpedit.htm

Table 9-5 Rationale for HHW settings by CHM role

CHM role HTML Help Workshop settings and their effec ts

Stand-alone CHM
files

[OPTIONS]Binary index=No (for “better index disambiguation”)

[OPTIONS]Binary TOC=Yes (required for native HTML Help browse navigation; see
§9.4.3 Adding tabs and toolbar buttons to HTML Help on page 303)

Options Files tab: remove .hhk file (to synchronize the TOC with the index when
Binary TOC is enabled)

Window Types Buttons tab: check Prev and Next (for native HTML Help browse
navigation)

Slave CHM files in
a merged HTML
Help project

[OPTIONS]Binary index=Yes (required for merged files)

[OPTIONS]Binary TOC=No (not compatible with merged files; however, you might
successfully merge slaves that have Binary TOCs, if you sacrifice correct native
browse navigation)

Options Files tab: retain .hhk file (or the indexes will not merge)

Window Types Buttons tab: clear Prev and Next check boxes (native HTML Help
browse navigation does not function correctly in merged files)

Master CHM file
in a merged
HTML Help
project

[OPTIONS]Binary index=Yes (required for merged files)

[OPTIONS]Binary TOC=No (or the TOC of the merged project will be a mess)

Options Files tab: retain .hhk file (or the index will not merge)

Window Types Buttons tab: clear Prev and Next check boxes (native HTML Help
browse navigation does not function correctly in merged files)

Table 9-6 HTML Help Workshop settings for stand-alone vs. merged CHMs

HTML Help Workshop setting Stand-alone CHM Merged CHM s

[OPTIONS] Binary TOC= Yes No

[OPTIONS] Binary Index= No Yes

Options: Files tab, Index Remove .hhk Retain .hhk

Window Types: Buttons tab Check Prev and Next Clear Prev and Next

http://www.helpware.net/htmlhelp/how_to_merge.htm
http://www.helpware.net/FAR/help/dlg_hhpedit_sec.htm
http://www.help-info.de/de/FAR/dlg_hhpedit.htm

ALL RIGHTS RESERVED. MAY 18, 2013 341

10 Generating OmniHelp

Mif2Go generates project-specific data and control files for OmniHelp; basic control files
can be downloaded from the Web. This section addresses issues that are specific to
generating OmniHelp. HTML settings described in section 13 and sections 18 through 34
apply also. Topics include:

§10.1 Understanding how OmniHelp works on page 341
§10.2 Setting up OmniHelp viewer control files on page 342
§10.3 Setting up an OmniHelp project on page 345
§10.4 Using CSS with OmniHelp on page 350
§10.5 Customizing OmniHelp display features on page 352
§10.6 Choosing navigation features for OmniHelp on page 356
§10.7 Configuring contents and index for OmniHelp on page 357
§10.8 Providing related-topic links in OmniHelp on page 359
§10.9 Jumping to secondary windows in OmniHelp on page 360
§10.10 Configuring full-text search for OmniHelp on page 361
§10.11 Setting up CSH for OmniHelp on page 364
§10.12 Merging OmniHelp projects on page 366
§10.13 Assembling OmniHelp files for viewing on page 369
§10.14 Deploying OmniHelp on page 370

See also:
§7 Producing on-line Help on page 199

To determine which configuration settings will produce the appearance and functionality
you want, see also:

§13 Converting to HTML/XHTML on page 423
§18 Splitting and extracting files on page 585
§21 Mapping text formats to HTML/XML on page 645
§24 Converting tables to HTML on page 727

10.1 Understanding how OmniHelp works
OmniHelp is an open-source, cross-platform Help system that displays help topics in a
way similar to WebHelp or HTML Help. The OmniHelp viewer consists of a set of HTML
(or XHTML) and JavaScript files that present the Help content in a tri-pane format, using
any browser that meets the following criteria:

 • complies with minimum Web standards
 • supports framesets
 • supports basic CSS1.

OmniHelp output generated from a FrameMaker document consists of the following:

 • a set of HTML (or XHTML) topic files
 • a set of JavaScript infrastructure files for contents, index, search, related links, and

context-sensitive Help.

The display is controlled by a small set (about 40K) of JavaScript files and CSS files.

SETTING UP OMNIHELP VIEWER CONTROL FILES MIF2GO USER’S GUIDE

342 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Help develop
OmniHelp

Software developers are invited to contribute to the further development of OmniHelp.
The OmniHelp project is officially hosted on SourceForge:

https://sourceforge.net/projects/omnihelp/

The OmniHelp Design Report describes how OmniHelp was designed and built. You can
read it here:

http://mif2go.com

Modify OmniHelp Because OmniHelp is not a compiled Help system, you have access to the source code for
the viewer, so you can alter its behavior and appearance beyond just the changes you can
make by setting Mif2Go configuration parameters. However, to undertake major
modifications, you must be conversant in JavaScript, CSS, and HTML 4.

Maintain your
modifications

Modifying OmniHelp JavaScript, CSS, or HTML files in the viewer directory can lead to
a maintenance problem: you have to check your modified files against the corresponding
files in each new release, and merge the changes, which might not be trivial. If you change
any ohct*.css , oh*.js , or oh*.htm files, use a utility such as WinDiff (free from
Microsoft) to compare your files to the updated files. Check each release for new variables
that you can set in the configuration file, to control features that formerly required edits to
the JavaScript files; see § New information on page 41. Take advantage of any new
settings to minimize JavaScript changes.

License
OmniHelp

OmniHelp is licensed under the LGPL (Library/Lesser General Public License), which
permits its use in commercial products (without requiring those products to also be Open
Source) as long as OmniHelp source code, including all modifications, is made available
to users:

http://www.gnu.org/copyleft/lesser.html

10.2 Setting up OmniHelp viewer control files
To view Mif2Go OmniHelp output, you will need a set of JavaScript and HTML or
XHTML control files. Most of these control files are included in your Mif2Go
distribution; the rest are generated each time you run Mif2Go .

In this section:
§10.2.1 Choosing XHTML vs. HTML OmniHelp control files on page 342
§10.2.2 Making OmniHelp viewer control files available on page 343
§10.2.3 Customizing OmniHelp viewer control files on page 343
§10.2.4 Examining generated control and data files on page 344

10.2.1 Choosing XHTML vs. HTML OmniHelp control fi les

Your Mif2Go distribution includes two sets of control files: one for HTML, one for
XHTML. Which one you use depends on the start-up file type you select. The choice
between XHTML and HTML for OmniHelp is usually a matter of personal preference or
company policy. However, some older browsers might not display XHTML as well as
HTML.

To specify XHTML 1.0 instead of HTML 4.01 for the OmniHelp project start-up file:
[OmniHelpOptions]
; OHProjFileXhtml = No (default, to make project fi le HTML 4.01
; as required by some browsers), or Yes (to make the project file
; XHTML 1.0)
OHProjFileXhtml=Yes

https://sourceforge.net/projects/omnihelp/
http://mif2go.com
http://www.gnu.org/copyleft/lesser.html

10 GENERATING OMNIHELP SETTING UP OMNIHELP VIEWER CONTROL FILES

ALL RIGHTS RESERVED. MAY 18, 2013 343

When OHProjFileXhtml=Yes , XHTML versions of several OmniHelp viewer control
files are needed instead of HTML files. The names of these files begin with ox instead of
oh; see Table 10-1 on page 344.

Note: The value of OHProjFileXhtml determines the default value of OHViewPath ;
see §10.13 Assembling OmniHelp files for viewing on page 369.

10.2.2 Making OmniHelp viewer control files availa ble

Your Mif2Go distribution includes the following OmniHelp viewer control-file
directories:

%OMSYSHOME%\common\system\omnihelp\ohvhtm (for HTML output)
%OMSYSHOME%\common\system\omnihelp\ohvxml (for XHTML output)

Choose the control-file directory that matches your choice of start-up project file type (see
§10.2.1 Choosing XHTML vs. HTML OmniHelp control files on page 342), and copy all
the files to the corresponding local directory, one of:

%OMSYSHOME%\common\local\omnihelp\ohvhtm (for HTML output)
%OMSYSHOME%\common\local\omnihelp\ohvxml (for XHTML output)

If you modify any OmniHelp viewer files, modify only the files in the local directory. Files
in the system directory will be overwritten every time you update Mif2Go . Do not rename
any of these files.

Unless you copy viewer files to some other location, you should not need to specify a path
to those files. However, if you do put them somewhere other than the local viewer
directory, you must specify the path to this other location:

[OmniHelpOptions]
; OHViewPath = path to dir containing the OH viewer files
OHViewPath = D:\path\to\ohview\files

The default value of OHViewPath depends on the value of OHProjFileXhtml (see
§10.2.1 Choosing XHTML vs. HTML OmniHelp control files on page 342):

When you finish running Mif2Go , for viewing your OmniHelp system, copies of the
control files must be included in the same final directory as the OmniHelp HTML or
XHTML output files; see §10.13 Assembling OmniHelp files for viewing on page 369.

10.2.3 Customizing OmniHelp viewer control files

Table 10-1 lists the OmniHelp viewer control files. Files that have names that start with oh
are for HTML output. Files with names that start with ox are for XHTML. In Table 10-1,
the names of these files are shown as starting with o?. All other files listed are included in
both archives.

To customize OmniHelp, you can edit control files marked Yes under Edit? in Table 10-1.
If you are a JavaScript expert, you can also edit .js files marked No. Edit control files
only if necessary.

If you intend to undertake extensive customization and distribute the results to third
parties, you will also need the files in the following directory:

%OMSYSHOME%\common\system\omnihelp\ohvm2g

OHProjFileXhtml OHViewPath default value
No %OMSYSHOME%\common\system\omnihelp\ohvhtm

Yes %OMSYSHOME%\common\system\omnihelp\ohvxml

SETTING UP OMNIHELP VIEWER CONTROL FILES MIF2GO USER’S GUIDE

344 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Copy all files from this directory to the following location:
%OMSYSHOME%\common\local\omnihelp\ohvm2g

Modify only the files in the local directory; those in the system directory will be
overwritten every time you update Mif2Go .

10.2.4 Examining generated control and data files

When you run Mif2Go with OmniHelp as the output type, Mif2Go produces additional
data and control files, depending on your project settings. These files are listed in

Table 10-1 OmniHelp viewer control files included in the distribution

File type File name Content View? Edit? Ref.

CSS ohctie.css CSS for IE for navigation
panes

Req for IE Yes 10.4

ohctn4.css CSS for NN4 for navigation
panes

Req for NN4 Yes 10.4

ohctn6.css CSS for Mozilla for nav.
panes

Firefox, etc. Yes 10.4

ohctrl.css Generic CSS for navigation
panes

Required Yes 10.4

HTML (?=h)
or XHTML (?=
x)

o?ctrl.htm Loader for JavaScript Required No 10.3

o?frame.htm Frameset Required No 10.3

o?main.htm Loading... message Required No

o?merged.htm Run-time project merging Optional No 10.12

o?nav.htm Loading... message for IE Req for IE No

o?navctrl.htm Another Loading... message
for IE

Req for IE No

o?top.htm Top-navigation-pane loader Required No 10.5.1

JavaScript ohctrl.js Start-up and interfacing script Required No 10.3

ohframe.js Frameset script Required No 10.3

ohfts.js Search presentation script Optional No 10.6

ohidx.js Index presentation script Optional No 10.7

o?lang.js Text of error messages Required Yes 10.5.5

ohlangct.js Text of control labels, etc. Required Yes 10.5.5

ohlangtp.js Text of button labels Required Yes 10.5.5

ohmain.js CSS-setting script for topic
pane

Required No 10.11

ohmerge.js Script used in ohctrl.htm Optional No 10.12

ohmerged.js Run-time merging script Optional No 10.12

ohrel.js Related-topics presentation
script

Optional No 10.8

ohstart.js Start-up script for project Required No 10.3

ohtoc.js Contents presentation script Optional No 10.7

ohtop.js Top-navigation-pane script Required No 10.5.1

Image ohlogo.jpg OmniHelp logo Optional No

ohtc*.gif Icons for expandable TOC
view

Optional No 10.7

ohvalid?.gif W3C validation icon Optional No

10 GENERATING OMNIHELP SETTING UP AN OMNIHELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 345

Table 10-2. All are placed in the project directory you specified for your OmniHelp
project. Do not rename or edit any of these files.

In addition to the files listed in Table 10-2, when you first set up an OmniHelp project
Mif2Go optionally generates a CSS file (default name ohmain.css) for topic content;
see §10.4.1 Specifying CSS for topics in OmniHelp on page 350.

10.3 Setting up an OmniHelp project
When you set up an OmniHelp project from within FrameMaker, if configuration file
_m2omnihelp.ini is not already present in the project directory, Mif2Go creates this
file for you; see §3 Converting a book or document on page 77.

To add or change any of the options described in this section, edit configuration file
_m2omnihelp.ini , located in the project directory. Edit configuration file
_m2omnihelp.ini to add or change any of the options described in this section.

In this section:
§10.3.1 Creating an OmniHelp project on page 345
§10.3.2 Choosing set-up options for an OmniHelp project on page 346
§10.3.3 Deciding where to locate configuration settings on page 347
§10.3.5 Giving your OmniHelp project a title on page 348
§10.3.6 Specifying the starting topic on page 348
§10.3.7 Specifying memory requirements on page 348
§10.3.8 Removing paths from interfile links for OmniHelp on page 349
§10.3.9 Getting OmniHelp supporting files in the right place on page 349

10.3.1 Creating an OmniHelp project

To create an OmniHelp project:

1. Create a project directory for HTML or XHTML files, separate from the directory
where your FrameMaker document is located. Optionally, create a subdirectory for
graphics files.

2. With your FrameMaker book or document file open, choose File > Set Up Mif2Go
Export ; the Choose Project dialog opens (see §3.3 Creating a Mif2Go conversion
project on page 78).

3. Name your OmniHelp project, and browse to the project directory you created in
Step 1.

4. Choose output type Cross-Platform OmniHelp and click OK.

Table 10-2 OmniHelp data and control files generated by Mif2Go

File type File name Content Ref.

Data myproj_oha.js Context-sensitive-help entries 10.11

myproj_ohc.js Contents entries 10.6

myproj_ohk.js Index entries 10.6

myproj_ohl.js Related-topics entries 10.6

myproj_ohs.js Full-text-search entries 10.10

HTML or XHTML _myproj.htm Start-up project file 10.3

JavaScript myproj_ohx.js Project settings from m2javahelp.ini 10.3

SETTING UP AN OMNIHELP PROJECT MIF2GO USER’S GUIDE

346 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

5. Select options in the Set Up OmniHelp Project dialog (see §10.3.2 Choosing set-up
options for an OmniHelp project on page 346).

6. Use a text editor to edit the resulting _m2omnihelp.ini configuration file (see §4.1
Working with Mif2Go configuration files on page 91).

7. Important: To make the configuration fit your usage of headings to start topics, pay
special attention to sections [HelpContentsLevels] (see §7.2.1 Checking
automatic Help topic assignments on page 203) and [HTMLParaStyles] (see §18.2
Splitting files on page 586).

10.3.2 Choosing set-up options for an OmniHelp pro ject

When you choose OmniHelp as the output type for a new project, the Set Up dialog shown
in Figure 10-1 opens. Table 10-3 shows the corresponding settings in the configuration
file. You must edit the configuration file to specify additional options.

See also:
§3.4 Choosing project set-up options on page 79
§7 Producing on-line Help on page 199

Figure 10-1 Set Up OmniHelp Project

Table 10-3 OmniHelp set-up options and configuration settings

Set-up Configuration file [OmniHelpOptions] section *
Option Setting Default Ref.

Contents NavElems=Toc Toc Idx Fts Rel 10.6

Index NavElems=Idx Toc Idx Fts Rel 10.6

10 GENERATING OMNIHELP SETTING UP AN OMNIHELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 347

10.3.3 Deciding where to locate configuration sett ings

When you set up an HTML Help project from within FrameMaker, if configuration file
_m2omnihelp.ini is not already present in the project directory, Mif2Go creates this
file for you; see §3 Converting a book or document on page 77.

Which
configuration file?

To configure HTML Help output, add settings to one of the following files, depending on
the desired scope of each setting:

See §30.5 Deciding which configuration file to edit on page 856.

To determine which configuration settings will produce the appearance and functionality
you want, also see:

§13 Converting to HTML/XHTML on page 423
§18 Splitting and extracting files on page 585
§21 Mapping text formats to HTML/XML on page 645
§23 Including graphics in HTML on page 703
§24 Converting tables to HTML on page 727

10.3.4 Naming your OmniHelp project

To specify a name (not a title) for your OmniHelp project:
[OmniHelpOptions]
; ProjectName = name for OmniHelp project
ProjectName= myproj

The default value is the base name of your FrameMaker book or document. Mif2Go uses
the value of ProjectName for the following purposes:

 • generated-data-file base names: myproj.oh*
 • project identifier, when OmniHelp projects are merged; see §10.12 Merging

OmniHelp projects on page 366.
 • project start-up file base name, by default prefixed with an underscore: _myproj.htm

To avoid a possible conflict with the name of another file in the same project, you might
need to add a prefix, a suffix, or both. You can specify each of the following:

Project-name prefix

Search NavElems=Fts Toc Idx Fts Rel 10.6

UseFTS=Yes Yes 10.10

Related NavElems=Rel Toc Idx Fts Rel 10.6

Name ProjectName= Name MyDoc 10.3

Title HelpFileTitle= My Title Your Title Here 10.3

Start DefaultTopicFile= FileName First file in Contents 10.3

CSS MainCssName=MyStyles.css ohmain.css 10.4

Table 10-3 OmniHelp set-up options and configuration settings (continued)

Set-up Configuration file [OmniHelpOptions] section *
Option Setting Default Ref.

Scope Configuration file Location

Current project
only

_m2omnihelp.ini Current project directory

All OmniHelp
projects

local_m2omnihelp_config.ini %omsyshome%\m2g\local\co nfig\

SETTING UP AN OMNIHELP PROJECT MIF2GO USER’S GUIDE

348 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Project-name suffix

Project-name
prefix

To specify a prefix for the project name:
[OmniHelpOptions]
; OHProjFilePrefix = prefix for project file name s o that it does not
; conflict with the name of any file in the project
OHProjFilePrefix=_

The default prefix is a single underscore. Although for most purposes you should avoid
using any non-alphanumeric characters in file names, just about the only way to make the
OmniHelp starting file visible among possibly thousands of HTML files is to force it to
sort ahead of all the other files. Prefixing the name with an underscore accomplishes this
objective. However, you can specify a different prefix.

Project-name
suffix

To specify a suffix for the project name:
[OmniHelpOptions]
; OHProjFileSuffix = suffix for project file name s o that it does not
; conflict with the name of any other file in the pr oject
OHProjFileSuffix=

The default is no suffix at all.

See also:
§10.3.5 Giving your OmniHelp project a title on page 348

10.3.5 Giving your OmniHelp project a title

To specify a title for your OmniHelp project:
[OmniHelpOptions]
; HelpFileTitle = title to put in project-specific frameset file
HelpFileTitle= My Project Title

If you do not specify a title, the default title is, literally, “Your Title Here ”.

10.3.6 Specifying the starting topic

To specify which topic file to display first, when OmniHelp opens:
[OmniHelpOptions]
; DefaultTopicFile = starting topic file name (no e xtension)
; first file in Contents is used by default
DefaultTopicFile= firstfilename

The default starting topic is the first HTML file listed in the generated contents.

10.3.7 Specifying memory requirements

To adjust memory requirements for contents loading:
[OmniHelpOptions]
; LowMem = Yes (default, reduce memory requirements or No (faster)
LowMem=Yes

When LowMem=Yes (the default) OmniHelp reduces memory requirements while loading
the table of contents by writing many short segments instead of one long segment.

For a document that has a long table of contents, you might have to experiment to
optimize OmniHelp memory requirements. Not reducing memory requirements can speed
up contents loading in some browsers, slow it down in others.

10 GENERATING OMNIHELP SETTING UP AN OMNIHELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 349

10.3.8 Removing paths from interfile links for Omn iHelp

Because OmniHelp relies on supporting JavaScript and HTML control files, all HTML
output files for an OmniHelp project must reside in the same directory on the target
system. Therefore, links between HTML files should not include paths.

Paths are omitted by default from cross-reference and hypertext links:
[HTMLOptions]
; RemoveFilePaths = Yes (default, strip hyperlink a nd xref paths)
; or No
RemoveFilePaths=Yes

When RemoveFilePaths=Yes (the default), all HTML output files are assumed to be in
the same directory on the target system.

See also:
§19.6.2 Retaining file paths in interfile links on page 622

10.3.9 Getting OmniHelp supporting files in the ri ght place

Before you can use the OmniHelp viewer, all OmniHelp supporting files must be placed in
the same directory structure as the HTML or XHTML output files Mif2Go generates from
your document. Supporting files include:

Viewer and control files
Graphics files
Optional files.

Viewer and
control files

After you run Mif2Go , control files and viewer files must be copied from the viewer
directory (see §10.2 Setting up OmniHelp viewer control files on page 342) to the final
distribution directory for your project. Mif2Go can do this for you; see §10.13
Assembling OmniHelp files for viewing on page 369.

To view OmniHelp, the view directory must contain the following:

 • all files marked Required in column View? in Table 10-1 on page 344 (including
either oh*.htm or ox*.htm , depending on the start-up file type; see §10.2.1
Choosing XHTML vs. HTML OmniHelp control files on page 342).

 • all files listed in Table 10-2 on page 345.

Graphics files Graphics files must be placed either in the same directory as the generated OmniHelp
HTML files, or in a subdirectory. If your graphics files are located elsewhere, they must be
copied to the directory with the HTML files, or to a subdirectory.

To tell Mif2Go to fetch your referenced graphics:
[Automation]
WrapAndShip = Yes
CopyOriginalGraphics = Yes

When CopyOriginalGraphics=Yes , Mif2Go follows the file paths in your
FrameMaker source to find the graphics files to copy.

To tell Mif2Go where to put copies of the graphics (for example):
[Graphics]
GraphPath = ./graphics

The path you specify for GraphPath should be relative to the wrap directory (see §35.3
Understanding path values for deliverables on page 957). This path will be used in HTML
output, as the relative path from the HTML files to their referenced graphics. If you use
backslashes in the path, Mif2Go converts them to forward slashes before inserting the

USING CSS WITH OMNIHELP MIF2GO USER’S GUIDE

350 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

references in your HTML output. If you specify CopyOriginalGraphics=Yes ,
Mif2Go copies graphics files to the directory specified by GraphPath , after generating
HTML files.

See also:
§10.13 Assembling OmniHelp files for viewing on page 369.
§23.3 Locating graphics files for HTML on page 704
§35.7 Placing graphics files for distribution on page 965

Optional files A browser loads optional files (marked Optional under View? in Table 10-1 on page 344),
only when you specify the features they support, via configuration settings. Your project
might not require all the optional files. For example, if you do not want full-text search,
you can omit ohfts.js from the OmniHelp view directory; and if you are not merging
OmniHelp projects, you do not need ohmerge*.* in the view directory.

See §10.2 Setting up OmniHelp viewer control files on page 342.

10.4 Using CSS with OmniHelp
OmniHelp relies on CSS (cascading style sheets), because Mif2Go removes all HTML
formatting in the process of generating OmniHelp files. Most likely you will want to
provide your own CSS to govern the appearance of text displayed in the topic frame.

In this section:
§10.4.1 Specifying CSS for topics in OmniHelp on page 350
§10.4.2 Understanding how CSS works in OmniHelp topics on page 351
§10.4.3 Specifying CSS for OmniHelp navigation frames on page 352

10.4.1 Specifying CSS for topics in OmniHelp

When you set up a new OmniHelp project (see §10.3.1 Creating an OmniHelp project on
page 345), you can name a default CSS file for the topic frame; the default name of this
default file is ohmain.css . Mif2Go generates ohmain.css (or whatever name you
specify) and places it in the project directory the first time you convert your document; see
§22.3 Understanding how Mif2Go generates CSS on page 682.

At set-up time Mif2Go includes the following CSS-related entries in newly created
configuration file m2omnihelp.ini :

[CSS]
UseCSS=Yes
WriteCssStylesheet=Once
CssFileName= ohmain.css

[OmniHelpOptions]
; CSS default if browser detection fails
MainCssName=ohmain.css
; CSS for main document frame
IECssName=ohmain.css
N6CssName=ohmain.css
N4CssName=ohmain.css

That is, all possible OminHelp references to CSS files for the topic frame initially
designate the same file. At run time, for text in the topic frame, OmniHelp actually
references only the CSS files specified in [OmniHelpOptions] , instead of the file
specified by [CSS]CssFileName (if that file has a different name; see §22.4 Specifying
CSS file and link options on page 683).

10 GENERATING OMNIHELP USING CSS WITH OMNIHELP

ALL RIGHTS RESERVED. MAY 18, 2013 351

Different CSS for
certain browsers

You can specify (and provide) different CSS files to govern the appearance of text in the
topic frame for the following browsers:

 • Internet Explorer
 • Netscape Navigator 4.x
 • Newer versions of Mozilla-based browsers (such as Firefox).

For example:
[OmniHelpOptions]
IECssName=ugie.css
N6CssName=ugns6.css
N4CssName=ugns4.css

You must also provide a macro to accomplish browser selection; see §22.6 Linking to
alternate CSS files on page 688.

Default CSS for
other browsers

If a browser other than those mentioned is being used, OmniHelp looks for a CSS file
named ohmain.css (or whatever name you specified at set-up), unless you designate a
different CSS file for this purpose. For example:

[OmniHelpOptions]
MainCssName=general.css

The CSS file designated by MainCssName is used for topic text when OmniHelp is
viewed with browsers other than those for which you specified a different CSS file.

Omit unused CSS When MainCssName designates a file different from the file designated by
[CSS]CssFileName , the latter file remains in the project directory, and will be copied to
the distribution directory (see §35.6 Assembling files for distribution on page 961), even
though it will not be used. And if you remove that file from the project directory, Mif2Go
will regenerate it the next time you run the project. The only way to permanently eliminate
this unused file is to delete it from the project directory and also change the value of the
following setting from Once to Never :

[CSS]
WriteCssStylesheet=Never

See §22.4.2 Specifying CSS options in a Mif2Go configuration file on page 684.

10.4.2 Understanding how CSS works in OmniHelp top ics

Each OmniHelp topic file includes in the <head> element a <script> tag that invokes
script file ohmain.js . The ohmain.js script calls mainCSS() in parent-frameset script
file ohframe.js , which in turn writes a CSS <link> into the topic file.

The CSS <link> in the topic file specifies the value of mainCssName, which is taken
from project settings in myproj_ohx.js (see Table 10-2 on page 345), which are based
on [OmniHelpOptions] settings in the configuration file (see §10.4.1 Specifying CSS
for topics in OmniHelp on page 350). Because the ohframe.js script detects the browser
before writing the <link> , the value of mainCssName might depend on what you
specified in [OmniHelpOptions] for IECssName, N6CssName, or N4CssName.

As a result, you can see the effects of CSS in topic text only if both of the following are
true:

 • the HTML topic file you are viewing was generated by Mif2Go for OmniHelp (or you
added the proper <script> tag to the topic file)

 • you are viewing the topic in the OmniHelp frameset, not by itself in a browser.

Otherwise, the CSS <link> would not be set.

CUSTOMIZING OMNIHELP DISPLAY FEATURES MIF2GO USER’S GUIDE

352 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

10.4.3 Specifying CSS for OmniHelp navigation fram es

By default, OmniHelp CSS file ohctrl.css governs the appearance of text in the top
and left navigation frames. You can edit this file to modify class definitions and CSS file
names, or you can designate another CSS file for this purpose:

[OmniHelpOptions]
; CSS default if browser detection fails
CtrlCssName=ohctrl.css
; CSS for top and left (navigation) frames
IECtrlCssName=ohctrl.css
N6CtrlCssName=ohctrl.css
N4CtrlCssName=ohctn4.css

The CSS file designated by CtrlCssName is used for top and left navigation frames, but
only when the browser with which you view an OmniHelp project is neither a
Mozilla-based browser (Netscape, Mozilla, or Firefox) nor Microsoft Internet Explorer.

If you specify a CSS file other than ohctrl.css for CtrlCssName , be sure the
substitute CSS file provides all the default ohctrl.css classes.

For an interesting way to accommodate certain CSS differences among browsers, see:
http://wellstyled.com/css-underscore-hack.html

10.5 Customizing OmniHelp display features
In this section:

§10.5.1 Configuring OmniHelp window usage and frameset dimensions on page 352
§10.5.2 Altering OmniHelp top navigation frame content on page 353
§10.5.3 Modifying OmniHelp navigation aids on page 353
§10.5.4 Choosing whether to use cookies for OmniHelp on page 354
§10.5.5 Localizing the OmniHelp interface on page 354
§10.5.6 Modifying OmniHelp CSS classes on page 355
§10.5.7 Modifying the OmniHelp template on page 356

10.5.1 Configuring OmniHelp window usage and frame set dimensions

You can determine whether OmniHelp opens in a new browser window, or in the existing
browser window. The default is to open in a new window:

[OmniHelpOptions]
; NewWindow = Yes (default, use settings below
; for FrameHigh, FrameWide, and FrameOptions)
; or No (use existing browser window)
NewWindow=Yes

If you are generating OmniHelp intended for local use, probably you want the OmniHelp
frameset to open in a new window, without browser “chrome” (menus, toolbars, icons, and
the like). However, see §10.14.3 Coping with browser quirks on page 371.

Close empty
window

By default, the mostly empty browser window that opens initially remains open, behind
the OmniHelp window. To close the initial browser window:

[OmniHelpOptions]
; CloseOldWindow = No (default)
; or Yes (if NewWindow, close opening window)
CloseOldWindow=Yes

http://wellstyled.com/css-underscore-hack.html

10 GENERATING OMNIHELP CUSTOMIZING OMNIHELP DISPLAY FEATURES

ALL RIGHTS RESERVED. MAY 18, 2013 353

Some browsers ignore the CloseOldWindow option (Firefox, Netscape Navigator);
others request confirmation before closing the window (Internet Explorer).

Configure
frameset

When OmniHelp opens in a new window (the default), you can specify frame dimensions
and positioning for the OmniHelp frameset:

[OmniHelpOptions]
;Frameset dimensions (in pixels) and properties
;FrameHigh=350
;FrameWide=600
; Frame dimensions, do not reduce any of them at al l
;TopHigh=50
;LeftWide=220
;MidHigh=90
; TopFirst = Yes (top frame full width) or No (left frame full height)
TopFirst = Yes

Add chrome You can use JavaScript to add bits of chrome:
[OmniHelpOptions]
; FrameOptions = JS window.open() values as in [Sec Windows]

See §10.9 Jumping to secondary windows in OmniHelp on page 360. For more
information, look up the window.open() function in any JavaScript reference.

10.5.2 Altering OmniHelp top navigation frame cont ent

You can use configuration settings to provide HTML or XHTML code for the content of
the leftmost and rightmost table cells in the top OmniHelp navigation frame.

The leftmost cell is the same width as the navigation pane below it. Just make sure that
whatever you specify for this cell fits in the space above the left navigation pane; bad
things happen to the button layout when the buttons do not have enough space.

Note: If you set TopFirst=No (see §10.5.1 Configuring OmniHelp window usage and
frameset dimensions on page 352), the leftmost cell is not displayed. The
rightmost cell is always displayed.

The (X)HTML code you specify for each of these table cells must be all on one line, and
must end with a backslash (\). Escape any single quotes in the code by preceding each
with a backslash (\’). Do not follow the code line with more than one blank line.

For example, to substitute your own logo for the Omni Systems logo:
[OHTopLeftNav]
; optional (X)HTML content for ohtop nav table left cell
\

Or to substitute contact information for the W3C validation button:
[OHTopRightNav]
; optional (X)HTML content for ohtop nav table righ t cell
\

To alter other parts of the top navigation frame, you would have to modify JavaScript code
in viewer file ohtop.js ; see §10.1 Understanding how OmniHelp works on page 341.

10.5.3 Modifying OmniHelp navigation aids

To determine which navigation buttons are displayed in the top navigation pane:
[OmniHelpOptions]
; These settings control what buttons are added to the top nav pane
; UseTopButtons = Yes (default, use buttons) or No (use links instead)
UseTopButtons=Yes

CUSTOMIZING OMNIHELP DISPLAY FEATURES MIF2GO USER’S GUIDE

354 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; UseStart = Yes (default, provide Start button) or No
UseStart=Yes
; UsePrevNext = Yes (default, provide Prev and Next buttons) or No
UsePrevNext=Yes
; UseBackForward = Yes (default, provide Back and F wd buttons) or No
UseBackForward=No
; UseHideShow = Yes (default, provide buttons to hi de and show
; the left-side nav pane as in MS HTML Help) or No
UseHideShow=No

To hide the left-hand navigation pane when OmniHelp starts:
[OmniHelpOptions]
; ShowNavLeft = Yes (default, open with nav pane vi sible on left)
; or No
ShowNavLeft=No

To remove the List button from the left-hand navigation pane:
[OmniHelpOptions]
; UseListButton = Yes (default) or No (remove from Search panel)
UseListButton=No

If you include Prev /Next buttons, make sure your TOC does not use mid-topic links, or
the Prev and Next buttons will not work correctly. TOC-level topics should be in their
own files. Clicking a mid-topic link in the TOC works as expected, but the Prev and Next
buttons do not; for example, Prev takes you back to the previous actual file rather than to
the previous item listed in the TOC. This can confuse your users.

10.5.4 Choosing whether to use cookies for OmniHel p

To determine whether users can pick up where they left off in a previous session:
[OmniHelpOptions]
; PersistSettings = Yes (default, OH settings persi st after closing,
; for the next time the project is re-opened),
; or No (keep during session only)
PersistSettings=Yes

Cookies persist
for a year

When PersistSettings=Yes , the last OmniHelp settings in effect when you exited
OmniHelp are stored by the browser as cookies that persist for one year. The next time you
open OmniHelp, the same page appears in the same position.

Delete cookies to
reset this option

When PersistSettings=No , the cookies have no expiration date, which the browser
takes to mean “expire at end of session”. However, in the presence of cookies with later
expiration dates, older cookies do not get replaced by the newer, but stay in effect. This
means that once you have opened OmniHelp with PersistSettings=Yes , you cannot
make the settings desist for a period of one year, except by deleting the cookies.

10.5.5 Localizing the OmniHelp interface

To provide translated equivalents of all OmniHelp button labels and messages, edit the
following small JavaScript files:

ohlang.js Error messages

ohlangct.js Progress messages, navigation-control labels, default results

ohlangtp.js Button labels

10 GENERATING OMNIHELP CUSTOMIZING OMNIHELP DISPLAY FEATURES

ALL RIGHTS RESERVED. MAY 18, 2013 355

10.5.6 Modifying OmniHelp CSS classes

Suppose you want a background image behind the entire top OmniHelp panel, buttons and
all. To accomplish this you would modify the CSS class Mif2Go applies to the top
navigation table. JavaScript in ohtop.js creates the top navigation pane, and produces
(by default) the following HTML for the navigation table:

<table class="topnav" border="0" height="50" width= "100%">
<tr><td class="topnav" width="230">
<img src="ohlogo.jpg" height="25" width="50"
 alt="Logo" /> OmniHelp </td>
<td class="topnav"><button type="button" id="topSta rt"
 onclick="parent.ctrl.getStart()"
 title="Go to starting topic">Start</button></td>
.... more button cells written here ...
<td class="topnav"><img src="ohvalidh.gif" border=" 0"
 alt="Valid HTML 4.01!" height="25" width="71" /></ td>
</tr></table>

The CSS rules to modify are those for selector table.topnav . For example:
table.topnav { background-image: url(my_favorite_pic.jpg); }

This rule would tile the image to fill the entire top panel.

You would most likely want to add the new rule to all four of the browser-specific CSS
files included with OmniHelp:

If you put the rule in just one of these CSS files, it would be effective only when someone
uses that particular type of browser to view your OmniHelp system.

The CSS file for Internet Explorer, ohctie.css , has the following top-panel rules; these
rules are similar in the other CSS files:

/* top panel only */
body.topnav { background: #999 ; margin: 0 }
p.topbody { font: bold 12pt/12pt sans-serif }
table.topnav { vertical-align: middle; border-style : none }
td.topnav { font: bold 10pt/10pt sans-serif;
 margin: 0; text-align: center; vertical-align: top }

A body background color is already set, #999999 (gray). You still want a background
color; however, you can change its value.

A couple of rules are already present for table.topnav , so just add yours:
table.topnav { background-image: url(my_favorite_pi c.jpg);
 vertical-align: middle; border-style: none }

Or, you could add the image to the body rules instead:
body.topnav { background-image: url(my_favorite_pic .jpg);
 background: #999 ; margin: 0 }

However, do not add the image to both table.topnav and body.topnav .

Repeat for the other three ohct*.css files, and see how the new background looks in
different browsers.

ohctie.css Internet Explorer

ohctn4.css Netscape 4.x

ohctn6.css Mozilla-derived browsers, such as Firefox

ohctrl.css Other browsers, such as Opera

CHOOSING NAVIGATION FEATURES FOR OMNIHELP MIF2GO USER’S GUIDE

356 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

10.5.7 Modifying the OmniHelp template

Your Mif2Go distribution directory contains a copy of file ohtpl.ini , which provides
default text values and macros for variable presentation features. You do not need this file
unless you plan to alter features for which no configuration settings are provided; see
§10.1 Understanding how OmniHelp works on page 341.

You can copy ohtpl.ini to your project directory. If you are brave, you can specify a
path to ohtpl.ini instead of placing it in the project directory; you can even give this
template file a different name:

[OmniHelpOptions]
; ProjectTemplate = path to template for generating
; OHProj and myproj_ohx.js files, with sections cont aining text
; and macro references for variable items
ProjectTemplate=ohtpl.ini

You need ProjectTemplate only when settings are not sufficient; for example, if you
undertake a drastic customization of OmniHelp, and add new variables. If you use the
same template for all projects, it would be best to keep the template in:

%OMSYSHOME%\common\local\omnihelp\ohvm2g

Otherwise, keep the template in the project directory.

You can edit a copy of ohtpl.ini to experiment with various versions of this template;
however, in general you should rarely need to use or modify ohtpl.ini .

10.6 Choosing navigation features for OmniHelp
You can choose which navigation features to provide in OmniHelp; the default is to
include them all:

[OmniHelpOptions]
; NavElems = navigation elements to display in left pane:
; Toc, Idx, Fts, Rel
NavElems=Toc Idx Fts Rel

Table 10-4 lists the navigation features; all are displayed in the left-hand frame:

If you do not intend to include an index, omit the Idx item:
[OmniHelpOptions]
NavElems= Toc Fts Rel

If you do not have ALinks, omit the Rel item also.

You can choose whether Mif2Go generates the data files needed for contents, index,
search, and related topics; however, most likely you will never have a reason to change the
default settings:

Table 10-4 OmniHelp navigation features

Feature
NavElems
value Reference

Contents Toc §7.4 Configuring contents entries for Help systems on page 209
§10.7 Configuring contents and index for OmniHelp on page 357

Index Idx §7.5 Configuring index entries for Help systems on page 211
§10.7 Configuring contents and index for OmniHelp on page 357

Full-text search Fts §10.10 Configuring full-text search for OmniHelp on page 361

Related topics Rel §10.8 Providing related-topic links in OmniHelp on page 359

10 GENERATING OMNIHELP CONFIGURING CONTENTS AND INDEX FOR OMNIHELP

ALL RIGHTS RESERVED. MAY 18, 2013 357

[OmniHelpOptions]
; ListType = Both (default), Contents, or Index
ListType = Both
; RefFileType = Full (default for single files),
; Body (default for books), or None.
RefFileType=Full

RefFileType values have the following effects:

See also:
§7.3.4 Modifying contents or index production for HTML-based Help on page 206.
§10.7 Configuring contents and index for OmniHelp on page 357

10.7 Configuring contents and index for OmniHelp
In this section:

§10.7.1 Understanding OmniHelp contents and index creation on page 357
§10.7.2 Choosing whether to use expanding contents or index on page 357
§10.7.3 Choosing how far to expand contents and index subentries on page 358
§10.7.4 Providing alternate expansion icons for contents or index on page 358
§10.7.5 Excluding Open All and Close All buttons on page 359
§10.7.6 Redirecting See and See also index entries on page 359

10.7.1 Understanding OmniHelp contents and index c reation

Headings that start topics, or to which you assign the Contents property or a contents
level, are automatically included in the contents for OmniHelp; for details, see:

§7.4.3 Including contents entries in HTML-based Help on page 209.
§7.4.4 Setting contents levels for HTML-based Help on page 210.

When you click links in the topic pane while the contents pane is displayed, the contents
pane stays synchronized with whatever topic you visit.

Mif2Go creates an OmniHelp index from the index markers in your FrameMaker
document. As with other HTML-based Help systems, you can specify the granularity of
index-link destinations, and customize the sort order of index entries; see §7.5
Configuring index entries for Help systems on page 211.

10.7.2 Choosing whether to use expanding contents or index

By default, OmniHelp includes an expanding table of contents and an expanding index:

 • Click the “+” icon in front of an entry to display subentries; the icon changes to “- ”.
 • Click the “- ” icon to make the subentries disappear; the icon changes back to a “+”.

To collapse lower-level entries so you can browse to other topics via the contents, click the
current top topic entry first, then click the “- ” icon.

Full Default for single files. Mif2Go creates a set of myproj.oh* files for the
original FrameMaker file.

Body Default for books. Mif2Go creates a set of DCL .bh* files that are merged
with those from other chapter files to produce a combined set of
myproj.oh* files for the book.

None No myproj.oh* files nor DCL .bh* files are produced.

CONFIGURING CONTENTS AND INDEX FOR OMNIHELP MIF2GO USER’S GUIDE

358 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

The table of contents always shows you where you are in the topics. While subentries are
displayed, you cannot collapse the parent entry unless you first select the parent (or a
another entry that is not connected to the subentries); in other words, you cannot close the
door while your foot is in it. Click the parent entry first, then collapse the subentries.
Otherwise, you would risk losing your place, which is what happens in HTML Help.

You can turn off the expansion feature, so that contents or index entries display fully
expanded at all times. Also, some older browsers (for example, Netscape Navigator 4.x)
cannot display expanding contents or index, so you would not see the expansion feature
even with the default settings.

Omit contents
expansion

To omit expanding display of contents subentries, and always display all levels:
[OmniHelpOptions]
; TocExpand = Yes (default) or No (do not use expan ding TOC)
TocExpand=No

Omit index
expansion

To omit expanding display of index subentries, and always display all levels:
[OmniHelpOptions]
; IdxExpand = Yes (default) or No (do not use expan ding Index)
IdxExpand=No

10.7.3 Choosing how far to expand contents and ind ex subentries

By default, clicking a “+” icon expands only the subentries at the next level down in the
contents or index; any subentries at that level that have subentries of their own remain
unexpanded. You can choose how many levels to expand.

Contents
expansion levels

To specify how many subentry levels to expand in the table of contents:
[OmniHelpOptions]
; TocGroupsOpen = No (default, open TOC with groups closed) or Yes
TocGroupsOpen=No
; TocOpenLevel = level to open to, default 0 for to p level only.
TocOpenLevel=0

If you set TocOpenLevel to a number greater than zero, also make sure that
TocGroupsOpen=No ; otherwise, all levels are expanded when you click a “+” icon.

Index expansion
levels

To specify how many subentry levels to expand in the index:
[OmniHelpOptions]
; IdxGroupsOpen = No (default, open Index with grou ps closed) or Yes
IdxGroupsOpen=No
; IdxOpenLevel = level to open to, default 0 for to p level only.
IdxOpenLevel=0

If you set IdxOpenLevel to a number greater than zero, also make sure that
IdxGroupsOpen=No ; otherwise, all levels are expanded when you click a “+” icon.

10.7.4 Providing alternate expansion icons for con tents or index

The contents and index expansion views are displayed with a set of icons (supplied in
ohv NNN.zip), with names of the form basenameNN.gif . The base name for the
supplied icons, for both contents and index, is ohct . You can replace these icons with a set
of your own (or a different set for contents and for index), for example to use with
different CSS color schemes.

Contents icons To specify a base name for an alternate set of TOC expansion icons:
[OmniHelpOptions]
; TocIcoBase = ohct (default, basename for set of . gifs used for

10 GENERATING OMNIHELP PROVIDING RELATED-TOPIC LINKS IN OMNIHELP

ALL RIGHTS RESERVED. MAY 18, 2013 359

; expanding Toc)
TocIcoBase= myTOC

Index icons To specify a base name for an alternate set of index expansion icons:
[OmniHelpOptions]
; IdxIcoBase = ohct (default, basename for set of . gifs used for
; expanding Idx)
IdxIcoBase= myIX

10.7.5 Excluding Open All and Close All buttons

By default, OmniHelp provides Open All and Close All buttons above contents and index,
to allow expanding or collapsing all entries with a single click. You can omit these buttons
from contents, from index, or from both.

To omit Open All and Close All buttons from the table of contents:
[OmniHelpOptions]
; TocButtons = Yes (default, provide Open All and C lose All) or No
TocButtons=No

To omit Open All and Close All buttons from the index:
[OmniHelpOptions]
; IdxButtons = Yes (default, provide Open All and C lose All) or No
IdxButtons=No

10.7.6 Redirecting See and See also index entries

Mif2Go redirects <$nopage> See and See also references for the OmniHelp index. On
generating OmniHelp output, Mif2Go points each such link to the referenced entry in the
OmniHelp index (rather than in the topic where the index marker appeared in
FrameMaker). The effect is similar to what you can do with IndexRef for other (non-Help)
Mif2Go output types; see §5.5.4 Making See and See also index entries into useful links
on page 125.

See also:
§7.5.7.1 Identifying See and See also index references on page 214
§7.5.7.3 Choosing where to sort See also index references on page 215

10.8 Providing related-topic links in OmniHelp
OmniHelp supports ALink keyword targets and jumps, ALink keyword pools, and KLink
jumps to index-link lists. An ALink keyword target or jump can specify multiple ALink
keywords, separated by semicolons. An ALink keyword can consist of more than one
word; spaces are allowed, but no other punctuation. ALink list links always go to the
beginning of a topic; KLink list links should go to the paragraph with the corresponding
index marker, just like index entries.

See §7.6 Providing related-topic links for Help systems on page 219 for ways to include
ALink targets and jumps and KLink jumps in your OmniHelp project.

If you include the related-topics feature when you generate OmniHelp (see §10.6
Choosing navigation features for OmniHelp on page 356), the left navigation pane shows
a Related tab. When you click an ALink jump hotspot (or click the Related tab),
OmniHelp automatically switches the left navigation pane to the Related tab, and displays
a list of links to all other topics to which any of the same ALink keywords are assigned.

JUMPING TO SECONDARY WINDOWS IN OMNIHELP MIF2GO USER’S GUIDE

360 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You can set up your OmniHelp project to also display a list of the ALink keywords
assigned to the topic (via marker or paragraph format) or specified in an ALink jump
within the topic:

[OmniHelpOptions]
; ShowSubjects = No (default, do not show subjects for ALinks) or Yes
ShowSubjects=Yes

The keywords are listed under Subjects in the space above the related-topic links.

You can determine whether ALinks go to the beginning of the referenced topic file, or to
the beginning of the paragraph that contains the ALink keyword. The default is the
beginning of the topic file:

[OmniHelpOptions]
; ALinkRefs = File (default) or Para (start of cont aining para)
ALinkRefs = File

See also:
§7.6.2 Understanding how ALinks work on page 220
§7.6.4 Adding related-topic link keywords in FrameMaker on page 221
§7.6.5 Adding ALink and KLink jumps in FrameMaker on page 222
§7.6.6 Creating target-and-jump ALinks for HTML-based Help on page 224

10.9 Jumping to secondary windows in OmniHelp
To create a jump to a secondary window in OmniHelp, assign the window name to a
character or paragraph format. For example:

[SecWindows]
; doc format = name of secondary window to use for jumps from
; within the span marked by this style (same as Wi nHelp usage).
PopWindow=popup, 400, 200
ProcWindow=proc
ProcWin2=proc, 400, 600, menubar=1,titlebar=1,scrol lbars=1

Window
parameters

After the window name you can specify optional comma-separated parameters. The first is
width in pixels, the second height in pixels, and the third a list of properties to pass to the
JavaScript window.open() function. The JavaScript properties are also
comma-separated, but unlike the size parameters, JavaScript parameters cannot have
spaces between them; see a JavaScript reference for acceptable values.

Pop-up windows The window name popup is reserved for specifying pop-ups, and results in a fresh pop-up
window every time. In OmniHelp, a pop-up window persists until you close it; the
window does not close when you click inside the pop-up (or click elsewhere), as is the
case for pop-ups in other Help systems.

Links from
secondary

windows

To cause a link from a secondary window to bring up a new topic in the original topic
window (rather than in the secondary window itself), assign reserved window name main
to the hotspot format. For example:

[SecWindows]
Popup=popup, 300, 100
Link2FigWin=figure, 400, 200
Link2Main=main

In this example, a regular topic has cross-reference links to a pop-up window and to a
secondary window:

 • To link to the pop-up topic, character format Popup is applied to a hotspot.
 • To link to the figure, character format Link2FigWin is applied to a hotspot.

10 GENERATING OMNIHELP CONFIGURING FULL-TEXT SEARCH FOR OMNIHELP

ALL RIGHTS RESERVED. MAY 18, 2013 361

In the pop-up topic, character format Link2Main is applied to a hotspot for a
cross-reference link to a regular topic.

Note: Not all browsers honor the parameters you specify for a pop-up window.

See also:
§7.7 Jumping to secondary windows in Help systems on page 224
§7.8 Creating pop-up topics for Help systems on page 225

10.10 Configuring full-text search for OmniHelp
After generating OmniHelp output, by default Mif2Go builds a search index: a JavaScript
array that lists term and topic number for each non-excluded term that occurs in the
content.

In this section:
§10.10.1 Understanding how OmniHelp FTS works on page 361
§10.10.2 Generating search data on page 361
§10.10.3 Making compound terms searchable on page 362
§10.10.4 Supporting search for non-ANSI text on page 362
§10.10.5 Specifying length of search terms on page 363
§10.10.6 Excluding search terms on page 363
§10.10.7 Excluding content from being searched on page 363
§10.10.8 Using regular expressions in search on page 363
§10.10.9 Highlighting search terms found in topics on page 364

10.10.1 Understanding how OmniHelp FTS works

OmniHelp supports single-term and Boolean (AND, OR, NOT) full-text search. A search
on a phrase is implemented by successively ANDing the search terms: topics found
include all terms in the phrase, except for stop words (see §10.10.6 Excluding search
terms on page 363), whether or not those terms occur together.

There are some limitations:

 • Search does not find terms that start with non-alphanumeric characters. For example,
to find $$_currbase , you would have to search for currbase ; and to find
-progid , you would have to search for progid .

 • Search does not find partial terms; for example, a search for curr finds <$Curr> , but
not $$_currbase .

 • Search reports every instance of a hit, even if several instances are in the same topic.
To remove extra instances of a term from the search index, you can delete duplicate
entries from the JavaScript array in myproj_ohs.js , either by hand or with a
UNIX-style utility such as uniq , from Cygwin.

Because OmniHelp is Open Source, anyone can modify or replace the search function to
overcome these limitations. You can contribute to the OmniHelp project any tool you
make for this purpose, at Sourceforge:

https://sourceforge.net/projects/omnihelp/

See §10.1 Understanding how OmniHelp works on page 341.

10.10.2 Generating search data

Mif2Go generates search data files for OmniHelp by default:

https://sourceforge.net/projects/omnihelp/

CONFIGURING FULL-TEXT SEARCH FOR OMNIHELP MIF2GO USER’S GUIDE

362 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[OmniHelpOptions]
; UseFTS = Yes (default, write .bhs and myproj_ohs.js files)
; or No (faster)
UseFTS = Yes

This setting interacts with [OmniHelpOptions]NavElems (see §10.6 Choosing
navigation features for OmniHelp on page 356) as follows:

 • If you set NavElems=Fts and UseFTS=No, you get a Search tab, but it does not
work.

 • If you do not set NavElems=Fts and you do set UseFTS=Yes, you get a Search tab,
and it works.

If you are not providing full-text search, you can avoid generating search data files by
setting UseFTS=No, which allows OmniHelp to load faster.

10.10.3 Making compound terms searchable

For compound terms that consist of two words separated by a single punctuation character,
you can have the search index include each of the individual terms and also the compound
term.

To specify which punctuation characters should be considered in identifying compound
terms:

[OmniHelpOptions]
; CompoundWordChars = Punctuation marks recognized as connectors of
; compound terms when they separate adjacent words.
CompoundWordChars = :-._+*

The default punctuation characters for compound terms are colon, dash, period,
underscore, plus sign, and asterisk.

10.10.4 Supporting search for non-ANSI text

When you type in a search string that contains non-ANSI characters, Windows does not
give you UTF-8; it gives you the character in the current code page for the system locale.
That is not much of a problem for western European languages, but it does mean that you
would need a different search file for each non-Western locale you want to support.
Otherwise, the OmniHelp viewer would have to include code-page conversion, which
would require a huge library on each Help user's system.

To make sure OmniHelp full-text search finds terms that include non-ANSI characters:
[OmniHelpOptions]
; UnicodeFTS = No (default, use normal word-break r ules for ANSI text,
; or Yes (use the ICU rules for any language inclu ding CJK)
UnicodeFTS = Yes
; UnicodeLocale = formal identifier of language, de fault en-US
UnicodeLocale = en-US

You will also need two ICU DLL files: icudt40.dll (13 MB) and icuuc40.dll
(1 MB). These DLLs are available in archive icu401.zip (6 MB), which you can
download from the Omni Systems Web site.

To install the ICU code pages, extract the DLLs from icu401.zip , and copy them to the
following locations:
 • %OMYSHOME%\common\bin

 • your Windows system directory.

10 GENERATING OMNIHELP CONFIGURING FULL-TEXT SEARCH FOR OMNIHELP

ALL RIGHTS RESERVED. MAY 18, 2013 363

When UnicodeFTS=Yes , Mif2Go will use these DLLs to prepare your OmniHelp output,
depending on the value you specify for UnicodeLocale .

10.10.5 Specifying length of search terms

You can specify the minimum length of terms to include in the search index; the default is
three characters:

[OmniHelpOptions]
; SearchWordMin = minimum length of word to index f or search,
; default 3
SearchWordMin=3

10.10.6 Excluding search terms

When you generate OmniHelp, Mif2Go builds a search index that includes all the words
in the converted files, except for a list of words to be excluded. Mif2Go applies an internal
list of words to exclude:

[StopWords]
;about after again all already also always and any are been but can
;did does doing each for from has have having its m ay maybe might not
;see than that the their them then these they this those too use used
;uses using very want was when where which will wit h would you your

You can add your own list of words to exclude, or provide an alternate list, in the
[StopWords] section of your OmniHelp configuration file.

To specify which list(s) of words to exclude from the search index, set the following
option:

[OmniHelpOptions]
; UseDefaultStopWords = Yes (use default set, plus any added in your
; own [StopWords]) or No (use your own words only)
UseDefaultStopWords=No

When UseDefaultStopWords=Yes , Mif2Go excludes from the search index the default
words and any words listed in the [StopWords] section of your configuration file.

When UseDefaultStopWords=No , Mif2Go excludes only words listed under
[StopWords] in your configuration file.

To augment the [StopWords] list after you generate OmniHelp, open myproj_ohs.js
in a text editor, and copy unwanted words to the [StopWords] section of your project
configuration file.

10.10.7 Excluding content from being searched

To exclude content from full-text search in OmniHelp, insert a Search marker with the
value No at the beginning of FrameMaker content you want excluded from search, and
another with the value Yes at the end of content to be excluded. The value in effect at the
end of each paragraph determines what happens for that paragraph. The value is reset to
Yes at the start of each split file.

10.10.8 Using regular expressions in search

You can use JavaScript regular expressions in OmniHelp search, by prefixing the search
text with a forward slash (/). To learn the arcane syntax required, consult a JavaScript
reference.

SETTING UP CSH FOR OMNIHELP MIF2GO USER’S GUIDE

364 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Note: Omni Systems provides no technical support for this feature.

10.10.9 Highlighting search terms found in topics

When you click a link in the OmniHelp search results list, by default each term found in
the target topic is highlighted in yellow.

To turn off search-term highlighting, or change the style:
[OmniHelpOptions]
; UseSearchHighlight = Yes (default, highlight sear ch terms found)
; or No
UseSearchHighlight=Yes
; SearchHighlightStyle = style to use in span to hi ghlight search
; terms found
SearchHighlightStyle=background-color:yellow;

The highlighting style consists of one or more CSS property: value pairs, each
followed by a semicolon. Consult a CSS reference for possible styles.

10.11 Setting up CSH for OmniHelp
To provide entry points for CSH (context-sensitive help) calls from an application to an
OmniHelp system, you can embed symbolic IDs as hypertext newlink markers in your
FrameMaker files, and list alias prefixes in the configuration file. OmniHelp does not use
numeric values for CSH, so you do not need a map file. Actually opening an OmniHelp
topic file from an application might require a redirect page or a visit to the Windows
Registry.

In this section:
§10.11.1 Specifying alias prefixes for OmniHelp CSH calls on page 364
§10.11.2 Referencing OmniHelp topic IDs from an application on page 365
§10.11.3 Using redirect pages for OmniHelp CSH calls on page 365
§10.11.4 Executing browser commands for OmniHelp CSH calls on page 366

See also:
§7.10 Setting up Context Sensitive Help (CSH) on page 239
§34.1.2 Using markers to add links and instructions on page 935

10.11.1 Specifying alias prefixes for OmniHelp CSH calls

Mif2Go produces CSH alias entries from every newlink marker in your FrameMaker
document whose content starts with one of the prefixes you specify. If you do not specify
any prefixes, all newlink markers become aliases.

To specify one or more alias prefixes for CSH calls to OmniHelp topics:
[OmniHelpOptions]
; AliasPrefix = all prefixes wanted in alias file, comma or space
; delimited; if omitted, all newlinks are included
; NOTE: wildcards do not work in prefixes
AliasPrefix = prefix1, prefix2, ...

For example:
[OmniHelpOptions]
AliasPrefix = HIDC_, IDH_

10 GENERATING OMNIHELP SETTING UP CSH FOR OMNIHELP

ALL RIGHTS RESERVED. MAY 18, 2013 365

With this setting, the alias file would include the content of every newlink marker in your
document whose text starts with HIDC_ or IDH_ .

Mif2Go always creates the alias file, needed even if empty.

10.11.2 Referencing OmniHelp topic IDs from an app lication

To specify OmniHelp topic IDs to the browser, an application would make an exec file
call with a file parameter that looks like one of the following:

where myproj is a concatenation of the values specified in configuration section
[OmniHelpOptions] for keywords OHProjFilePrefix , ProjectName , and
OHProjFileSuffix (the underscore is the default value for OHProjFilePrefix). See
§10.3 Setting up an OmniHelp project on page 345.

The second form (using IDH_contextID) is preferable, because it works even if the topic
file name changes. Also, the second form provides a way for a WinHelp system to link to
a specific topic in an OmniHelp system. The WinHelp project would not have to be
recompiled if file names changed in the OmniHelp project.

10.11.3 Using redirect pages for OmniHelp CSH call s

If your application has trouble passing a topic-specific URL to the operating system (and
then to the default browser), try creating a redirect page for each CSH target topic. A
redirect page has content like this:

<!DOCTYPE html PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/l oose.dtd">
<html lang="en">
<head><title> Topic title</title>
<meta http-equiv="refresh"
 content="1;url=file:/// path/to/_myproj.htm#IDH_ contextID">
</head>
<body></body></html>

In this example, IDH_contextID is the content of a newlink marker in the target topic.
You need one little file like this for every CSH entry point. This is not necessarily a bad
thing; redirect files allow you to use a constant set of names in the calling program, even if
the names change in the Help. Notice the three forward slashes in the file reference:

url=file:/// path/to/_myproj.htm#IDH_ contextID

For example:
url=file:///G:/Omnisys/UG/OH/Done/ugmif2go.htm#tabl ist

If you do not know the absolute path on the system where OmniHelp will be deployed, but
you are able to place redirect files in the same directory as the OmniHelp output files (and
invoke OmniHelp from that directory), you could use the following for the url value:

url=file: _myproj.htm#IDH_ contextID

Relative paths would work like this:
url=file:./ to/ _myproj.htm#IDH_ contextID

You could use a file name (file.htm) after the hash mark, with the same result; see
§10.11.2 Referencing OmniHelp topic IDs from an application on page 365.

_myproj.htm# file.htm to get to a specific HTML file in myproj

myproj.htm#IDH contextID to get to the file containing IDH_contextID

MERGING OMNIHELP PROJECTS MIF2GO USER’S GUIDE

366 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

10.11.4 Executing browser commands for OmniHelp CS H calls

If the application that calls your OmniHelp project can execute system commands, the
developer can have the application access the Windows Registry for the required browser
command syntax, and use that command to open an OmniHelp topic file. With this
method, you do not need redirect pages (see §10.11.3 Using redirect pages for OmniHelp
CSH calls on page 365).

To see what is involved, check the Windows Registry for the correct browser command
syntax (Start > Run > regedit):

1. Find the registered name of the default browser. Go to the following key:
HKEY_CLASSES_ROOT\.htm

and look at the first (Default) entry in the Data column. For example, for Firefox the
default browser name is FirefoxHTML .

2. Find the exact command syntax for the default browser. Go to the following key:
HKEY_CLASSES_ROOT\DefaultBrowserName\shell\open\command

For example, for Firefox you would go to:
HKEY_CLASSES_ROOT\FirefoxHTML\shell\open\command

3. Look at the first (Default) entry in the Data column. For example, the command for
Firefox might be:

C:\PROGRA~1\MOZILL~2\FIREFOX.EXE -url "%1"

In each call, the application should replace %1 in the browser command with the following
type of file reference:

file:/// path/ to/ _myproj.htm#IDH_ contextID

where IDH_contextID is the content of a newlink marker in FrameMaker. Notice the
three forward slashes in the file reference. This syntax should open the correct OmniHelp
topic file.

10.12 Merging OmniHelp projects
An OmniHelp project can include links to one or more other OmniHelp projects that are
located in other directories.

In this section:
§10.12.1 Understanding the OmniHelp merge process on page 366
§10.12.2 Listing and mapping OmniHelp subprojects on page 367
§10.12.3 Providing TOC placeholders for OmniHelp subprojects on page 368
§10.12.4 Deciding when to merge OmniHelp subprojects on page 369

See also:
§7.11 Setting up a dynamic modular Help system on page 241

10.12.1 Understanding the OmniHelp merge process

To merge files in one OmniHelp project with files in other OmniHelp projects, you must
designate one of the projects to be the main project; the others are subprojects. The
projects to be linked are merged at run time, when a user loads a project into a browser, or
chooses a link that has a destination in another project. The merge process seamlessly
integrates the contents of all subproj.oh* files from each subproject into those of the
main project; the result is just as if main and subprojects had always been one project.

10 GENERATING OMNIHELP MERGING OMNIHELP PROJECTS

ALL RIGHTS RESERVED. MAY 18, 2013 367

Project names
must be unique

Each OmniHelp project involved in a merge must have a unique project name. You must
provide instructions in the main-project configuration file for merging subproject files
when OmniHelp is loaded into a browser.

Subprojects can
be nested

The merge process includes each subproject’s merge data; as a result, other subprojects
specified for merging into a given subproject are also integrated into the main project,
allowing any degree of nesting of subprojects. However, OmniHelp does not support
circular merging, where one subproject tries to merge another that has already been
merged, or tries to merge the main project. Such anomalous merge attempts are ignored.

Main project must
know about
subprojects

The main project (and any subproject that includes other subprojects) must be aware of all
existing and potential subprojects at the next level down, whether or not those subprojects
are actually present when the main project is loaded into a browser. The name and title of
each subproject must be listed in the main project’s configuration file (see §10.12.2
Listing and mapping OmniHelp subprojects on page 367), and each subproject must have
an entry in the including project’s table of contents (see §10.12.3 Providing TOC
placeholders for OmniHelp subprojects on page 368).

10.12.2 Listing and mapping OmniHelp subprojects

To designate subprojects to be merged, list the subproject paths and titles. For example:
[HelpMerge]
; Subproject name and path = Title of subproject
..\api\LibRef = API Library Reference

Each [HelpMerge] entry specifies a subproject base file name, including a relative path
if the subproject is in a different directory, and the title to be displayed for that subproject
in the main-project contents. The relative path must be correct at run time.

If your main-project FrameMaker document includes links to FrameMaker files that are
part of a subproject listed in [HelpMerge] , specify how those linked-to FrameMaker
files are mapped to their subprojects. For example:

[OHMergeFiles]
; Mapping of Frame files which are linked to by fil es in the current
; project, but are themselves part of another OH pro ject that is
; listed in [HelpMerge], to the name of that project .
; Omit all file extensions.
; file path = subproject path (no prefix, no extens ion)
D:/Library/AppxB=../api/LibRef

It is best to include a path, because you could have several files with the same name (such
as Glossary) in several different books from which you generate different OmniHelp
projects; without file paths, you would have no way to differentiate them.

To handle several possible paths to the same file, you can add a line for each path. For
example:

[OHMergeFiles]
ChapA=BookA
ChapB=BookB
.../GroupB/ChapB=BookB
G:/test/GroupB/ChapB=BookB

Although you can use either forward slashes or backslashes in paths, forward slashes are
preferred. FrameMaker stores cross-reference paths with forward slashes, and Mif2Go
uses those cross-reference paths to find the referenced files.

MERGING OMNIHELP PROJECTS MIF2GO USER’S GUIDE

368 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

10.12.3 Providing TOC placeholders for OmniHelp su bprojects

Place a HelpMerge marker in your main-project FrameMaker document for each
subproject listed in the [HelpMerge] section, to:

 • show where the subproject TOC should be merged into the main project TOC
 • specify a contents level for the top TOC entry for the subproject.

Insert the HelpMerge marker between two main-project topics, in either of the following
places:

 • at the start of the main-project topic that should follow the subproject in the TOC,
before any text

 • at the end of the main-project topic that should precede the subproject in the TOC,
after all text, in an otherwise empty paragraph.

Do not place the HelpMerge marker at the very beginning of the main project, and do not
include duplicate HelpMerge markers for the same subproject.

The content of the HelpMerge marker consists of a single-digit contents level number
(with respect to the main project TOC) for the top TOC entry of the subproject, followed
by a space, followed by the path to the subproject. For example:

1 ../api/LibRef

Add subprojects
before the fact

To include merge points for future subprojects that are not yet available, so that the main
project does not even need to know whether they exist, at the end of the TOC add extra
merge points with dummy subproject names. If you specify load-time merging:

[OmniHelpOptions]
MergeFirst=Yes

any subprojects that are present will be integrated, and any merge point for which a
subproject is not present will be removed from the TOC.

Add subprojects
after the fact

To provide the marker content after the fact, for a subproject that has already been built or
was created without using Mif2Go , insert an entry in the *_ohc.js file for the master
project, in the position where you want the subproject entry to appear in the master-project
contents. The entry must look like this:

[n," title","* name"],

where the components are as follows:

The last three items in the following example identify subprojects: that are in a directory
different from the parent directory, so a relative path is prefixed to the project name:

var tocItems = [
[1,"Server","aa998290.htm#Xaa998290"],
[2,"Feature 1","aa998295.htm#Xaa998295"],
[2,"Feature 2","aa998300.htm#Xaa998300"],
[1,"Connectors","aa998313.htm#Xaa998313"],
[2,"Connector A","*ConnA/ConnA"],
[2,"Connector B","*ConnB/ConnB"],
[2,"Connector C","*ConnC/ConnC"]]

You would also need an item in _ohx.js like this:
var mergeProjects = [
["ConnA/ConnA",0,0,4,[]],

n Contents level for the subproject entry in the master-project contents

title Title of the subproject

name Project name of the subproject

10 GENERATING OMNIHELP ASSEMBLING OMNIHELP FILES FOR VIEWING

ALL RIGHTS RESERVED. MAY 18, 2013 369

["ConnB/ConnB",0,0,5,[]],
["ConnC/ConnC",0,0,6,[]]]

where the 4, 5, 6 are the (zero-based) numbers of the TOC items. This example is for a
set-up in which each secondary item is in a subdirectory that has the same name as the
project.

See also:
§7.4.4 Setting contents levels for HTML-based Help on page 210
§10.12.2 Listing and mapping OmniHelp subprojects on page 367
§29.2 Adding custom marker types on page 832

10.12.4 Deciding when to merge OmniHelp subproject s

You can specify whether to merge all subprojects when a browser first loads the
OmniHelp main project, or to merge a given subproject only when a user chooses a link to
that subproject. The default is to merge only on demand.

To merge all subprojects when the main project is first loaded:
[OmniHelpOptions]
; MergeFirst = No (default, merge subprojects only when they are
; called on), or Yes (do all merges during initial l oad,
; takes longer to start up)
MergeFirst=Yes

Merge at load
time

When MergeFirst=Yes , at browser load time the contents and index entries of all
subprojects that meet the following criteria are merged with those of the main project:

 • The subproject name is listed under [HelpMerge] in the main project configuration
file; see §10.12.2 Listing and mapping OmniHelp subprojects on page 367.

 • The main project’s table of contents includes a merge point for the subproject; see
§10.12.3 Providing TOC placeholders for OmniHelp subprojects on page 368.

 • The subproject files are actually present.

Merge-point entries are quietly removed from the main project table of contents for any
subproject whose files are not present at load time. Merging subprojects at load time
makes the browser load process significantly slower than just loading the main project.
You would not want this option if you are using OmniHelp for context-sensitive help (see
§10.11 Setting up CSH for OmniHelp on page 364). However, this is the way to go if you
distribute non-CSH OmniHelp systems that do not always include all subprojects.

Merge on
demand

When MergeFirst=No (the default), at browser load time all subproject merge-point
entries are included in the main project table of contents, whether or not the subproject
files are actually present. When a user clicks a subproject entry, if the subproject files are
present, the subproject contents and index entries are merged with the main project
contents and index entries. However, if a user clicks an entry for a missing subproject, that
entry disappears from the main project table of contents.

10.13 Assembling OmniHelp files for viewing
By default, Mif2Go copies all files with the following extensions from the project
directory to the wrap directory (see §35.2 Activating and logging production of
deliverables on page 956):

*.htm *.css *.js *.gif *.jpg *.png

DEPLOYING OMNIHELP MIF2GO USER’S GUIDE

370 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You can change the list of files to be copied; see §35.6 Assembling files for distribution on
page 961. Mif2Go automatically copies the necessary OmniHelp viewer files from the
viewer-control directory to the wrap directory, according to the value of OHViewPath :

[OmniHelpOptions]
; OHViewPath = path to dir containing the OH viewer files

See §10.2.2 Making OmniHelp viewer control files available on page 343. By default,
OHViewPath references the OmniHelp viewer files in one of the following directories:

%OMSYSHOME%\common\system\omnihelp\ohvhtm (for HTML output)
%OMSYSHOME%\common\system\omnihelp\ohvxml (for XHTML output)

If you put the viewer-control files somewhere else, you must specify the path (preferably
absolute) to that location as the value of OHViewPath . Do not place the viewer-control
files under the wrap directory. Mif2Go copies the files listed in Table 10-5 from the
directory designated by OHViewPath to the directory designated by WrapPath , if
specified, otherwise to the project directory.

The start-up file type (HTML or XHTML) determines which set of files will be copied;
see §10.2.1 Choosing XHTML vs. HTML OmniHelp control files on page 342.

To have Mif2Go copy additional files to the wrap directory:
[OmniHelpOptions]
; OHVFiles = list of files to copy from OHViewPath (the viewer files).
OHVFiles = oh*.* some\other\files yet\more\files ...

The file specifications you assign to OHVFiles must be separated by spaces, and no
spaces are allowed within a file specification. You can use wildcards in file specifications,
and include absolute or relative paths to indicate where viewer files should be copied
from. Relative paths are relative to the wrap directory.

The files you list for OHVFiles will be copied in addition to the files listed in Table 10-5.
If you are not adding any special files of your own, there is no need to include a setting for
OHVFiles . When you do not provide a setting for OHVFiles , the default value is based
on the setting for OHProjFileXhtml ; see §10.2.1 Choosing XHTML vs. HTML
OmniHelp control files on page 342.

See also:
§7.2.4 Compiling and distributing Help systems on page 204
§35.6 Assembling files for distribution on page 961

10.14 Deploying OmniHelp
When users launch an OmniHelp system, what happens depends on which browser they
are using, and how they tell the browser to load OmniHelp. Most browsers will refuse to
open HTML files on a non-local drive that are called using the file protocol. If the files are
not on a local drive, they must be served by an HTTP server and called using the http
protocol.

In this section:
§10.14.1 Starting with the default topic or a specified topic on page 371

Table 10-5 OmniHelp viewer files copied from OHViewPath to WrapPath

Start-up file type OmniHelp viewer files copied to w rap directory by default

HTML oh*.*

XHTML ox*.htm ox*.js oh*.css oh*.js

10 GENERATING OMNIHELP DEPLOYING OMNIHELP

ALL RIGHTS RESERVED. MAY 18, 2013 371

§10.14.2 Restarting where you left off on page 371
§10.14.3 Coping with browser quirks on page 371

10.14.1 Starting with the default topic or a speci fied topic

To launch OmniHelp, you can specify any of the following in the locator field of the
browser, or in a link in some other file:

In these examples myproj is a concatenation of the values specified in configuration
section [OmniHelpOptions] for keywords OHProjFilePrefix , ProjectName , and
OHProjFileSuffix ; the underscore is the default value for OHProjFilePrefix . See
§10.3 Setting up an OmniHelp project on page 345.

10.14.2 Restarting where you left off

Once an OmniHelp project is loaded, the browser constantly stores the current state in
cookies that last one year. If you exit OmniHelp, the next time you load it, you are back
where you were before. To get to the beginning (the default topic file) instead, click Start .

10.14.3 Coping with browser quirks

If you click the Reload button on your browser with your OmniHelp system loaded, CSS
style sheets might not reload, so the resulting page might appear unformatted. Browsers do
not retain the original URL internally, and if you try to restart from the later-stage
OmniHelp file the browser does recall, you miss loading several necessary JavaScript
files. That is why Mif2Go provides a Start button. Use the OmniHelp Start button instead
of the browser Reload button.

Likewise, never use the browser Back button; always use the OmniHelp Back button
instead. When you load OmniHelp in Internet Explorer, this is not a problem, because
Internet Explorer loads in its own window that does not have these problematic browser
controls. Although you can do the same in Firefox, thanks to its “security” features, this
works only when you are loading from the Web, not locally.

The most commonly used browsers on Windows each seem to have a different issue with
displaying OmniHelp files:

Internet Explorer issues
Firefox issues
Chrome issues
Opera issues
Safari issues
Netscape issues

_myproj.htm Loads everything else, starting with the default
topic file.

_myproj.htm# filename.htm If filename.htm is a topic file in the OmniHelp
project, the browser shows filename.htm first.

_myproj.htm# name If there is no dot in name, the browser looks up
name in OmniHelp data file myproj_oha.js ,
and loads the appropriate file; see §10.11 Setting
up CSH for OmniHelp on page 364.

DEPLOYING OMNIHELP MIF2GO USER’S GUIDE

372 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Internet Explorer
issues

When you open an OmniHelp file in Internet Explorer, even if you have specified that the
existing window should be closed (see §10.5.1 Configuring OmniHelp window usage and
frameset dimensions on page 352), you get a confirmation dialog:

The Web page you are viewing is trying to close the window.
Do you want to close this window?

This is an Internet Explorer “security feature” that cannot be turned off. To avoid the
confirmation dialog, your only real choice is to open OmniHelp in the existing window,
with all the browser chrome on top. Or open in the new window, but leave the starting
window open too, which looks like a mistake but is harmless.

Firefox issues Firefox does not open a new window when you launch a local OmniHelp system by
double-clicking _myproj.htm , unless you also set the following option in Firefox. On the
main Firefox menu, choose:

Tools > Options... > Tabs > Open links from other a pplications in:

and check a new window . Unfortunately, all the chrome comes along with the new
window.

For OmniHelp systems viewed on the Web, unless you have pop-up windows blocked,
Firefox should open OmniHelp in a new window, without chrome. If you do have pop-up
windows blocked, you can unblock them selectively; on the main Firefox menu, choose:

Tools > Options... > General > Block Popup Windows > Allowed Sites

and add the Web address where your OmniHelp system is located.

If you click Reload to refresh OmniHelp in Firefox, the left navigation pane might lose its
CSS rendering. The workaround is to close the OmniHelp tab, then reopen OmniHelp
from a Firefox bookmark that references _myproj.htm (see §10.14.1 Starting with the
default topic or a specified topic on page 371).

Chrome issues When you attempt to access Help files located in your local file system, OmniHelp (and
all other forms of Web Help we know about) will not work in Google Chrome, unless you
start Chrome with this special command-line switch:

--allow-file-access-from-files

This option allows locally hosted Web Help systems to open in Chrome. Otherwise,
Chrome does not allow local files to access the JavaScript scope of the parent
frame/window. Because of security risks, users should start Chrome with this option only
to view trusted local Web Help systems.

See Peter Grainge’s discussion of this issue, in Snippet 130:
http://www.grainge.org/pages/snippets/snippets.htm

Opera issues On some systems, Opera works as expected with OmniHelp. On other systems, Opera
might not display the left navigation pane. On still other systems, refresh eliminates the
content of the contents, the index, and the search frame.

Safari issues On an iPad, Safari does not seem to respect frame size settings. Instead the frame adjusts
to the width of its widest contents.

Netscape issues Later versions of Netscape Navigator might refuse to open OmniHelp files if you have
suppressed pop-ups; on the Navigator Edit menu, look at Preferences... >
Privacy & Security > Pop-up Windows . Also, later versions of Netscape Navigator
might ignore CSS for OmniHelp files viewed over the Web. Local OmniHelp files, with
local CSS, are displayed properly.

http://www.grainge.org/pages/snippets/snippets.htm

ALL RIGHTS RESERVED. MAY 18, 2013 373

11 Generating JavaHelp or Oracle Help

This section addresses issues that are specific to generating JavaHelp and Oracle Help for
Java. HTML settings described in section 13 and sections 18 through 34 apply also. Topics
include:

§11.1 Deciding which Java Help system to use on page 373
§11.2 Obtaining tools for a Java-based Help system on page 373
§11.3 Setting up a JavaHelp or Oracle Help project on page 374
§11.4 Generating contents and index on page 385
§11.5 Providing full-text search for JavaHelp / Oracle Help on page 387
§11.6 Creating and viewing a Java Archive (JAR) file on page 390
§11.7 Converting a glossary to JavaHelp 2 on page 392
§11.8 Defining windows for JavaHelp or Oracle Help on page 393
§11.9 Linking to destinations within topics on page 399
§11.10 Creating ALinks for Oracle Help on page 399
§11.11 Merging JavaHelp or Oracle Help systems on page 400
§11.12 Setting up CSH for JavaHelp or Oracle Help on page 401

See also:
§7 Producing on-line Help on page 199

11.1 Deciding which Java Help system to use
JavaHelp and Oracle Help for Java offer true platform independence, provided a Java
Virtual Machine (JVM) is available for each platform you support. However, JavaHelp is
no longer supported, so it is not recommended.

About JavaHelp JavaHelp 2.0 provides features such as a “favorites” list, support for a glossary, and
support for secondary windows. You can download the JavaHelp System User’s Guide in
PDF format here:

http://download.java.net/javadesktop/javahelp/

Earlier versions of JavaHelp are no longer available, and current versions are no longer
supported.

Mif2Go produces HTML 3.2 code for JavaHelp. The HTML 3.2 code works with the
W3C validator to validate JavaHelp topic files, with one exception: JavaHelp cannot abide
single quotes in <meta> tags in the <head> element, so Mif2Go omits them.

About Oracle
Help for Java

Oracle Help for Java has all the capabilities of JavaHelp; can use the same files; and
supports some nice extensions, such as ALinks. Information is available from the Oracle
Technology Network:

http://www.oracle.com/technetwork/topics/index-083946.html

You must register to access the Oracle site, but registration is free.

11.2 Obtaining tools for a Java-based Help system
You will need Java Standard Edition (Java SE): version 2 or later for JavaHelp, version 5
or later for Oracle Help. Download the Java SE from this site:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://download.java.net/javadesktop/javahelp/
http://www.oracle.com/technetwork/topics/index-083946.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

SETTING UP A JAVAHELP OR ORACLE HELP PROJECT MIF2GO USER’S GUIDE

374 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Note: Install Java SE in a directory with no spaces in the path name; otherwise you will
have to modify some of the scripts that accompany the Help tools, to enclose the
path name in double quotes.

Download Oracle Help for Java from this site:
http://www.oracle.com/technetwork/topics/ohj50ext-089966.html

Download JavaHelp from this site:
http://download.java.net/javadesktop/javahelp/

Note: Install JavaHelp in a directory with no spaces in the path name.

Supposedly, eventually JavaHelp downloads should be available here:
http://java.net/projects/javahelp/

However, it does not appear that this site is maintained.

For both Help systems the software is free, and can be redistributed.

11.3 Setting up a JavaHelp or Oracle Help project
In this section:

§11.3.1 Creating a JavaHelp or Oracle Help for Java project on page 374
§11.3.2 Choosing set-up options for a JavaHelp or Oracle Help project on page 375
§11.3.3 Deciding where to locate configuration settings on page 376
§11.3.4 Specifying output options for JavaHelp on page 376
§11.3.5 Establishing a JavaHelp environment on page 377
§11.3.6 Establishing an Oracle Help environment on page 377
§11.3.7 Creating a directory structure for JavaHelp / Oracle Help on page 378
§11.3.8 Configuring the helpset file on page 382
§11.3.9 Coping with JavaHelp / Oracle Help viewer limitations on page 384
§11.3.10 Compiling JavaHelp with Helen on page 384

See also:
§7.2.1 Checking automatic Help topic assignments on page 203

11.3.1 Creating a JavaHelp or Oracle Help for Java project

To create a JavaHelp or Oracle Help project:

1. Create a project directory for output files, separate from the directory where your
FrameMaker document is located.

2. With your FrameMaker book or document file open, choose File > Set Up Mif2Go
Export ; the Choose Project dialog opens (see §3.3 Creating a Mif2Go conversion
project on page 78).

3. Name your JavaHelp or Oracle Help project, and browse to the project directory you
created in Step 1.

4. Choose output type JavaHelp or output type OracleHelp and click OK.

5. Check options in the Set Up Java Help Project dialog (see §11.3.2 Choosing set-up
options for a JavaHelp or Oracle Help project on page 375).

6. Use a text editor to edit the resulting _m2javahelp.ini or _m2oraclehelp.ini
configuration file (see §4.1 Working with Mif2Go configuration files on page 91).

http://www.oracle.com/technetwork/topics/ohj50ext-089966.html
http://download.java.net/javadesktop/javahelp/
http://java.net/projects/javahelp/

11 GENERATING JAVAHELP OR ORACLE HELP SETTING UP A JAVAHELP OR ORACLE HELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 375

7. Important: To make the configuration fit your usage of headings to start topics, pay
special attention to sections [HelpContentsLevels] (see §7.2.1 Checking
automatic Help topic assignments on page 203) and [HTMLParaStyles] (see §18.2
Splitting files on page 586).

11.3.2 Choosing set-up options for a JavaHelp or O racle Help project

When you select JavaHelp or Oracle Help for Java as the output type for a new project, the
Set Up dialog shown in Figure 11-1 opens. Table 11-1 shows the corresponding settings in
the configuration file. You must edit the configuration file to specify additional options.

See also:
§3.4 Choosing project set-up options on page 79
§7 Producing on-line Help on page 199
§13.2.2 Choosing set-up options for an HTML or XHTML project on page 425

Figure 11-1 Set Up Java Help Project

Table 11-1 JavaHelp set-up options and configuration settings

Set-up dialog Configuration file
Option Section Setting Default Ref.

Gen TOC [JavaHelpOptions] ListType=Contents Both 7.3.4.1

Gen IX [JavaHelpOptions] ListType=Index Both 7.3.4.1

FTS: [JavaHelpOptions] UseFTS=Yes Omitted 11.5

[JavaHelpOptions] FTSCommand= path/to/FTS
/program

Omitted 11.5

Jar with: [Automation] ArchiveCommand= path/to
/JAR/program

Omitted 11.6

SETTING UP A JAVAHELP OR ORACLE HELP PROJECT MIF2GO USER’S GUIDE

376 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

11.3.3 Deciding where to locate configuration sett ings

When you set up a JavaHelp or Oracle Help project from within FrameMaker, if
configuration file _m2javahelp.ini (or _m2oraclehelp.ini) is not already present
in your project directory, Mif2Go creates this file for you; see §3 Converting a book or
document on page 77.

Which
configuration file?

To configure output, add settings to one of the following files, depending on the desired
scope of each setting.

For JavaHelp output:

For Oracle Help output:

See §30.5 Deciding which configuration file to edit on page 856.

To determine which configuration settings will produce the appearance and functionality
you want, also see:

§13 Converting to HTML/XHTML on page 423
§18 Splitting and extracting files on page 585
§21 Mapping text formats to HTML/XML on page 645
§23 Including graphics in HTML on page 703
§24 Converting tables to HTML on page 727

11.3.4 Specifying output options for JavaHelp

By default, Mif2Go produces JavaHelp 2 output. To generate JavaHelp 1 instead:
[JavaHelpOptions]
; JHVersion2 = Yes (default) or No (limit features used to Version 1)
JHVersion2 = No

If you do choose JavaHelp 1, be aware that several executable files in the JavaHelp
distribution that used to be .exe files were changed to .jar files in JavaHelp version

Helpset file [JavaHelpOptions] HSFileName= MyDoc.hs MyDoc.hs 11.3.8

Title [JavaHelpOptions] HelpFileTitle= My Title Your Title
Here

11.3.8

Start [JavaHelpOptions] DefaultTopic= Topic ID MyDoc 11.3.8

Map prefix [JavaHelpOptions] MapFilePrefix= html/ Omitted 11.3.7.4

Overwrite any .hs [JavaHelpOptions] WriteHelpSetFile=Yes No 11.3.8

Table 11-1 JavaHelp set-up options and configuration settings (continued)

Set-up dialog Configuration file
Option Section Setting Default Ref.

Scope Configuration file Location

Current project
only

_m2javahelp.ini Current project directory

All JavaHelp
projects

local_m2javahelp_config.ini %omsyshome%\m2g\local\co nfig\

Scope Configuration file Location

Current project
only

_m2oraclehelp.ini Current project directory

All Oracle Help
projects

local_m2oraclehelp_config.ini %omsyshome%\m2g\local\ config\

11 GENERATING JAVAHELP OR ORACLE HELP SETTING UP A JAVAHELP OR ORACLE HELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 377

1.1.3. For example, with version 1.1.3 you use jhindexer.jar and hsviewer.jar .
You must run both JHIndexer and hsviewer from the command line, and you will need
environment variable JAVAHELP_HOME to run them at all.

See also:
§11.5 Providing full-text search for JavaHelp / Oracle Help on page 387
§11.6 Creating and viewing a Java Archive (JAR) file on page 390

11.3.5 Establishing a JavaHelp environment

To use JavaHelp, you must have both JavaHelp and the Java Runtime Environment (JRE)
installed on your system, and you must set some environment variables. If you plan to
create .jar files, you will also need jar.exe from the Java Software Development Kit
(JDK).

JavaHelp 2.0 requires Java Standard Edition (Java SE). Both Java SE and JavaHelp are
available for download; see §11.2 Obtaining tools for a Java-based Help system on
page 373.

Environment
variables

You must create Windows environment variables JAVA_HOME and JHHOME, if they are not
already defined on your system; for example, on Windows 2000 or Windows XP:

Control Panel > System > Advanced > Environment Var iables

These environment variables are defined as follows:
JAVA_HOME path\to\JavaSE\executables
JHHOME path\to\JavaHelp\executables

For example:
JAVA_HOME=C:\Java\j2re1.4.2_03\bin
JHHOME=C:\JH\jh20\javahelp\bin

JavaHelp viewer To check the results after Mif2Go generates JavaHelp files, you can use the JavaHelp
viewer included in the JavaHelp installation: hsviewer.jar , located in the demos\bin
directory. The JavaHelp System User’s Guide shows how to set up a shortcut to the
viewer.

11.3.6 Establishing an Oracle Help environment

To use Oracle Help for Java, you must have both Oracle Help and a Java Virtual Machine
(JVM) installed on your system. Oracle Help version 5.0 requires Java SE version 5.0 or a
later version. If you plan to create .jar files, you will also need jar.exe from the Java
Developer’s Kit (JDK).

Oracle Help for Java is available for download from the Oracle Technology Network; see
§11.2 Obtaining tools for a Java-based Help system on page 373.

Environment
variables

Edit Windows System environment variable CLASSPATH (or create CLASSPATH if it is not
already defined on your system):

Control Panel > System > Advanced > Environment Var iables

What you add to CLASSPATH depends on which version of Oracle Help you are using; the
dependencies and file names changed between versions 4 and 5.

If you are using Oracle Help version 4, append to CLASSPATH the following paths,
separating each path from the next with a semicolon:

where\you\installed\ohj\
where\you\installed\ohj\help4.jar
where\you\installed\ohj\help4-demo.jar

SETTING UP A JAVAHELP OR ORACLE HELP PROJECT MIF2GO USER’S GUIDE

378 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

where\you\installed\ohj\help4-indexer.jar
where\you\installed\ohj\ohj-jewt.jar
where\you\installed\ohj\oracle_ice.jar

For example (all on one line, of course):
CLASSPATH=D:\ohelp\help4-indexer.jar;D:\ohelp\help4 -demo.jar;D:\ohelp\
help4.jar;D:\ohelp\ohj-jewt.jar;D:\ohelp\;D:\ohelp\ oracle_ice.jar;D:\o
help\help4-indexer.jar

If you are using Oracle Help version 5, append to CLASSPATH the following paths,
separating each path from the next with a semicolon:

where\you\installed\ohj\
where\you\installed\ohj\ohj.jar
where\you\installed\ohj\help-share.jar
where\you\installed\ohj\share.jar
where\you\installed\ohj\help-demo.jar
where\you\installed\ohj\help-indexer.jar
where\you\installed\ohj\jewt.jar
where\you\installed\ohj\oracle_ice.jar

For example (all on one line, of course):
CLASSPATH=g:\ohj5;g\ohj5\ohj.jar;g:\ohj5\help-share .jar;g:\ohj5\oracle
_ice.jar;g:\ohj5\jewt.jar;g:\ohj5\share.jar;g:\ohj5 \help-indexer.jar

Oracle Help
viewer

Given these settings for CLASSPATH, if you have also established a path to java.exe in a
current JRE (see §11.3.5 Establishing a JavaHelp environment on page 377), to view the
results of generating Oracle Help you should be able to use a .bat file with commands
like the following:

cd where\you\installed\ohj
java oracle.help.demo.ChoiceDemo " \path\to\MyOutput\help\ MyDoc.hs"

In practice, for Oracle Help 5, we find that setting the CLASSPATH environment variable is
not sufficient; you must still supply the same dependencies to the java command as an
argument to -classpath . For example:

cd G:\OHJ5
REM The following java command must be all on one l ine:
java -classpath
"ohj.jar;help-share.jar;oracle_ice.jar;jewt.jar;sha re.jar;help-demo.ja
r" oracle.help.demo.ChoiceDemo "G:\OmniSys\UG\ohj\h elp\ugmif2go.hs" %*

Your experience might be different.

11.3.7 Creating a directory structure for JavaHelp / Oracle Help

In this section:
§11.3.7.1 Understanding the JavaHelp / Oracle Help directory structure on page 378
§11.3.7.2 Letting Mif2Go set up the directory structure and copy files on page 379
§11.3.7.3 Locating graphics files for JavaHelp and Oracle Help on page 380
§11.3.7.4 Specifying a path for search-index links on page 381
§11.3.7.5 Manually copying and deleting output files on page 381

11.3.7.1 Understanding the JavaHelp / Oracle Help directory structure

If you plan to provide features such as full-text search, JavaHelp and Oracle Help require a
more involved directory structure than just a Mif2Go project directory. You can create the
directory structure, or let Mif2Go do it for you; see §11.3.7.2 Letting Mif2Go set up the
directory structure and copy files on page 379. A typical directory structure looks like this,

11 GENERATING JAVAHELP OR ORACLE HELP SETTING UP A JAVAHELP OR ORACLE HELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 379

with the top-level JavaHelp or Oracle Help directory as a subdirectory of the conversion
project directory:

MyDoc FrameMaker document files
.. MyOutput Mif2Go output files (normal Mif2Go project directory)

Top JH or OHJ level starts here:
....help Help files copied from MyOutput: .hs , .jhm , .xml
......graphics Image files copied from MyOutput (or another location)
......html .htm and .css files copied from MyOutput

After Mif2Go generates output, the helpset file (.hs) and navigational files (.jhm and
.xml) are copied from the Mif2Go project directory to the help directory.

11.3.7.2 Letting Mif2Go set up the directory struc ture and copy files

To have Mif2Go set up the JavaHelp or Oracle Help directory structure for you, specify a
path to the top-level directory. For example:

[Automation]
WrapAndShip = Yes
; WrapPath = for JavaHelp or Oracle Help, path to t op-level dir,
; default is output dir
WrapPath = ./help

WrapPath can be an absolute path or a path relative to the project directory; the default
value of WrapPath is the project directory itself.

Directories are
created

When you specify a value for WrapPath , Mif2Go creates the WrapPath directory if it is
not already present, and also creates the two required subdirectories, if they are not already
present.

To specify names for the subdirectories:
[JavaHelpOptions] or [OracleHelpOptions]
; HTMLSubdir = subdirectory of WrapPath for *.htm, *.css, and *.js
; files, default "html"
HTMLSubdir = html
; GraphSubdir = subdirectory of WrapPath for *.gif, *.jpg, and *.png
; files, default "graphics"
GraphSubdir = graphics

Unless you are creating a proprietary directory structure, just accept the default names.

The directory designated by HTMLSubdir is the default setting for MapFilePrefix , with
“ / ” appended; see §11.3.7.4 Specifying a path for search-index links on page 381.

The directory designated by GraphSubdir is the default JavaHelp and Oracle Help
setting for [Graphics]GraphPath , with “../ ” prepended; see §11.3.7.3 Locating
graphics files for JavaHelp and Oracle Help on page 380.

Directories can be
emptied before

copying

To empty the subdirectories before copying:
[JavaHelpOptions] or [OracleHelpOptions]
; EmptyJavaHTMLSubdir = Yes (default, empty HTMLSub dir directory
; before copying) or No (leave HTML files in place)
EmptyJavaHTMLSubdir = Yes
; EmptyJavaGraphSubdir = No (default, leave graphic s files in place)
; or Yes (empty GraphSubdir directory before copyin g)
EmptyJavaGraphSubdir = Yes

Files are copied
from the project

directory

When you specify a value for [Automation]WrapPath , Mif2Go automatically
populates the directory structure. After generating HTML files and optionally creating a
full-text search index, Mif2Go copies files that have the following extensions, from the
project directory to the directory specified by WrapPath , or to the appropriate

SETTING UP A JAVAHELP OR ORACLE HELP PROJECT MIF2GO USER’S GUIDE

380 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

subdirectory. For example, with WrapPath=./help and default names for the
subdirectories:

Note: Files are automatically copied from the project directory only if you specify a
value for WrapPath .

List files to copy
to the top
directory

To specify what files to copy to the top directory:
[JavaHelpOptions] or [OracleHelpOptions]
; JavaRootFiles = list of files to copy to WrapPath
JavaRootFiles = *.hs *.jhm *.xml

You can use JavaRootFiles to list files to be copied to the directory designated by
WrapPath . The file specifications you assign to JavaRootFiles must be separated by
spaces, and no spaces are allowed within a file specification. You can use wildcards in file
specifications, and include absolute or relative paths to indicate where files should be
copied from; the default is from the project directory. By default, the following files are
copied:

*.hs *.jhm *.xml

Any file list you assign to JavaRootFiles overrides these defaults.

Graphics can be
copied from a

different directory

To have Mif2Go copy graphics files from a location other than the project directory:
[Automation]
WrapAndShip = Yes
CopyOriginalGraphics = Yes

When CopyOriginalGraphics=Yes , Mif2Go follows the file paths in your
FrameMaker source to find the graphics files to copy to the directory specified by
GraphSubdir .

See also:
§7.2.4 Compiling and distributing Help systems on page 204.
§35 Producing deliverable results on page 955

11.3.7.3 Locating graphics files for JavaHelp and Oracle Help

To view images in a generated JavaHelp system, if you are using a typical directory
structure, image files must be in a subdirectory of the helpset directory such as
help\graphics , and HTML files that reference the images must be in a parallel
subdirectory, such as help\html . (See §11.3.7.1 Understanding the JavaHelp / Oracle
Help directory structure on page 378).

When you have finished generating a JavaHelp or Oracle Help system, both of the
following must be true:

 • all graphics referenced from HTML topic files are in one subdirectory of the helpset
directory; see §11.3.7.2 Letting Mif2Go set up the directory structure and copy files
on page 379

 • all references to graphics specify a relative path from the helpset directory to the
graphics subdirectory.

For example, to specify a relative path from directory help (where the helpset is located)
to subdirectory help\graphics (where graphics are located):

Directory File extensions
.\help *.xml *.hs *.jhm

.\help\html *.htm *.css *.js

.\help\graphics *.gif *.jpg *.png

11 GENERATING JAVAHELP OR ORACLE HELP SETTING UP A JAVAHELP OR ORACLE HELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 381

[Graphics]
GraphPath = ../graphics/

For JavaHelp and Oracle Help (only), the directory designated by GraphSubdir (see
§11.3.7.2 Letting Mif2Go set up the directory structure and copy files on page 379) is the
default setting for [Graphics]GraphPath , with “../ ” prepended.

Note: For JavaHelp and Oracle Help, forward slashes are required in path names you
assign to keywords in the configuration file; see §4.4 Understanding the rules for
configuration settings on page 102.

Mif2Go uses the value of GraphPath for the src attribute of tags. See §31.3.1.1
Specifying graphics location for HTML on page 887.

To specify the location of images assigned to specific JavaHelp 2 windows, see §11.8.1.1
Assigning default window parameters for JavaHelp 2 on page 394.

11.3.7.4 Specifying a path for search-index links

To create a search index, URLs in the JavaHelp map file (.jhm) must point to files in a
subdirectory of the directory where the helpset file is located; the default subdirectory is
help\html . See §11.3.7.1 Understanding the JavaHelp / Oracle Help directory structure
on page 378.

Note: Oracle Help uses a map file only for ALinks and for CSH links; if your Oracle
Help project does not include either of those features, there is no map file.

To provide a prefix that points map-file URLs to the correct directory:
[JavaHelpOptions] or [OracleHelpOptions]
; MapFilePrefix = prefix to insert at start of map file URLs
MapFilePrefix = html/

The directory designated by HTMLSubdir (see §11.3.7.2 Letting Mif2Go set up the
directory structure and copy files on page 379) is the default setting for MapFilePrefix ,
with “ / ” added. Use a forward slash, not a backslash, at the end of the prefix; URLs
require forward slashes.

MapFilePrefix fixes URLs in the map file, but does not actually move any of the
referenced files; see §11.3.7.2 Letting Mif2Go set up the directory structure and copy files
on page 379.

11.3.7.5 Manually copying and deleting output file s

To get rid of any orphaned HTML files left over from a previous conversion run, for a
stand-alone project (no links to other projects) it is best to delete all HTML output files
before each full conversion, then copy new HTML output files to the appropriate
compilation directory after conversion. For large projects, deleting and then recreating the
help\html subdirectory is noticeably faster than deleting HTML files one by one.

Do not delete until
after all

conversions

If HTML output files contain cross references to another project (as in a merge situation),
those cross references would be broken if you were to delete HTML files from the project
directory, because Mif2Go would not be able to update the missing files. In that situation,
update all projects that need updating before you copy HTML files from the project
directory to the compilation directory; and delete HTML files from the project directory
only when you start a full conversion of every project involved.

SETTING UP A JAVAHELP OR ORACLE HELP PROJECT MIF2GO USER’S GUIDE

382 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

11.3.8 Configuring the helpset file

In this section:
§11.3.8.1 Specifying helpset file name and title on page 382
§11.3.8.2 Specifying a default starting topic for the helpset on page 382
§11.3.8.3 Deciding whether to rewrite the helpset file on page 383
§11.3.8.4 Providing a “favorites” option for JavaHelp 2 on page 383
§11.3.8.5 Adding custom helpset sections for JavaHelp 2 on page 383
§11.3.8.6 Requiring full paths in the helpset file on page 383

11.3.8.1 Specifying helpset file name and title

To specify a helpset file name for JavaHelp or Oracle Help:
[JavaHelpOptions] or [OracleHelpOptions]
; HSFileName = name for JavaHelp HelpSet file used in archive
HSFileName = myproj.hs

The default helpset file name is the name of your FrameMaker book or document file.

To have Mif2Go copy the helpset file to another directory after generating output files,
specify the following:

[Automation]
; WrapPath = for JavaHelp or Oracle Help, path to t op-level dir,
; default is output dir
WrapPath = ./help

See §11.3.7.2 Letting Mif2Go set up the directory structure and copy files on page 379.

To specify a helpset title:
[JavaHelpOptions] or [OracleHelpOptions]
; HelpFileTitle = title in HelpSet file, default fi lename or bookname
HelpFileTitle = Title of My Project

Oracle Help for Java does not support entities in the title. Do not include special characters
such as &, <, >, or " in the title of the helpset file.

11.3.8.2 Specifying a default starting topic for t he helpset

To specify the helpset starting topic:
[JavaHelpOptions] or [OracleHelpOptions]
; DefaultTopic = starting topic ID (not file name)
;DefaultTopic =

This setting specifies an identifier for the first topic to display. This is a JavaHelp-specific
target name rather than a file name. Typically it is the ObjectID of the first heading in the
file; for example, Xaa123456 . The default-topic identifier appears in a helpset file entry
such as the following:

<homeID>Xaa123456</homeID>

The helpset entry identifies the map-file URL that points to the topic file; for example:
<mapID target="Xaa123456" url="html/ugmif2go.htm" / >

If you do not specify a value for DefaultTopic , Mif2Go tries to autodetect the target
name; however, this works only if Mif2Go is rewriting the helpset file after the first time
you ran the conversion. Mif2Go uses the first topic ID in the first file in the book. If all
else fails, Mif2Go uses the base name of the FrameMaker book (or single FrameMaker
file).

11 GENERATING JAVAHELP OR ORACLE HELP SETTING UP A JAVAHELP OR ORACLE HELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 383

11.3.8.3 Deciding whether to rewrite the helpset f ile

Mif2Go creates a helpset file for you the first time you run a JavaHelp conversion.
Although Mif2Go rewrites .jhm and .xml files every time you run the conversion, by
default Mif2Go does not rewrite the helpset file during subsequent conversion runs.

To have Mif2Go rewrite the helpset file every time:
[JavaHelpOptions] or [OracleHelpOptions]
; WriteHelpSetFile = No (default) or Yes (write eac h time)
WriteHelpSetFile = Yes

Set WriteHelpSetFile=Yes if you move or delete the helpset file from the project
directory every time you run the conversion.

Use the default value, WriteHelpSetFile=No , if you customize the helpset file outside
of Mif2Go ; see §11.3.8.5 Adding custom helpset sections for JavaHelp 2 on page 383.

11.3.8.4 Providing a “favorites” option for JavaHe lp 2

If you are using Mif2Go to generate JavaHelp 2, you can include in the helpset a provision
for a “favorites” facility that allows the user to add topics to a “favorites” list:

[JavaHelpOptions]
; UseFavorites = No (default) or Yes (affects HelpS et File rewrite)
UseFavorites = Yes

11.3.8.5 Adding custom helpset sections for JavaHe lp 2

JavaHelp 2 supports additional entries in the helpset file, such as an <impl> section; see
the JavaHelp System User’s Guide for information about this feature.

To add custom entries to the helpset, list the code for each entry in the following
configuration-file section. For example:

[JH2_HelpsetAddition]
; Optional section used for literal additions to th e JH2 <helpset>
<impl>

<helpsetregistry helpbrokerclass="javax.help.Defaul tHelpBroker" />
<viewerregistry viewertype="text/html"

viewerclass="com.sun.java.help.impl.CustomKit" />
<viewerregistry viewertype="text/xml"

viewerclass="com.sun.java.help.impl.CustomXMLKit" / >
</impl>

You can put anything you please in section [JH2_HelpsetAddition] , and whatever
you add is included in the helpset file; for example, you can add your own
<presentation> sections.

If Mif2Go does not rewrite the helpset file each time (see §11.3.8.3 Deciding whether to
rewrite the helpset file on page 383), you could simply add custom sections directly to the
helpset file.

11.3.8.6 Requiring full paths in the helpset file

To specify full paths instead of simple file names in links from the helpset file:
[JavaHelpOptions] or [OracleHelpOptions]
; HSPathNames = No (default, strip path from filena mes)
; or Yes (use full path)
HSPathNames = Yes

The default setting, HSPathNames=No, is almost always the correct value, because the
navigational files referenced in the helpset file are almost always in the same directory

SETTING UP A JAVAHELP OR ORACLE HELP PROJECT MIF2GO USER’S GUIDE

384 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

(see §11.3.7.1 Understanding the JavaHelp / Oracle Help directory structure on page 378).
The only reason to put navigational files elsewhere would be to accommodate a
proprietary standard; this setting is intended to support that use only.

11.3.9 Coping with JavaHelp / Oracle Help viewer l imitations

JavaHelp viewer limitations and defects are described in the JavaHelp System User’s
Guide. Mif2Go provides workarounds for some; others you will have to put up with. The
Oracle Help viewer has a different set of limitations. Some known limitations:

Special characters in JavaHelp
Anchor tags in JavaHelp
Image size units in JavaHelp
CSS in JavaHelp or Oracle Help
Index entries.

Special
characters in

JavaHelp

Some characters with ANSI decimal values in the range 128 through 159 do not display
properly. For example, regular bullet characters (ANSI 149) show as small boxes in the
JavaHelp viewer, unless you map them to a different value, with a setting such as the
following:

[CharConvert]
149 = ·

See §13.16.2 Replacing high ASCII characters for W3C validation on page 454 and §21.5
Assigning properties to text formats on page 653.

Anchor tags in
JavaHelp

Each anchor tag in HTML, including the <a> tag produced from each marker in your
FrameMaker document, is replaced by a space in the JavaHelp viewer. There is no feasible
workaround for this defect. Mif2Go usually produces more than one , and
<a> tags cannot be nested. Placing all <a> tags before the opening <p> eliminates the
spaces, but adds a blank line above, which is even worse.

Image size units
in JavaHelp

A px suffix on image width and height attribute values causes the JavaHelp viewer to
show the image as a thumbnail; so for JavaHelp, by default Mif2Go omits the suffix.
Make sure you do not override this default; see §23.9.5 Specifying px units for graphics
sized in pixels on page 722.

CSS in JavaHelp
or Oracle Help

Support for CSS is limited (in different ways) in the JavaHelp and Oracle Help viewers.
You might have to resort to font tags and alignment attributes instead of using a style
sheet. See §21.7.4 Including or excluding font tags on page 665.

JavaHelp CSS does not respect the list-style rule; therefore, by default, Mif2Go adds the
type attribute to list wrappers ol and ul . To omit the type attribute from list wrappers:

[CSS]
; UseListTypeAttribute = Yes (default for JavaHelp, to fix CSS bug)
; or No (default for other formats, go by NoAttrib Lists value)
UseListTypeAttribute = No

See §21.12.2.7 Including or excluding the type list attribute on page 678.

Index entries Index entries have limitations in both viewers; see §11.4.3 Configuring index entries for
JavaHelp or Oracle Help on page 386.

11.3.10 Compiling JavaHelp with Helen

If you intend to compile your JavaHelp project with third-party compiler Helen, specify
the following option:

11 GENERATING JAVAHELP OR ORACLE HELP GENERATING CONTENTS AND INDEX

ALL RIGHTS RESERVED. MAY 18, 2013 385

[JavaHelpOptions]
; Helen = No (default) or Yes (to account for quirk s in Helen for JH)
Helen = Yes

Helen might not like some valid HTML constructs.

11.4 Generating contents and index
To understand whether, how, and when Mif2Go generates contents and index files for
JavaHelp and Oracle Help, see §7.3.4.1 Choosing contents and index methods for
HTML-based Help on page 207.

In this section:
§11.4.1 Configuring contents entries for JavaHelp or Oracle Help on page 385
§11.4.2 Assigning TOC images and expansion levels in JavaHelp 2 on page 385
§11.4.3 Configuring index entries for JavaHelp or Oracle Help on page 386
§11.4.4 Eliminating index-marker artifacts from text on page 386
§11.4.5 Locating JavaHelp or Oracle Help contents and index files on page 387

See also:
§7.3 Producing contents and index for Help systems on page 204
§7.4 Configuring contents entries for Help systems on page 209
§7.5 Configuring index entries for Help systems on page 211

11.4.1 Configuring contents entries for JavaHelp o r Oracle Help

Headings that start topics, or to which you assign the Contents property or a contents
level, are automatically included in the contents; see the following:

§7.4.3 Including contents entries in HTML-based Help on page 209.
§7.4.4 Setting contents levels for HTML-based Help on page 210.

However, if you set the following option, links might be missing for contents entries that
are not topic headings:

[JavaHelpOptions] or [OracleHelpOptions]
RemoveInternalAnchors = Yes

This is mainly an issue for JavaHelp, where anchors in text cause unwanted spacing; see
§11.9 Linking to destinations within topics on page 399.

11.4.2 Assigning TOC images and expansion levels i n JavaHelp 2

Mif2Go supports several JavaHelp 2 <toc> and <tocitem> attributes that allow you to
control which TOC levels are expanded and collapsed, and what images are displayed in
the TOC tree.

To set the <tocitem> expand attribute by level, assign Yes (expand) or No (collapse) to
each level number:

[TocLevelExpand]
; The JH default is to expand only top-level (1) it ems; this sets the
; <tocitem> expand attribute according to level.
1 = Yes
2 = No

The JavaHelp default is to expand only top-level (level 1) items.

GENERATING CONTENTS AND INDEX MIF2GO USER’S GUIDE

386 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

To designate images to be displayed in the TOC tree, assign an image ID to each different
TOC item. For example:

[JavaHelpOptions]
; The JH default is to use the Toc*Image graphics f or all levels; this
; replaces those graphics by setting the <tocitem> image attributes.
; The image IDs are mapped in [JHImages] as usual
TocClosedImage = closedsign
TocOpenImage = opensign
TocTopicImage = topicicon

The JavaHelp default is to use the assigned Toc*Image graphics for all TOC levels.
However, to use the same graphic for all TOC items at a given level, you can assign an
image ID to the level number. For example:

[TocLevelImage]
; The image IDs are mapped in [JHImages]
1=overview

You must map each image ID to the location of its corresponding graphic in section
[JHImages] ; see §11.8.1.2 Mapping image names to graphics files on page 394.

11.4.3 Configuring index entries for JavaHelp or O racle Help

Mif2Go generates the JavaHelp or Oracle Help index file, MyDocIndex.xml . However,
most of the ways you can customize index entries for HTML-based help, described in §7.5
Configuring index entries for Help systems on page 211, do not work for either JavaHelp
or Oracle Help. Both produce indexes with the following possibly undesirable display
features:

 • Index entries are not formatted; any character formatting is lost.
 • Sort-order settings from the Mif2Go configuration file are ignored, even though they

correctly inform the order of items in MyDocIndex.xml .

JavaHelp In JavaHelp there is no graceful way to handle index entries that have multiple references
to different places in the helpset, so Mif2Go converts multiple references into subentries,
each with the topic title (including any autonumber) as the visible information.

Oracle Help for
Java

Oracle Help supports only two levels of index entries; the index view collapses any levels
beyond the second.

Oracle Help provides an <iindexentry> tag for index files, which affects how topic
names display for multiple references to the same index term. You can turn it off:

[JavaHelpOptions] or [OracleHelpOptions]
; UseIndexentryTag = Yes (OracleHelp only, default)
; or No (as in Sun JavaHelp)
UseIndexentryTag = No

You should not need to change the default setting for UseIndexentryTag , unless you are
generating Oracle Help for Java and you prefer the way Mif2Go handles
multiple-reference index entries for JavaHelp.

See §7.5 Configuring index entries for Help systems on page 211.

11.4.4 Eliminating index-marker artifacts from tex t

When you use a JavaHelp viewer, if you see question marks in the helpset where Index
markers occur in your FrameMaker document, you can eliminate these artifacts with the
following settings:

[Markers]
Index = NoIndex

11 GENERATING JAVAHELP OR ORACLE HELP PROVIDING FULL-TEXT SEARCH FOR JAVAHELP / ORACLE HELP

ALL RIGHTS RESERVED. MAY 18, 2013 387

[MarkerTypes]
NoIndex = Delete

See §29.3 Remapping marker types and hypertext commands on page 836.

Because Mif2Go produces the JavaHelp index file, you can still get an index based on
those markers; see §7.5 Configuring index entries for Help systems on page 211.

11.4.5 Locating JavaHelp or Oracle Help contents a nd index files

When Mif2Go generates contents and index for JavaHelp or Oracle Help, you end up with
the following files:

 • a contents file, MyProjTOC.xml

 • an index file, MyProjIndex.xml .

These files must reside in the same directory as the helpset file (MyDoc.hs), usually the
help directory; see §11.3.7.1 Understanding the JavaHelp / Oracle Help directory
structure on page 378.

11.5 Providing full-text search for JavaHelp / Ora cle Help
Including full-text search capability in the Help system for either JavaHelp or Oracle Help
requires using an external indexing program to create a search index, and providing a link
to the search index from the helpset file.

In this section:
§11.5.1 Including a search-index link in the helpset file on page 387
§11.5.2 Creating a search index for JavaHelp on page 388
§11.5.3 Creating a search index for Oracle Help on page 389

11.5.1 Including a search-index link in the helpse t file

To indicate that you want to include full-text search (FTS) capability for JavaHelp or for
Oracle Help:

[JavaHelpOptions] or [OracleHelpOptions]
; UseFTS = Yes (default) or No (affects HelpSet Fil e rewrite)
UseFTS = Yes

When UseFTS=Yes, Mif2Go includes information in the helpset file to access a search
index. You also have to run an indexing program to create the search index from the
HTML output files. You can have Mif2Go run the program, or you can run it yourself;
see:

§11.5.2 Creating a search index for JavaHelp on page 388
§11.5.3 Creating a search index for Oracle Help on page 389

Note: If UseFTS=Yes but the indexing program is not run, the helpset link to the search
index could cause a run-time error.

When UseFTS=No, Mif2Go does not include a link to the search index. If you run the
indexing program anyway, you get a search index, but the display might ignore it.
However, if you use the Oracle Help for Java Helpset Authoring Wizard to produce a
search index for Oracle Help, the Authoring Wizard itself provides a link in the helpset
file.

PROVIDING FULL-TEXT SEARCH FOR JAVAHELP / ORACLE HELP MIF2GO USER’S GUIDE

388 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

11.5.2 Creating a search index for JavaHelp

JavaHelp utility program JHIndexer creates a search index for JavaHelp, and places the
search index in a subdirectory called JavaHelpSearch . You can have Mif2Go run
JHIndexer, or you can run it yourself. In addition to creating a search index, you must also
provide a link to the search index from the helpset file; see §11.5.1 Including a
search-index link in the helpset file on page 387.

Let Mif2Go
create FTS

To have Mif2Go automatically run JHIndexer:
[JavaHelpOptions]
; FTSCommand = for Sun Java Help, path to jhindexer , such as:
FTSCommand = D:/jh2.0_01/jh2.0/javahelp/bin/jhindex er

The value of FTSCommand must include an absolute path to the directory where the
JHIndexer program is installed on your system. If the path includes spaces, you must
enclose it in double quotes. For example:

[JavaHelpOptions]
FTSCommand = "G:/JH/jh2.0 01/jh2 0/javahelp/bin/jhi ndexer"

Do not enclose parameters in quotes:

 • Use backslashes as separators in path-name parameters.
 • Use a dash (“- ”) instead of a forward slash to prefix a command option.

When you specify a value for FTSCommand, after generating output files for JavaHelp,
Mif2Go first removes any search-index directory previously created by JHIndexer, then
uses the command to run JHIndexer and produce a new search index.

If you also specify a value for [Automation]WrapPath , Mif2Go copies all needed files
from the project directory to the JavaHelp directory structure before running JHIndexer;
see §11.3.7.2 Letting Mif2Go set up the directory structure and copy files on page 379.

You might also want to set the following option, so you can see any error messages that
result:

[Automation]
; KeepCompileWindow = No (default)
; or Yes (so any error messages can be seen)
KeepCompileWindow=Yes

When KeepCompileWindow=Yes , a system window opens when the indexer runs. If
there are no indexer errors, you will see only a command prompt when indexing finishes.
You must dismiss the window before Mif2Go can continue processing.

Create FTS
yourself

If you do not specify a value for FTSCommand, you must run JHIndexer yourself, from the
directory where your helpset file is located, and specify the directory where the HTML
files are located. For example, at a Windows command prompt:

D:
cd \path\to\MyOutput\help
del /f /q JavaHelpSearch
path\to\JavaHelp\files\bin\ jhindexer html

If you are using a directory structure such as the following for your project, run JHIndexer
from the Help directory:

MyDoc (FrameMaker files)
.. MyOutput (Mif2Go files)
....Help (JHM, HS, TOC, Index; run JHIndexer from this directory)
......HTML
......Graphics

Your structure ends up looking like this:

11 GENERATING JAVAHELP OR ORACLE HELP PROVIDING FULL-TEXT SEARCH FOR JAVAHELP / ORACLE HELP

ALL RIGHTS RESERVED. MAY 18, 2013 389

MyDoc (FrameMaker files)
.. MyOutput (Mif2Go files)
....Help (JHM, HS, TOC, Index)
......JavaHelpSearch (Created by JHIndexer)
......HTML
......Graphics

JavaHelp search
caveats

It is best to remove any previous search-index directory before you run JHIndexer to
create a new directory. If a previous attempt to create a search index failed, further
attempts will also fail if the failed search-index directory is present.

You must run JHIndexer from the directory where the helpset file is located. If you try to
run JHIndexer from within the HTML directory, JHIndexer will put the
JavaHelpSearch directory inside the HTML directory. If you try to run it from any other
directory, you get strange effects in the Contents panel.

See also:
§7.2.4 Compiling and distributing Help systems on page 204
§11.3.7.2 Letting Mif2Go set up the directory structure and copy files on page 379
§11.3.7.4 Specifying a path for search-index links on page 381
§11.5.1 Including a search-index link in the helpset file on page 387
§35.10 Gathering and processing Help-system files on page 971

11.5.3 Creating a search index for Oracle Help

Oracle Help for Java utility program Indexer creates a search index for Oracle Help.
Indexer generates an index called myproj.idx , placed in the same directory as the
helpset file, myproj.hs . Before running Indexer, make sure the CLASSPATH environment
variable on your system includes a path to Indexer; see §11.3.6 Establishing an Oracle
Help environment on page 377.

You can create a search index for Oracle Help in any of the following ways:
§11.5.3.1 Directing Mif2Go to create full-text search for Oracle Help on page 389
§11.5.3.2 Creating full-text search for Oracle Help via command line on page 390
§11.5.3.3 Using the Oracle Help Wizard to create full-text search on page 390

See also:
§7.2.4 Compiling and distributing Help systems on page 204
§11.3.7.2 Letting Mif2Go set up the directory structure and copy files on page 379
§11.5.1 Including a search-index link in the helpset file on page 387
§35.10 Gathering and processing Help-system files on page 971

11.5.3.1 Directing Mif2Go to create full-text sear ch for Oracle Help

To have Mif2Go run Indexer for you:
[OracleHelpOptions]
; FTSCommand = for Oracle Help, indexing command, t ypically:
FTSCommand = java -mx256m oracle.help.tools.index.I ndexer

When you specify a value for FTSCommand, Mif2Go uses the command you supply to run
Indexer after generating output files for Oracle Help. If your project is very large, you
might want to increase the value of the -mx option. If the Indexer command includes
spaces, you must enclose it (but not the parameters) in double quotes. Prefix options with
a dash (“- ”) rather than a forward slash.

CREATING AND VIEWING A JAVA ARCHIVE (JAR) FILE MIF2GO USER’S GUIDE

390 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You might also want to set the following option, so you can see any error messages that
result:

[Automation]
; KeepCompileWindow = No (default)
; or Yes (so any error messages can be seen)
KeepCompileWindow=Yes

When KeepCompileWindow=Yes , a system window opens when the indexer runs. If
there are no indexer errors, you will see only a command prompt when indexing finishes.
You must dismiss the window before Mif2Go can continue processing.

If you specify a value for [Automation]WrapPath , Mif2Go copies all needed files
from the project directory to the Oracle Help directory structure before running Indexer;
see §11.3.7.2 Letting Mif2Go set up the directory structure and copy files on page 379.

11.5.3.2 Creating full-text search for Oracle Help via command line

You can run Indexer yourself, from the directory where your helpset file is located. To run
Indexer directly from a .bat file, include the following commands:

cd /D path\to\hs
REM The following command must be typed all on one line:
java -mx256m oracle.help.tools.index.Indexer path\to\hs myproj.idx

Paths should be absolute rather than relative. If a path includes spaces, you must enclose it
(but not the parameters) in double quotes. Prefix options with a dash (“- ”) rather than a
forward slash.

11.5.3.3 Using the Oracle Help Wizard to create fu ll-text search

You can use the Oracle Help for Java HelpSet Authoring Wizard to generate a full-text
search index. According to the Oracle Help for Java User Guide:

When you install OHJ on Windows, a batch file and an initialization file for starting
the wizard are generated, using the path into which you installed OHJ. A shortcut for
starting the wizard is also installed on the Windows Start menu. Select this shortcut to
start the wizard. Alternatively, you can issue the following command at the command
prompt:

OHJ_path\launcher.exe OHJ_path\bin\authoringWizard.ini

Follow the prompts in the wizard.

Start the Wizard in the same directory as the helpset file. After browsing for the helpset
file in step 1, accept the defaults the Wizard presents for steps 2 through 9; it is best not to
stray from the Next path. Step 10 requires a value for Base Name : enter the base name of
your helpset file, make sure you allow the Wizard to create a backup, and click Finish .

Next, delete myproj.hs , and rename myproj.hs.BAK to myproj.hs . The result should
be a fully functional search index.

11.6 Creating and viewing a Java Archive (JAR) fil e
To deploy a JavaHelp system, it is best to archive all the required components in a single
executable JAR file. Although you can create a JAR file for an Oracle Help system, the
result probably will not be executable, at least on Windows.

In this section:
§11.6.1 Creating a JAR file on page 391

11 GENERATING JAVAHELP OR ORACLE HELP CREATING AND VIEWING A JAVA ARCHIVE (JAR) FILE

ALL RIGHTS RESERVED. MAY 18, 2013 391

§11.6.2 Viewing a JAR file on page 391

11.6.1 Creating a JAR file

To create a JAR file you need archiving program jar.exe , which is included in the Java
Software Development Kit. You can download the JDK here:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

You have two choices:
Let Mif2Go create the JAR file
Create the JAR file yourself.

Let Mif2Go
create the JAR

file

To have Mif2Go create a JAR file for you, specify a jar command that works on your
system. For example:

[JavaHelpOptions] or [OracleHelpOptions]
; JarCommand = path to jar, without any parameters; the cvf and * are
; added before and after the HSFileName (with .jar ext) automatically
JarCommand = D:/j2sdk14/jdk/bin/jar

JarCommand must include an absolute path to jar.exe , unless jar.exe is on your
system PATH. Do not include parameters. Mif2Go provides the cvf and * parameters, and
gives the resulting JAR file the base name of your helpset file as specified by
HSFileName (see §11.3.8.1 Specifying helpset file name and title on page 382), and
extension .jar .

Create the JAR
file yourself

To create a JAR file yourself, run the jar command from the directory where your helpset
file is located. The following example creates file myproj.jar and places it in the same
directory as the helpset file. You can put the commands in a .bat file.

cd \path\to\MyOutput\help
path\to\JDK\files\bin\ jar cvf myproj.jar *

11.6.2 Viewing a JAR file

To view a JavaHelp JAR file (for example, myproj.jar):

1. Open a Command Prompt window.

2. Navigate to the directory where java.exe is located (see §11.3.5 Establishing a
JavaHelp environment on page 377).

3. Execute the following command (which must be all on one line):
java -jar path\to\hsviewer.jar -helpset path\to\myproj.jar

You can include navigation and execution commands in a .bat file for convenience. For
example:

cd C:\Program Files\Java\j2re1.4.2_03\bin
java -jar G:\jh20\demos\bin\hsviewer.jar -helpset g:\jh\myproj.jar

JAR files might
have broken links

If your document includes cross references or hypertext links that contain file names that
do not match the case of the target file name, the links will not work when you view the
JAR file. You can correct this problem either of the following ways:

 • Change all file names in your FrameMaker document to lowercase, and set
[HTMLOptions]MakeFileHrefsLower=Yes ; see §19.2.6 Forcing link text to
lowercase on page 613.

 • Inspect every cross-reference and hypertext marker in your document, and either fix
the markers or change the case of the FrameMaker file name.

On Windows you can get around the case mismatch problem by viewing the .hs file
instead of the .jar file.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

CONVERTING A GLOSSARY TO JAVAHELP 2 MIF2GO USER’S GUIDE

392 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Viewing an
Oracle Help JAR

file is problematic

Although creating a JAR file for an Oracle Help project appears to work correctly, at
Omni Systems we have not succeeded in viewing the resulting JAR file on Windows. On
the other hand, Oracle Help .hs files can be viewed successfully on Windows.

See also:
§11.3.6 Establishing an Oracle Help environment on page 377.

11.7 Converting a glossary to JavaHelp 2
If your FrameMaker document includes a glossary that consists of alternating terms and
their definitions, you can take advantage of JavaHelp 2 glossary support.

In this section:
§11.7.1 Evaluating glossary usability on page 392
§11.7.2 Assigning glossary properties on page 392
§11.7.3 Configuring glossary IDs on page 392
§11.7.4 Eliminating glossary entries from the JavaHelp TOC on page 393

11.7.1 Evaluating glossary usability

The JavaHelp 2 glossary system is designed to work with a separate file for each glossary
term. The terms are listed in an index-style glossary navigation pane; clicking a term in the
glossary pane opens a small window that displays the definition. There are no links to
definitions from terms that appear in topics.

If you provide a single Glossary topic that contains all the terms and definitions, instead of
using the built-in JavaHelp 2 glossary, you can include cross references to the terms
wherever needed. You cannot insert jumps from topics to the JavaHelp 2 glossary.

11.7.2 Assigning glossary properties

To convert a FrameMaker glossary to a JavaHelp 2 glossary:
[JavaHelpOptions]
; UseGlossary = No (default) or Yes (affects HelpSe t File rewrite)
UseGlossary = Yes

Use two paragraph formats for glossary entries in FrameMaker: one format for the term,
and one for the definition. For example, Gterm for the term, and Gdef for the definition.

Assign property GlossTerm to each glossary-term paragraph format. For example:
[HTMLParaStyles]
; doc style (para or char) = keywords for functions and properties
; GlossTerm is used for JavaHelp 2 only, to identify para formats
; used for glossary terms (where they are defined in the next
; following paragraph).
Gterm = GlossTerm

Because every glossary term is followed by a definition, you do not have to assign a
property to the definition format.

11.7.3 Configuring glossary IDs

For each glossary term, Mif2Go creates an ID that consists of a special prefix, the term
itself (omitting or replacing any spaces), and an optional suffix.

To specify glossary-term prefix, suffix, and space replacer:

11 GENERATING JAVAHELP OR ORACLE HELP DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP

ALL RIGHTS RESERVED. MAY 18, 2013 393

[JavaHelpOptions]
; GlossPrefix = prefix used to form glossary term I Ds, default GLO_
GlossPrefix=GLO_
; GlossSuffix = suffix used to form glossary term I Ds, default none
GlossSuffix=
; GlossSpace = replacement for spaces in glossary t erm IDs,
; default none
GlossSpace =

Mif2Go stores glossary terms, IDs, and glossary file names (allowing for splitting a
glossary file) in a ChapName.bhg file for each FrameMaker file in your document.
Mif2Go uses the set of *.bhg files to do the following:

 • generate glossary.xml
 • add glossary IDs and filename#GLO_term entries to the .jhm file
 • add a glossary <view> to the helpset file.

11.7.4 Eliminating glossary entries from the JavaH elp TOC

Material that Mif2Go converts to a JavaHelp 2 glossary no longer appears in the resulting
JavaHelp 2 system as a regular topic. Therefore you might find an orphaned glossary entry
in the JavaHelp TOC, pointing to a topic that contains only the original heading of your
FrameMaker glossary.

To eliminate a TOC entry for the glossary, do either of the following:

 • Use conditional text and a conversion template to hide the entry in FrameMaker; see
§2.4 Importing formats from a conversion template on page 67.

 • Create a distinct paragraph format for the heading in FrameMaker, and in the
configuration file assign [HTMLParaStyles] property Delete to that format; see
§21.3.12 Eliminating unwanted paragraphs on page 652.

If you use the second method, you must also remove any cross references to the heading
from other topics.

11.8 Defining windows for JavaHelp or Oracle Help
In this section:

§11.8.1 Specifying window parameters for JavaHelp 2 on page 393
§11.8.2 Specifying window parameters for Oracle Help on page 398
§11.8.3 Jumping to secondary windows in JavaHelp or Oracle Help on page 399

11.8.1 Specifying window parameters for JavaHelp 2

Mif2Go supports window definitions for JavaHelp 2. For JavaHelp 1, you have to roll
your own; see the JavaHelp System User’s Guide. For Oracle Help for Java, see §11.8.2
Specifying window parameters for Oracle Help on page 398.

In this section:
§11.8.1.1 Assigning default window parameters for JavaHelp 2 on page 394
§11.8.1.2 Mapping image names to graphics files on page 394
§11.8.1.3 Understanding JavaHelp 2 window-access limitations on page 395
§11.8.1.4 Specifying window-access object properties on page 395
§11.8.1.5 Overriding window-access properties with markers on page 397
§11.8.1.6 Designing your own window-access marker names on page 398

DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP MIF2GO USER’S GUIDE

394 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

11.8.1.1 Assigning default window parameters for J avaHelp 2

Assign a name to each JavaHelp 2 window type you expect to define. For example:
[JavaHelpOptions]
; Windows = list of JH2 windows, each defined by it s own section
Windows = mainwin screenshot procwin

By default, the first name listed is the name of the main window.

Note: Window name popup is a reserved name that identifies the window as a pop-up
window; see §7.8 Creating pop-up topics for Help systems on page 225. Do not
list popup as a window type.

For each window name assigned to [JavaHelpOptions]Windows , specify parameters
for that window type in a separate configuration-file section of the same name as the
window. These parameters inform the window descriptions Mif2Go places in the
JavaHelp 2 helpset file. For example:

[JavaHelp window name] (such as [mainwin] or [secwin])
; Default = No (default) or Yes (to make this the d efault window)
Default = Yes
; Name = name used to reference in code
Name = mainwin
; Title = name in title bar
Title = Mif2Go User’s Guide
; Top = top edge, pixels from top of screen, defaul t 200
Top = 200
; Left = left edge, pixels from left side of screen , default 200
Left = 200
; Height = height in pixels, default 400
Height = 400
; Width = width in pixels, default 400
Width = 400
; NavPane = Yes (default, with toolbar is tripane)
; or No (for secondary windows)
NavPane = Yes
; NavIcons = Yes (default) or No (show text instead)
NavIcons = Yes
; Image = image ID, mapped in [JHImages] if used
Image = mainwinimage
; Toolbar = list of items to include, from: Back, F orward, Home,
; Reload, Favorites (add current page to), Print, Pr intSetup,
; Separator (on bar).
Toolbar = Home Back Forward Separator Print Separat or Favorites
; Optional images for toolbar items, itemImage=imag e file ID,
; mapped in the [JHImages] section
HomeImage = house

Note: Size and position settings for secondary windows (Top, Left , Height , and
Width) are always overridden by object properties of the links to those windows;
see §11.8.1.4 Specifying window-access object properties on page 395.

11.8.1.2 Mapping image names to graphics files

If you assign names to image parameters for specific windows (such as window Image or
toolbar HomeImage), map each image name to the location of its graphic file, relative to
the location of the helpset file. For example:

[JHImages]
; image ID = path, relative to .hs file
mainwinimage = graphics/floral.gif
house = graphics/littlehouse.gif

11 GENERATING JAVAHELP OR ORACLE HELP DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP

ALL RIGHTS RESERVED. MAY 18, 2013 395

11.8.1.3 Understanding JavaHelp 2 window-access li mitations

In JavaHelp 2, pop-up links and jumps to secondary windows are represented as objects,
placed at the start of their hotspots, rather than as conventional links. Only the objects
themselves are active links. Hotspot text that you delimit with a character format in
FrameMaker (see §7.8.2 Defining a pop-up hotspot on page 226) looks like a hotspot in
JavaHelp 2, but has no effect.

The only way to include link-specific hotspot text in FrameMaker that both looks and acts
like a hotspot in JavaHelp 2 is to insert in your document special markers that contain the
hotspot text, plus (if necessary) additional special markers that designate font properties
for hotspot text; see §11.8.1.5 Overriding window-access properties with markers on
page 397.

In other words, for an active-link text hotspot, you have to use markers to recreate any text
for the hotspot that might already be present in the document. If you can, that is;
underlines, for example, are not possible. For this reason, the default window-access
object Mif2Go produces is not a text object, but instead a button that immediately
precedes text that is already designated as a hotspot.

11.8.1.4 Specifying window-access object propertie s

You specify properties for window-access objects by assigning values to object-property
keywords in section [JavaHelpOptions] . Table 11-2 on page 396 and Table 11-3 on
page 396 list the keywords, the values you can assign to each keyword, and the default
when you do not assign a value.

In this section:
§11.8.1.4.1 Changing window type, size, or position via access object on page 395
§11.8.1.4.2 Specifying link properties via window-access object on page 396

11.8.1.4.1 Changing window type, size, or position via access object

For window type, size, and position you can do the following:
Specify pop-up window size but not position
Specify secondary window size and position
Override secondary window type

Specify pop-up
window size but

not position

Only one type of pop-up window can be defined, so in the absence of overrides, all pop-up
window-access properties apply to all pop-up links and windows. The only way to specify
different sizes for different pop-up windows is by inserting special markers before
individual pop-up hotspots; see §11.8.1.5 Overriding window-access properties with
markers on page 397.

Pop-up window position is not configurable; a pop-up window always pops up
immediately under the link.

Specify
secondary

window size and
position

The secondary-window size and position settings listed in Table 11-2 override the default
size and position parameters in the helpset file for all secondary windows, making the
default values moot. See §11.8.1.1 Assigning default window parameters for JavaHelp 2
on page 394. The only way to configure different sizes and positions for different
secondary window types is by inserting special markers before each jump; see §11.8.1.5
Overriding window-access properties with markers on page 397.

Override
secondary

window type

The default value for [JavaHelpOptions]SecName is empty (see Table 11-2). If you do
not include a setting for SecName, for each secondary-window jump the properties
specified for that jump in [SecWindows] apply. If you specify a value for SecName, then

DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP MIF2GO USER’S GUIDE

396 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

for all secondary-window jumps, any properties (except size and position) you assign to
the SecName window type in its own configuration section override the corresponding
properties of whatever window type is specified for the jump in [SecWindows] . See:

§7.7 Jumping to secondary windows in Help systems on page 224
§11.8.1.1 Assigning default window parameters for JavaHelp 2 on page 394

11.8.1.4.2 Specifying link properties via window-a ccess object

You can specify a button, a text string, or a graphic for JavaHelp 2 to display as a
window-access object for a pop-up link or a secondary-window jump. If you specify a text
string, you can assign values to font keywords to apply a limited amount of formatting.
Table 11-3 on page 396 lists the base keywords, and the values you can assign to those
keywords, to configure the appearance of a window-access object.

Prefix base
keywords with
“Pop” or “Sec”

You must supply a prefix for each of the object-property base keywords listed in
Table 11-3, to indicate whether the keyword represents a property for a pop-up window
link or for a secondary-window jump:

 • For a pop-up window, prefix the keyword with Pop; for example:
[JavaHelp window name]
PopType = Graphic
PopGraphic = ../graphics/popicon.gif

 • For a secondary window, prefix the keyword with Sec ; for example:
[JavaHelp window name]
SecType = Button

Table 11-2 [JavaHelpOptions] pop-up and secondary window properties

Window Keyword Value Default Comments

Pop-up PopSize width,height 250,300 One comma, no space between pixel
values; these settings override
corresponding helpset parameters

Secondary SecSize width,height 250,300

SecLocation left,top 600,200

SecName window name Default is the secondary window assigned in
[SecWindows] to a given jump-hotspot format

Table 11-3 [JavaHelp window name] window-access object properties

Keyword* Value Default value and comments

Type Button
Graphic
Text

When Type=Button (default), the value of keyword Text is the label
When Type=Graphic , the value of keyword Text (or keyword
Graphic) is the location of the image file
When Type=Text, Font* properties apply to the value of keyword
Text

Graphic URL for image
file

Default is ../graphics/1p.gif
When Type=Graphic , value is the relative URL of the GIF or JPEG file

Text plain text
<
>
&

Default is >
When Type=Text, Font* properties apply to the value of keyword
Text
When Type=Graphic , value can be the location of the image (which
can be specified as a value either for keyword Text or for keyword
Graphic)

FontFamily SansSerif
Serif
Monospaced
Symbol
Dialog
DialogInput

Pop-up window default is SansSerif
Secondary window default is Serif

Not all FontFamily values work the way you might expect them to
work

11 GENERATING JAVAHELP OR ORACLE HELP DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP

ALL RIGHTS RESERVED. MAY 18, 2013 397

Eschew
Type=Text

Despite the limited font-tweaking possibilities listed in Table 11-3, you might want to
avoid setting PopType=Text or SecType=Text , unless you are happy with a link that
consists of a single >, <, or & character, or a little box (what you get when, for example,
you specify PopFontFamily=Symbol and choose a character from the Symbol font). See
§11.8.1.3 Understanding JavaHelp 2 window-access limitations on page 395.

Multiple markers
for each hotspot

To actually create a text hotspot with context-specific content, you would have to insert a
collection of markers, all different, before every pop-up link or secondary-window jump
in a file, to handle the varying text content and properties—to the limited extent that you
can do so. See §11.8.1.5 Overriding window-access properties with markers on page 397.

Not all “special”
characters work

Keep in mind that JavaHelp does not support the “undefined” characters with ASCII
decimal values from 128 through 159, even though these characters are used heavily in
Windows for quotes, bullets, and so forth. See §13.16.2 Replacing high ASCII characters
for W3C validation on page 454.

11.8.1.5 Overriding window-access properties with markers

To change a JavaHelp 2 object property for a specific link that accesses a pop-up or
secondary window, you can insert a special marker somewhere in your document before
the link you want to tweak.

Marker name The name of the marker is the keyword for the property to be tweaked, prefixed by
JH2Pop for a pop-up window or JH2Sec for a secondary window, or by a prefix you
specify; see §11.8.1.6 Designing your own window-access marker names on page 398.
The keyword part of the marker name can be any of the following:

 • Size (see Table 11-2); for example, JH2PopSize or JH2SecSize

 • Name or Location , for secondary windows only (see Table 11-2): JH2SecName ,
JH2SecLocation

 • the base name of a window-object access keyword listed in Table 11-3; for example,
JH2PopText or JH2SecGraphic .

Marker content The content of the marker is any value you could assign to the keyword in section
[JavaHelpOptions] ; see §11.8.1.4 Specifying window-access object properties on
page 395. The marker content overrides the corresponding keyword setting, but only for
the next pop-up or secondary window link in the file.

FontSize xx-small , x-small , small (default), medium, large , x-large

index number
bigger
smaller
+n
- n
nnpt

index number is a plain digit
bigger increases the size by one index
smaller decreases the size by one index
+n increases the size by n
-n decreases the size by n
nnpt specifies the font size in points

FontWeight plain (default), bold

FontStyle plain (default), italic

FontColor blue (default), black , cyan , darkGray , gray , green , lightGray , magenta , orange ,
pink , red , white , yellow

* Prefix the base keyword with one of the following:
Pop for a pop-up window property
Sec for a secondary-window property

Table 11-3 [JavaHelp window name] window-access object properties

Keyword* Value Default value and comments

DEFINING WINDOWS FOR JAVAHELP OR ORACLE HELP MIF2GO USER’S GUIDE

398 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Resize individual
pop-up windows

Use JH2PopSize markers to resize pop-up windows in JavaHelp 2 (something Oracle
Help for Java does for you). For example, to specify the dimensions of one particular
pop-up window, you could place a marker of type JH2PopSize with content 300,75
somewhere before the pop-up hotspot, for a 300-pixel-wide and 75-pixel-high pop-up
window.

11.8.1.6 Designing your own window-access marker n ames

To specify JavaHelp 2 window-access marker-name prefixes other than JH2Pop and
JH2Sec (see §11.8.1.5 Overriding window-access properties with markers on page 397):

[JavaHelpOptions]
; PopMarkerPrefix = prefix for pop-up window marker type,
; default JH2Pop
PopMarkerPrefix = JH2Pop
; SecMarkerPrefix = prefix for secondary window mar ker type
; default JH2Sec
SecMarkerPrefix = JH2Sec

Prefix required The window-access marker names require some prefix; if you try to assign an empty
prefix, Mif2Go ignores the setting and uses the default value for that prefix.

Same keyword,
different prefix

To provide different window-access settings for the same files in different Mif2Go
projects, you can insert two or more markers (with different contents) whose names have
the same keyword suffix but different prefixes, then just specify the appropriate prefix in
the configuration file to select a set of markers to use for a given project.

Correct a
document-wide

typo

Another possible reason for designating your own prefixes: if you make a systematic error
with the marker type name, such as using JHPop* instead of JH2Pop* , you can avoid
correcting the name in who knows how many FrameMaker files, a change that cannot be
accomplished with a template.

11.8.2 Specifying window parameters for Oracle Hel p

Mif2Go puts Oracle Help for Java window descriptions into the .hs file when you
provide parameters in the following section:

[OracleHelpWindows]
; Windowname = height,width,xpos,ypos,textcolor,lin kcolor,background,
; buttons,title
; The first window listed becomes the default windo w.
Main = 50%,240,100,100,000000,0000ff,ffffff,c000,Ma in Help Window

List window properties in the order indicated, separated by commas. Table 11-4 describes
the properties you can specify for each window.

Table 11-4 Oracle Help for Java window properties

Property Description

height Height of window, in pixels or percent (indicated by suffix %)

width Width of window in pixels or percent (indicated by suffix %)

xpos Horizontal screen coordinate of upper left corner, in pixels

ypos Vertical screen coordinate of upper left corner, in pixels

textcolor RGB color of text in window, in hexadecimal

linkcolor RGB color of links in window, in hexadecimal

background RGB color of window background, in hexadecimal

11 GENERATING JAVAHELP OR ORACLE HELP LINKING TO DESTINATIONS WITHIN TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 399

Do not define
pop-up windows

here

Window name popup is a reserved name that identifies the window as a pop-up window;
see §7.8 Creating pop-up topics for Help systems on page 225. Do not include an entry in
[OracleHelpWindows] for a pop-up window, unless you really do not like the Oracle
Help default yellow “sticky note” that pops up over the center of the parent window. A
secondary window defined in [OracleHelpWindows] replaces the parent window.

11.8.3 Jumping to secondary windows in JavaHelp or Oracle Help

Use a character or paragraph format to define a hotspot for a jump to a secondary window,
and assign the window name to that format:

[SecWindows]
; doc format = name of secondary window to use for jumps from
; within the span marked by this format (same as W inHelp usage)
ProcWindow = procwin

See §7.7 Jumping to secondary windows in Help systems on page 224. The window name
popup is reserved for pop-up windows.

11.9 Linking to destinations within topics
After you convert a FrameMaker document, you might find that anchors are missing for
links to destinations located within topic files. By default, for JavaHelp these anchors are
suppressed, as a workaround for a JavaHelp 1 defect: very bad things happen in the
JavaHelp viewer if you try to use destination anchors within topic files. In JavaHelp 1, you
can safely use references only to the start of a topic file.

Internal references are not a problem in JavaHelp 2, nor in Oracle Help for Java. On the
other hand, in JavaHelp, every anchor causes an extra space in text when you view output
with the JavaHelp viewer.

To allow internal references for JavaHelp 1:
[JavaHelpOptions] or [OracleHelpOptions]
; RemoveInternalAnchors = Yes (JavaHelp 1 default, avoid JavaHelp bug)
; or No (Oracle Help and JavaHelp 2 default)
RemoveInternalAnchors = No

11.10 Creating ALinks for Oracle Help
An ALink keyword in Oracle Help for Java must consist of a single term; no spaces or
punctuation. An ALink jump can specify only one ALink keyword.

Oracle Help for Java uses a link file for ALinks (regular JavaHelp does not support
ALinks). Mif2Go creates the ALink file for Oracle Help, by default. However, if you

buttons Sum of the following hexadecimal values, in hexadecimal:
4 - Remove default buttons

40 - Add URL display
400 - Add Navigator button

2000 - Print
4000 - Back and Forward
8000 - Search

10000 - Dock and Undock

title Display window title

Table 11-4 Oracle Help for Java window properties (continued)

Property Description

MERGING JAVAHELP OR ORACLE HELP SYSTEMS MIF2GO USER’S GUIDE

400 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

know you are not using ALinks, you can save a little time and disk space by directing
Mif2Go not to include this file:

[OracleHelpOptions]
; MakeALinkFile = Yes (default, include OracleHelp ALinks) or No
MakeALinkFile = No

You can determine whether ALinks go to the beginning of the referenced topic file, or to
the beginning of the paragraph that contains the ALink keyword. The default is the
beginning of the topic file:

[OracleHelpOptions]
; ALinkRefs = File (default) or Para (start of cont aining para)
ALinkRefs = File

For ways to include ALink keywords and ALink jumps in your FrameMaker document,
see §7.6 Providing related-topic links for Help systems on page 219.

To create a “pool” of ALinks, where every instance serves both as a jump and a target, you
can use a FrameMaker format combined with Mif2Go macros. For example, suppose you
designate paragraph format AlinkUse for this purpose. You could create an ALink
reference and get both an ALink keyword (which makes the current topic a member of the
group) and a hotspot that calls up that list of topics:

[HTMLParaStyles]
; ALink uses the contents of the para for the valu e of the ALink
; Name parameter of an ALink object.
ALinkUse = ALink CodeBefore CodeAfter

[ParaStyleCodeBefore]
ALinkUse = <a href="alink:

[ParaStyleCodeAfter]
ALinkUse = ">Related Topics

When you assemble ALink jumps using macros, you do not access Mif2Go code that
automatically interprets the alink protocol (see §7.6.5.1 Configuring ALink jumps on
page 223); what you build is passed through to Oracle Help unaltered.

11.11 Merging JavaHelp or Oracle Help systems
JavaHelp and Oracle Help for Java support limited merging of helpsets. You list
subprojects in the main project helpset; the subproject information is appended to the main
project information. In the contents, subprojects are listed one after the other, after the
main project, and each subproject has to begin at the top level. Index entries for each
subproject are appended to those for the main project, for JavaHelp; index merging is
implemented somewhat better for Oracle Help.

To specify that helpsets are to be merged:
[JavaHelpOptions] or [OracleHelpOptions]
; UseSubHelpSets = No (default) or Yes (requires [H elpMergePaths])
UseSubHelpSets = Yes

You must specify the path to the run-time location of each subproject helpset, relative to
the main project helpset. For example:

[HelpMergePaths]
; subproject name = path to its files during use (n ot construction)
mysub = ../mysub/

Only the path is used, not the helpset name.

For more information, see the following:

11 GENERATING JAVAHELP OR ORACLE HELP SETTING UP CSH FOR JAVAHELP OR ORACLE HELP

ALL RIGHTS RESERVED. MAY 18, 2013 401

Merging HelpSets in JavaHelp System User’s Guide
Oracle Help Overview > Merged Helpsets in OHJ in Oracle Help Guide

See also:
§7.11 Setting up a dynamic modular Help system on page 241

11.12 Setting up CSH for JavaHelp or Oracle Help
For context-sensitive help, you insert symbolic IDs into your FrameMaker files as
hypertext newlink markers (see §34.1.2 Using markers to add links and instructions on
page 935), at the appropriate topic start points. Mif2Go puts these IDs in the .jhm map
file for you.

By default, Mif2Go removes punctuation and spaces from newlink marker content. If you
require symbolic IDs for CSH that contain characters such as periods, set the following
option:

[HTMLOptions]
; UseRawNewlinks = No (default, remove punctuation, spaces)
; or Yes (as is)
UseRawNewlinks = Yes

CSH map file:
needed?

The way an application calls JavaHelp or Oracle Help determines whether you need a
CSH map file; this is up to the application developers. You have to ask the developers how
the application calls the Help system:

 • If the developers use numbers, you need a CSH map file, and the developers will
supply it. The map file lists a symbolic ID for each numeric ID.

 • If the developers use names, you do not need a CSH map file; however, the developers
must tell you what symbolic IDs they are using, or you must tell them what symbolic
IDs to use.

Non-CSH internal
map file

A CSH map file comes from a developer, and relates numeric IDs that are used in the
application to symbolic IDs. But JavaHelp and Oracle Help each have an internal map file
with extension .jhm , which relates symbolic IDs used in the Help system to locations in
the Help files, with different numeric IDs. These two map files and sets of numbers have
nothing to do with each other.

See §7.10 Setting up Context Sensitive Help (CSH) on page 239.

SETTING UP CSH FOR JAVAHELP OR ORACLE HELP MIF2GO USER’S GUIDE

402 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 403

12 Generating Eclipse Help

Mif2Go produces the XML and HTML files needed to support the core functionality of
Eclipse Help. This section addresses issues that are specific to generating Eclipse Help.
HTML settings described in section 13 and sections 18 through 34 apply also. Topics
include:

§12.1 Understanding how Eclipse Help works on page 403
§12.2 Setting up an Eclipse Help project on page 403
§12.3 Configuring Eclipse Help manifest files on page 407
§12.4 Configuring contents and index for Eclipse Help on page 411
§12.5 Configuring search properties for Eclipse Help on page 415
§12.6 Merging Eclipse Help projects on page 415
§12.7 Setting up CSH for Eclipse Help on page 417
§12.8 Packaging Eclipse Help files on page 419

See also:
§7 Producing on-line Help on page 199

12.1 Understanding how Eclipse Help works
Eclipse Help for the Eclipse Platform is based on an XML table of contents that specifies
the structure of the Help system and references content in standard XHTML files. An
Eclipse Help plug-in minimally consists of a plug-in manifest file, plugin.xml , and a
TOC (table of contents) file, toc.xml . The manifest provides information about the plug-
in, such as name, ID, and version number. The TOC file is registered with the Eclipse
Platform, using the org.eclipse.help.toc extension point.

Mif2Go supports the core functionality of Eclipse Help, including the following:

 • generation of primary and secondary TOCs
 • indexing (for later versions of Eclipse)
 • infopops: the Eclipse version of CSH (Context-Sensitive Help).

12.2 Setting up an Eclipse Help project
In this section:

§12.2.1 Creating an Eclipse Help project on page 403
§12.2.2 Choosing set-up options for an Eclipse Help project on page 404
§12.2.3 Deciding where to locate configuration settings on page 405
§12.2.3 Deciding where to locate configuration settings on page 405
§12.2.5 Making sure links work in Eclipse Help on page 406
§12.2.6 Disabling breadcrumb trails in Eclipse Help on page 406

12.2.1 Creating an Eclipse Help project

To create an Eclipse Help project:

1. Create a project directory for HTML files, separate from the directory where your
FrameMaker document is located.

SETTING UP AN ECLIPSE HELP PROJECT MIF2GO USER’S GUIDE

404 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

2. With your FrameMaker book or document file open, choose File > Set Up Mif2Go
Export ; the Choose Project dialog opens (see §3.3 Creating a Mif2Go conversion
project on page 78).

3. Name your Eclipse Help project, and browse to the project directory you created in
Step 1.

4. Choose output type Eclipse Help and click OK.

5. Check options in the Set Up Eclipse Help Project dialog (see §12.2.2 Choosing set-up
options for an Eclipse Help project on page 404).

6. Use a text editor to edit the resulting _m2eclipse.ini configuration file (see §4.1
Working with Mif2Go configuration files on page 91).

7. Important: To make the configuration fit your usage of headings to start topics, pay
special attention to sections [HelpContentsLevels] (see §7.2.1 Checking
automatic Help topic assignments on page 203) and [HTMLParaStyles] (see §18.2
Splitting files on page 586).

12.2.2 Choosing set-up options for an Eclipse Help project

When you select Eclipse Help as the output type for a new project, the Set Up dialog
shown in Figure 12-1 opens. Table 12-1 shows the corresponding settings in the
configuration file. You must edit configuration files to specify additional options.

See also:
§3.4 Choosing project set-up options on page 79
§13.2.2 Choosing set-up options for an HTML or XHTML project on page 425
§7 Producing on-line Help on page 199

Figure 12-1 Set Up Eclipse Help Project

12 GENERATING ECLIPSE HELP SETTING UP AN ECLIPSE HELP PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 405

12.2.3 Deciding where to locate configuration sett ings

When you set up an Eclipse Help project from within FrameMaker, if configuration file
_m2htmlhelp.ini is not already present in the project directory, Mif2Go creates this
file for you; see §3 Converting a book or document on page 77.

Which
configuration file?

To configure Eclipse Help output, add settings to one of the following files, depending on
the scope of each setting:

See §30.5 Deciding which configuration file to edit on page 856.

To determine which configuration settings will produce the appearance and functionality
you want, also see:

§13 Converting to HTML/XHTML on page 423
§18 Splitting and extracting files on page 585
§21 Mapping text formats to HTML/XML on page 645
§23 Including graphics in HTML on page 703
§24 Converting tables to HTML on page 727

12.2.4 Specifying Eclipse Help output options

To add or change any of the options described in this section, edit configuration file
_m2eclipse.ini , located in the project directory.

In this section:
§12.2.4.1 Specifying a different output file extension on page 405
§12.2.4.2 Specifying the target Eclipse version on page 406
§12.2.4.3 Choosing whether to generate plugin.xml on page 406

12.2.4.1 Specifying a different output file extens ion

The default output file extension for Eclipse Help is .htm . To change the file extension
(for example, to specify .html instead):

[Setup]
FileSuffix = .html

Table 12-1 Eclipse Help set-up options and configuration settings

Set-up dialog Configuration file [EclipseHelpOptions] section
Option Setting Default Ref.

Generate Index UseIndex=Yes No 12.4

Generate CSH contexts UseContext=Yes Yes 12.7

Plug-in name: PluginName= Name MyDoc 12.3.1

Plug-in ID: PluginID= ID com.mif2go.help 12.3.1

Start: TocTopic mydoc.htm 12.4.4

Overwrite any plugin.xml WritePlugin=Yes Yes 12.4

Overwrite any contexts.xml WriteContext=Yes Yes 12.7

Scope Configuration file Location

Current project
only

_m2eclipse.ini Current project directory

All Eclipse Help
projects

local_m2eclipse_config.ini %omsyshome%\m2g\local\con fig\

SETTING UP AN ECLIPSE HELP PROJECT MIF2GO USER’S GUIDE

406 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

12.2.4.2 Specifying the target Eclipse version

By default, Mif2Go generates output for Eclipse version 3.3. To produce output for a prior
version of Eclipse:

[EclipseHelpOptions]
; EclipseVer = Eclipse version point number, defaul t 3, for 3.3
EclipseVer = 2

The default value of EclipseVer is 3.

When EclipseVer > 1 , the <topic> elements in index.xml have a label attribute
in addition to the href attribute. You might need to produce a version of index.xml
without label attributes for 3.1 users, and one with for 3.2+ users.

When EclipseVer > 2 , the <extension> element in plugin.xml for contexts uses
the file attribute instead of the name attribute for the contexts file. If some of your
Eclipse Help users have Eclipse 3.2 and some have Eclipse 3.3, you must distribute two
different plugin.xml files.

12.2.4.3 Choosing whether to generate plugin.xml

By default, Mif2Go generates manifest file plugin.xml for Eclipse Help. If your
workflow does not require generating this file because it is produced by some other
process, you can exclude plugin.xml from your Mif2Go project.

To direct Mif2Go not to produce plugin.xml :
[EclipseHelpOptions]
; UsePlugin = Yes (default), or No (never write plu gin.xml, use if
; not part of the deliverable system because others provide it)
UsePlugin = No

12.2.5 Making sure links work in Eclipse Help

The case of file names is significant on the Eclipse platform, even on Windows systems.
To avoid case mismatch between links and the files they reference, in some circumstances
you might have to specify the following option:

[HTMLOptions]
; MakeFileHrefsLower = No (leave case unchanged) or Yes
MakeFileHrefsLower = Yes

MakeFileHrefsLower is set to Yes in system configuration file d2htm_config.ini .
If you want Mif2Go to leave case alone in hypertext links, you can override this setting in
a project or local configuration file.

See §19.2.6 Forcing link text to lowercase on page 613.

12.2.6 Disabling breadcrumb trails in Eclipse Help

Eclipse Help version 3.3 includes breadcrumbs (trails of links) by default. If you do not
want this navigation feature, you can disable it.

To disable breadcrumbs, find the file named:
org.eclipse.help.webapp\advanced\breadcrumbs.css

and replace its contents with:
...help_breadcrumbs {
 display: none;
}

12 GENERATING ECLIPSE HELP CONFIGURING ECLIPSE HELP MANIFEST FILES

ALL RIGHTS RESERVED. MAY 18, 2013 407

Including anchors in TOC entries also disables Eclipse Help native breadcrumbs, but
might interfere with other features; see §12.4.4.3 Enabling mid-topic links from the TOC
on page 413.

12.3 Configuring Eclipse Help manifest files
In this section:

§12.3.1 Specifying a Java manifest file for Eclipse Help on page 407
§12.3.2 Specifying Eclipse Help plug-in properties on page 407
§12.3.3 Configuring the Java manifest file for Eclipse Help on page 408
§12.3.4 Configuring the plug-in manifest file for Eclipse Help on page 409

12.3.1 Specifying a Java manifest file for Eclipse Help

By default, Mif2Go includes a Java manifest file, MANIFEST.MF. To omit this file and use
only plugin.xml as a manifest:

[EclipseHelpOptions]
; UseManifest = Yes (default, required for .jars) o r No
UseManifest = No

If you intend to package your Eclipse Help files in a .jar file, you must keep the default
value: UseManifest=Yes .

If you intend to package your Eclipse Help files in doc.zip , set UseManifest =No.

When UseManifest=Yes , Mif2Go does the following:

 • Places title, ID, provider, and product-version properties in MANIFEST.MF. When
UseManifest=No , these properties are included in plugin.xml instead; see §12.3.2
Specifying Eclipse Help plug-in properties on page 407.

 • Includes a processing instruction in plugin.xml , and sets the plug-in schema version
to 3.2 unless you specify a different version; see §12.3.4.2 Including a processing
instruction to validate plugin.xml on page 409. When UseManifest=No , the
processing instruction is not included in plugin.xml .

 • Creates a subdirectory named META-INF in your Eclipse Help project wrap directory,
and moves MANIFEST.MF into META-INF; see §35.6.1 Specifying a wrap directory on
page 961. When UseManifest=No , subdirectory META-INF is not created.

12.3.2 Specifying Eclipse Help plug-in properties

The properties described here appear either as attributes of the <plugin> element in
plugin.xml or as values of entries in MANIFEST.MF, depending on the setting for
UseManifest (see §12.3.1 Specifying a Java manifest file for Eclipse Help on page 407):

Title To specify a title for your Eclipse Help plug-in:

Table 12-2: Eclipse Help properties in either MANIFEST.MF or plugin.xml

Property
Configuration
setting UseManifest=Yes UseManifest=No

How/where to specify MANIFEST.MF entry <plugin> attribute

Title PluginName Bundle-Name name

ID PluginID Bundle-SymbolicName id

Provider name PluginProvider Bundle-Vendor provider-name

Product version PluginVer Bundle-Version version

CONFIGURING ECLIPSE HELP MANIFEST FILES MIF2GO USER’S GUIDE

408 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[EclipseHelpOptions]
; PluginName = text used in <plugin> or manifest fo r name attribute
PluginName = Mif2Go Eclipse Help

In MANIFEST.MF, this title becomes the Bundle-Name value. The default value is the
base name of your FrameMaker book or document.

ID To specify a plug-in ID:
[EclipseHelpOptions]
; PluginID = text used in <plugin> or manifest for id attribute
PluginID = com.mif2go.help

The plug-in ID identifies your plug-in to other components of the Eclipse Platform. In
MANIFEST.MF, this ID becomes the Bundle-SymbolicName value. The default value is
com.mif2go.help .

Provider name To specify the plug-in provider:
[EclipseHelpOptions]
; PluginProvider = text used in <plugin> or manifes t for provider-name
; attribute
PluginProvider = mif2go.com

In MANIFEST.MF, the provider name becomes the Bundle-Vendor value. The default
value is mif2go.com .

Product version To specify the version of the product your Eclipse Help content is about (not to be
confused with the Eclipse version):

[EclipseHelpOptions]
; PluginVer = text used in <plugin> or manifest for version attribute
PluginVer = 1.0

In MANIFEST.MF, this version number becomes the Bundle-Version value. The default
value of PluginVer is 1.0 .

12.3.3 Configuring the Java manifest file for Ecli pse Help

When you package Eclipse Help in a .jar file, the .jar file must include a Java
manifest, MANIFEST.MF. Mif2Go can create this file for you, and does so by default when
UseManifest=Yes ; see §12.3.1 Specifying a Java manifest file for Eclipse Help on
page 407.

To prevent Mif2Go from creating MANIFEST.MF when UseManifest=Yes :
[EclipseHelpOptions]
; WriteManifest = Yes (default, always write, even if it exists)
; or No (customized, write only if not found)
WriteManifest = No

When WriteManifest=Yes , Mif2Go creates MANIFEST.MF in the project directory; if
this file is already present, Mif2Go overwrites it.

When WriteManifest=No , Mif2Go creates MANIFEST.MF only if this file is not already
present in the project directory; Mif2Go does not overwrite an existing MANIFEST.MF.
This setting allows you to customize MANIFEST.MF outside of Mif2Go , without losing
your customizations during subsequent conversions.

To specify that your plug-in must run as a singleton:
[EclipseHelpOptions]
; UseSingleton = No (default) or Yes (add "; single ton:=true" after
; PluginID in manifest file)
UseSingleton = Yes

12 GENERATING ECLIPSE HELP CONFIGURING ECLIPSE HELP MANIFEST FILES

ALL RIGHTS RESERVED. MAY 18, 2013 409

When UseSingleton=Yes , Mif2Go adds “; singleton:=true ” after the value of
Bundle-SymbolicName in MANIFEST.MF.

12.3.4 Configuring the plug-in manifest file for E clipse Help

The plug-in manifest for your Eclipse Help project, plugin.xml , describes how your
Eclipse Help plug-in extends the Eclipse Platform, and how its functionality is
implemented. By default, Mif2Go creates this manifest file based on settings you provide.
However, you can exclude creation of plugin.xml from your project; see §12.2.4.3
Choosing whether to generate plugin.xml on page 406.

In this section:
§12.3.4.1 Creating plugin.xml for Eclipse Help on page 409
§12.3.4.2 Including a processing instruction to validate plugin.xml on page 409
§12.3.4.3 Specifying the plug-in schema version for plugin.xml on page 410
§12.3.4.4 Specifying Eclipse Help TOC properties in plugin.xml on page 410
§12.3.4.5 Specifying Eclipse Help index properties in plugin.xml on page 410
§12.3.4.6 Including a runtime element in plugin.xml on page 410
§12.3.4.7 Including or excluding full-text search for Eclipse Help on page 411
§12.3.4.8 Specifying Eclipse Help CSH properties in plugin.xml on page 411

See also:
§12.3.3 Configuring the Java manifest file for Eclipse Help on page 408

12.3.4.1 Creating plugin.xml for Eclipse Help

To direct Mif2Go to create plugin.xml :
[EclipseHelpOptions]
; WritePlugin = Yes (default, write plugin.xml) or No (write only
; if not already present, use if customized)
WritePlugin = Yes

When WritePlugin=Yes , Mif2Go creates plugin.xml in the project directory; if
plugin.xml is already present, Mif2Go overwrites it.

When WritePlugin=No , Mif2Go creates plugin.xml only if this file is not already
present in the project directory; Mif2Go does not overwrite an existing plugin.xml .
This setting allows you to customize plugin.xml outside of Mif2Go , without losing
your customizations during subsequent conversions.

12.3.4.2 Including a processing instruction to val idate plugin.xml

By default, Mif2Go includes a processing instruction (PI) in plugin.xml , specifying the
plug-in schema version used to validate plugin.xml . To omit the processing instruction:

[EclipseHelpOptions]
; IncludeVersionPI = Yes (default, include PI with version
; specified by PluginSchemaVersion at start of plug in.xml) or No
IncludeVersionPI = No

When IncludeVersionPI=Yes , Mif2Go includes a PI of the following form at the start
of plugin.xml :

<?eclipse version="3.2"?>

This processing instruction is required when you provide Eclipse Help files in a .jar file;
see §12.3.3 Configuring the Java manifest file for Eclipse Help on page 408. The value of

CONFIGURING ECLIPSE HELP MANIFEST FILES MIF2GO USER’S GUIDE

410 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

the version attribute represents the plug-in schema version; see §12.3.4.3 Specifying the
plug-in schema version for plugin.xml on page 410.

12.3.4.3 Specifying the plug-in schema version for plugin.xml

To specify the plug-in schema version (not to be confused with the plug-in product version
or the Eclipse version):

[EclipseHelpOptions]
; PluginSchemaVersion = version used to validate pl ugin.xml.
PluginSchemaVersion = 3.2

The value of PluginSchemaVersion becomes the value of the version attribute in a
processing instruction (PI) in plugin.xml ; see §12.3.4.2 Including a processing
instruction to validate plugin.xml on page 409.

If you do not specify a value for PluginSchemaVersion , the default value depends on
the value of UseManifest :

 • If UseManifest=Yes , PluginSchemaVersion=3.2 .
 • If UseManifest=No , PluginSchemaVersion=3.1 .

If you are providing Eclipse Help in a .jar file (see §12.3.3 Configuring the Java
manifest file for Eclipse Help on page 408), the default value (in fact the only valid value)
of PluginSchemaVersion is 3.2 . Do not set PluginSchemaVersion to 3.3 , even if
EclipseVer=3 (see §12.2.3 Deciding where to locate configuration settings on
page 405).

If you are providing Eclipse Help in a .zip file, the value of PluginSchemaVersion
can be either 3.0 or 3.1 ; the default value is 3.1 .

12.3.4.4 Specifying Eclipse Help TOC properties in plugin.xml

To specify TOC properties in plugin.xml :
[EclipseHelpOptions]
; TocFilename = name for contents file, always toc. xml for primary
TocFilename=toc.xml
; TocPrimary = Yes (default, toc.xml) or No (second ary)
TocPrimary=Yes
; TocExtradir = path to dir for additional docs to include
; in search index, even if not referenced from any toc topic
TocExtradir =

See §12.4.4 Configuring contents properties for Eclipse Help on page 412.

12.3.4.5 Specifying Eclipse Help index properties in plugin.xml

To specify index properties in plugin.xml :
[EclipseHelpOptions]
; IdxFilename = name for index file, normally index .xml
IdxFilename=index.xml
; UseIndex = No (default) or Yes (for newer release s of Eclipse)
UseIndex = Yes

See §12.4.5 Configuring index properties for Eclipse Help on page 414.

12.3.4.6 Including a runtime element in plugin.xml

By default, Mif2Go omits the <runtime/> element from plugin.xml ; this element can
cause problems in Eclipse 3.6 and later versions. However, the <runtime/> element was

12 GENERATING ECLIPSE HELP CONFIGURING CONTENTS AND INDEX FOR ECLIPSE HELP

ALL RIGHTS RESERVED. MAY 18, 2013 411

required in earlier versions of Eclipse, so whether it should be present depends on the
version of the Eclipse platform where your Eclipse Help system will be deployed.

To have Mif2Go include a <runtime/> element in plugin.xml :
[EclipseHelpOptions]
UseRuntime = Yes

12.3.4.7 Including or excluding full-text search f or Eclipse Help

By default, Mif2Go includes an extension point for full-text search in plugin.xml . To
exclude this extension point:

[EclipseHelpOptions]
; UseFTS = Yes (default, adds extension point to pl ugin file) or No
UseFTS = No

12.3.4.8 Specifying Eclipse Help CSH properties in plugin.xml

To specify CSH properties used to produce infopops, in plugin.xml :
[EclipseHelpOptions]
; UseContext = Yes (default, add context ref to plu gin.xml) or No
UseContext = Yes
; WriteContext = Yes (default, write contexts.xml) or No
WriteContext = Yes
; ContextDescription = Yes (default, include) or No (omit)
ContextDescription = Yes
; DescriptionIsFirstLabel = No (default) or Yes (us e the label from
; the first context item as the description for the context)
DescriptionIsFirstLabel = No
; ContextAnchors = No (default, filename only) or Y es (refer to para)
ContextAnchors = No

To set contexts, use EclipseContext markers in your FrameMaker document. Place an
EclipseContext marker that contains a context ID name in each topic to be referenced by
an infopop. Add the infopop description in the Mif2Go configuration file, in section
[EclipseHelpContexts] .

See §12.7 Setting up CSH for Eclipse Help on page 417.

12.4 Configuring contents and index for Eclipse He lp
In this section:

§12.4.1 Choosing contents and index methods for Eclipse Help on page 411
§12.4.2 Supplying path information for contents and index links on page 412
§12.4.3 Encoding special characters for contents and index entries on page 412
§12.4.4 Configuring contents properties for Eclipse Help on page 412
§12.4.5 Configuring index properties for Eclipse Help on page 414

12.4.1 Choosing contents and index methods for Ecl ipse Help

To direct Mif2Go to generate only contents, or both contents and index, for Eclipse Help:
[EclipseHelpOptions]
; ListType (for filter to create) = Contents (defau lt)
; or Both (with index, for Eclipse 3.2+)
ListType = Contents

When ListType=Contents (the default), Mif2Go creates only toc.xml . Contents file
toc.xml is required for Eclipse Help.

CONFIGURING CONTENTS AND INDEX FOR ECLIPSE HELP MIF2GO USER’S GUIDE

412 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When ListType=Both , Mif2Go creates both toc.xml and index.xml . Index file
index.xml is supported only in Eclipse version 3.2 and later versions.

You can choose how Mif2Go generates data files needed for Eclipse Help contents and
index; however, most likely you will never have a reason to change the default setting:

[EclipseHelpOptions]
; RefFileType = Full (default) or Body.
RefFileType = Full

RefFileType values have the following effects:

See also:
§7.3.4 Modifying contents or index production for HTML-based Help on page 206.
§12.4.4 Configuring contents properties for Eclipse Help on page 412
§12.4.5 Configuring index properties for Eclipse Help on page 414

12.4.2 Supplying path information for contents and index links

If your HTML files will not be in the same directory with toc.xml and idx.xml , links
from these files must include a path.

To supply a path for contents and index links, and also for <context> elements (see
§12.7 Setting up CSH for Eclipse Help on page 417):

[EclipseHelpOptions]
; TocIdxFilePrefix = prefix to insert at start of f ile URLs, when
; html files are placed in a subdirectory under th e toc and idx
TocIdxFilePrefix = path/to/htmlfiles

The path specified by TocIdxFilePrefix is relative to the directory where toc.xml
and idx.xml are located, and must designate a subdirectory under that directory.

12.4.3 Encoding special characters for contents an d index entries

If entries in your Eclipse Help contents or index show up with special characters
represented as numeric entity references (&#nnn;), try setting:

[HTMLOptions]
ValidOnly = Yes

See §21.6.1 Understanding how Mif2Go represents characters on page 658.

If the results are not satisfactory, try the following settings to force a different method:
[HTMLOptions]
Encoding = UTF-8
NumericCharRefs = No

See §14.3.3 Specifying character encoding for generic XML on page 460.

12.4.4 Configuring contents properties for Eclipse Help

Each Eclipse Help system has one primary TOC, and can have any number of secondary
(linked) TOCs. The primary TOC file is always named toc.xml . A secondary TOC can
have any user-defined name with file extension .xml . In most cases, the TOC and helpset
Mif2Go generates will be the primary TOC and helpset.

Full Default. Mif2Go creates a toc.xml (and an index.xml file, if
ListType=Both) for each original FrameMaker file.

Body Mif2Go creates DCL .bhc (and .bhk , if ListType=Both) files that are
merged later to produce toc.xml and index.xml .

12 GENERATING ECLIPSE HELP CONFIGURING CONTENTS AND INDEX FOR ECLIPSE HELP

ALL RIGHTS RESERVED. MAY 18, 2013 413

Properties described in the following sections are included in toc.xml :
§12.4.4.1 Providing a title for the TOC on page 413
§12.4.4.2 Specifying a starting topic on page 413
§12.4.4.3 Enabling mid-topic links from the TOC on page 413
§12.4.4.4 Directing TOC links to top of topic page on page 414
§12.4.4.5 Avoiding skipped heading levels in the TOC on page 414

Additional TOC properties are specified in the plug-in manifest; see §12.3.4.4 Specifying
Eclipse Help TOC properties in plugin.xml on page 410. See also §7.4 Configuring
contents entries for Help systems on page 209.

12.4.4.1 Providing a title for the TOC

To provide a label to be displayed as the “book” level of the helpset in the Eclipse Help
Contents pane:

[EclipseHelpOptions]
; TocLabel = text that appears in the Eclipse Help Contents pane
TocLabel = Title for your Eclipse Help system

The default value of TocLabel is the value supplied for PluginName ; see §12.3.1
Specifying a Java manifest file for Eclipse Help on page 407. This is not usually what you
want.

12.4.4.2 Specifying a starting topic

To specify which topic file to display when Eclipse Help opens:
[EclipseHelpOptions]
; TocTopic = name of opening topic file (required)
TocTopic = startingtopic.htm

The default starting topic is the first HTML file listed in the generated contents. That is, if
you do not include any setting for TocTopic , Mif2Go generates an entry of the following
form in toc.xml :

<toc label=" Title of your Help system" topic=" firsttopiclisted.htm">

When an explicit file is named as a topic attribute, Eclipse does not generate a default
help page. To allow Eclipse (at least later versions) to generate a default help page, you
can avoid specifying an opening topic by giving TocTopic an empty value:

[EclipseHelpOptions]
TocTopic =

When you specify an empty value, Mif2Go omits the topic attribute and generates an
entry of the following form in toc.xml :

<toc label=" Title of your Help system">

In this case, Eclipse generates a default opening page with the following content:
Title of your Help system
Contents
Link to the first top-level topic
Link to the second top-level topic
. . .
Link to the last top-level topic

12.4.4.3 Enabling mid-topic links from the TOC

The presence of anchors in TOC entries (such as href=" topic.htm# anchor") breaks
Eclipse Help native breadcrumbs (Eclipse bug 184787), and possibly more. Therefore, by

CONFIGURING CONTENTS AND INDEX FOR ECLIPSE HELP MIF2GO USER’S GUIDE

414 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

default Mif2Go omits these anchors. However, omitting the anchors also prevents mid-
topic jumps from the TOC.

To enable mid-topic jumps by including anchors in Eclipse Help TOC entries:
[EclipseHelpOptions]
; TocNamesFileOnly = Yes (default, workaround for E clipse bug 184787,
; and others, where use of #aname breaks Eclipse na tive breadcrumbs),
; or No (allows direct midtopic jumps to points wit hin files).
TocNamesFileOnly = No

When TocNamesFileOnly=Yes (the default), Mif2Go omits anchors from TOC entries,
enabling Eclipse Help native breadcrumbs but disabling mid-topic jumps from the TOC.

When TocNamesFileOnly=No , Mif2Go includes anchors in TOC entries, enabling mid-
topic jumps from the TOC, but disabling Eclipse Help native breadcrumbs.

See also:
§12.2.6 Disabling breadcrumb trails in Eclipse Help on page 406

12.4.4.4 Directing TOC links to top of topic page

To make sure links from toc.xml go to top-of-page, so that any navigation links you have
positioned above the topic heading are visible when a user clicks a TOC link, assign the
following property to each paragraph format that is a target of a TOC link:

[HTMLParaStyles]
TopicHeading = NoRef

See §19.3.1 Forcing links to top-of-page for selected paragraph formats on page 614.

12.4.4.5 Avoiding skipped heading levels in the TO C

If you find that Eclipse Help output includes <topic> elements with no label attributes,
check whether there are any skipped heading levels in your document. Hardly any Help
systems allow skipped levels in the TOC. This usually happens when there are sub-
subheadings directly under a major heading, before the first subheading. For example:

 1. Top-level heading
 Third-level heading
 1.1 Second-level heading
 Third-level heading
 1.2 Second-level heading

By default, Mif2Go inserts the missing level; this works for some systems, but not for
Eclipse Help. Avoid this pattern in your document; at the least, exclude such sub-
subheadings from the TOC.

12.4.5 Configuring index properties for Eclipse He lp

Only Eclipse version 3.2 and later versions support an index. Mif2Go produces the index
from your FrameMaker index markers, in the form of XML file index.xml with links to
your HTML topic files. When EclipseVer=2 or later (see §12.2.3 Deciding where to
locate configuration settings on page 405), Mif2Go includes a label attribute in each
index entry.

At present the only configuration settings that apply to an Eclipse Help index are those
you can specify for the plug-in manifest file; see §12.3.4.5 Specifying Eclipse Help index
properties in plugin.xml on page 410. See also §7.5 Configuring index entries for Help
systems on page 211.

12 GENERATING ECLIPSE HELP CONFIGURING SEARCH PROPERTIES FOR ECLIPSE HELP

ALL RIGHTS RESERVED. MAY 18, 2013 415

If you see style tags in your generated index.xml file, most likely they represent formats
that are not present in your FrameMaker catalog; the remedy is to catalog those formats, or
replace them by catalogued formats in your FrameMaker document. Mif2Go leaves them
in the output as a diagnostic.

12.5 Configuring search properties for Eclipse Hel p
For Eclipse version 3.4 or later, to prevent Eclipse from including in each search result the
first 170 or so characters after the <body> tag of the topic, provide a <meta> element
containing a description attribute in the <head> section of the topic; for example:

<meta name="description" content="How to polish wid gets."/>

You can specify the content value in a FrameMaker marker of type MetaDescription , or
use the content of a dedicated paragraph format; see §13.4.6 Supplying content for the
<meta> tag on page 434.

Note: In Eclipse 3.4 this technique works only for HTML files, not XHTML files.

12.6 Merging Eclipse Help projects
If your customers are using Eclipse version 3.4 or later, you can simply insert marker in
FrameMaker for links to secondary TOCs from the primary content. The secondary
modules do not need to know where they are used, and if any are missing, the primary
helpset still works without error. The missing TOC items are silently omitted. See §12.6.1
Linking primary content to secondary TOCs on page 415.

If you must support versions of Eclipse prior to Eclipse 3.4, you might have to use anchors
in the primary TOC and links to those anchors from any secondary modules; see §12.6.2
Linking secondary TOCs to primary content (deprecated) on page 416. For versions of
Eclipse starting with Eclipse 3.4, this method is deprecated.

In this section:
§12.6.1 Linking primary content to secondary TOCs on page 415
§12.6.2 Linking secondary TOCs to primary content (deprecated) on page 416

12.6.1 Linking primary content to secondary TOCs

To link a secondary helpset into your primary Eclipse Help system, insert a marker of type
EclipseLink in the FrameMaker document to be converted to your primary helpset, in the
paragraph that immediately precedes the point where you want the secondary helpset to
appear. EclipseLink marker content consists of two items separated by a space:

 • TOC level number
 • Path to the secondary TOC file.

The TOC level number is an integer that corresponds to whatever level number you
specified for primary-TOC entries at the same level; see §7.4.4 Setting contents levels for
HTML-based Help on page 210.

In Eclipse Help output, Mif2Go generates the following from each EclipseLink marker:
<link toc=" path/to/secondary/toc.xml">

If you do not know ahead of time which secondary helpset (if any) will be needed at a
given point in a primary helpset, insert an EclipseLink marker for each possible secondary.
In Eclipse version 3.4 and later versions, those <link toc="..."> elements that specify
paths to helpsets that are not present at build time are ignored. For Eclipse Help versions

MERGING ECLIPSE HELP PROJECTS MIF2GO USER’S GUIDE

416 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

earlier than 3.4, see §12.6.2 Linking secondary TOCs to primary content (deprecated) on
page 416.

12.6.2 Linking secondary TOCs to primary content (deprecated)

The methods described in this section apply to Eclipse version 3.3 and earlier versions.
For Eclipse version 3.4 and later versions, see §12.6.1 Linking primary content to
secondary TOCs on page 415 instead.

To link a secondary TOC to an anchor in the primary content (or in another secondary
TOC):

[EclipseHelpOptions]
; TocLinkTo = path to another (secondary) TOC with anchor,
; such as ../anotherPlugin/api.xml#moreapi, for lin k_to attribute
TocLinkTo = ../path/to/anotherPlugin/otherTOC.xml#moreinfo

The value of TocLinkTo is used for a link_to attribute in the secondary TOC. The
secondary TOC file must have a name other than toc.xml .

To specify where in the primary helpset a secondary TOC should appear, in your
FrameMaker document insert an EclipseAnchor marker in the paragraph that immediately
precedes the point where you want the secondary helpset linked.

You can use a marker either of type EclipseAnchor or of type EclipseLink . Marker content
consists of the following:

The TOC level number is an integer that corresponds to whatever level number you
specified for primary-TOC entries at the same level; see §7.4.4 Setting contents levels for
HTML-based Help on page 210. The anchor name provides a target for a link from a
secondary TOC.

Which marker type you use depends on which scenario you anticipate:
Alternative or optional secondary TOCs
Alternative primary TOCs.

Alternative or
optional

secondary TOCs

If you do not know ahead of time which sub-module (if any) will be needed at a given
point in a primary helpset, use an EclipseAnchor marker in the primary system. Each sub-
module subTOC.xml must include the anchor name in its link_to attribute.

EclipseAnchor
rationale

Suppose you are creating help systems to be deployed with Eclipse version 3.3 or earlier,
and you do not know which modules any given customer has, so you ship separate
modules to be merged. If you specify all possible modules in the primary helpset, using
EclipseLink , the customer gets broken links for any missing modules. So instead, you use
an EclipseAnchor in the primary helpset for each sub-module; the marker content is not
rendered, but it tells the sub-module where to hook in. When the sub-modules are
alternatives, you do not need to rebuild the primary system even when you create more
alternatives; just use the existing anchor. You cannot do that with EclipseLink ; you would
have to rebuild the primary helpset with an added link every time you created a new
alternative sub-module.

Alternative
primary TOCs

If you do not know ahead of time into which system a given sub-module must fit, insert an
EclipseLink marker in each of the alternative primary systems, specifying the path to the
sub-module.

EclipseAnchor TOC level number, space, anchor name.
EclipseLink TOC level number, space, path to the secondary TOC file.

12 GENERATING ECLIPSE HELP SETTING UP CSH FOR ECLIPSE HELP

ALL RIGHTS RESERVED. MAY 18, 2013 417

EclipseLink
rationale

Suppose you have many standard components, but a new framework for each customer.
Then it might seem more direct to use EclipseLink , and link from the primary helpset to
the secondary explicitly.

12.7 Setting up CSH for Eclipse Help
Infopops serve the purpose of Context-Sensitive Help for Eclipse Help. Infopops are
intended to contain only a sentence or two of descriptive information, plus one or more
hypertext links pointing to further information.

In this section:
§12.7.1 Understanding how Mif2Go generates context links on page 417
§12.7.2 Naming context file and attribute for secondary plug-ins on page 417
§12.7.3 Configuring context IDs and context anchors on page 418
§12.7.4 Configuring context descriptions on page 418
§12.7.5 Locating context information on page 419

See also:
§7.10 Setting up Context Sensitive Help (CSH) on page 239

12.7.1 Understanding how Mif2Go generates context links

Mif2Go recognizes custom FrameMaker EclipseContext markers as the targets of infopop
calls. Each infopop provides a link to the topic where an EclipseContext marker is
inserted. The <topic> elements included get their href and label attributes from the
<topic> elements of the containing paragraphs. This provides the equivalent of the
aliases used for CSH in other Help formats; see §7.10 Setting up Context Sensitive Help
(CSH) on page 239. For example:

In plugin.xml :
<extension point="org.eclipse.help.contexts">

<contexts file="contexts.xml"/>
</extension>

Note: Eclipse 3.1 and 3.2 require a name parameter for the <contexts> element in
plugin.xml ; Eclipse 3.3 requires a file parameter instead. See §12.2.3
Deciding where to locate configuration settings on page 405.

In contexts.xml :
<contexts>

<context id="help_button">
<description>Brief description of this control.</de scription>
<topic href="file_name_link1.html" label="Link1 Top ic Title"/>
<topic href="file_name_link2.html" label="Link2 Top ic Title"/>

</context>
. . .

</contexts>

Mif2Go creates contexts.xml afresh every time you run the conversion, unless you say not
to; see §12.3.4.8 Specifying Eclipse Help CSH properties in plugin.xml on page 411.

12.7.2 Naming context file and attribute for secon dary plug-ins

To specify a name for the context file:

SETTING UP CSH FOR ECLIPSE HELP MIF2GO USER’S GUIDE

418 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[EclipseHelpOptions]
; ContextFileName = name for context file, default contexts.xml
ContextFileName=contexts.xml

The default name of the context file is contexts.xml .

To specify a plug-in attribute for secondary plug-ins:
[EclipseHelpOptions]
; ContextPluginName = plug-in attribute for seconda ry plugins,
; default none
ContextPluginName=

By default, no attribute is provided for a secondary plug-in.

12.7.3 Configuring context IDs and context anchors

To provide entry points for infopop calls from an application to an Eclipse Help system,
insert EclipseContext markers in target topics in your FrameMaker file. The content of an
EclipseContext marker is the context ID for the infopop, which becomes a <context>
element in toc.xml .

By default, Mif2Go inserts each context anchor at the beginning of a topic, regardless of
where in the topic you place the EclipseContext marker in FrameMaker. To produce mid-
topic entry points instead:

[HTMLOptions]
ObjectIDs = All

[EclipseHelpOptions]
; ContextAnchors = No (default, filename only) or Y es (refer to para)
ContextAnchors = Yes

When ContextAnchors=Yes , Mif2Go inserts a context anchor at the beginning of the
paragraph that contains an EclipseContext marker.

When ContextAnchors=No , the context anchor appears at the beginning of the topic.

See also:
§34.1.2 Using markers to add links and instructions on page 935

12.7.4 Configuring context descriptions

By default, Mif2Go includes a <description> element for each <context> element in
toc.xml .

To provide content for the <description> element:
[EclipseHelpContexts]
; ContextID = short plain-text description for its infopop

For example:
[EclipseHelpContexts]
ChooseProject = Choose a project from the list, or name a new project.
Export = Choose final options and make last-minute changes.

To have Mif2Go copy the <description> value from the <topic label> value
instead:

[EclipseHelpOptions]
; DescriptionIsFirstLabel = No (default) or Yes (us e the label from
; the first context item as the description for the context)
DescriptionIsFirstLabel = Yes

To omit the <description> element:

12 GENERATING ECLIPSE HELP PACKAGING ECLIPSE HELP FILES

ALL RIGHTS RESERVED. MAY 18, 2013 419

[EclipseHelpOptions]
; ContextDescription = Yes (default, include) or No (omit)
ContextDescription = No

12.7.5 Locating context information

If the HTML files in your project will not reside in the same directory as toc.xml , you
must provide path information for the <context> elements; see §12.4.2 Supplying path
information for contents and index links on page 412.

12.8 Packaging Eclipse Help files
Eclipse Help allows you to deploy your HTML topic files (but not the XML files) in a ZIP
file called doc.zip , or XML and HTML files in a JAR file called doc.jar . Although
packaging for topic files is not required for Eclipse Help, it is recommended.

Mif2Go provides ZIP packaging, if you provide a ZIP program (such as pkzip.exe or
WinZip command-line add-on wzzip.exe) and specify the command and parameters
required to execute the program.

Mif2Go can provide JAR packaging, if you provide the Java jar.exe program and its
environment variables, and specify the jar command and parameters.

In this section:
§12.8.1 Specifying a ZIP command for doc.zip on page 419
§12.8.2 Specifying ZIP command parameters on page 419
§12.8.3 Specifying a JAR command for doc.jar on page 420
§12.8.4 Monitoring the packaging step for errors on page 420
§12.8.5 Archiving Eclipse Help files on page 420

See also:
§7.2.4 Compiling and distributing Help systems on page 204
§35.6 Assembling files for distribution on page 961

12.8.1 Specifying a ZIP command for doc.zip

To specify a ZIP command to create doc.zip :
[EclipseHelpOptions]
; ZipCommand = zip command without parameters
ZipCommand = path/to/zip_program

If your ZIP program is not located in a directory that is on the system PATH, include a full
absolute path for ZipCommand. If the path includes spaces, enclose the entire path in
quotes. For example, for wzzip :

[EclipseHelpOptions]
ZipCommand = "c:/program files/winzip/wzzip"

12.8.2 Specifying ZIP command parameters

To specify parameters to the ZIP command (for example, for wzzip):
[EclipseHelpOptions]
; ZipParams = parameters to issue for ZipCommand
ZipParams = -a doc.zip *.htm *.jpg *.gif *.css

For parameters that are to be passed to the ZIP program, observe the following:

PACKAGING ECLIPSE HELP FILES MIF2GO USER’S GUIDE

420 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • Do not enclose parameter values in quotes.
 • Use backslashes as separators in path-name parameters.
 • Use a dash (“- ”) instead of a forward slash to prefix a command option.

Note: The name of the file created by your ZIP program must be doc.zip .

If [Automation]WrapAndShip=Yes (see §35.2 Activating and logging production of
deliverables on page 956), file specifications you list as parameters for ZipParams
should be relative to the [Automation]WrapPath directory, otherwise to the project
directory.

Or, you can specify absolute paths (for example, for wzzip):
[EclipseHelpOptions]
ZipParams = -a doc.zip -x g:\eh_wrap*.xml g:\eh_wrap*.*

This wzzip parameter list includes everything in directory g:\eh_wrap except XML
files. Do not include plugin.xml , toc.xml , index.xml , or any other Eclipse Help
XML files in doc.zip . To archive files for storage or shipping, see §12.8.5 Archiving
Eclipse Help files on page 420.

12.8.3 Specifying a JAR command for doc.jar

To produce doc.jar , use a Mif2Go system command. For example:
[Automation]
SystemEndCommand = jar -cvf doc.jar *

See §34.4.1 Specifying system commands on page 938.

If you give your JAR file a name that allows it to be included in the
ECLIPSE_HOME/plugins directory, you do not need to provide a subdirectory for your
Eclipse Help system. For example:

[Automation]
SystemEndCommand = jar -cvf com. myapp.eclipse.core.doc.jar *

When you JAR your Eclipse Help system, you have exactly one deliverable, so you do not
need to do any further archiving.

12.8.4 Monitoring the packaging step for errors

You might want to set the following option, so you can see any error messages that result
from packaging Eclipse Help components:

[Automation]
; KeepCompileWindow = No (default)
; or Yes (so any error messages can be seen)
KeepCompileWindow=Yes

When KeepCompileWindow=Yes , a system window opens when the packaging
command (zip or jar) runs. If there are no errors, you will see only a command prompt
when the process finishes. You must dismiss the window before Mif2Go can continue
processing.

12.8.5 Archiving Eclipse Help files

If you package your Eclipse Help files via ZIP (or if you do not package them at all), you
can use Mif2Go automation settings to archive everything needed for your Eclipse Help
plug-in: XML files along with HTML files or doc.zip . See §35.11 Archiving
deliverables on page 973. The default archive file name is plugin.zip .

12 GENERATING ECLIPSE HELP PACKAGING ECLIPSE HELP FILES

ALL RIGHTS RESERVED. MAY 18, 2013 421

If you package your Eclipse Help files via JAR, you do not need to do any further
archiving.

PACKAGING ECLIPSE HELP FILES MIF2GO USER’S GUIDE

422 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 423

13 Converting to HTML/XHTML

This section shows how to set options in your HTML project configuration file. Unless
otherwise indicated, settings for HTML apply also to XHTML and to HTML-based Help
systems. Topics include:

§13.1 Deciding which type of output to produce on page 424
§13.2 Setting up an HTML project on page 424
§13.3 Including starting code and entity references on page 429
§13.4 Supplying values for the <head> element on page 429
§13.5 Specifying HTML <body> attributes on page 436
§13.6 Specifying document-wide properties for HTML on page 436
§13.7 Defining and mapping colors for HTML on page 438
§13.7 Defining and mapping colors for HTML on page 438
§13.8 Converting generated files for HTML on page 441
§13.9 Importing HTML files as insets on page 446
§13.10 Converting conditions to HTML attributes on page 446
§13.11 Providing hover text for terms in HTML on page 448
§13.12 Generating XHTML for Confluence 4.x on page 449
§13.13 Exporting content for database input on page 450
§13.14 Using framesets on page 450
§13.15 Adding a “Made with Mif2Go” label or button on page 452
§13.16 Passing W3C validation tests on page 453

See also:

HTML-based help §7 Producing on-line Help on page 199, if you plan to generate a Help system.

Generic XML §14 Converting to generic XML on page 457, for settings specific to XML (but not
DITA or DocBook XML).

DITA XML §15 Converting to DITA XML on page 473.

DocBook XML §17 Converting to DocBook XML on page 557.

File splitting §18 Splitting and extracting files on page 585 for settings that govern the subdivision
of a FrameMaker document into HTML topic files.

Links §19 Creating HTML links on page 609 and §20 Providing navigation in HTML on
page 627 for ways to create navigation links.

Formats §21 Mapping text formats to HTML/XML on page 645 for settings that map
paragraph and character formats to HTML elements, and that position graphics and
equations.

CSS §22 Setting up CSS for HTML on page 681 if you plan to use CSS.

Graphics §23 Including graphics in HTML on page 703 for ways to convert graphics and
equations, and specify image properties.

Tables §24 Converting tables to HTML on page 727 for ways to specify table structure and
display properties.

WAI markup §25 Generating WAI markup for HTML on page 755 for ways to add WAI (Web
Accessibility Initiative) attributes to tables, images, and links.

Macros §28 Working with macros on page 787 for ways to use Mif2Go macros.

DECIDING WHICH TYPE OF OUTPUT TO PRODUCE MIF2GO USER’S GUIDE

424 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Markers for
markup

§29 Working with FrameMaker markers on page 831 for ways to use FrameMaker
markers to include HTML code and Mif2Go directives in your FrameMaker
document.

13.1 Deciding which type of output to produce
If you can choose between HTML 4.01 and XHTML 1.0, consider XHTML. If you might
eventually move to XML, the XHTML 1.0 Recommendation is a good way to make a
transition into that area:

http://www.w3.org/TR/xhtml1/

According to the W3C, XHTML 1.0 “defines an XML serialization for HTML 4”. Also,
HTML 5 uses XML syntax; see:

http://dev.w3.org/html5/html4-differences/Overview.html

For HTML 5 output, you will be concerned mainly with providing an appropriate value
for DOCTYPE; see §13.4.1 Specifying HTML/XML version, DOCTYPE, and DTD on
page 429.

Unless otherwise indicated, settings for HTML apply also to XHTML, to XML, and to
HTML-based Help systems.

Electronic books If your output is destined for electronic books, XHTML provides input to third-party ePub
production tools. The ePub format is basically XHTML with some icing. To produce
ePub, you can use Mif2Go XHTML output as input to Calibre, which is free:

http://calibre-ebook.com/

To produce a single XHTML output file from a FrameMaker book for input to ePub, see
§2.5.6 Producing a single output file from a FrameMaker book on page 73. To provide a
TOC for ePub, you can convert your FrameMaker TOC to XHTML; see §5.5.1
Converting FrameMaker TOC and IX files on page 124.

Internet browsers If your output will be displayed on the Web, consider the differences among browsers. If
you use CSS (see §22 Setting up CSS for HTML on page 681), some browsers, such as
Mozilla, do not display XHTML output properly on the Web; they ignore your CSS files.
However, these browsers properly display the same XHTML output viewed locally, and
properly display standard HTML output both locally and on the Web.

13.2 Setting up an HTML project
Generating HTML with Mif2Go is an entirely different process from using “Save as
HTML” in FrameMaker. Mif2Go does not use the FrameMaker reference-page HTML
mapping tables, nor create an HTML output file from a FrameMaker book file. However,
Mif2Go does support inclusion of arbitrary JavaScript anywhere in HTML output.

Although you can specify some HTML or XML options within FrameMaker via Mif2Go
Set Up and Export dialogs, you have to edit configuration files to specify most options; see
§4.1 Working with Mif2Go configuration files on page 91.

To add or change HTML options, edit the project configuration file appropriate for the
output type, located in the project directory:

Output type Project configuration file
Standard HTML _m2html_config.ini

XHTML _m2xhtml_config.ini

http://www.w3.org/TR/xhtml1/
http://dev.w3.org/html5/html4-differences/Overview.html
http://calibre-ebook.com/

13 CONVERTING TO HTML/XHTML SETTING UP AN HTML PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 425

Or, to apply the changes to all of your HTML (or XHTML) projects, edit the
corresponding configuration template:

%omsyshome%\m2g\local\config\local_m2*ml_config.ini

See §30.5 Deciding which configuration file to edit on page 856.

In this section:
§13.2.1 Creating an HTML or XHTML project on page 425
§13.2.2 Choosing set-up options for an HTML or XHTML project on page 425
§13.2.3 Preparing a document for conversion to HTML or XHTML on page 426
§13.2.4 Specifying a different output file extension on page 427
§13.2.5 Checking automatic settings for HTML or XML split files on page 427
§13.2.6 Establishing a conversion workflow for HTML on page 427
§13.2.7 Checking HTML output files for broken links on page 428
§13.2.8 Checking HTML or XML output files for Mif2Go version on page 428
§13.2.9 Using XHTML tagging rules for HTML on page 428

13.2.1 Creating an HTML or XHTML project

To create an HTML or XHTML project:

1. Create a directory for output files, separate from the directory where your
FrameMaker document is located.

2. Copy the appropriate configuration file _m2*ml.ini from
%OMSYSHOME%\m2g\system\starts , or from an existing Mif2Go -to-HTML
project, to your newly created project directory.

3. With your FrameMaker book or document file open, choose File > Set Up Mif2Go
Export ; the Choose Project dialog opens.

4. Name your project, and browse to the project directory you created in Step 1 (see §3.3
Creating a Mif2Go conversion project on page 78).

5. Choose one of the following output types:
Standard HTML
XHTML

6. Check options in the Set Up HTML/XML Project dialog (see §13.2.2 Choosing set-up
options for an HTML or XHTML project on page 425).

7. Use a text editor to edit the resulting configuration file (see §4.1 Working with
Mif2Go configuration files on page 91).

8. Important: To make the configuration fit your usage of headings to start topics, pay
special attention to section [HTMLParaStyles] (see §18.2 Splitting files on
page 586).

13.2.2 Choosing set-up options for an HTML or XHTM L project

When you select Standard HTML or XHTML as the output type for a new project, the Set
Up dialog shown in Figure 13-1 opens. Table 13-1 shows the corresponding settings in the
configuration file. You must edit the configuration file to specify additional options.

See also:
§3.4 Choosing project set-up options on page 79

SETTING UP AN HTML PROJECT MIF2GO USER’S GUIDE

426 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Figure 13-1 Set Up HTML/XML Project

13.2.3 Preparing a document for conversion to HTML or XHTML

To successfully convert a FrameMaker document to HTML or XML, observe the
following guidelines:

 • Use a conversion template that removes page numbers from cross references; see §2.4
Importing formats from a conversion template on page 67.

 • Avoid using tabs; a FrameMaker tab converts to a space in HTML.
 • Avoid rotated cells in tables.

Table 13-1 HTML and XHTML set-up options and configuration settings

Set-up dialog Configuration file
Option Section Setting Default Ref.

Use Cascading Style
Sheets

[CSS] UseCSS=Yes Yes 22.4

Path to CSS file [CSS] CssFileName= mycss.css local.css 22.4.3

Create CSS from FM styles [CSS] WriteCssStylesheet=
Once

Once 22.4.3

Tables are adaptively sized [Tables] TableSizing=Adaptive Adaptive 24.4.8

Tables are pct of screen [Tables] TableSizing=Percent Adaptive 24.4.8

Tables fixed at DPI [Tables] TableSizing=Fixed Adaptive 24.4.8

TableDPI= n 96

Table border size [Tables] Border= n 3 24.4.8

Table cell spacing [Tables] Spacing= n 2 24.4.8

Table cell padding [Tables] Padding= n 6 24.4.8

13 CONVERTING TO HTML/XHTML SETTING UP AN HTML PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 427

 • Use referenced graphics rather than embedded graphics where possible.
 • Provide versions of graphics in JPEG, GIF, or PNG format; see §5.7 Processing

graphics on page 126 for more information.
 • If you are converting a structured document, use distinct formats for distinct

presentation effects; see §5.8 Converting structured documents on page 135.

13.2.4 Specifying a different output file extensio n

To change the output file extension for HTML or XHTML:
[Setup]
FileSuffix = . ext

For DITA or DocBook output, see:
§15.2.3 Specifying DITA output options on page 480
§17.2.3.1 Changing the DocBook output file extension on page 561

13.2.5 Checking automatic settings for HTML or XML split files

If you are running Mif2Go from within FrameMaker, and Mif2Go creates a new
configuration file, Mif2Go tries to determine automatically the most likely headings to
start new HTML pages or XML files; see §1.5 How Mif2Go works on page 62. You must
check these automatic assignments in the configuration file and correct any that are
inappropriate; see §18.2.1 Designating split points on page 586.

One HTML file per topic is the norm. If you need one monolithic HTML file instead (not
recommended), see §18.2.3 Combining instead of splitting files on page 591.

13.2.6 Establishing a conversion workflow for HTML
Keep all files

open
For a close-to-WYSIWYG way to set up and run a conversion, you can keep all the
following files open at the same time:

 • Your document, in FrameMaker.
 • Your starting project configuration file, in Notepad (or another text editor).
 • The .htm file(s) Mif2Go produces, in a browser window.

Refine results All can be visible at once, depending on screen real estate. Now you can do the following,
iteratively:

1. Look in the browser window to see something that could be improved.

2. Add or change a line to the configuration file for that improvement.

3. Save the configuration file.

4. On the FrameMaker File menu, click Save Using Mif2Go... .

5. On the browser menu, click Reload .

You make all changes either in FrameMaker, without affecting print appearance, or in the
configuration file.

If you are converting a large document with many topics and many cross references,
deleting previous output files and Mif2Go -generated reference (.ref and .grx) files (but
not configuration or project files) from the project directory between conversions can
speed up the conversion process. Mif2Go can delete these files for you; see §35.4
Clearing out old files before converting on page 957. However, do not delete these files if
they are needed by other conversions or for other purposes; see §C.5 Working with
reference files for HTML or XML on page 1027.

SETTING UP AN HTML PROJECT MIF2GO USER’S GUIDE

428 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See also:
§34 Automating Mif2Go conversions on page 933
§35 Producing deliverable results on page 955

13.2.7 Checking HTML output files for broken links

When you convert a FrameMaker book to HTML or XML, Mif2Go can check for broken
interfile links:

[Setup]
; CheckLinks = No (default) or Yes (check links aft er running a book)
CheckLinks=Yes
; CheckLinkLog = D:\path\to\LinkLog.fm to make copy of Book Error Log
CheckLinkLog = path\to\MyBadLinks.fm
; LinkLogAlways = Yes (default) or No (do not displ ay Book Error Log
; if no broken links are found)
LinkLogAlways=Yes

See §5.1.5 Checking for broken links in HTML or XML output on page 112.

13.2.8 Checking HTML or XML output files for Mif2G o version

If you recently installed a Mif2Go upgrade or beta version, after you run Mif2Go , check
to make sure the latest version was actually used to produce HTML output. Windows
sometimes caches DLLs, and does not always use a newly replaced DLL until after the
system is rebooted.

Open an HTML output file and look at the fourth line. You should see something like the
following:

<!-- generated by DCL filter dwhtm, Ver 4.0 m193 h2 72a -->

The last two entries identify the build numbers of the Mif2Go drmif.dll and
dwhtm.dll components that were used to create the HTML file. See §D.2.9 Check your
version of Mif2Go on page 1034.

13.2.9 Using XHTML tagging rules for HTML

Even if you are creating standard HTML, consider using XHTML tagging. These are the
main points to remember:

 • Use lowercase for element and attribute names.
 • Enclose all attribute values in double quotes.
 • Explicitly close all tags.
 • Include a space after an element name, even in a closing tag (such as
).

All current HTML browsers accept these rules.

When you specify XHTML as your output type, in addition to a name attribute for
anchors, Mif2Go provides an id attribute; for example:

<h3>B2D</h3>

This is because XML expects an id attribute for many purposes that are handled by the
name attribute in HTML. The only way to suppress the id attribute is to specify HTML
instead of XHTML as the output type.

13 CONVERTING TO HTML/XHTML INCLUDING STARTING CODE AND ENTITY REFERENCES

ALL RIGHTS RESERVED. MAY 18, 2013 429

13.3 Including starting code and entity references
You can specify macro code to be inserted at the very beginning of each HTML output
file, and entity references to be inserted before the <head> element:

[Inserts]
; location = macro to insert, can call another macr o
; BeginFile is placed at the very start of the file
; Entities is placed before the HEAD element

See §28 Working with macros on page 787.

To specify an entity reference, create a macro with the entity reference code as the body of
the macro, and indicate that the macro is to be placed before the <head> element. For
example:

[Inserts]
Entities=<$MyEntities>

[MyEntities]
<!ENTITY % HTMLlat1 PUBLIC "-//W3C//ENTITIES Latin 1//EN//HTML">
%HTMLlat1;
<!ENTITY % HTMLsymbol PUBLIC "-//W3C//ENTITIES Symb ols//EN//HTML">
%HTMLsymbol;

Entity references are placed before the <head> element in each HTML output file,
including split and extracted files.

13.4 Supplying values for the <head> element
Mif2Go normally provides a header that indicates compliance with W3C’s HTML 4
specification. The default header includes a “transitional” qualifier that permits use of
some formatting code that in HTML 4 is deprecated in favor of CSS. Unfortunately,
browsers have not quite managed yet to implement CSS well enough so that you can
depend on CSS alone; not even CSS1, let alone CSS2. So “strict” compliance has to wait.

In this section:
§13.4.1 Specifying HTML/XML version, DOCTYPE, and DTD on page 429
§13.4.2 Specifying namespace and language on page 430
§13.4.3 Specifying character encoding for HTML on page 431
§13.4.4 Including or omitting HTML/XML generator information on page 433
§13.4.5 Specifying page titles for HTML output files on page 433
§13.4.6 Supplying content for the <meta> tag on page 434
§13.4.7 Specifying nonstandard values for declarations on page 435

13.4.1 Specifying HTML/XML version, DOCTYPE, and D TD

You can change the HTML or XML header, perhaps to accommodate noncompliant code
you are using in a macro, or to conform to the requirements of third-party tools:

[HTMLOptions]
; HTMLVersion = version used: 4 (default), 3 (JavaH elp), or 2 (old)
HTMLVersion=4
; UseDOCTYPE = Yes (default) or No (when writing Do cBook entity files)
UseDOCTYPE=Yes
; HTMLDocType, PUBLIC identifier required at start of HTML documents
; Default for v4 is: "-//W3C//DTD HTML 4.01 Transi tional//EN"
; or if frameset is: "-//W3C//DTD HTML 4.01 Frames et//EN"
; Default for v3 is: "-//W3C//DTD HTML 3.2 Final// EN"

SUPPLYING VALUES FOR THE <HEAD> ELEMENT MIF2GO USER’S GUIDE

430 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; Default for v2 is: "-//IETF//DTD HTML 2.0//EN"
; Default for XHTML is: "-//W3C//DTD XHTML 1.0 Tra nsitional//EN"
; Uncomment and give alternate if needed;
; do not leave blank uncommented:
;HTMLDocType="-//W3C//DTD HTML 4.01 Transitional//E N"
; HTMLDTD, the optional SYSTEM identifier in <!DOCT YPE>;
; default is to omit. If you want to add it back, although it breaks
; CSS usage, for v4 it is:
; "http://www.w3.org/TR/1999/REC-html401-19991224/ loose.dtd"
; or for v4 frameset is:
; "http://www.w3.org/TR/1999/REC-html401-19991224/ frameset.dtd"
; For XHTML, it is:
; "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transiti onal.dtd"
; Uncomment and leave blank for no DTD (v2 and v3) ,
; or give an alternate
;HTMLDTD=

Mif2Go generates code that is completely compliant with the W3C DTD cited, for
whatever version you select. However, it is your responsibility to use only valid syntax for
that version in your macros.

HTML 5 For HTML 5 output, leave HTMLVersion=4 , and set the other values in this section as
appropriate.

JavaHelp When you specify JavaHelp or Oracle Help for Java as the output type, Mif2Go
automatically sets [HTMLOptions]HTMLVersion=3 , unless you override this setting in
the configuration file.

XHTML When you specify XHTML as the output type, Mif2Go automatically sets the
corresponding HTMLDocType and HTMLDTD, unless you override these settings in the
configuration file:

[HTMLOptions]
HTMLDocType="-//W3C//DTD XHTML 1.0 Transitional//EN "
HTMLDTD="DTD/xhtml1-transitional.dtd"

DITA XML When you specify DITA XML as the output type, Mif2Go sets HTMLDocType and
HTMLDTD as follows, depending on the DITA version and topic type. For example, for
DITA version 1.1 and topic type concept :

[HTMLOptions]
HTMLDocType="-//OASIS//DTD DITA 1.1 Concept//EN"
HTMLDTD="docs.oasis-open.org/dita/v1.1/CS01/dtd/con cept.dtd"

You can override the default values; see §15.3 Specifying general options for DITA on
page 483.

DocBook XML When you specify DocBook XML as the output type, Mif2Go sets HTMLDocType and
HTMLDTD as follows:

[HTMLOptions]
HTMLDocType="-//OASIS//DTD DocBook XML V4.5//EN"
HTMLDTD="www.oasis-open.org/docbook/xml/4.5/docbook x.dtd"

13.4.2 Specifying namespace and language

You can specify the namespace and language of the <html> tag:
[HTMLOptions]
; XHNamespace default for XHTML 1.0 is "http://www. w3.org/1999/xhtml"
; Uncomment and give alternate if needed, do not l eave blank
;XHNamespace=http://www.w3.org/1999/xhtml
; XHLanguage default is "en"
;XHLanguage=en
; XHLangAttr = xml:lang (default, set as needed;

13 CONVERTING TO HTML/XHTML SUPPLYING VALUES FOR THE <HEAD> ELEMENT

ALL RIGHTS RESERVED. MAY 18, 2013 431

; DocBook wants just lang)
;XHLangAttr=xml:lang

Although Mif2Go always produces valid code, it does not attempt to validate the content
of your macros. We suggest you validate your document with the W3C’s free HTML
validator:

http://validator.w3.org/

 and CSS validator services:
http://jigsaw.w3.org/css-validator/

If your document is valid, you are offered a little graphic to include in it. See §13.16
Passing W3C validation tests on page 453.

13.4.3 Specifying character encoding for HTML

HTML is based on Unicode. FrameMaker version 8 and later versions support Unicode,
and so does Mif2Go , via UTF-8. Mif2Go does not directly support non-Unicode double-
byte languages (except for Asian and Cyrillic code pages for HTML Help), nor right-to-
left languages such as Hebrew and Arabic.

In this section:
§13.4.3.1 Using special fonts for non-Western languages on page 431
§13.4.3.2 Selecting a Windows code page for single-byte character sets on page 431
§13.4.3.3 Specifying encoding for double-byte characters on page 432

See also:
§13.16.2 Replacing high ASCII characters for W3C validation on page 454
§14.3.3 Specifying character encoding for generic XML on page 460
§21.5 Assigning properties to text formats on page 653

13.4.3.1 Using special fonts for non-Western langu ages

FrameMaker versions earlier than FrameMaker 8 do not support Unicode. If you are not
working in a Western language, unless you have FrameMaker version 8 or later, you need
to use FrameMaker fonts that have your national subset in the “high ASCII” code points
(characters with values greater than 0x7F (decimal 127), constitute the “high ASCII” set).
Mif2Go must then convert those code-point values to the Unicode values.

13.4.3.2 Selecting a Windows code page for single- byte character sets

According to Microsoft, a code page is “an ordered set of characters of a given script in
which a numeric index (code-point value) is associated with each character”. Mif2Go
supports fonts that use the following SBCS (Single Byte Character Set) Windows code
pages:

1250 Slovenian and other Eastern European and Central European scripts
1251 Cyrillic
1252 Latin I (standard FrameMaker code page)
1253 Greek
1254 Turkish

To specify a Windows code page for your document:
[HTMLOptions]
; Ansi = Windows code page to use for FrameMaker fo nt, default 1252
Ansi=1252

http://validator.w3.org/
http://jigsaw.w3.org/css-validator/

SUPPLYING VALUES FOR THE <HEAD> ELEMENT MIF2GO USER’S GUIDE

432 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Use the Ansi option to specify character encoding other than the standard FrameMaker
encoding, which uses Windows code page 1252.

Set the code
page in a marker

If you need a different encoding for only parts of your document, you can set the code
page in a marker of type Ansi , or in a marker that is mapped in [MarkerTypes] to Ansi .
The marker should contain only the code-page number. See §29.2.1 Identifying dedicated
custom marker types on page 832.

FrameMaker 8
uses Unicode, not

code pages

If you are using FrameMaker version 8, you are using the Unicode character set internally.
Times New Roman, and most other standard Microsoft fonts, support Unicode. However,
fonts that use a different character set do not. For example, the font “Caecilia LT CE 55
Roman” uses code page 1250; that is what the CE in its name means. For certain
characters such as “small a macron”, which is U+0101, there is no mapping in code page
1250; so you would not get “small a macron” in this font, because it is not there.

Your best bet is to stick with Unicode fonts, and not try to use others that are CE, CYR,
GRK, and so forth. The code-page system was made to provide access to characters within
an 8-bit space, and it required remapping of various groups of Unicode characters to fit
into that space. FrameMaker 7 and earlier versions support this remapping, but
FrameMaker 8 does not. Even if you have to replace some fonts, it is best to move on.

13.4.3.3 Specifying encoding for double-byte chara cters

Character encoding determines what method is used to represent double-byte characters in
the <body> section of HTML output. To specify encoding or, alternatively, numeric
references:

[HTMLOptions]
; Encoding = ISO-8859-1 (HTML default, numeric refs),
; or None (write 0x80-0xFF as single characters)
Encoding=ISO-8859-1
; QuotedEncoding = No (default, W3C usage, required for JavaHelp),
; or Yes (put encoding in meta tag in single quotes, needed by some
; older browsers)
QuotedEncoding=No
; NumericCharRefs = Yes (default, always use &#nnn;)
; or No (use UTF-8 for XML)
NumericCharRefs=Yes

For XHTML, the Mif2Go default is to claim UTF-8 as the encoding, but to use numeric
references of the form &#nnn; for all characters that would have to be encoded; this
satisfies all browsers. That is, Mif2Go does not actually produce any characters with
values greater than 127 using the UTF-8 encoding; instead, Mif2Go uses entities for such
characters, readable under any eight-bit encoding scheme.

For XHTML, you can specify a value for XMLEncoding (see §14.3.3 Specifying
character encoding for generic XML on page 460) other than the default UTF-8 . If you set
Encoding=UTF-8 , you get real UTF-8 encoding (two characters) in place of the numeric
character references. However, you can still force use of numeric references by also
setting NumericCharRefs=Yes .

While Encoding=None is not strictly compliant, this setting can be useful in places like
Russia, where almost the entire text would otherwise consist of numeric character
references. Encoding=None provides a 6:1 reduction in such references.

To direct Mif2Go to supply single quotes around the charset attribute value, specify
QuotedEncoding=Yes :

<meta http-equiv="Content-type" content="text/html; charset='ISO-8859-1'">

The default is not to enclose the value in quotes.

13 CONVERTING TO HTML/XHTML SUPPLYING VALUES FOR THE <HEAD> ELEMENT

ALL RIGHTS RESERVED. MAY 18, 2013 433

See also:
§13.16.2 Replacing high ASCII characters for W3C validation on page 454
§14.3.3 Specifying character encoding for generic XML on page 460
§21.5 Assigning properties to text formats on page 653

13.4.4 Including or omitting HTML/XML generator in formation

The header of each HTML and XML file generated by Mif2Go contains an element
identifying the Mif2Go program that generated the file. By default this element appears in
a comment. For example:

<!-- generated by DCL filter dwhtm, Ver 3.0 -->

You can put this information in a meta tag instead, with the following setting:
[HTMLOptions]
; GeneratorTag = Comment (dwhtm version in comment) , Meta (tag),
; or None (omit)
GeneratorTag = Meta

The generator information is included for accountability, and for troubleshooting; a
programmer working with a file created by Mif2Go can identify the software version that
produced the file.

You can omit the generator information by specifying GeneratorTag=None . However, if
you need to send files to Omni Systems for support, our developers absolutely need that
information to tell what version of Mif2Go created the file. It is also helpful for
downstream tool vendors, such as editor providers, to know how a file was created. This is
an industry standard practice, and the comment form of GeneratorTag should be quite
harmless.

13.4.5 Specifying page titles for HTML output file s

You can specify page titles for an HTML output files any of these ways:
Assign a default or computed title
Use a heading paragraph
Use a FrameMaker marker
Assign title text to the HTML file.

The text you supply becomes the content of the <title> tag in the HTML <head>
element. For more information, see §18.4.2 Specifying page titles for split or extract files
on page 594.

Note: If some of your output files show Test File from Mif2Go as the title, this means
you did not manage to specify titles for those files.

Assign a default
or computed title

To specify a default page title for all output files:
[HTMLOptions]
;Title = default title for HTML files,
; overridden by all other settings
;Title=Test File from Mif2Go
Title= My default page title

You can assign a macro or macro variable to the Title keyword. For example, to use the
base name of the FrameMaker source file as the page title for each HTML file derived
from that FrameMaker file:

[HTMLOptions]
Title=<$$_basefile>

SUPPLYING VALUES FOR THE <HEAD> ELEMENT MIF2GO USER’S GUIDE

434 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See §18.4.2.6 Assigning a default title on page 597.

Use a heading
paragraph

The easiest way to provide HTML page titles is to assign the Title property to all
paragraph formats (usually headings) that begin new HTML files. For example:

[HTMLParaStyles]
; Title uses head as HTML page title, see [Titles]
Heading2=Title

With this setting, every HTML output file that begins with a Heading2 paragraph would
have the text of that paragraph for a page title. See §18.4.2.2 Assigning a title with a
paragraph format on page 595.

Use a
FrameMaker

marker

You can specify an individual page title with a FrameMaker Title marker; the content of
the Title marker becomes the title of the HTML file generated from the section of your
document where you inserted the marker. See §18.4.2.5 Assigning a title with a marker on
page 597.

Assign title text to
the HTML file

You can provide arbitrary text for the title by assigning the text to the HTML output file
name; for example:

[Titles]
; html filename = title, overrides [HTMLParaStyles] Title setting
m2r=DCL MIF2RTF Filter Description

You must assign the title text to the internal file name assigned by Mif2Go , not to any
replacement name you may have specified for a split or extract file. See §18.4.2.4
Assigning a title with a file name on page 596.

13.4.6 Supplying content for the <meta> tag

Mif2Go supports several ways to provide content for <meta> tags in the <head> element
of each HTML page.

In this section:
§13.4.6.1 Providing meta content with paragraph formats on page 434
§13.4.6.2 Providing meta content with FrameMaker markers on page 435
§13.4.6.3 Providing meta content with Mif2Go macros on page 435

13.4.6.1 Providing meta content with paragraph for mats

When you assign the Meta property and a <meta> tag name attribute to a paragraph
format, the text of such a paragraph becomes a <meta> tag content attribute for the
specified <meta> tag:

[HTMLParaStyles]
ParaFmt = Meta

Explicitly assigning the Meta property to a paragraph format is optional when you assign
a tag name to that format in the following section:

[StyleMetaName]
; doc style = name to use for meta tag whose conten t is the para text
ParaFmt = metaname

For example, suppose you use paragraph format Metakeys to supply content for the
keywords attribute:

[StyleMetaName]
Metakeys=keywords

With this setting, the text of every Metakeys paragraph would become content for a
“keywords” <meta> tag in the <head> element of the HTML file. For example, if the text

13 CONVERTING TO HTML/XHTML SUPPLYING VALUES FOR THE <HEAD> ELEMENT

ALL RIGHTS RESERVED. MAY 18, 2013 435

of a Metakeys paragraph is “staff, location, reporting, roster”, the <meta> tag would look
like this:

<meta name="keywords" content="staff, location, rep orting, roster">

You need a different paragraph format for each <meta> tag. For example, if you want
author and source tags, you might define paragraph formats MetaAuthor and
MetaSource, and map them as follows:

[HTMLParaStyles]
Meta*=Meta Delete

[StyleMetaName]
MetaAuthor=author
MetaSource=source

The Delete property prevents the content of these special paragraphs from appearing in
body text; see §21.3.12 Eliminating unwanted paragraphs on page 652.

13.4.6.2 Providing meta content with FrameMaker ma rkers

If you give a custom marker type a name that starts with Meta, Mif2Go automatically
makes the marker text the value of whatever attribute is named by the rest of the marker-
type name, and puts the attribute and its value in the generated <meta> tag. This method
has two advantages:

 • Markers do not require entries in the configuration file.
 • Markers do not clutter your paragraph catalog.

For example, MetaKeywords :
<meta name="Keywords" content="whatever was in the marker(s)" />

You must ensure that the content of each marker is valid for the named attribute. The text
of a FrameMaker marker is limited to 256 characters. Mif2Go gets around that restriction
by concatenating all markers for the same attribute in the same HTML file. You can just
add more markers of the same type, and continue the content. Meta* markers are
concatenated into one <meta> tag within the same split or extract file, but not across file
boundaries.

13.4.6.3 Providing meta content with Mif2Go macros

You can put <meta> tags directly into the configuration file as macros, and not have them
in your FrameMaker document at all. See §18.5.2 Assigning code to [Inserts] keywords
for splits and extracts on page 599 and §28.1 Defining and invoking macros on page 787.

13.4.7 Specifying nonstandard values for declarati ons

You can specify different values for several header fields or declarations; however, unless
you know you need nonstandard values, you should not need to change any of these. For
some settings, the default values vary based on whether the output type is HTML,
XHTML, or XML:

[HTMLOptions]
; UseXMLRoot = Yes (default) or No (when writing Do cBook entity files)
UseXMLRoot=Yes
; XMLRoot default is "html" for XHTML, or "doc" for generic XML.
XMLRoot=html
; UseHeadAndBody = Yes (HTML/XHTML default)
; or No (generic XML and DITA default)
UseHeadAndBody=Yes
; ContentType = text/html (default for HTML and XHT ML)
; or application/xml (default for XML); try not to use text/xml

SPECIFYING HTML <BODY> ATTRIBUTES MIF2GO USER’S GUIDE

436 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; (for interoperability)
ContentType=text/html

Content-Type is part of MIME, and is used by document-processing tools. Unless you
know exactly what you want and need only a mechanism to specify it, leave this setting
alone. For more information, see:

http://www.w3.org/Protocols/rfc1341/4_Content-Type.html

For XHTML, you can suppress the <?xml...?> declaration, as required by some
browsers:

[HTMLOptions]
;UseXMLDeclaration = Yes to start with <?xml...?>, or No to omit
UseXMLDeclaration=No

13.5 Specifying HTML <body> attributes
You can use configuration settings to assign values to HTML <body> attributes:

[Attributes]
; body= attributename=value

Keep all attributes on one line, regardless of line length. For XHTML, all attribute names
must be lowercase. For example:

[Attributes]
body= bgcolor="#FFFFE1" text="#000080" link="#00802 0" vlink="#804000"

You can insert JavaScript for <body> attributes; for example:
[Attributes]
body= onLoad="if (self != top) top.location = self. location"

In addition to attributes for the <body> tag, you can use the [Attributes] section to
specify attribute values for <table> , <tr> , <td> , <th> , <thead> , <tfoot> , and
<tbody> tags; see §24.4.1 Specifying attributes for all tables on page 736.

13.6 Specifying document-wide properties for HTML
In this section:

§13.6.1 Specifying a default DPI setting on page 436
§13.6.2 Converting system variables to text for HTML on page 437
§13.6.3 Suppressing closing </p> tags for HTML on page 437
§13.6.4 Suppressing line breaks in HTML and XML output on page 437
§13.6.5 Preventing adjacent <pre> elements from merging on page 438

13.6.1 Specifying a default DPI setting

To convert from other sizes to pixels, for such purposes as table-column sizing, indenting
tables, and indenting graphics, Mif2Go uses this DPI setting:

[HTMLOptions]
; ConversionDPI = 96 (default), used when convertin g sizes to pixels
ConversionDPI = 96

If you imported graphics into FrameMaker at a DPI other than 96, be sure to change this
setting to the actual DPI you used for import. See §23.9 Scaling images for HTML on
page 719.

http://www.w3.org/Protocols/rfc1341/4_Content-Type.html

13 CONVERTING TO HTML/XHTML SPECIFYING DOCUMENT-WIDE PROPERTIES FOR HTML

ALL RIGHTS RESERVED. MAY 18, 2013 437

13.6.2 Converting system variables to text for HTM L

The only way Mif2Go can get the text content of FrameMaker system variables (such as
date and time) into HTML output is to convert these variables to text. Other variables are
already available in a usable form, in the MIF files.

To convert date/time and file-name system variables on body pages to text, so they can
appear in HTML output, specify the following setting:

[Setup]
; ConvertVariables = No (default) or Yes (convert t o plain text)
ConvertVariables=Yes

For example, you might want to use this setting to get the value of Creation Date or
Modification Date to appear in metadata.

Note: This setting does not apply to system variables on master pages. Mif2Go does not
process master-page variables for HTML output.

Note: For system variables to show up in the MIF files, Mif2Go must read your original
FrameMaker files. If you specify Use existing MIF on the Export dialog, or in
your project configuration file, system variables are not converted.

13.6.3 Suppressing closing </p> tags for HTML

By default, Mif2Go provides closing tags </ tagname>, to conform to W3C validation
requirements for XHTML. (One exception: unless you specify XHTML as the output
type, Mif2Go does not generate closing tags for list items; see §21.12.2 Converting list
formats to HTML list styles on page 675.)

To eliminate </p> closing tags:
[HTMLOptions]
; NoParaClose = No (default) or Yes (suppress </p> closing tags)
NoParaClose = Yes

13.6.4 Suppressing line breaks in HTML and XML out put

By default, Mif2Go inserts \n line breaks in HTML and XML output in several places,
including (but not limited to) the following:

 • after each <a name= so the tag name always appears as the first item on the next line,
to make the names easier to find when you inspect Mif2Go output

 • at the first space that occurs in a paragraph at or after 70 characters (not counting
character tags), to make long paragraphs easier to inspect or edit.

These line breaks do not affect HTML display. However, if you are generating XML to be
imported into a system that treats \n line breaks as though they were paragraph breaks,
you might want to get rid of all unintended line breaks in text. See §14.3.5 Preventing
arbitrary line breaks in XML text elements on page 461.

To suppress \n line breaks after <a name= :
[HTMLOptions]
; ATagLineBreak = Yes (default, \n before first att r) or No
ATagLineBreak=No

To suppress \n line breaks only in preformatted text:
[HTMLOptions]
; UnwrapPRE = No (default) or Yes (ignore line brea ks in PRE)
UnwrapPRE = Yes

DEFINING AND MAPPING COLORS FOR HTML MIF2GO USER’S GUIDE

438 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

To prevent FrameMaker line wraps from becoming \n line breaks in preformatted text:
[HTMLOptions]
; IgnoreWrap = No (default, \n where wrap occurs) o r Yes
IgnoreWrap = Yes

See §21.10.1 Eliminating line wraps in preformatted text on page 670.

To suppress \n line breaks in all paragraphs:
[HTMLOptions]
; NoWrap = No (default, \n where space occurs) or Y es
NoWrap = Yes

When NoWrap=Yes, each paragraph comes out in a single line, without any line wrap.
Also, leading spaces are preserved. To apply this option to a single paragraph format, see
§21.3.6 Stripping paragraph properties on page 650.

13.6.5 Preventing adjacent <pre> elements from mer ging

By default, for HTML output Mif2Go merges successive elements mapped to <pre> ,
provided they are assigned the same CSS class. To prevent such elements from being
merged:

[HTMLOptions]
; MergePre = Yes (default, merge adjacent pre eleme nts, or No
MergePre = No

When MergePre=No , adjacent <pre> elements are not merged, even if they lack a CSS
class assignment or have the same CSS class.

13.7 Defining and mapping colors for HTML
You can adjust colors in HTML output in the following ways, without using CSS:

 • Map colors defined in your FrameMaker document to new colors.
 • Define new colors.
 • Apply any color named in your document or defined in a configuration file to:

 – paragraph and character formats (see §21.9 Specifying text colors for HTML on
page 669)

 – tables (see §24.4.11 Using shading and color in tables on page 745).

In this section:
§13.7.1 Converting colors on page 438
§13.7.2 Mapping FrameMaker colors to new values on page 439
§13.7.3 Defining new colors on page 440
§13.7.4 Using Web-safe colors on page 440
§13.7.5 Redefining colors via conversion template on page 440
§13.7.6 Understanding CMYK-to-RGB conversion anomalies on page 441

13.7.1 Converting colors

Mif2Go converts the color values in your document from the CMYK model used in
FrameMaker to the RGB model used in HTML. If you used colors that are not in the tiny
Web-safe group (see §13.7.4 Using Web-safe colors on page 440), this conversion can
result in a display that looks very different from the way it looked in FrameMaker. The
difference is especially noticeable if the colors you used are from a color library, such as

13 CONVERTING TO HTML/XHTML DEFINING AND MAPPING COLORS FOR HTML

ALL RIGHTS RESERVED. MAY 18, 2013 439

one of the Pantone libraries; see §13.7.6 Understanding CMYK-to-RGB conversion
anomalies on page 441.

Specify exact
colors

To correct the colors, for each color named in FrameMaker you can specify the exact RGB
value you want to use, in section [Colors] . You must use [Colors] to get the results
you want from any color that originated in one of the FrameMaker color databases.
However, if you can specify RGB colors to begin with instead of CMYK in your
FrameMaker document, you might not need to redefine them in [Colors] .

Define Web-safe
colors

If your colors are already CMYK, you cannot just change them to RGB in FrameMaker;
you must edit the percentages for every single color, even if they seem right. Use multiples
of 20% for all values, so the colors are all in the Web-safe set. FrameMaker still writes
CMYK to the MIF intermediate files, but it is CMYK for which the Mif2Go conversion
algorithm works. See §13.7.6 Understanding CMYK-to-RGB conversion anomalies on
page 441 for more information.

13.7.2 Mapping FrameMaker colors to new values

To specify color values:
[Colors]
; color name = hex RGB value (names as used by Fra me), or
; color number 1-254 = hex RGB value; color number 0 is invisible
; 1..8 = black, white, red, green, blue, cyan, mage nta, yellow
; more may be defined in the Frame file; this overr ides them
; numbers up to 254 may be defined here and used in [HTML*Styles]
; for example, 100=804000 defines 100 as olive brow n

The reserved color numbers have the following hexadecimal RGB values:

When you define a color in FrameMaker, start the color name with a letter. If the first
character in the name is a digit, Mif2Go assumes the entry is a color number.

To map colors, assign hexadecimal RGB values to either of the following:

 • Colors you defined in your FrameMaker document, by color name.
 • Default FrameMaker colors, by color number; FrameMaker color numbers for default

colors are listed in Table 13-2.

If you defined a color in FrameMaker and want to adjust the color for HTML, you can
redefine it; for example:

[Colors]
; Change SeaWater to a Web-safe color
SeaWater=0099CC

To map a default FrameMaker color to some other color, assign its number a new RGB
value; for example:

1 black 000000

2 white FFFFFF

3 red FF0000

4 green 008000

5 blue 0000FF

6 cyan 00FFFF

7 magenta FF00FF

8 yellow FFFF00

Table 13-2 Color numbers for default FrameMaker colors
Color: Black White Red Green Blue Cyan Magenta Yellow

Number: 1 2 3 4 5 6 7 8

DEFINING AND MAPPING COLORS FOR HTML MIF2GO USER’S GUIDE

440 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[Colors]
; Replace Cyan with SeaWater
6 = 0099CC

See also §21.9 Specifying text colors for HTML on page 669.

Color mappings
do not affect
illustrations

The colors you map in the [Colors] section are not applied to illustrations created with
FrameMaker drawing tools. To change colors in FrameMaker illustrations, you must
redefine the colors in a conversion template; see §2.4 Importing formats from a
conversion template on page 67. However, see §13.7.5 Redefining colors via conversion
template on page 440 for a reason not to do so.

13.7.3 Defining new colors

To define a new color that is not named in your FrameMaker document, assign a
hexadecimal RGB value to any decimal integer from 9 through 254 (0 through 8 are
reserved). Start with a number well above those assigned to colors in FrameMaker; 100 is
a good choice. For example:

[Colors]
; Use deep pink for table headings
105 = FF3399

13.7.4 Using Web-safe colors

It is best to use Web-safe colors for HTML; otherwise you could run into browser palette
issues. For example, if you do not specify a Web-safe value for Netscape, you get white.
Because there are only 216 Web-safe colors, you are almost certain to have to redefine any
colors you added to FrameMaker. However, the FrameMaker default colors are all Web
safe.

For Web-safe colors that are rendered the same by all browsers, use color numbers 1
through 8, or define colors with elements of 00, 33, 66, 99, CC, or FF, which correspond to
levels of 0%, 20%, 40%, 60%, 80%, and 100% in FrameMaker RGB settings. For
example, RGB hexadecimal value 0099CC yields the color shown in Figure 13-2.

Figure 13-2 RGB color 0099CC

Table 13-3 lists the values you can use to define Web-safe RGB colors, in three different
units of measurement.

13.7.5 Redefining colors via conversion template

If you are using a conversion template (see §2.4 Importing formats from a conversion
template on page 67), you could redefine colors there to achieve Web-safe colors. If all
your color definitions start with a basic FrameMaker color, such as Black, that can work
well. However, if the colors in your original document came from a color library such as

Table 13-3 Ways to express Web-safe RGB color values

Units Web-safe values for Red, Green, or Blue Where u sed

Percent 0% 20% 40% 60% 80% 100% FrameMaker color definitions

Hexadecimal 00 33 66 99 CC FF HTML; Mif2Go [Colors]

Decimal 0 51 102 153 204 255 Windows, some applications

13 CONVERTING TO HTML/XHTML CONVERTING GENERATED FILES FOR HTML

ALL RIGHTS RESERVED. MAY 18, 2013 441

one of the Pantone libraries, this leaves you at the mercy of incorrect color translation in
FrameMaker; see §13.7.6 Understanding CMYK-to-RGB conversion anomalies on
page 441. Mif2Go cannot tell which way a given color originated, either in FrameMaker
or in MIF.

13.7.6 Understanding CMYK-to-RGB conversion anomal ies

CMYK and RGB are fundamentally different. CMYK is subtractive. It defines a color in
terms of how the color reflects or absorbs light (most useful for printing). RGB is additive.
It defines a color in terms of the light that is emitted (most useful for monitors). Any
conversion from one to the other is bound to be an approximation.

However, Mif2Go encounters a bizarre CMYK-to-RGB conversion problem with colors
defined in color libraries. HTML requires RGB. FrameMaker uses CMYK internally,
though RGB is used for the screen display in Windows. The values that FrameMaker uses
for CMYK do not always convert to the same RGB values as those FrameMaker displays;
often, nowhere near the same.

If you choose a Pantone color, for example, and view it in RGB in FrameMaker, the
percentages you see are not always the correct computed value (which is what Mif2Go
uses). Also, you can define two visually very different colors that appear to have the same
CMYK value in FrameMaker, but different RGB values.

This is different from what happens if you define a new color based, say, on black; you can
work in either RGB or CMYK, and when you flip back and forth, FrameMaker uses the
correct conversion (the same conversion Mif2Go uses).

But FrameMaker’s color databases do something very odd. If you look at a CMYK color
that has no blacK, such as PANTONE 528 CVC (a maroon), and note the Cyan, Magenta,
and Yellow percentages; then change to RGB, and note the Red, Green, and Blue
percentages; each matching pair (Cyan-Red, Magenta-Green, Yellow-Blue) should total
100%, because aside from blacK, the two color models are mathematical complements.
However, what you see instead are the percentages shown under FrameMaker RGB in
Table 13-4. The color still looks maroon in FrameMaker.

With model RGB selected, choose Black , then choose New Color , and enter the computed
values, from the Computed RGB column in Table 13-4. Change to model CMYK. The
percentages now match the original FrameMaker CMYK values for PANTONE 528 CVC,
but the color is no longer maroon, it is a deep violet/purple—with exactly the same
CMYK values as the maroon.

13.8 Converting generated files for HTML
You can direct Mif2Go to include any of contents, index, and other generated files in the
output. For HTML/XHTML/XML, instead of generating these lists anew from markers
and cross references, Mif2Go converts your FrameMaker-generated files.

Table 13-4 FrameMaker color conversion anomaly

Percentages for PANTONE 528 CVC (maroon)

FrameMaker
CMYK

Computed
RGB

FrameMaker
RGB

Cyan: 43.0 Red: 57.0 Red: 58.3

Magenta: 56.0 Green: 44.0 Green: 35.5

Yellow: 0.0 Blue: 100.0 Blue: 64.1

CONVERTING GENERATED FILES FOR HTML MIF2GO USER’S GUIDE

442 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

In this section:
§13.8.1 Converting FrameMaker IX and other marker lists on page 442
§13.8.2 Converting FrameMaker TOC and other paragraph lists on page 444

13.8.1 Converting FrameMaker IX and other marker l ists

Links in FrameMaker index files, including the standard IX file and any other IOM
(index-of-markers) files, point to markers in your FrameMaker document. Mif2Go can
convert the links to produce HTML index files.

In this section:
§13.8.1.1 Including standard and other index files on page 442
§13.8.1.2 Including markers other than Index on page 442
§13.8.1.3 Replacing page numbers with symbols or images on page 442
§13.8.1.4 Making index entries into links on page 443
§13.8.1.5 Correcting or suppressing links in <$nopage> index entries on page 444

13.8.1.1 Including standard and other index files

To include in HTML output a standard FrameMaker IX file, check Use FM IX in the Set
Up dialog (see §3.4 Choosing project set-up options on page 79), or specify the following
setting:

[Setup]
UseFrameIX = Yes

Other IOM files To include other FrameMaker-generated IOM (index-of-markers) files, also check Use
other FM generated files in the Set Up dialog, or specify the following setting:

[Setup]
UseFrameGenFiles = Yes

Apply a character
format to page

numbers

To get active links for multiple-page entries in output from FrameMaker IX and other
IOM files, you must apply a character format to the page numbers. See §5.5 Converting
FrameMaker-generated files on page 124.

13.8.1.2 Including markers other than Index

If your index files reference FrameMaker markers of types other than Index , map those
markers to Index markers (see §29.3 Remapping marker types and hypertext commands
on page 836). For example:

[Markers]
Subject = Index
SpecialKey = Index
SectName = Index

13.8.1.3 Replacing page numbers with symbols or im ages

You cannot just remove page numbers from an index when you convert index entries to
HTML, because there are often multiple page numbers for each entry. Instead, to suppress
page numbers you have to replace them with something big enough to click on. Here is
one way:

1. In the FrameMaker IX file, define a new character format; for example, IXpgnum.

2. On the IX Reference page of the IX file, find the line with paragraph format IndexIX,
which contains the <$pagenum> element, and apply character format IXpgnum to the
entire line.

13 CONVERTING TO HTML/XHTML CONVERTING GENERATED FILES FOR HTML

ALL RIGHTS RESERVED. MAY 18, 2013 443

3. Save the index file, and generate the book. In the Body pages of the resulting index
file, you will see that the page numbers are still links but the index text is not, just as
before; so locked FrameMaker documents and PDF files are unaffected.

4. In the configuration file, specify the following settings for the character format you
applied:

[HTMLCharStyles]
IXpgnum= KeepLink CodeReplace

The CodeReplace property indicates that all text with character-format IXpgnum will
be replaced by HTML code assigned to IXpgnum in the [CharStyleCodeReplace]
section.

The KeepLink property retains the first hypertext link in the replaced text.

5. Specify HTML code for the character you want to use instead of a page number:
[CharStyleCodeReplace]
IXpgnum=¶

The IXpgnum=¶ setting in this example gives you a bold paragraph
symbol in place of the page number, but you can use any replacement you please. For
example, you could specify the following setting (using XHTML conventions):

[CharStyleCodeReplace]
IXpgnum=

This setting replaces the page number with an image. Because the resulting HTML must
repeat this code fragment for every index item in the document, keep the image file name
very short; perhaps just p.gif .

To apply KeepLink to all [HTMLCharStyles]CodeReplace character formats listed in
[CharStyleCodeReplace] :

[HTMLOptions]
; KeepReplacedCharLinks = No (default) or Yes (reta in hotspot href
; when CodeReplace is used for a char format, mean t for IX pagenums
; and equivalent to setting KeepLink for all char- fmt CodeReplace
; settings)
KeepReplacedCharLinks=Yes

This way you do not need to set KeepLink individually for each character format.

13.8.1.4 Making index entries into links

If your index has only one destination per entry, and you are certain this will always be the
case, you can make the text of the entries act as links, and hide the page numbers. Use the
procedure explained in §13.8.1.3 Replacing page numbers with symbols or images on
page 442, with the following exceptions:

 • Specify something that is not visible in place of the symbol or tag; for
example:

[CharStyleCodeReplace]
IXpgnum=

 • Make each index-entry paragraph into a hotspot:
[HTMLParaStyles]
Level?IX=ParaLink

[HTMLCharStyles]
IXpgnum= KeepLink CodeReplace

This method uses ParaLink , a setting meant for TOCs, to specify that the entire
paragraph should be the hotspot for any link it contains, regardless of any character format

CONVERTING GENERATED FILES FOR HTML MIF2GO USER’S GUIDE

444 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

applied. The “?” in Level?IX is a wildcard that makes the setting apply to all level
numbers.

13.8.1.5 Correcting or suppressing links in <$nopa ge> index entries

A FrameMaker-generated index includes, for every <$nopage> entry, a link to the
original marker location in the document. IndexRef, a FrameMaker plug-in available from
Sundorne Communications, can change the links for <$nopage> See and See also entries
in FrameMaker, so the links point to the referenced index entries instead. See:

http://www.sundorne.com/FrameMaker/IndexRef/indexref.htm

If you do not use IndexRef, to prevent links for <$nopage> entries from showing up in
HTML output, assign the NoHref property to Level*IX paragraph formats. For example:

[HTMLParaStyles]
; NoHref suppresses tags in para forma ts
Level1IX=NoHref
Level2IX=NoHref

[HTMLCharStyles]
zIXpgnum= KeepLink CodeReplace

NoHref omits links for See and See also entries when you assign KeepLink to the page-
number character format; KeepLink overrides NoHref for the real page numbers.

Note: Unless you either use IndexRef or assign NoHref to Level*IX paragraph formats,
the initial text of each <$nopage> entry becomes a link to the location of the
<$nopage> marker in your document, not to the referenced See or See also entry
in the index.

13.8.2 Converting FrameMaker TOC and other paragra ph lists

Links in FrameMaker-generated list files, including the standard TOC file and any other
LOP (list-of-paragraphs) files, point to the ObjectIDs of paragraphs in your FrameMaker
document. Mif2Go can convert the links to produce HTML list files.

In this section:
§13.8.2.1 Including a standard TOC and other lists on page 444
§13.8.2.2 Including paragraph references on page 445
§13.8.2.3 Eliminating page numbers from generated lists on page 445

13.8.2.1 Including a standard TOC and other lists

To include in HTML output a standard FrameMaker TOC file, check Use FM TOC in the
Set Up dialog (see §3.4 Choosing project set-up options on page 79), or specify the
following setting:

[Setup]
UseFrameTOC=Yes

To include other FrameMaker-generated such LOT and LOF, also check Use other FM
generated files in the Set Up dialog, or specify the following setting:

[Setup]
UseFrameGenFiles=Yes

See §5.5 Converting FrameMaker-generated files on page 124.

http://www.sundorne.com

13 CONVERTING TO HTML/XHTML CONVERTING GENERATED FILES FOR HTML

ALL RIGHTS RESERVED. MAY 18, 2013 445

13.8.2.2 Including paragraph references

Link destinations in the files referenced by FrameMaker-generated lists consist of the
ObjectIDs of the referenced paragraphs (see §5.3 Identifying files and objects on
page 117). These ObjectIDs must be retained in HTML output, as .
However, if you use the following setting recommended in §19.5.3 Including ObjectID
anchors as link targets on page 620, Mif2Go discards any ObjectIDs that appear not to be
needed:

[HtmlOptions]
ObjectIDs=Referenced

When Mif2Go converts a standard FrameMaker TOC file, ObjectIDs are automatically
retained for any paragraphs to which you assign [HTMLParaStyles] property Split or
Title . For other generated lists, or if your TOC includes links to paragraphs that are not
assigned these properties, you must tell Mif2Go that the ObjectIDs are to be retained. You
do this by assigning the Contents property to the referenced paragraph formats.

For example, if you are converting FrameMaker LOF and LOT files, to retain ObjectIDs
for figure captions and table titles you might specify the following:

[HTMLParaStyles]
FigCaption=Contents
TableTitle=Contents

The only possible drawback is that if you use the same configuration file when you direct
Mif2Go to generate Contents, such as for HTML-based help, links to these paragraph
formats are added to the generated Contents also. You can override this default behavior
by specifying a zero Contents level for any unwanted paragraph formats; for example:

[HelpContentsLevels]
FigCaption=0
TableTitle=0

13.8.2.3 Eliminating page numbers from generated l ists

To keep page numbers from appearing in the output, you can use the following technique:

1. On the TOC Reference page of your FrameMaker TOC file (or the equivalent
Reference page for any other generated-list file):
1.1. Define a character format (for example, TOCpgnum) set to all As is , and add it

to the character catalog.
1.2. Apply the character format to all <$pagenum> elements and to their preceding

spaces or tabs.

2. Save the TOC or generated-list file.

3. Generate the book.

4. Check the resulting Body pages of the generated file. When you hold down Ctrl+Alt
and mouse over the contents, you should see that the text of each entry is a link, but
the page number is not. This might matter if you are also distributing locked
FrameMaker files, or making PDF files; however, the links still work in both cases.

5. In the configuration file, specify the following setting for the character format you
applied:

[HTMLCharStyles]
TOCpgnum=Delete

The resulting HTML file will not have page numbers.

IMPORTING HTML FILES AS INSETS MIF2GO USER’S GUIDE

446 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

13.9 Importing HTML files as insets
To include existing HTML code as an inset, by importing HTML from a source other than
the FrameMaker files you are converting, use a FrameMaker HTML Macro marker. The
content of the marker should look like this:

<$.\\ filename.htm>

where filename.htm is the name of the HTML file you want to import. Place the marker
in your FrameMaker document wherever you want the imported HTML to appear in your
Mif2Go output.

If the HTML you are importing is not a fragment, but a complete HTML file with both
<head> and <body> sections, to omit all but the <body> part use a Mif2Go macro
expression (see §28.6 Using expressions in macros on page 811) in the content of the
HTML Macro marker. Code such as the following would select all text between <body>
and </body> from filename.htm :

<$(($.\\ filename.htm after "<body>") before "</body>")>

The single dot after the second $ indicates that the file you are importing is in the current
directory; if it is in some other directory, use a full path name.

Note: You must use the two-backslash form of separator: backslash (\) instead of a
forward slash (/) so that the Mif2Go expression evaluator does not take it as a
division operator; and two of them, the first to escape the second backslash in the
FrameMaker marker.

13.10 Converting conditions to HTML attributes
Mif2Go can convert FrameMaker text conditions to attributes in HTML/XHTML output
elements.

In this section:
§13.10.1 Understanding how Mif2Go converts conditions on page 446
§13.10.2 Mapping FrameMaker conditions to HTML attributes on page 447
§13.10.3 Displaying condition indicators in HTML with CSS on page 447

See also:
§15.12 Converting conditions to DITA attributes on page 533

13.10.1 Understanding how Mif2Go converts conditio ns

If a full element (either paragraph or character, block or inline) is conditional, Mif2Go
sets an attribute for it. If you are using CSS, Mif2Go modifies the existing class by
concatenating the condition attribute to the original class name; for example:

class="body linux"

CSS can use such attribute lists.

If the condition does not apply to all of an element, Mif2Go encloses the conditional part
in a pair of tags, with the same attributes. By default, Mif2Go uses for HTML.
However, you can specify another tag to use for this purpose:

[HTMLOptions]
; ConditionCharTag = tag to interpolate for conditi ons that affect
; only part of the enclosing element, default span for HTML.
ConditionCharTag = tagname

13 CONVERTING TO HTML/XHTML CONVERTING CONDITIONS TO HTML ATTRIBUTES

ALL RIGHTS RESERVED. MAY 18, 2013 447

For example:
...

When conditions overlap each other, or overlap inline elements, Mif2Go creates a new tag
pair for each change, to respect HTML no-overlap rules. For example:

<p>This paragraph contains text for
<i>Linux
as well as text </i>
 for Windows, with ove rlapping conditions
and a character format overlapping both, resulting in five
 elements.</p>

In addition to text, Mif2Go applies conditions to <table> and elements, and to
 elements, based on the conditions in effect in FrameMaker at the point
of the table or figure anchor, cross reference, or marker.

Mif2Go supports conditional table rows; row condition attributes are not applied to the
paragraphs within cells. Likewise, the attributes of block tags are not applied to inline tags
enclosed within the block.

Where multiple blocks make up a larger element, Mif2Go does not push the attributes up
to the enclosing element; they remain on the enclosed block elements.

13.10.2 Mapping FrameMaker conditions to HTML attr ibutes

To use this feature, set FrameMaker Show/Hide to show all the conditions for which you
want content present. The conditions shown are identified in the output. Content that
remains hidden in FrameMaker is not included. Multiple conditions result in multiple
conditional attribute values.

To map a FrameMaker condition to an HTML element attribute:
[ConditionAttributes]
; Condition name = attribute for elements, usually class.
CondName = attrname=" attrvalue"

For HTML, the attribute name is usually class . For example:
[ConditionAttributes]
HelpOnly = class="online"

13.10.3 Displaying condition indicators in HTML wi th CSS

You can use CSS to make the FrameMaker conditions transferred to HTML attributes
stand out, by setting flags to display the original condition indicators such as color,
underline, and strikethrough:

[ConditionOptions]
; UseConditionalFlagging = No (default, do not incl ude flags)
; or Yes (set flags per conditions)
UseConditionalFlagging = Yes
; CSSFlagsFile = name of CSS file to use for flaggi ng classes for
; HTML outputs. If not specified, related settings below ignored.
CSSFlagsFile = flags.css
; WriteFlagsFile = Yes (default, write in project d irectory) or
; No (do not write)
WriteFlagsFile = Yes
; ReferenceFlagsFile = Yes (default, reference afte r main CSS file
; in output document head) or No (do not reference) .
ReferenceFlagsFile = Yes

PROVIDING HOVER TEXT FOR TERMS IN HTML MIF2GO USER’S GUIDE

448 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When UseConditionalFlagging=Yes , Mif2Go writes class=" condition_name"
into the HTML, or prepends condition_name to an existing class attribute. This
works because a class attribute can have multiple values, separated by spaces. When
there is a CSS rule for more than one of them, the rules are additive. If a particular
property has contradictory settings, such as two different colors, the later of the two in the
CSS file overrides the earlier; the order in the class attribute does not matter.

CSS file name is
required

You must specify a name for CSSFlagsFile if you want the CSS file written and
referenced in HTML output. By default, the CSS file is placed in the project directory.

Colors are not
combined

In preparing the CSS rules for condition indicators, Mif2Go does not try to combine
colors. If multiple conditions with different color indicators are applied to the same text in
FrameMaker, the last applicable selector in the CSS file overrides any that precede it.

13.11 Providing hover text for terms in HTML
Hover text in HTML is produced from the value of the HTML title attribute of a tag
(usually a tag) that encloses the term. The attribute value may not contain a
carriage return, nor the symbols <, >, " , or &.

Mif2Go provides two ways to assign hover text to terms in your document:
Assign hover text with a marker
Assign hover text with a character format.

Assign hover text
with a marker

To provide hover text for a single instance of a term, in FrameMaker place an attribute
marker within or immediately before the character format that encloses the term. The
content of the marker is the text that will show on hover. See §29.2.4 Using attribute
markers for HTML or XML on page 835.

Assign hover text
with a character

format

To provide the same hover text for every instance of a given term, or to provide hover text
for multiple terms, apply a dedicated character format (for example Term) to the material
in question. Assign format property GlossTitle to the character format:

[HTMLCharStyles]
Term = GlossTitle

Hover text is
captured from

content

When Mif2Go encounters in your document character format Term, Mif2Go does the
following:

1. Collects the content enclosed by the character format.

2. Removes all characters except letters and digits.

3. Uses the result as a key to locate the required hover text.

Hover text can be in your configuration file or in separate files:
Keep hover text in a configuration file
Keep hover text in separate text files.

Keep hover text in
a configuration

file

If the hover text you wish to provide is relatively brief, such as spelling out the names
represented by acronyms used in your document, you can list the terms and their
definitions in your project or document configuration file. For example:

[GlossTitles]
ATT = American Telephone and Telegraph
DEC = Digital Equipment Corporation
HP = Hewlett-Packard

Keep hover text in
separate text files

If Mif2Go does not find the key in configuration section [GlossTitles] , Mif2Go looks
for it in the following section:

13 CONVERTING TO HTML/XHTML GENERATING XHTML FOR CONFLUENCE 4.X

ALL RIGHTS RESERVED. MAY 18, 2013 449

[GlossFiles]
ATT = att

If found, Mif2Go looks for a file by the assigned name with extension .txt (in this
example, att.txt) and uses the contents of that file as the hover text for the term. If you
have a set of similar terms that should use the same hover text, you can use wildcards; for
example:

[GlossFiles]
ATT* = att

In this example, any term that begins with AT&T (or ATT) and has the hover-text
character format or marker would get hover text from file att.txt .

By default, Mif2Go looks in the project directory for hover-text files. Most likely you will
want to keep the files in some other central location. To specify where to find these files:

[HTMLOptions]
; GlossTitlePath = path to definition files used fo r HTML hover text
GlossTitlePath = C:/path/to/definitions/

The path must use forward slashes, and must not contain spaces.

If Mif2Go does not find the key listed either in [GlossTitles] or in [GlossFiles] ,
Mif2Go uses the key itself as the base file name, and looks for key.txt .

Precedence of
hover-text
definitions

The precedence of methods by which Mif2Go finds hover text for a term is as follows:

1. A marker, if present

2. A [GlossTitles] setting

3. A [GlossFiles] setting

4. A file named by the term content.

13.12 Generating XHTML for Confluence 4.x
XHTML output that will work as input to Confluence requires a different syntax for links,
and several special settings. Thanks to research by Robert Lauriston, Mif2Go provides a
way to produce the required markup. See:

https://confluence.atlassian.com/display/DOC/Confluence+Storage+Format

To direct Mif2Go to produce XHTML for Confluence 4.x:
[HTMLOptions]
; Confluence = No (default, use normal linking)
; or Yes (make Confluence links)
Confluence = Yes

When Confluence=Yes , Mif2Go automatically sets the options listed in Table 13-5.
You can override these individually if necessary.

https://confluence.atlassian.com/display/DOC/Confluence+Storage+Format

EXPORTING CONTENT FOR DATABASE INPUT MIF2GO USER’S GUIDE

450 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

To configure Confluence links:
[HTMLOptions]
; ConfluenceLinks = No (default, use normal links)
; or Yes (use the link parts specified below)
ConfluenceLinks = Yes
; These are the default parts for Confluence links:
ConfluenceLinkStart = <ac:link>
ConfluenceLinkPage = <ri:page ri:content-title="
ConfluenceLinkPageEnd = "/>
ConfluenceLinkText = <ac:link-body>
ConfluenceLinkTextEnd = </ac:link-body>
ConfluenceLinkEnd = </ac:link>

When ConfluenceLinks=Yes , the remaining ConfluenceLink* settings are in effect.

Note: The XHTML files you produce with Mif2Go must be imported into Confluence
one at a time. As of this writing, no batch import utility is available.

13.13 Exporting content for database input
If you are generating HTML that is destined for input to a database, you might want to
exclude everything except the <body> content. You can use the following setting to
generate HTML without the prolog, <html> tags, <head> tags and content, or <body>
tags. This leaves just the body content, in a form suited to inclusion in a database:

[HTMLOptions]
; BodyContentOnly = No (default) or Yes (omit prolo g, root element,
; and head and body tags, leaving only body content, for DBMS use)
BodyContentOnly = Yes

13.14 Using framesets
To use framesets, you must create the HTML that defines the frames yourself, possibly
using another HTML tool. You can make the resulting HTML code into a Mif2Go macro
(see §28 Working with macros on page 787), as follows:

1. Give the macro a name.

2. Copy the name and HTML code into your project configuration file or into a macro
library file (m2h_macro.ini , or another macro library file you have created).

Table 13-5 Default options for Confluence 4.x XHTML

Configuration section Setting Value Reference
[HTMLOptions] ConfluenceLinks Yes 13.12

RemoveANames Yes 14.6

NoLocations Yes 19.3.2

NoFonts Yes 21.7.4

UseHash No 14.6

AlignAttributes No 21.5

UseXMLDeclaration No 13.4.7

UseDOCTYPE No 13.4.1

UseHeadAndBody No 13.4.7

[CSS] UseCSS No 22.4.2

UseSpanAsDefault No 22.7.3

13 CONVERTING TO HTML/XHTML USING FRAMESETS

ALL RIGHTS RESERVED. MAY 18, 2013 451

3. Include an entry for the macro in the [Inserts] section.

The generated frameset file is more a starting point than a finished product. The result
might look like the following, using an example from the W3C reference on framesets:

http://www.w3.org/TR/1999/REC-html401-19991224/present/frames.html

The following example produces a simple three-frame layout:
[Inserts]
Frames=<$MyFrameset>
End=</noframes></frameset>
. . .
[MyFrameset]
<frameset cols="20%, 80%">
 <frameset rows="100, 200">
 <frame name="frame1" src="contents_of_frame1.h tml">
 <frame name="frame2" src="contents_of_frame2.g if">
 </frameset>
 <frame name="frame3" src="contents_of_frame3.html ">
 <noframes>

If the browser is too old to display frames, or is set not to display frames, the page contents
are shown instead, as the noframes section.

The frameset document itself must use the frameset header:
[HTMLOptions]
; UseFrameSet = No (default) or Yes (if included fr ameset tags)
UseFrameSet=Yes
; HTMLDocType, required at start of HTML documents
; for v4 frameset is: "-//W3C//DTD HTML 4.01 Frame set//EN"
; HTMLDTD, default for v4 frameset is:
; "http://www.w3.org/TR/1999/REC-html401-19991224/ frameset.dtd"

The frames defined in the frameset get their initial content as specified in the src attribute
of the frame element. After that, they are reloaded by making jumps for which the target
attribute is set to the frame name, such as:

<p>C lick here.</p>

You can set the target attribute for a jump by applying, to the hotspot and marker, a
paragraph or character format that you list in the configuration file with a frame target
name. For example:

[Targets]
; doc format = name of frame to use for jumps from within this format
; For OmniHelp ALink and KLink jumps, targets make no sense
; and are ignored.
Top Left=frame1

If the format in effect at the jump is not listed, Mif2Go checks to see if all jumps to that
file, or to that URL destination, are intended for a particular frame. For example:

[TargetFiles]
; filename (no ext) or URL destination = target fra me to be used
; a URL destination is the last element in the URL (no extension)
procedures=frame2

You can also set a default target to be used by all jumps in the file that are not otherwise
set; for example:

[HTMLOptions]
; DefaultTarget = target to use for all jumps not o therwise set
DefaultTarget=frame3

To have a jump to a target open another window, you can use an HTML reserved name for
the target; one such name is _blank , which causes opening in a new browser window. Or,

http://www.w3.org/TR/1999/REC-html401-19991224/present/frames.html

ADDING A “MADE WITH MIF2GO” LABEL OR BUTTON MIF2GO USER’S GUIDE

452 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

you can specify the opening method in the target file, with an onload attribute in the
<body> tag.

In HTML, you can force a new window with , or
better yet with an href to a JavaScript function that sets document.location. In any
case, you get a newnew window every time.

See also §19.4 Creating jumps to particular windows for HTML on page 616.

Note: You cannot use framesets in compiled HTML Help (.chm file); you can use them
in uncompiled HTML Help only, which is of questionable value. Using framesets
for HTML Help makes sense only if the result will be viewed on UNIX systems.

13.15 Adding a “Made with Mif2Go” label or button
You can include in your HTML output a small JPEG image that indicates the output was
created using Mif2Go ; Figure 13-3 shows what the image looks like.

Figure 13-3 Made with Mif2Go

To include this image, invoke predefined macro <$_madewith> (see §28.1.4 Using
predefined macros on page 792). For example, to place the image at the bottom of the first
page of your HTML output:

[Inserts]
FirstBottom=<div align="center"><$_madewith></div>

You can specify the following for the “Made with Mif2Go ” graphic:
Name and location
When to produce
Image attributes
Enclosing tags
Link to Omni Systems

Name and
location

Mif2Go produces the “Made with Mif2Go ” image as an external graphics file named
madewithm2g.jpg , located in the project directory. You can specify a different name and
location; for example:

[HtmlOptions]
; MadeWithImageFile = name to use for "Made with Mif2Go " .jpg graphic
; MadeWithImageFile=madewithm2g.jpg
MadeWithImageFile=./Graphics/m2glabel.jpg

If you specify a different location, Mif2Go places the graphic in that location, and also
sets the reference in the HTML output to point to that location.
Therefore you should specify a path that will be valid on the server where you put the
HTML files. You would not want to use a local absolute path, for example. Probably a
relative path would be best, one that works both locally and on the server where the output
is to be deployed.

When to produce You can specify whether Mif2Go should write the “Made with Mif2Go ” graphic only if
you use predefined macro <$_madewith> , always (whether or not you use the macro), or
never:

[HtmlOptions]
; WriteMadeWithGraphic = Macro (default, write grap hic if its macro

13 CONVERTING TO HTML/XHTML PASSING W3C VALIDATION TESTS

ALL RIGHTS RESERVED. MAY 18, 2013 453

; is used), Always (even if macro is not used), or N ever (even if
; macro is used).
WriteMadeWithGraphic=Macro

You could produce the graphic once, by invoking the macro, then replace the predefined
macro with your own macro that references the graphic; then you can set the value of
WriteMadeWithGraphic to Never for future runs of the same conversion.

Image attributes You can specify attributes for the “Made with Mif2Go ” graphic; the default attributes are
as follows:

[HtmlOptions]
; MadeWithAttributes = attributes of tag to u se for macro
MadeWithAttributes=border="0" alt="Made with Mif2Go " height="48"
width="78"

You must list the attributes all on one line. If you change the size of the graphic, try to
preserve the aspect ratio. If your output will be viewed with a Netscape browser, include a
title attribute as well as the alt attribute.

Enclosing tags You can specify whether the tag for the “Made with Mif2Go ” graphic should be
enclosed in <p>...</p> tags. The default is to do so; for XML output, you would want
to omit these tags:

[HtmlOptions]
; MadeWithPara = Yes (default, put macro inside <p> ...</p> tags) or No
MadeWithPara=No

Link to Omni
Systems

By default, a link to the Omni Systems Web site is included in the “Made with Mif2Go ”
graphic; you can omit this link:

[HtmlOptions]
; MadeWithLink = Yes (default, use link to omsys ho me page in macro)
; or No
MadeWithLink=No

13.16 Passing W3C validation tests
Mif2Go generates W3C-valid code, and with the appropriate settings is completely
conformant. The on-line version of the Mif2Go User’s Guide, generated with Mif2Go ,
includes on every page a W3C validation button that shows the page is valid. You can
download the source files to see which settings were used; see Availability on page 41.

To check the validity of your own HTML output:
http://validator.w3.org/

In this section:
§13.16.1 Understanding limitations of W3C validation on page 453
§13.16.2 Replacing high ASCII characters for W3C validation on page 454
§13.16.3 Eliminating <nobr> tags on page 455
§13.16.4 Removing full-row straddles from tables on page 456
§13.16.5 Avoiding redundant attribute assignments in tables on page 456
§13.16.6 Eliminating duplicate ObjectIDs on page 456

13.16.1 Understanding limitations of W3C validatio n

Mif2Go can produce many varieties of HTML, including some that are intended for use
with older browsers such as Netscape Navigator 4.x. Some default settings allow such
back-compatible code generation, which does not validate to HTML 4 specifications.
Also, one particular HTML tag is not accepted by W3C, certain table anomalies in your

http://validator.w3.org/

PASSING W3C VALIDATION TESTS MIF2GO USER’S GUIDE

454 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

FrameMaker document can cause validation errors, and several high-ASCII characters
cause validator warnings.

If you require clean validation for your output, you might have to make some adjustments
to your FrameMaker document and to your configuration settings.

13.16.2 Replacing high ASCII characters for W3C va lidation

W3C validation tests complain if a file includes any characters with ASCII decimal values
128 through 159. Presence of these characters does not preclude validation. However, if
the file contains real validation errors, the W3C validator reports these characters along
with the actual errors. If you fix the errors, and leave the characters, the complaint
becomes just a note about “non-SGML” characters.

Note: Leaving these characters in your document does not make the output invalid,
despite the somewhat misleading way the W3C validator lists them when
something else in the output is not valid.

For most purposes you should not need to do anything about the characters in question.
However, if you want to have Mif2Go remap or remove the offending characters, you can
set the following option:

[HTMLOptions]
; ValidOnly = No (default, allow normal use of char s from 128 to 160),
; or Yes (for warning-free W3C validation, remaps or removes
; those chars)
ValidOnly=Yes

This option affects the following characters:

 • 128 through 159 (first 32 high ASCII characters), in all fonts except the following:
 – Symbol
 – Zapf Dingbats
 – Webdings

 • 171 and 187 (the guillemets), in macros only.

Setting ValidOnly=Yes changes the output as follows:

 • curly quotes become straight quotes
 • en dashes become hyphens
 • em dashes become a pair of hyphens
 • bullets (except those produced by tags) become mid-dots
 • all other characters in the range are dropped, unless you map them yourself; see §21.5

Assigning properties to text formats on page 653.

Table 13-6 shows how Mif2Go treats characters in this range when ValidOnly=Yes .
Depending on which version of the Mif2Go User’s Guide you are using to view the table,
some characters might not be displayed.

Table 13-6 Characters replaced or removed for W3C validation

Value Character Name Replacement character (if any)

128 € euro Removed

129 (none) (none) Removed

130 ‚ single base quote ' 039 (single quote)

131 ƒ florin Removed

132 „ double base quote " 034 (double quote)

13 CONVERTING TO HTML/XHTML PASSING W3C VALIDATION TESTS

ALL RIGHTS RESERVED. MAY 18, 2013 455

See also:
§13.4.3 Specifying character encoding for HTML on page 431
§14.3.3 Specifying character encoding for generic XML on page 460
§21.5 Assigning properties to text formats on page 653

13.16.3 Eliminating <nobr> tags

By default, Mif2Go generates <nobr> tags around non-breaking hyphens. However, the
<nobr> tag is not included in the W3C DTD, despite the fact that all browsers support it.
To eliminate <nobr> tags from the output, specify the following option:

133 … ellipsis Removed

134 † dagger Removed

135 ‡ double dagger Removed

136 ˆ circumflex Removed

137 ‰ per thousand Removed

138 Š S caron Removed

139 ‹ left single guillemet Removed

140 Œ OE ligature Removed

141 ˘ (none) Removed

142 Ž Z caron Removed

143 (none) (none) Removed

144 (none) (none) Removed

145 ‘ left single quote ' 039 (single quote)

146 ’ right single quote ' 039 (single quote)

147 “ left double quote " 034 (double quote)

148 ” right double quote " 034 (double quote)

149 • bullet · 183 (mid-dot), except in lists

150 – en dash - 045 (hyphen)

151 — em dash - 045 (hyphen) in text,
-- (two hyphens) in macros

152 ˜ tilde Removed

153 ™ trademark Removed

154 š s caron Removed

155 › right single guillemet Removed

156 œ oe ligature Removed

157 ˝ (varies; not used) Removed

158 ž z caron Removed

159 Ÿ Y diaeresis Removed

···

171 « left double guillemet " 034 (double quote), in macros only

187 » right double guillemet " 034 (double quote), in macros only

Table 13-6 Characters replaced or removed for W3C validation (continued)

Value Character Name Replacement character (if any)

PASSING W3C VALIDATION TESTS MIF2GO USER’S GUIDE

456 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[HTMLOptions]
; AllowNobr = Yes (default, use <nobr> tags around nonbreaking
; hyphens, supported properly by all browsers),
; or No (required for W3C validation)
AllowNobr = No

13.16.4 Removing full-row straddles from tables

If you straddle all the cells in a table row in FrameMaker, you end up with a hidden
“empty” row; the presence of this row is detectable only on the table context menu, which
shows Unstraddle instead of Straddle when you select the row, or any cell in that row.
However, MIF output generated for the table does include the empty row; and empty rows
are not allowed for W3C validation.

You must unstraddle the entire row, remove the resulting empty row, and restraddle any
cells that might still need straddling.

13.16.5 Avoiding redundant attribute assignments i n tables

If you use more than one method to add the same attribute to a table, you might end up
with duplicate attribute assignments, which are not allowed for W3C validation. For
example, suppose you specify access method scope for all tables (see §26.1.3.2 Applying
the scope method to all tables on page 764):

[Tables]
AccessMethod=Scope

Then if you happen to include a CellScope marker in some table (see §26.2.4 Assigning
table-cell attribute values with custom markers on page 7720, the scope attribute
assignment appears twice in the output for that table cell.

13.16.6 Eliminating duplicate ObjectIDs

If a file in your output contains duplicate FrameMaker ObjectIDs (see §5.3 Identifying
files and objects on page 117), you get a W3C validation error. FrameMaker can get away
with duplicate ObjectIDs because in addition to the number, references to objects include
the format name and the entire text of the paragraph in question.

You must hunt down duplicate objects in your FrameMaker document, using clues from
the validator error report and source listing. Remove one of the duplicate objects, then
reinsert that object to make FrameMaker assign a new ObjectID. See §5.3.2 Working with
FrameMaker ObjectIDs on page 118.

ALL RIGHTS RESERVED. MAY 18, 2013 457

14 Converting to generic XML

XML emphasizes document structure rather than presentation. This section shows how to
generate generic XML tags and how to set XML-specific options in your project
configuration file. If you are converting to DITA XML or to DocBook XML, consult one
of the following sections instead:

§15 Converting to DITA XML on page 473
§17 Converting to DocBook XML on page 557

Topics for generic XML include:
§14.1 Understanding how Mif2Go generates XML output on page 457
§14.2 Setting up a generic XML project on page 459
§14.3 Specifying generic XML output settings on page 459
§14.4 Providing XML tags and structure on page 461
§14.5 Converting FrameMaker lists to generic XML on page 466
§14.6 Configuring links for generic XML on page 467
§14.7 Converting graphics for generic XML on page 468
§14.8 Converting index entries to generic XML on page 468

Check the W3C Extensible Markup Language (XML) 1.0 (Second Edition)
recommendation for information about XML:

http://www.w3.org/TR/REC-xml

14.1 Understanding how Mif2Go generates XML output
The FrameMaker document model for an unstructured document is essentially flat. You
have to write “rules” (Mif2Go macros) to add the tag information that establishes a
hierarchy.

In this section:
§14.1.1 Accommodating HTML features in XML output on page 457
§14.1.2 Introducing structure with Mif2Go on page 458
§14.1.3 Introducing structure with XSLT on page 458
§14.1.4 Creating structure in FrameMaker on page 458
§14.1.5 Producing SGML with Mif2Go and XSLT on page 458

14.1.1 Accommodating HTML features in XML output

Mif2Go uses the same code base for generic XML as for HTML. HTML output was
developed first (because XML had not been invented yet), and then XHTML. Therefore,
almost any HTML feature that can be used to produce valid XML does work in XML.

Table borders specified as standard pre-CSS HTML table attributes are a special case. For
many of those, Mif2Go reverses the defaults for XML, so that the attributes you (almost)
always want in HTML are not automatically added in XML. See §14.4.3 Eliminating
HTML attributes and tags for generic XML on page 463.

http://www.w3.org/TR/REC-xml

UNDERSTANDING HOW MIF2GO GENERATES XML OUTPUT MIF2GO USER’S GUIDE

458 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

14.1.2 Introducing structure with Mif2Go

You can use the Mif2Go macro language to construct a hierarchical file out of a flat file,
with very little code. In many ways, it is easier to write Mif2Go macros than to write the
conversion tables FrameMaker uses to do the structuring; certainly it is no more difficult.

When you use native FrameMaker XML export via File > Save As... to export an
unstructured document to XML, you have to map the format tags to corresponding
elements. When you use Mif2Go to generate XML, you still have to map format names to
element names, but you can also specify nesting levels and attributes; and you can use
macros freely to create additional structure, before and after elements and elsewhere.

If you map only format names, what you get when you use Mif2Go to generate XML is
one root element, which you specify in the configuration file; see §14.3 Specifying generic
XML output settings on page 459. The root element contains an element for every
paragraph. Each paragraph element can contain elements for each character format used in
the paragraph, and you can specify nesting levels for paragraph elements.

14.1.3 Introducing structure with XSLT

You could process “raw” XML output (which is always well formed) with XSLT to
produce pretty much any structure you want. Introducing structure this way has two
possible drawbacks:

 • XSLT processors are not fast, especially on very large documents; most are written in
Java, but even the C++ implementations take longer than you might find tolerable in
production.

 • Designing the XSLT template to add the structure could be a guru-level task.

14.1.4 Creating structure in FrameMaker

Although the generic XML Mif2Go generates from unstructured FrameMaker is well
formed, it cannot be made to conform to an XML DTD. Unstructured documents do not
store metadata, so element attributes cannot be exported.

If your purpose is to produce DITA XML or DocBook XML, you can use Mif2Go directly
from unstructured FrameMaker, and the result will conform to the respective DTD. See:

§15 Converting to DITA XML on page 473
§17 Converting to DocBook XML on page 557

14.1.5 Producing SGML with Mif2Go and XSLT

Because XML is an SGML application, you can use Mif2Go to export to XML, then use
XSLT to convert the XML into any form of SGML. Or, you can make the “XML” output
come out directly in your preferred SGML flavor, by using macros to produce any
alterations you need.

Depending on the system you use for subsequent XML processing, you might have to
suppress \n line breaks in Mif2Go XML output; see §13.6.4 Suppressing line breaks in
HTML and XML output on page 437.

14 CONVERTING TO GENERIC XML SETTING UP A GENERIC XML PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 459

14.2 Setting up a generic XML project
For the most part Mif2Go conversions to XML employ the same project set-up options,
conversion methods, macros, and configuration settings as conversions to HTML or
XHTML; see §13.2 Setting up an HTML project on page 424.

Set-up options If you are using the FrameMaker plug-in version of Mif2Go , you get the same Set Up
dialog for XML as for HTML; see §13.2.2 Choosing set-up options for an HTML or
XHTML project on page 425.

Conversion files The same conversion files are generated and named the same way for XML as for HTML
or XHTML; see §C.2.3.2 HTML/XML conversion files on page 1022.

Default settings Default values for configuration settings are the same for XML as for XHTML, with the
following exceptions:

Generated files Converting FrameMaker-generated files is the same process for XML as for HTML; see
§13.8 Converting generated files for HTML on page 441. However, you can also produce
an XML-tagged index directly from FrameMaker index markers; see §14.8 Converting
index entries to generic XML on page 468.

Markers and
macros

If you are converting an unstructured document, you can use markers and Mif2Go macros
to introduce structure; see §29 Working with FrameMaker markers on page 831 and §28
Working with macros on page 787.

14.3 Specifying generic XML output settings
To add or change any of the options described in this section, edit configuration file
_m2xml.ini , located in the project directory.

In this section:
§14.3.2 Changing output XML version or file extension on page 460
§14.3.3 Specifying character encoding for generic XML on page 460
§14.3.4 Specifying the root element and content type on page 461
§14.3.5 Preventing arbitrary line breaks in XML text elements on page 461

Section Keyword XML default XHTML default
[CSS] ClassIsTag Yes No

[Graphics] GraphScale No Yes

[HTMLOptions] AlignAttributes No Yes

AllowOverrides No Yes

Footnotes Inline Jump

NoFonts Yes No

UseAnums No Yes (except lists)
UseFootXrefTag Yes No

UseHeadAndBody No Yes

XMLRoot doc html

[Tables] UseCALSModel Yes No

CellAlignAttributes No Yes

CellColorAttributes No Yes

TableAttributes No Yes

SPECIFYING GENERIC XML OUTPUT SETTINGS MIF2GO USER’S GUIDE

460 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

14.3.1 Creating a generic XML project

To create a generic XML project:

1. Create a directory for output files, separate from the directory where your
FrameMaker document is located.

2. With your FrameMaker book or document file open, choose File > Set Up Mif2Go
Export ; the Choose Project dialog opens.

3. Name your project, and browse to the project directory you created in Step 1 (see §3.3
Creating a Mif2Go conversion project on page 78).

4. Choose the following output type:
Generic XML

5. Check options in the Set Up HTML/XML Project dialog (see §13.2.2 Choosing set-up
options for an HTML or XHTML project on page 425).

6. Use a text editor to edit the resulting m2xml.ini configuration file (see §4.1 Working
with Mif2Go configuration files on page 91).

14.3.2 Changing output XML version or file extensi on
XML version To change the version of generic XML:

[HTMLOptions]
; XMLVersion default is "1.0".
XMLVersion = 1.0

File extension To change the output file extension:
[Setup]
FileSuffix = . ext

The default output file extension for XML files is .xml .

14.3.3 Specifying character encoding for generic X ML

Character encoding determines the method used to represent character value greater than
0x7F (decimal 127). Such double-byte characters constitute the “high ASCII” set;
whereas FrameMaker characters, except in the Japanese version, are all single-byte. The
default for XML output is UTF-8 :

[HTMLOptions]
; Encoding = UTF-8 (XML default), ISO-8859-1 (HTML default, numeric
; refs), or None (write 0x80-0xFF as single charac ters)
Encoding=UTF-8
; XMLEncoding default is "UTF-8", entities are used for ANSI chars
XMLEncoding=UTF-8
; NumericCharRefs = Yes (default, always use &#nnn;)
; or No (use UTF-8 for XML)
NumericCharRefs=No

Entity references
for browsers

If your XML output is to be rendered by Web browsers, be aware that even though UTF-8
is the XML standard encoding, many browsers do not support it. The Mif2Go default is to
claim UTF-8 as the encoding, but to use numeric references of the form &#nnn; for all
characters that would have to be encoded; this satisfies all browsers. That is, with default
settings, Mif2Go does not actually produce any characters with values greater than 127
using the UTF-8 encoding; instead, Mif2Go uses entities for such characters, readable
under any eight-bit encoding scheme.

The setting for XMLEncoding controls the content of the encoding attribute of the XML
declaration. If you set Encoding=UTF-8 , you get real UTF-8 encoding (two characters)

14 CONVERTING TO GENERIC XML PROVIDING XML TAGS AND STRUCTURE

ALL RIGHTS RESERVED. MAY 18, 2013 461

in place of the numeric character references. However, you can still force use of numeric
references by also setting NumericCharRefs=Yes .

While Encoding=None is not strictly compliant, this setting can be useful in places like
Russia, where almost the entire text would otherwise consist of numeric character
references. Encoding=None provides a 6:1 reduction in such references.

See also:
§13.3 Including starting code and entity references on page 429
§13.4.3 Specifying character encoding for HTML on page 431
§13.16.2 Replacing high ASCII characters for W3C validation on page 454
§21.5 Assigning properties to text formats on page 653

14.3.4 Specifying the root element and content typ e

The default value for root is doc for generic XML. Because XML does not have <head>
and <body> sections, the default is to omit these:

[HTMLOptions]
XMLRoot=doc
UseHeadAndBody=No
; ContentType = text/html (default for HTML and XHT ML)
; or application/xml (default for XML); try not to use text/xml
; (for interoperability)
ContentType=application/xml

Content-Type is part of MIME, and is used by document-processing tools. Unless you
know exactly what you want and need only a mechanism to specify it, leave this setting
alone. For more information, see:

http://www.w3.org/Protocols/rfc1341/4_Content-Type.html

14.3.5 Preventing arbitrary line breaks in XML tex t elements

If you are generating XML to be imported into a system that treats \n line breaks as
though they were paragraph breaks, you might have to prevent Mif2Go from introducing
line breaks into XML paragraph text.

To suppress \n line breaks in all paragraphs:
[HTMLOptions]
; NoWrap = No (default, \n where space occurs) or Y es
NoWrap=Yes

See §13.6.4 Suppressing line breaks in HTML and XML output on page 437.

14.4 Providing XML tags and structure
In this section:

§14.4.1 Generating XML from an unstructured document on page 462
§14.4.2 Deriving XML tags from format and class names on page 462
§14.4.3 Eliminating HTML attributes and tags for generic XML on page 463
§14.4.4 Including or excluding FrameMaker autonumbers on page 465
§14.4.5 Configuring forced returns for XML on page 465

See also:
§28.10 Using macros to fine-tune HTML or XML output on page 828

http://www.w3.org/Protocols/rfc1341/4_Content-Type.html

PROVIDING XML TAGS AND STRUCTURE MIF2GO USER’S GUIDE

462 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

14.4.1 Generating XML from an unstructured documen t

To use Mif2Go to organize paragraph elements into higher-level sections, you can specify
XML tags for the start and end of each section. You can do this several ways; your choice
depends on the existing structure of your FrameMaker document and the structure you
want in XML. You can insert code with any or all of the following:

Code-before and code-after macros
FrameMaker markers
Special paragraph format

For the code-before/code-after method, you might have to rename paragraph formats that
start and end a section, to make them unique in their usage, much like renaming Heading1
to Heading1 First, Heading1 Top of Page, and so forth.The other two methods avoid such
renaming, but require an edit in the FrameMaker document at each point where such
additions are needed.

Code-before and
code-after macros

Provide code in a [ParaStyleCodeBefore] macro for a particular paragraph format
that always starts a section, and a [ParaStyleCodeAfter] macro for the paragraph
format that ends the section; see:

§28.9.3 Surrounding or replacing text with code or macros on page 822.

FrameMaker
markers

Insert markers that contain either code or a macro reference; see:
§29.7 Inserting code or text with markers on page 842
§28.9.7 Using HTML Macro markers to invoke macros on page 828.

Special
paragraph format

Dedicate a paragraph format to XML code, and use it to insert the code directly into your
FrameMaker document, most likely with a condition applied; see:

§28.9.3 Surrounding or replacing text with code or macros on page 822.

A brief example Suppose you have run-in heading format RuninHead that is always followed by paragraph
format RuninBody, and you want all such instances to come out like this in XML:

<labeledinfo>
<label> Content of label...</label>
<info> Content of info...</info>

</labeledinfo>

You could specify the following settings:
[ParaTags]
RuninHead=label
RuninBody=info

[HTMLParaStyles]
RuninHead=CodeBefore
RuninBody=CodeAfter

[ParaStyleCodeBefore]
RuninHead=<labeledinfo>

[ParaStyleCodeAfter]
RuninBody=</labeledinfo>

14.4.2 Deriving XML tags from format and class nam es

To aid in mapping formats to elements for XML output from an unstructured document,
by default Mif2Go uses the following for XML tags:

 • all CSS class names
 • names of any formats to which you have not assigned a CSS class name:

 – in CSS

14 CONVERTING TO GENERIC XML PROVIDING XML TAGS AND STRUCTURE

ALL RIGHTS RESERVED. MAY 18, 2013 463

 – in the [ParaClasses] or [CharClasses] section
 – in any other configuration-file section.

Only catalogued
formats

For format mapping to work, all character and paragraph format names must be present in
the FrameMaker catalog for the file you are converting, including names of any character
formats that are used only in FrameMaker marker text.

To produce valid XML, Mif2Go converts all tags to valid CSS names, without spaces,
non-alphanumeric characters, leading digits, or accented characters (which become
unaccented).

Paragraph and
character tags
and attributes

Mif2Go uses any tags and attributes you assign in configuration sections [ParaTags]
and [CharTags] ; see §21.3.1 Assigning HTML tags and attributes to paragraph formats
on page 646. To apply an attribute to an individual paragraph or character span, insert an
attribute marker in the instance; see §29.2.3 Understanding attribute markers on page 834.

You can specify which names to use for XML tags in any or all of the following ways:
Map class names to XML tags
Map format names to classes
Map graphic anchor format to a class.

Map class names
to XML tags

To map all CSS class names to XML tags (the default for XML output):
[CSS]
; ClassIsTag = No (default for HTML/XHTML)
; or Yes (default for Generic XML)
ClassIsTag=Yes

When ClassIsTag=Yes , any class names you assigned to formats in the [ParaTags]
and [CharTags] sections become XML tags; see §22.5 Understanding how CSS affects
other options on page 687. If ClassIsTag=Yes , also specify
[CSS]WriteClassAttributes=No ; see §22.4.2 Specifying CSS options in a Mif2Go
configuration file on page 684.

Map format
names to classes

To explicitly map individual format names to class names:
[ParaClasses] or [CharClasses]
; Format name = class to use (default is based on n ame)
; For XML, the class is used as the tag name by def ault.

Map graphic
anchor format to

a class

If your document uses a special paragraph format to anchor graphics, you can specify a
class name for the format with the following setting:

[Graphics]
; GraphClass = class name to use for paras created to hold tags
GraphClass=graphic

Specify all
margins in CSS

The following setting causes CSS entries to explicitly include all four margin values, even
if some are zero:

[CSS]
; ZeroCSSMargins = No (default)
; or Yes (specify CSS margins even if zero)
ZeroCSSMargins=Yes

14.4.3 Eliminating HTML attributes and tags for ge neric XML

You can use configuration settings to eliminate the following HTML tags and attributes:
Paragraph tags
Character tags in markers
Table attributes
Graphics tags and attributes

PROVIDING XML TAGS AND STRUCTURE MIF2GO USER’S GUIDE

464 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Paragraph tags Use either of the following methods to make HTML <p>...</p> tags go away:

 • Best: supply your own XML tags in [ParaTags] ; see §21.3.1 Assigning HTML tags
and attributes to paragraph formats on page 646

 • Use the NoPara property in [HTMLParaStyles] ; see §21.3.6 Stripping paragraph
properties on page 650.

Character tags in
markers

If you are converting index markers or other FrameMaker markers that contain character
formatting, you can use a Mif2Go macro to skip the character formats; see §14.8.2.5
Stripping character formats from index entries on page 472.

Table attributes By default, when you specify XML as the output type, Mif2Go refrains from
automatically generating HTML table and cell attributes (see §24.4.1 Specifying attributes
for all tables on page 736), while preserving any attributes you add specifically for XML
in the configuration file or in markers:

[Tables]
; TableAttributes = Yes (HTML default, to allow aut omatically
; generated border, cellspacing, cellpadding, or No (XML default,
; to exclude those while keeping any attributes expl icitly added
; in the .ini or in markers)
TableAttributes=No
; CellAlignAttributes = Yes (HTML default) or No (X ML default, to
; eliminate automatically generated align and valign)
CellAlignAttributes=No
; CellColorAttributes = Yes (HTML default) or No (X ML default, to
; eliminate automatically generated bgcolor)
CellColorAttributes=No

See §24.4.7 Eliminating automatically generated attributes on page 739.

By default, Mif2Go places in each table cell that would otherwise be empty
(either because the cell contained only an empty paragraph in FrameMaker, or because
another configuration setting eliminated the content). This is because some browsers do
not render correctly the borders, margins, and padding of a completely empty cell. To
suppress this feature:

[Tables]
EmptyTbCellContent=

The empty value eliminates the . Or, you can specify any other content; see
§24.4.10 Deciding what to do with empty paragraphs in table cells on page 744. However,
a better approach would be to define common entities such as in your XML DTD;
see §13.3 Including starting code and entity references on page 429.

Graphics tags
and attributes

To eliminate width and height attributes from images:
[Graphics]
; GraphScale = Yes to put out width and height attr ibutes,
; or No to eliminate them all (default for Generic XML)
GraphScale = No

If you do not specify any setting for GraphScale , you get the correct default for either
HTML or XML.

To eliminate paragraph tags around graphics:
[Graphics]
; GraphWrapPara = Yes (default, wrap graphics that are not inline in
; paragraph tags) or No (eliminate wrapping tags)
GraphWrapPara = No

14 CONVERTING TO GENERIC XML PROVIDING XML TAGS AND STRUCTURE

ALL RIGHTS RESERVED. MAY 18, 2013 465

14.4.4 Including or excluding FrameMaker autonumbe rs

By default, Mif2Go omits all autonumbers from XML output:
[HTMLOptions]
; UseAnums = Yes (HTML default, use unless list typ e)
; or No (XML default)
UseAnums = No

To include autonumbers in XML output for selected paragraph formats:
[HTMLParaStyles]
; Anum includes Frame autonumber, default omits it
ParaFmt = Anum

To exclude autonumbers from XML output only for selected paragraph formats:
[HTMLOptions]
UseAnums = Yes

[HTMLParaStyles]
; NoAnum excludes autonumber in non-list items, def ault keeps it
ParaFmt = NoAnum

See also:
§14.5 Converting FrameMaker lists to generic XML on page 466
§21.5 Assigning properties to text formats on page 653.

14.4.5 Configuring forced returns for XML

By default, for XML output Mif2Go converts each forced return (FrameMaker
Shift+Enter , a typesetting “hard return”) to a space, except for text within preformatted
tags. Within preformatted tags, a forced return always becomes a line break (not a
paragraph break).

To always convert forced returns into
 s instead of spaces for XML (and XHTML):
[HTMLOptions]
; UseXMLbr = No (default) or Yes (use
 in XML and XHTML outputs
; for hard returns)
UseXMLbr = Yes

Or, you can tell Mif2Go to close the paragraph tag at a forced return instead of
substituting a space, and then reopen the tag without attributes:

[HTMLOptions]
; XMLBreakPara = No (default, each Shift+Enter beco mes a space)
; or Yes (close para tag and reopen without attribut es).
XMLBreakPara = Yes

XMLBreakPara applies only to text destined for non-preformatted tags in XML output.
This setting does not affect XHTML or HTML output.

When XMLBreakPara=No , Mif2Go changes each forced return (FrameMaker
Shift+Enter) within a non-preformatted paragraph to a space.

When XMLBreakPara=Yes , Mif2Go closes the paragraph tag, and then reopens the tag
without attributes.

To override the setting for XMLBreakPara for selected paragraph formats:
[HTMLParaStyles]
; These two apply to XML, but not to XHTML or HTML:
; XMLBreak closes the current para tag at each Shif t+Enter, and
; reopens it without attributes; overrides
; [HTMLOptions]XMLBreakPara=No.

CONVERTING FRAMEMAKER LISTS TO GENERIC XML MIF2GO USER’S GUIDE

466 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; XMLNoBreak replaces each Shift+Enter with a space ; overrides
; [HTMLOptions]XMLBreakPara=Yes.
ParaFmt = XMLBreak

For XHTML or HTML output, see §21.3.8 Deciding how to treat forced returns on
page 651.

14.5 Converting FrameMaker lists to generic XML
Just converting an unstructured FrameMaker list to XML provides nothing except XML
tags around each list item. Autonumbers are converted to text. Bullets become entity
references. List properties you would supply for HTML have no meaning in XML.

Suppose you want to convert FrameMaker autonumbered lists that use paragraph formats
such as StepFirst and StepNext; and suppose you want the lists to be structured like this in
XML:

<steplist>
<stepitem>

<steptext value="1">Text of first step.</steptext>
</stepitem>
<stepitem>

<steptext value="2">Text of second step.</steptext>
</stepitem>

. . .
</steplist>

You can remove the FrameMaker autonumbers by assigning property NoAnum to the step
formats, and instead use a macro variable ($$StepNum in the following examples) as a
counter to generate step numbers. Assign CodeBefore and CodeAfter properties to
both formats, so you can surround the text with XML tags. Also assign NoPara to
suppress any HTML <p> tags:

[HTMLParaStyles]
; Remove the autogenerated numbers:
StepFirst=CodeBefore CodeAfter NoAnum NoPara
StepNext=CodeBefore CodeAfter NoAnum NoPara
; Make sure all non-step formats can close the list :
*=CodeBefore

Assign code to both formats to surround the text with XML tags. If you are not using a
list-ending format in FrameMaker (such as StepLast), you must provide a list-closing tag
in code that immediately precedes any non-step format. Therefore, all non-step paragraph
formats must have the CodeBefore property; thus the final wildcard setting in
[HTMLParaStyles] .

Provide code to start the list, start each list item, and start the list-item counter:
[ParaStyleCodeBefore]
; Start the list:
StepFirst=<steps>\n<stepitem><$$StepNum = 1><stepte xt value="1">
; Start each list item:
StepNext=<stepitem><steptext value="<$$StepNum++ as %s>">
; End the list before the first non-list paragraph:
*=<$_if ($$StepNum)></steps>\n<$$StepNum = 0><$_end if>

Whenever a non-step paragraph is encountered, if a list was in progress, the last setting in
[ParaStyleCodeBefore] provides closing XML tags for it, and resets the step counter.

If you have more than one paragraph in any step, you have more work to do; you must
provide explicit “before” and “after” code for each paragraph format that appears within a

14 CONVERTING TO GENERIC XML CONFIGURING LINKS FOR GENERIC XML

ALL RIGHTS RESERVED. MAY 18, 2013 467

list, to prevent those formats from terminating the list. Or, you could use a StepLast format
for the final item in each list, and avoid this problem.

The “after” code for each paragraph format in the list provides the closing XML tags:
[ParaStyleCodeAfter]
; End each list item:
Step*=</steptext></stepitem>

If you use a StepLast format, you could end the list with it here, instead of using the
wildcard settings in [ParaStyleCodeBefore] . You would place the following setting
ahead of the Step* setting in [ParaStyleCodeAfter] :

StepLast=</steptext></stepitem></steplist>\n<$$Step Num = 0>

To account for the possibility that a list item is the very last paragraph in a document,
check for a list at the very end:

[Inserts]
; This handles the case where a list ends the docum ent:
End = <$_if ($$StepNum)></steplist>\n<$$StepNum = 0 ><$_endif>

Again, if you consistently use a StepLast format, you can omit the [Inserts]End setting.

Because the wildcard setting in [ParaStyleCodeBefore] most probably tests the value
of $$StepNum before any other code has a chance to assign a value to this variable, you
must explicitly give it a starting value:

[MacroVariables]
; Because you test before you set, you must initial ize $$StepNum:
StepNum = 0

Again, if you use a StepLast format, you can omit this setting.

14.6 Configuring links for generic XML
There is no standard way to represent links in XML. Configure links whatever way your
DTD or schema says; anything “well formed” is valid. See W3C XML Pointer, XML Base
and XML Linking for more information:

http://www.w3.org/XML/Linking

To configure links for DocBook XML, see §17.3.3 Configuring links for DocBook XML
on page 563. To configure links for DITA XML, see §15.10 Configuring cross references
and links for DITA on page 527.

To manage links and cross references in generic XML:
[HTMLOptions]
; These are mainly intended for making links for Ge neric XML use:
; RemoveANames = No (default) or Yes (eliminate tags)
; RemoveATags = No (default) or Yes (eliminate <a h ref=...> tags)
; RemoveAHrefAttrs = No (default)
; or Yes (remove href attrs, keep tags)
; XMLLinkAttrs = No (default)
; or Yes to add attrs to tags:
; xml:link="simple" show="replace" actuate="user" class="url"
XMLLinkAttrs=No
; ATagElement = tag to use for all link elements, d efault is "a"
; except for DITA, where it is "xref"
ATagElement=a
; HrefAttribute = name to use for link source attr, default href
HrefAttribute=href
; UseHash = Yes (default, start local hrefs with #) or No
UseHash=Yes

http://www.w3.org/XML/Linking

CONVERTING GRAPHICS FOR GENERIC XML MIF2GO USER’S GUIDE

468 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; UseUlink = No (default, use ATagName for URLs) or Yes (use
; ulink for URLs, and url as the HrefAttribute wit hin them)
UseUlink=No
; RemoveXrefHotspots = No (default) or Yes (remove hotspot text for
; xrefs and hyperlinks to Frame files, retain it f or external URLs)
RemoveXrefHotspots=No
; UseListedXrefFilesOnly = No (default) or Yes (con sider any xref
; target files not listed in [XrefFiles] to refer to the current
; file.) This suppresses filenames for DocBook where files are in the
; same DocBook book; files not in the book must be l isted in
; [XrefFiles].
UseListedXrefFilesOnly=No

Page numbers Mif2Go retains page numbers from your FrameMaker document as targets for hypertext
gotopage jumps.

See also:

§15.10 Configuring cross references and links for DITA on page 527
§17.3.3 Configuring links for DocBook XML on page 563
§19.2.6 Forcing link text to lowercase on page 613

14.7 Converting graphics for generic XML
In all important respects, graphics output for XML is the same as for XHTML or HTML;
see §23 Including graphics in HTML on page 703. However, when you use Save As XML
in FrameMaker, the image references produced look like the following:

<IMAGE xml:link="simple" href=" some.gif" show="embed" actuate="auto"/>

To reproduce this effect when you convert to XML with Mif2Go , or to provide an
equivalent, you can specify values for the following graphics options:

[Graphics]
;ImgTagElement = tag to use for all image elements, default is "img"
;ImgTagElement=img
;ImgSrcAttr = name to use for all image source attr s, default is "src"
;ImgSrcAttr=src
; XMLGraphAttrs = No (default)
; or Yes to add attrs to XML tags:
; xml:link="simple" show="embed" actuate="auto"
XMLGraphAttrs=No

Whatever values you specify apply to all graphics in your document.

To eliminate graphics from XML output, see §23.4.5 Omitting graphics from HTML or
XML output on page 708.

14.8 Converting index entries to generic XML
Suppose you want to convert (non-structured) FrameMaker index markers to XML, and
suppose you want the XML rendered as follows:

 • a different element for each index-entry level: <index1> , <index2> , and so forth
 • a parent element for the whole entry: <indexterm> .

You can do this with a combination of configuration settings and Mif2Go macros.

In this section:
§14.8.1 Configuring index markers for conversion to XML on page 469
§14.8.2 Defining macros to process index content on page 469

14 CONVERTING TO GENERIC XML CONVERTING INDEX ENTRIES TO GENERIC XML

ALL RIGHTS RESERVED. MAY 18, 2013 469

14.8.1 Configuring index markers for conversion to XML

To convert FrameMaker index markers, you need ways to extract the content of each
marker and embed the text in appropriate XML elements. Because you cannot redefine the
behavior of FrameMaker markers of type Index , you must first clone these markers. Then
you can do the following:

 • Surround the cloned content with Mif2Go macro code.
 • Assign the cloned content to a Mif2Go macro variable for further parsing.

New markers for
XML index

Clone index markers, creating a new marker type to which you can assign properties; see
§29.3 Remapping marker types and hypertext commands on page 836:

[Markers]
; Create a new marker type, cloning existing marker s of type Index:
Index = NewIndex

Embed new
markers in code

Assign the Code property to marker type NewIndex ; see §29.4 Defining and redefining
marker behavior on page 838:

[MarkerTypes]
; NewIndex marker content is to be surrounded by ma cro code:
NewIndex = Code

Note: If Index marker content includes non-alphanumeric characters, to ensure proper
encoding you must assign marker type property Text instead of Code; see
§29.7.3 Processing marker content as text for XML/HTML/XHTML on page 844.

User variable for
marker content

Set the initial value of user variable $$IXtext to the content of each NewIndex marker;
see §29.7.2 Surrounding marker content with code on page 843:

[MarkerTypeCodeBefore]
; User variable $$IXtext gets the original index-ma rker content:
NewIndex= <$$IXtext = "

XML tags for
parent element

Provide surrounding tags for the resulting XML element <indexterm> :
[MarkerTypeCodeAfter]
; The result of processing <$$IXtext> becomes XML e lement <indexterm>:
NewIndex= "><indexterm><$ProcIXtext></indexterm>

Macro [ProcIXtext] parses the content of each index entry to produce XML
<index N> elements. Several alternate definitions of [ProcIXtext] are described in
§14.8.2 Defining macros to process index content on page 469.

14.8.2 Defining macros to process index content

You will need to parse each index entry to divide it into levels, because the content of each
level becomes a separate XML <index N> element. Mif2Go macro [ProcIXtext]
handles this chore. Those parts of the macro that actually end up in output are highlighted
in color: green for element content, magenta for element tags. Lines are numbered for
reference.

In this section:
§14.8.2.1 Configuring macro definitions for easier reading on page 470
§14.8.2.2 Generating XML tags for each level on page 470
§14.8.2.3 Detecting colons used as text or punctuation on page 470
§14.8.2.4 Using an alternate macro to generate XML tags on page 471
§14.8.2.5 Stripping character formats from index entries on page 472

CONVERTING INDEX ENTRIES TO GENERIC XML MIF2GO USER’S GUIDE

470 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

14.8.2.1 Configuring macro definitions for easier reading

Omit spaces and
line breaks

You might want to configure macro definitions so they can be indented like program code
for easier reading; see §28.1.1.4 Managing line breaks in macro definitions on page 789:

[Macros]
; Ignore macro linebreaks and subsequent leading wh itespace,
; to allow indenting complex macro definitions:
OmitMacroReturns=Yes

Note: This setting is crucial if you want to use leading spaces in Mif2Go macro
definitions, as in the examples in §14.8.2 Defining macros to process index
content on page 469.

14.8.2.2 Generating XML tags for each level

Check each index entry for colons: level separators that indicate a new index level. When
a colon is encountered, close the XML element for the current level, and increment the
level number:

The unary length operator in line 2 gets the length of the preceding value of variable
$$IXtext , so the <$_while> expression works correctly; see:

§28.6.4 Using control structures in expressions on page 815
§28.6.5 Specifying substrings in expressions on page 817.

Assignment statements by default do not produce output, so only the value of the
$$IXpart variable on line 5 actually ends up as content between the XML <index n>
tags, which are output on line 3 and line 8; see:

§28.3.2 Assigning values to macro variables on page 797
§28.6.3 Displaying expression results in output on page 813.

14.8.2.3 Detecting colons used as text or punctuat ion

Suppose some FrameMaker index entries include colons as punctuation or as part of the
text, instead of as level separators; that is, some colons are escaped thus \: in index
markers. You could modify macro [ProcIXtext] as follows, to distinguish between
colon-as-text and colon-as-separator:

[ProcIXtext]
1 <$$IXlevel = 1>
2 <$_while ($$IXtext length)>
3 <index<$$IXlevel>> Opening XML tag
4 <$$IXpart = ($$IXtext before ":")>
5 <$$IXpart> Text
6 <$$IXpart = ($$IXtext after ":")>
7 <$$IXtext = $$IXpart>
8 </index<$$IXlevel>> Closing XML tag
9 <$$IXlevel++>

10 <$_endwhile>

[ProcIXtext]
1 <$$IXlevel = 1>
2 <$_while ($$IXtext)>
3 <index<$$IXlevel>> Opening XML tag
4 <$$IXpart = ($$IXtext before ":")>
5 <$_if (($$IXpart last 2) is "\\")> Check for colon-as-text
6 <$ProcIXLitColon> Call another macro
7 <$_endif>
8 <$$IXpart> Text output
9 <$$IXpart = ($$IXtext after ":")>

10 <$$IXtext = $$IXpart>

14 CONVERTING TO GENERIC XML CONVERTING INDEX ENTRIES TO GENERIC XML

ALL RIGHTS RESERVED. MAY 18, 2013 471

You need a double backslash \\ on line 5, because that is how an escaped colon in a
FrameMaker marker is represented internally by Mif2Go DCL.

Index-entry text that does not include a colon-as-text is output on line 8, and surrounding
XML tags are output on line 3 and line 11.

Process colon as
punctuation

A second macro [ProcIXLitColon] has to be invoked on line 6, because you cannot
nest a <$_while> inside another <$_while> in the same macro; see §28.6.4.3 Using
loop structures on page 816:

Index-entry content at the current level, up to the colon-as-text, and then the text colon
itself, are output on line 2 of [ProcIXLitColon] .

14.8.2.4 Using an alternate macro to generate XML tags

As an alternative, a somewhat simpler version of macro [ProcIXtext] uses the trim
operator instead of the length operator, and steps through the index entry character by
character; see §28.6.5 Specifying substrings in expressions on page 817:

Only one macro
required

This version uses <$_repeat> for the inner loop, which allows the inner loop to be
nested in the same macro, eliminating the need for a second macro; see §28.6.4.3 Using
loop structures on page 816.

Colons used as text are output on line 7; all other text is output on line 13, one character at
a time. Surrounding XML tags are output on line 3 and line 17.

11 </index<$$IXlevel>> Closing XML tag
12 <$$IXlevel++>
13 <$_endwhile>

[ProcIXLitColon]
1 <$_while (($$IXpart last 2) is "\\")>
2 <$($$IXpart first (($$IXpart length) - 2)) as %s>: Text output
3 <$$IXpart = ($$IXtext after ":")>
4 <$$IXtext = $$IXpart>
5 <$$IXpart = ($$IXtext before ":")>
6 <$_endwhile>

[ProcIXtext]
1 <$$IXlevel = 1>
2 <$_while ($$IXtext)>
3 <index<$$IXlevel>> Opening XML tag
4 <$_repeat>
5 <$_if ($$IXtext is "")><$_break>
6 <$_elseif (($$IXtext first 3) is "\\:")> Check for colon-as-text
7 : Text colon output
8 <$$IXtext = ($$IXtext trim first 3)>
9 <$_elseif (($$IXtext first 1) is ":")>

10 <$$IXtext = ($$IXtext trim first 1)>
11 <$_break>
12 <$_else>
13 <$($$IXtext first 1)> Text character output
14 <$$IXtext = ($$IXtext trim first 1)>
15 <$_endif>
16 <$_endrepeat>
17 </index<$$IXlevel>> Closing XML tag
18 <$$IXlevel++>
19 <$_endwhile>

CONVERTING INDEX ENTRIES TO GENERIC XML MIF2GO USER’S GUIDE

472 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

14.8.2.5 Stripping character formats from index en tries

Still another version of macro [ProcIXtext] removes character-format names from
index-marker content, as well as processing colons:

This version uses a negative conditional expression to check for the end of each index
entry, and uses the starts operator instead of the first operator; see:

§28.6.4.2 Using conditional expressions on page 815
§28.6.5 Specifying substrings in expressions on page 817)

Text colons are output on line 7; all other text is output on line 15, one character at a time.

Some first (line 15) and trim first (line 10 and line 16) expressions in this version
appear without a second operand; these expressions assume an implied value of 1 (one)
for the second operand.

(No illustrations)
(No tables)

[ProcIXtext]
1 <$$IXlevel = 1>
2 <$_while ($$IXtext)>
3 <index<$$IXlevel>> Opening XML tag
4 <$_repeat>
5 <$_if not ($$IXtext)><$_break>
6 <$_elseif ($$IXtext starts "\\:")>
7 : Text colon output
8 <$$IXtext = ($$IXtext trim first 3)>
9 <$_elseif ($$IXtext starts ":")>

10 <$$IXtext = ($$IXtext trim first)>
11 <$_break>
12 <$_elseif ($$IXtext starts "<")>
13 <$$IXtext = ($$IXtext after ">")>
14 <$_else>
15 <$($$IXtext first)> Text character output
16 <$$IXtext = ($$IXtext trim first)>
17 <$_endif>
18 <$_endrepeat>
19 </index<$$IXlevel>> Closing XML tag
20 <$$IXlevel++>
21 <$_endwhile>

ALL RIGHTS RESERVED. MAY 18, 2013 473

15 Converting to DITA XML

Mif2Go generates topics and maps for DITA (Darwin Information Typing Architecture)
XML output, converted from either structured or unstructured FrameMaker documents.
This section shows how to configure DITA-specific options. Topics include:

§15.1 Generating DITA XML with Mif2Go on page 473
§15.2 Setting up a DITA XML project on page 478
§15.3 Specifying general options for DITA on page 483
§15.4 Configuring DITA elements on page 486
§15.5 Nesting DITA block elements on page 501
§15.4 Configuring DITA elements on page 486
§15.5 Nesting DITA block elements on page 501
§15.6 Converting tables to DITA XML on page 510
§15.7 Specifying options for images in DITA XML on page 516
§15.8 Organizing DITA topics on page 519
§15.9 Configuring DITA topics on page 522
§15.10 Configuring cross references and links for DITA on page 527
§15.11 Exporting FrameMaker variables to DITA XML on page 530
§15.12 Converting conditions to DITA attributes on page 533
§15.13 Marking FrameMaker text insets in DITA on page 534
§15.14 Including CSH targets in DITA XML on page 535
§15.15 Overriding DITA settings with markers on page 536

See also:
§16 Configuring DITA maps on page 539
§32 Working with content models on page 905

15.1 Generating DITA XML with Mif2Go
Before you set up a Mif2Go DITA project, be clear about what level of familiarity with
DITA you need, what you intend to do with the output, and what role you want Mif2Go to
play in producing DITA output.

In this section:
§15.1.1 Understanding the complexity of a DITA conversion project on page 473
§15.1.2 Understanding what you need to know about DITA on page 474
§15.1.3 Clarifying your purpose for creating DITA output on page 474
§15.1.4 Converting from structured vs. unstructured FrameMaker on page 475
§15.1.5 Understanding what information you must supply on page 476
§15.1.6 Understanding how Mif2Go generates DITA output on page 476
§15.1.7 Creating valid DITA XML output on page 477

15.1.1 Understanding the complexity of a DITA conv ersion project

Be aware that conversion to another source format, such as DITA XML, can be difficult,
especially if you are converting an unstructured document. There are no shortcuts. You
might need days or weeks to get it right, working with small test documents, before you
can go into production.

GENERATING DITA XML WITH MIF2GO MIF2GO USER’S GUIDE

474 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You can view a Scriptorium Publishing webinar about the process, showing several
alternatives:

http://bit.ly/61MvPx

Click View Event Recordings and choose Converting Unstructured FrameMaker to
DITA; the Mif2Go part of the presentation starts at 33:15.

You can also view a YouTube video created by Yves Barbion that shows how to get image
attributes from FrameMaker into DITA via Mif2Go :

http://www.youtube.com/watch?v=VAuQwEn_ogw

15.1.2 Understanding what you need to know about D ITA

To use Mif2Go effectively to produce DITA output, you need a basic knowledge of DITA,
from study of other materials. Teaching our customers DITA is beyond the scope of the
Mif2Go User’s Guide. You have to know what you want; then perhaps we can tell you
how to make it happen with Mif2Go .

If you are not familiar with DITA, here are some good starting points and reference sites:

IBM Introduction to the Darwin Information Typing Architecture:
http://www-128.ibm.com/developerworks/xml/library/x-dita1/index.html

Online community for the Darwin Information Typing Architecture OASIS Standard:
http://dita.xml.org/

OASIS DITA Architectural Specification:
http://docs.oasis-open.org/dita/v1.1/CD01/overview/overview.html

Cover pages on DITA:
http://xml.coverpages.org/dita.html

DITA World Comprehensive List of DITA Resources:
http://www.ditaworld.com/

On-line DITA lists:
http://tech.groups.yahoo.com/group/framemaker-dita/
http://tech.groups.yahoo.com/group/dita-users/

Comtech Services book, available at http://www.comtech-serv.com/dita.shtml#book:
Linton, Jen and Bruski, Kylene (2006). Introduction to DITA: A Basic User Guide to
the Darwin Information Typing Architecture. Denver, CO: Comtech Services

15.1.3 Clarifying your purpose for creating DITA o utput

Mif2Go supports two general purposes for creating DITA output from FrameMaker:
Migrate legacy content to DITA XML
Export current content to DITA as needed.

A third potential purpose might be to use DITA as an intermediate step in converting
documents from unstructured to structured FrameMaker. You could use Mif2Go to
produce DITA XML from your unstructured files, then bring the results back into
structured FrameMaker. This should be a lot faster than developing FrameMaker
conversion tables.

Migrate legacy
content to DITA

XML

When you migrate legacy content from FrameMaker to DITA XML, completeness is less
important than it would be if you retain source in FrameMaker. After converting your
document you edit in an XML environment, so (for example) you can add metadata after
conversion. Even validity can be relaxed, if your existing document does not quite

http://bit.ly/61MvPx
http://www.youtube.com/watch?v=VAuQwEn_ogw
http://www-128.ibm.com/developerworks/xml/library/x-dita1/index.html
http://dita.xml.org/
http://docs.oasis-open.org/dita/v1.1/CD01/overview/overview.html
http://xml.coverpages.org/dita.html
http://www.ditaworld.com/
http://tech.groups.yahoo.com/group/framemaker-dita/
http://tech.groups.yahoo.com/group/dita-users/
http://www.comtech-serv.com/dita.shtml#book

15 CONVERTING TO DITA XML GENERATING DITA XML WITH MIF2GO

ALL RIGHTS RESERVED. MAY 18, 2013 475

measure up. As long as the XML is well formed, you can use XSLT to make adjustments.
You can even run XSLT from within Mif2Go , with a command that invokes, for example,
Saxon. See §34.4 Executing operating-system commands on page 937.

If you are just beginning a proposed migration, you might want to stay with FrameMaker
until you are satisfied with the results of converting all your FrameMaker documents to
DITA. Keep editing in FrameMaker, and see how the DITA comes out. Make your
FrameMaker documents conform to DITA architecture, if you can; you are sure to need
specializations, which Mif2Go handles. This way you can continue to produce decent
deliverables all the way through the process. At the same time, you can test alternative
production workflows with the DITA versions you generate. And if in the end you do not
think you can live with the strictures that DITA enforces, you can walk away without
having a disaster to clean up.

The simplest route is to go from unstructured FrameMaker direct to DITA version 1.1,
then import the DITA files into your next application. There would not be much point to
bringing the files back into structured FrameMaker if you do not plan to keep using
FrameMaker. In fact, it would be a bad idea, because structured FrameMaker (version 8)
currently supports only DITA version 1.0, so you would lose index features, graphics
scaling, and so forth. Unstructured FrameMaker does allow DITA version 1.1 features
natively, and Mif2Go output to DITA version 1.1 retains those features.

For a list of features added in DITA version 1.1 that would be lost if you went back to
DITA version 1.0, see:

http://wiki.oasis-open.org/dita/DITA_1.1_Impact_Assessments

Export current
content to DITA

as needed

To continue using FrameMaker as source and export content to DITA as needed, you must
interpolate into the DITA output any data required by DITA but not needed in
FrameMaker. You can use FrameMaker markers or dedicated conditional paragraph
formats for file-specific data, and Mif2Go configuration settings for general data items
such as book revision level. You do not need XSLT for this purpose. In fact, you should
not need XSLT at all, unless your FrameMaker document does not follow the same
sequence of items that DITA expects. This is not likely, because DITA pretty much
codifies what writers do anyway as good practice.

If you continue using FrameMaker as source, consider two possible ways to proceed:

 • DITA as an accommodation to others. For this purpose you would want minimum
disturbance to FrameMaker files; for example, you would keep multi-topic chapters,
and chunk them out using Mif2Go .

 • DITA as an authoring model. For this purpose you would make your FrameMaker
files single-topic. Chapters would take on the role of ditamaps, and would import the
topic files as insets.

If you are converting a FrameMaker book, the book file becomes a DITA map either way.

If you create content in DITA XML, then use the DITA Open Toolkit to generate other
outputs, you might have difficulty producing some Help formats. Also, PDF output can
look ugly. With Mif2Go you can continue to write in FrameMaker, and get a matching
DITA set any time you need one. And you can produce DITA output from unstructured as
well as from structured FrameMaker.

15.1.4 Converting from structured vs. unstructured FrameMaker

You do not have to use structured FrameMaker to produce DITA XML with Mif2Go . You
can use structured FrameMaker, provided your EDD specifies distinct formats for the
elements, rather than the Word-style formatting some structured-FrameMaker users prefer.

http://wiki.oasis-open.org/dita/DITA_1.1_Impact_Assessments

GENERATING DITA XML WITH MIF2GO MIF2GO USER’S GUIDE

476 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Whether you use structured or unstructured FrameMaker, to produce completely valid
DITA output, the content of your FrameMaker document must be arranged to fit the DITA
architecture.

To use structured FrameMaker as a DITA authoring tool, you need DITA-FMx:
http://leximation.com/dita-fmx/

This is true even if you are using FrameMaker version 9, which supports DITA 1.1.

15.1.5 Understanding what information you must sup ply

Mif2Go support for DITA requires you to supply the following kinds of information in
addition to your FrameMaker document:

DTD properties
FrameMaker mappings
Disambiguation.

DTD properties Mif2Go provides built-in content models for basic DITA topic types. If you are using
structured FrameMaker, you can abstract content-model information from your DITA
DTD. To add or replace a content model, use free command-line utility dtd2ini to
generate a content model from a DTD, and produce a content-model configuration file for
your DITA project. See §32.2.2 Generating a content model from a DTD on page 906.

FrameMaker
mappings

For either structured or unstructured FrameMaker, you must map FrameMaker formats
to the content model in terms of element names, element parentage, required level (if
any), inline/block nature, and any requirement to be first under any parent. This
information goes into your project configuration file, and possibly into chapter-specific
configuration files. You might have to use markers in your FrameMaker document to
provide information such as topic IDs, element names, and attributes, in cases where these
items cannot be derived from the document.

Disambiguation In an unstructured FrameMaker document, presentation might be the same for several
different usages. Mif2Go cannot necessarily determine whether (for example) text tagged
<Italic> is a computer term, a foreign language term, or a long quote, all of which have
different representations in DITA, based on the context. The onus is on the author to
disambiguate these usages, if necessary by inserting DITA markers in individual instances
of particular formats. Mif2Go does handle a few presentational features automatically; for
example, by default forced returns (FrameMaker Shift+Enter) are converted to spaces.

15.1.6 Understanding how Mif2Go generates DITA out put

Mif2Go creates DITA XML for the following, based on either structured or unstructured
FrameMaker chapter (.fm) and book (.book) files (not FrameMaker XML files):

DITA elements
DITA topics
DITA links
DITA index terms
DITA maps
DITA specializations and constraints

DITA elements Mif2Go uses two methods to identify DITA element boundaries in a FrameMaker
document:

 • FrameMaker formats, mapped to DITA elements in your project configuration file;
see §15.4.3 Mapping paragraph formats to DITA block elements on page 487

http://leximation.com/dita-fmx/

15 CONVERTING TO DITA XML GENERATING DITA XML WITH MIF2GO

ALL RIGHTS RESERVED. MAY 18, 2013 477

 • FrameMaker markers in your document that identify elements where mapping is not
feasible, either because the same format is used for several elements, or because
character formats would have to nest for DITA phrases; see §15.15 Overriding DITA
settings with markers on page 536.

Mif2Go determines element nesting (which is not explicit in unstructured FrameMaker)
according to settings in the configuration file. The <body> wrapper starts after any
metadata, and continues until the end of the topic or until an element mapped to related
links appears. Mif2Go provides the <body> and <related-links> wrappers. Mif2Go
wraps each image that has a title in a <fig> element, along with the title.

DITA topics Mif2Go supports concept , task , reference , topic , glossary (for DITA 1.1), map,
bookmap (for DITA 1.1), and custom topic types. You can specify the topic type in a
DITAtopic marker. If a FrameMaker file contains only a single type of topic, you can set a
default per file; then you would need markers only for exceptions. A format mapped to the
<title> element (at level 1) identifies the start of a topic. A topic ends at the start of the
next topic, or at the end of the file.

DITA links Mif2Go generates DITA <xref> elements from FrameMaker cross references and
hypertext links. For links to target elements that do not already have IDs specified via
DITAElemID markers, Mif2Go uses either the newlink marker content or the FrameMaker
cross-reference numeric ID for the element ID. If a target element contains both a newlink
marker and a cross-reference marker, the newlink marker content becomes the element
ID. If a target element has multiple newlink markers, the content of the first newlink
marker becomes the element ID.

DITA index terms Mif2Go moves all index entries in a paragraph to the end, just before the closing tag of the
paragraph element. When that element is not valid as a container for <indexterm> , as is
the case with <title> , Mif2Go wraps the index entries in a <ph> element, which is valid
in many more elements (including <title>). If the <ph> wrapper is not valid in that
location, it is up to the author to move the index marker in FrameMaker to a place where
the resulting <indexterm> (or, if necessary, its <ph> wrapper) will be valid in DITA.

DITA maps Mif2Go generates a DITA map for each FrameMaker chapter file, and also for the
FrameMaker book. The book map can include all chapter content, or just reference the
chapter maps. DITA <reltable> elements are produced from ALinks; each distinct
subject creates one <relrow> . The topic types are retained from the topics themselves.
The linking attribute is set to target or to source in DITARelLinking markers in the topics.
See §16 Configuring DITA maps on page 539.

DITA
specializations
and constraints

Mif2Go provides a simplified way to represent the hierarchical information that is
contained in the DTD (and in .mod files) for specialized topic types. Mif2Go does not
include class attributes in DITA output; those are best left to the DTD to provide.

For DITA 1.2 you can impose a “no pernicious mixed content” constraint by using
constraint modules, without specializing. You can produce constraints the same way as a
specialization, using Mif2Go utility dtd2ini.exe on the local document type shell and
referencing the result in your project configuration file. (This one-time extra step is
required as a result of licensing.)

To include specializations or constraints in DITA output, see §32 Working with content
models on page 905.

15.1.7 Creating valid DITA XML output

Mif2Go does not try to validate the output from a DITA conversion; you must use a
validating parser to check output validity. However, Mif2Go does ensure valid parental

SETTING UP A DITA XML PROJECT MIF2GO USER’S GUIDE

478 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

relationships and first-child restrictions. Valid sequence of items within those constraints
has to come from the implied or explicit structure of the FrameMaker document.

Mif2Go does try to help you create valid DITA output. When Mif2Go finds that the next
paragraph is mapped to an element that would not be valid at that point in DITA XML,
Mif2Go looks for a way to make the element valid. Mif2Go might close existing
elements, or interpolate new elements. If you do not like the result, you must tell Mif2Go
(via configuration settings) what to interpolate instead. See §32.5 Understanding how
Mif2Go uses content models on page 911.

15.2 Setting up a DITA XML project
When you set up a DITA XML project from within FrameMaker, if starting configuration
file _m2dita.ini is not already present in the project directory, Mif2Go copies this
configuration file to the project directory for you; see §4.3 Understanding where project
settings come from on page 102.

To add or change any of the options described in this section, edit configuration file
_m2dita.ini , located in your project directory. Or, to apply the changes to all of your
DITA XML projects, edit the configuration file referenced by _m2dita.ini :

%omsyshome%\m2g\local\config\local_m2dita_config.in i .

See §30.5 Deciding which configuration file to edit on page 856.

In this section:
§15.2.1 Creating a DITA XML project on page 478
§15.2.2 Choosing set-up options for a DITA XML project on page 479
§15.2.3 Specifying DITA output options on page 480
§15.2.4 Specifying DITA version on page 480
§15.2.5 Configuring the DITA DTD SYSTEM identifier on page 481
§15.2.6 Ensuring FrameMaker 8 import compatibility on page 481
§15.2.7 Substituting document format names for default names on page 481

15.2.1 Creating a DITA XML project

To create a DITA XML project:

1. Create a directory for DITA output, separate from the directory where your
FrameMaker document is located.

2. With your FrameMaker book or document file open, choose File > Set Up Mif2Go
Export ; the Choose Project dialog opens (see §3.3 Creating a Mif2Go conversion
project on page 78).

3. Name your DITA XML project, and browse to the project directory you created in
Step 1.

4. Choose output type DITA XML and click OK.

5. Check options in the Set Up DITA Project dialog (see §15.2.2 Choosing set-up options
for a DITA XML project on page 479).

6. Click OK to dismiss the dialog.

When you click OK on the Set Up DITA Project dialog, Mif2Go copies a new project
configuration file, _m2dita.ini , to your project directory. In addition to the settings you
specified in the set-up dialog, this file contains a series of empty configuration sections. It
is up to you to fill these sections with the rest of the settings required to convert your

15 CONVERTING TO DITA XML SETTING UP A DITA XML PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 479

document. Use a text editor to edit _m2dita.ini ; see §4.1 Working with Mif2Go
configuration files on page 91. Pay special attention to sections [DITAParaTags] ,
[DITACharTags] , and [DITAParents] ; see §15.2.7 Substituting document format
names for default names on page 481.

Note: Your FrameMaker book name must not duplicate the name of any chapter file.

15.2.2 Choosing set-up options for a DITA XML proj ect

When you choose DITA as the output type for a new project, the Set Up dialog shown in
Figure 15-1 opens. Table 15-1 shows the corresponding settings in the configuration file.
You must edit the configuration file to specify additional options.

See also:
§3.4 Choosing project set-up options on page 79
§13.2.2 Choosing set-up options for an HTML or XHTML project on page 425

Figure 15-1 Set Up DITA Project

Table 15-1 DITA set-up options and configuration settings

Set-up dialog Configuration file
Option Section Setting Default Ref.

Use Cascading Style
Sheets

[CSS] UseCSS=Yes Yes 22.4

Path to CSS file [CSS] CssFileName= mycss.css local.css 22.4.3

Create CSS from FM styles [CSS] WriteCssStylesheet=
Once

Once 22.4.3

Defaults for:

SETTING UP A DITA XML PROJECT MIF2GO USER’S GUIDE

480 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

15.2.3 Specifying DITA output options

To change the file extension for DITA output (not recommended):
[Setup]
FileSuffix = . ext

The default file extension is .dita . Unless you have a compelling reason, use .dita , not
.xml , for the output file extension. Many places in DITA depend on that extension, and
will break if you do not use it; for example, related links would be assigned the wrong
@format value, and so would not work correctly in many tools.

The [Setup] setting is used by the Mif2Go plug-in. For this setting to take effect, you
might have to close FrameMaker, make the change, save your configuration file, and then
re-open FrameMaker.

If you have FrameScript installed on your system, you can use a script to create more
“human readable” topic names for DITA output. See:

http://frameautomation.com/2010/03/24/renaming-dita-map-topics/

15.2.4 Specifying DITA version

By default, Mif2Go produces output for DITA version 1.1. However, you can restrict
output to features that conform to DITA version 1.0, and you can generate version 1.2
output by specifying 1.1 and using the mechanism provided for specializations and
content models; see §32 Working with content models on page 905.

To specify DITA version 1.0 output:
[DITAOptions]
; DITAVer = DITA version point number, 1 (default, for 1.1)
; or 0 (for 1.0)
DITAVer = 0

When DITAVer=1 , output can include the following DITA 1.1 features:

 • elements <index-see> , <index-see-also> , and <index-sort-as>

 • index range attributes
 • elements <abstract> , <foreign> , <unknown> , and <data>

 • topic types glossentry and bookmap, and the elements they contain.

When DITAVer=0 , these features are omitted from output.

We recommend sticking with DITA version 1.1. However, FrameMaker 7.2 and 8.0 do not
support DITA version 1.1; if you expect to bring your DITA 1.1 output back into
FrameMaker 7.2 or 8.0 with these features intact, you will need the Leximation DITA-
FMx plug-in:

http://www.leximation.com/dita-fmx/

Topic type [DITAOptions] DefTopic= topic concept 15.9.2

Paragraph Element [DITAOptions] DefParaElem= element p 15.4.3.3

Character Element [DITAOptions] DefCharElem= element ph 15.4.4.3

DITA version [DITAOptions] DITAVer= N 1 15.2.4

Table 15-1 DITA set-up options and configuration settings (continued)

Set-up dialog Configuration file
Option Section Setting Default Ref.

http://frameautomation.com/2010/03/24/renaming-dita-map-topics/
http://www.leximation.com/dita-fmx/

15 CONVERTING TO DITA XML SETTING UP A DITA XML PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 481

Note: When [DITAOptions]FM8Import=Yes , Mif2Go changes the default value of
DITAVer to 0; see §15.2.6 Ensuring FrameMaker 8 import compatibility on
page 481.

15.2.5 Configuring the DITA DTD SYSTEM identifier

To have Mif2Go use a DTD SYSTEM identifier without a path, when required for other
DITA processing applications:

[DITAOptions]
; UseDTDPath = Yes (default, use full URL to DTD at OASIS) or No (just
; use the DTD name with no path, required for XMeta L and some CMSs).
UseDTDPath = No

15.2.6 Ensuring FrameMaker 8 import compatibility

If you are using FrameMaker version 8, and you expect to use maps or to round-trip your
DITA output, specify the following option:

[DITAOptions]
; FM8Import = No (default) or Yes (restrict output for compatibility
; with FrameMaker Version 8 DITA import and map usag e).
FM8Import = Yes

You do not need this setting if you are using the Leximation DITA-FMx plug-in with
FrameMaker version 8; see:

http://www.leximation.com/dita-fmx/

When FM8Import=Yes , Mif2Go changes default values for the following settings:

See also:
§16.2.1.2.2 Configuring chapter maps for FrameMaker 8 import on page 540.

15.2.7 Substituting document format names for defa ult names

When Mif2Go creates a configuration file for a new DITA project, the default settings in
all configuration sections that involve assigning a property to a FrameMaker format are
based on the format names in the standard template that comes with FrameMaker, not on
the format names in your document.

If your document uses format names different from those in the standard FrameMaker
template, you must change these settings to assign properties to the corresponding names
in your document instead. You must also add settings for other formats in your document
that map to other than the default block and inline elements, which are <p> and <ph> ,
respectively.

Note: It is best not to delete any default settings until you know what you are doing.

Default settings in the following configuration sections are based on formats in the
standard FrameMaker template:

[DITAOptions]
keyword

FM8Import
default Consequence Ref.

DITAVer 0 Output is restricted to DITA version 1.0 features 15.2.3
MapTopicID No Topic IDs are omitted from map references 16.2.1.7

MapTopicmeta No The <topicmeta> element is excluded from
maps

16.2.1.8

WrapTopicFiles Yes Each topic file is wrapped in a <dita> element 15.8.5
UsePtSuffix Yes Image width and height attributes are in points 15.7.7

http://www.leximation.com/dita-fmx/

SETTING UP A DITA XML PROJECT MIF2GO USER’S GUIDE

482 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[DITAParaTags]

[DITACharTags]

[DITACharTypographics]

[DITALevels]

[DITAParents]

[DITAParaTags] Only a few paragraph formats are automatically mapped to DITA elements:
[DITAParaTags]
; Frame para format (wildcards OK) = DITA element
Body=p
Heading*=title
Numbered=li
Numbered1=li
Bulleted=li
FigureTitle=title
CellBody=p
CellHeading=p

See §15.4.3 Mapping paragraph formats to DITA block elements on page 487.

[DITACharTags] Only one character format is automatically mapped to a DITA element:
[DITACharTags]
Emphasis=i

See §15.4.4 Mapping character formats to DITA inline elements on page 492.

[DITACharTypog
raphics]

The only character format automatically included here is Emphasis; combined with its
default mapping in [DITACharTags] , this setting makes Emphasis both bold and italic:

[DITACharTypographics]
; Frame char format (wildcards OK) = DITA typograph ic
; elements (any or all of b, i, u, tt, sup, or sub) to use in
; addition to the element to which the format is map ped in
; [DITACharTags].
Emphasis=b

See §15.4.5 Assigning multiple typographic elements to a format on page 494.

[DITALevels] By default, a paragraph format named Title that is not explicitly mapped in
[DITAParaTags] becomes a <title> element, which is always at level 1 in its DITA
topic:

[DITALevels]
; Frame format (para or char, wildcards OK) = level in DITA (not
; Frame) file required for the DITATag specified for this element.
Title=1
Heading*=3

See §15.5.13 Specifying DITA element levels on page 509.

[DITAParents] Only a few paragraph formats are automatically assigned DITA parents:
[DITAParents]
; Frame format (para or char, wildcards OK) = requi red parents
Title=topic
Heading*=section
Numbered1=ol
Numbered=ol
Bulleted=ul
FigureTitle=fig

See §15.5.2 Designating DITA ancestor elements on page 502.

15 CONVERTING TO DITA XML SPECIFYING GENERAL OPTIONS FOR DITA

ALL RIGHTS RESERVED. MAY 18, 2013 483

15.3 Specifying general options for DITA
This section summarizes DITA-specific default values and recommended options for
configuration settings in the following areas:

Declaration
Standard XML options
Filtering options
Style options
Indexing
CSS
Context-sensitive help
Assembling files for distribution

Declaration Mif2Go sets the following default values for the PUBLIC declaration, depending on the
DITA version and on the topic type. For example, for DITA version 1.1 and topic type
concept :

[HTMLOptions]
HTMLDocType="-//OASIS//DTD DITA 1.1 Concept//EN"
HTMLDTD="docs.oasis-open.org/dita/v1.1/CS01/dtd/con cept.dtd"

If you need the declaration to comply with the requirements of third-party tools, you can
override the default values. See §32.7.2 Overriding settings in a DITA content model on
page 914 and §32.7.4 Overriding declarations in a DITA map content model on page 915.

Standard XML
options

The following XML settings cannot be overridden:
[HTMLOptions]
AllowOverrides = No
AlignAttributes = No
NoFonts = Yes

[Graphics]
GraphScale = Yes

[Tables]
TableAttributes = No
CellAlignAttributes = No
CellColorAttributes = No

Filtering options These settings provide DITA-specific default values for assorted options; you do not have
to include the following settings in your configuration file unless you change their values:

[HTMLOptions]
; The following are the DITA-specific defaults for each setting:
FileSuffix = .dita
RunInHeads = Normal
RemoveANames = Yes
ATagElement = xref
XMLEncoding = UTF-8
NumericCharRefs = No
FootInlineTag = fn
HardRetPara = No
RemoveEmptyParagraphs = Yes
RemoveEmptyTableParagraphs = Yes

If your document uses run-in headings only for presentational purposes, you might want to
set RunInHeads=Runin ; see §21.3.2 Converting sidehead and run-in paragraph formats
on page 648.

See §13 Converting to HTML/XHTML on page 423.

SPECIFYING GENERAL OPTIONS FOR DITA MIF2GO USER’S GUIDE

484 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Style options Keep empty paragraphs empty (if not removed):
[HTMLOptions]
EmptyParaContent =

See §21.3.9 Providing content for empty paragraphs on page 651.

Footnotes are DITA-specific, but you can remove them:
[HTMLOptions]
Footnotes = None

A footnote that appears in a <title> element will be wrapped in a <ph> element. If you
are using the DITA Open Toolkit, see §15.10.5 Omitting <xref> elements from footnotes
on page 529.

By default, Mif2Go suppresses FrameMaker autonumbers for DITA:
[HTMLParaStyles]
* = NoAnum

Autonumbers violate DITA architecture. However, if you use FrameMaker numbering
properties for purposes that have nothing to do with numbering, you can override the
suppression for selected paragraph formats:

[HTMLParaStyles]
ParaFmt = Anum

If you want a graphic in DITA, you reference it, then add it when you render output from
DITA. The graphic does not belong in the DITA itself, so if it is present in FrameMaker
you need to mark it for deletion. How you do that depends on how the graphic was added
in FrameMaker. For example, if the graphic is a Frame Above, set:

[HTMLOptions]
RemoveFramesAbove=Yes

This removes all such frames, which is probably what you want; see§21.3.7 Keeping or
removing reference frames on page 651.

If the graphic is anchored in the text, apply a condition, and exclude that condition when
converting to DITA.

By default, Mif2Go converts forced returns (FrameMaker Shift+Enter) to spaces for
DITA. To simply close and reopen the paragraph tag (without attributes) instead:

[HTMLOptions]
XMLBreakPara = Yes

To do so selectively by paragraph format:
[HTMLParaStyles]
ParaFmt = XMLBreak

See §14.4.5 Configuring forced returns for XML on page 465.

To preserve line or page breaks in DITA, see §15.4.8 Including PIs for line, column, or
page breaks on page 499.

Do not assign the [HTMLParaStyles] Split property to any FrameMaker format. For
DITA, Mif2Go splits files according to topic starts; see §15.8.2 Splitting FrameMaker
files into DITA topic files on page 520.

By default, for DITA XML output Mif2Go adds a px suffix to width and height attribute
values for images sized in pixels. To omit the suffix:

[Graphics]
UsePxSuffix = No

15 CONVERTING TO DITA XML SPECIFYING GENERAL OPTIONS FOR DITA

ALL RIGHTS RESERVED. MAY 18, 2013 485

See §23.9.5 Specifying px units for graphics sized in pixels on page 722, and §15.7.7
Understanding why images might look incorrectly scaled on page 519.

Indexing For DITA version 1.1 Mif2Go uses FrameMaker sort strings to produce index-sort-as
elements, so you might want to set the following Help option:

[Index]
UseSortString = Yes

See §7.5.9.4 Choosing whether to use FrameMaker index sort strings on page 218, and
§15.4.10 Converting index markers to <indexterm> elements on page 500.

CSS The CSS file Mif2Go generates for DITA specifies classes only, no tags, so that it can be
used for HTML outputs generated from the DITA files. These options are in effect by
default:

[CSS]
WriteClassAttributes = No
ClassIsTag = No

which results in [DITAOptions]UseOutputClass=No .

To include CSS class names, specify [DITAOptions]UseOutputClass=Yes , then
convert @outputclass to class attributes in the HTML; see §15.4.6.6 Providing
outputclass attributes for all elements on page 498. Setting [CSS]UseCSS=Yes also sets
[DITAOptions]UseOutputClass=Yes ; see §22.4.2 Specifying CSS options in a
Mif2Go configuration file on page 684.

Note: To include CSS class names as outputclass attributes, make sure your
configuration file does not specify [CSS]WriteClassAttributes=No .

By default, Mif2Go uses FrameMaker cross-reference format names and link character
format names to set the @outputclass for cross references and hypertext links:

[CSS]
XrefFormatIsXrefClass = Yes

See §22.7.8 Using link format names as CSS class names on page 696.

Context-sensitive
help

By default, DITA output includes all context-sensitive help targets provided in your source
document via TopicAlias markers, in the following form:

<data name="topicalias" value="IDH_ about" />

To exclude these targets from DITA output:
[DITAOptions]
; UseTopicAlias = Yes (default, include CSH targets in DITA output)
; or No
UseTopicAlias=No

See:
§7.10 Setting up Context Sensitive Help (CSH) on page 239
§15.14 Including CSH targets in DITA XML on page 535

The id attribute has no use in DITA maps, so is not essential.

Assembling files
for distribution

These settings provide DITA-specific default values for gathering converted files for
further processing; you do not have to include these settings in your configuration file if
the following default values are satisfactory:

[Automation]
; The following are the DITA-specific defaults for each setting:
WrapCopyFiles = *.dita *.ditamap *.bookmap *.dtd *. mod *.ent *.xsd
CssCopyFiles = *.css *.xsl
GraphCopyFiles = *.gif *.jpg *.png *.svg
EmptyOutputFiles = *.dita *.ditamap *.bookmap *.ref *.grx

CONFIGURING DITA ELEMENTS MIF2GO USER’S GUIDE

486 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See §35 Producing deliverable results on page 955.

15.4 Configuring DITA elements
You must ensure that all elements used within the body of a topic are valid for the
specified topic type.

In this section:
§15.4.1 Understanding how Mif2Go delimits DITA elements on page 486
§15.4.2 Treating FrameMaker format names as DITA element names on page 486
§15.4.3 Mapping paragraph formats to DITA block elements on page 487
§15.4.4 Mapping character formats to DITA inline elements on page 492
§15.4.5 Assigning multiple typographic elements to a format on page 494
§15.4.6 Assigning attributes to DITA elements on page 495
§15.4.7 Preserving whitespace in block elements on page 499
§15.4.8 Including PIs for line, column, or page breaks on page 499
§15.4.9 Providing a <shortdesc> element for a DITA topic on page 500
§15.4.10 Converting index markers to <indexterm> elements on page 500

See also:
§15.6 Converting tables to DITA XML on page 510

15.4.1 Understanding how Mif2Go delimits DITA elem ents

Mif2Go closes each element mapped from a FrameMaker paragraph format when a
paragraph in that format ends. For example, even though a DITA list can be inside a <p>
element, Mif2Go does not put it there; instead, the <sl> follows the <p>. Only elements
that are marked as inline, including elements mapped from FrameMaker character
formats, and inline images, are placed within a <p> element.

An interpolated block element stays open until Mif2Go encounters a paragraph that is not
valid in that block.

Lists are identified by the FrameMaker format mapped to the list element it populates,
such as or <sli> ; see §15.4.3 Mapping paragraph formats to DITA block elements
on page 487, or by the parent of the mapped element; see §15.5.2 Designating DITA
ancestor elements on page 502. Mif2Go provides the wrappers around the list items and
around the whole list.

To minimize the need for markers in your FrameMaker document it is good practice to use
distinct FrameMaker format names to identify different kinds of lists (List, Bulleted,
Numbered, ParamTerm), body paragraphs (Body, Example), character formats (Strong,
Emphasis), and so forth.

The easiest way to migrate and apply paragraph and character formatting from your
FrameMaker document is to use the DITA outputclass attribute, which Mif2Go will
set for you, to reference your current Framemaker formats or any others you map to those
formats in [ParaClasses] or [CharClasses] . See §15.4.6.6 Providing outputclass
attributes for all elements on page 498.

15.4.2 Treating FrameMaker format names as DITA el ement names

If most of your FrameMaker formats are named for DITA elements, you can lessen the
chore of mapping formats to elements by directing Mif2Go to use the format name as the

15 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 487

DITA element name wherever possible (that is, where the content model includes an
element of that name). This works only if the named element is of an appropriate type:
block allowing text for a paragraph format, or inline allowing text for a character format;
see §32.6 Inspecting and correcting element types on page 912.

However, unless your FrameMaker template is specifically designed for DITA, leaving
any paragraph format unmapped is risky; some formats might match the names of DITA
elements that do not do what you want.

To map FrameMaker format names to DITA elements of the same name where possible:
[DITAOptions]
; UseFormatAsTag = No (default, if tag unmapped use default elem),
; or Yes (if unmapped, use Frame format name if vali d in content
; model).
UseFormatAsTag = Yes

When UseFormatAsTag=Yes , any FrameMaker format with a name that is the same as a
DITA element name in the current content model is mapped to that element.

When UseFormatAsTag=No , unmapped format names that do not correspond to
appropriate DITA element names are mapped to the default element; see:

§15.4.3.3 Specifying a default element for unmapped paragraph formats on page 489
§15.4.4.3 Specifying a default element for unmapped character formats on page 494.

15.4.3 Mapping paragraph formats to DITA block ele ments

Paragraph formats must be mapped to DITA block elements that can contain text, not to
inline elements or topic containers. The end of a FrameMaker paragraph always ends the
block element to which it is mapped.

Make sure target
elements can

contain text

When you map paragraph formats to DITA block elements, you must ensure that the
element mapped to is allowed to contain text. For example, in a <task> , do not map to
<step> ; map to <cmd> or <info> , which fit inside <step> . For list items that can
include more than one paragraph, map the paragraph format(s) to <p>, and designate their
including list element; see §15.5 Nesting DITA block elements on page 501.

In this section:
§15.4.3.1 Assigning DITA elements to FrameMaker paragraph formats on page 487
§15.4.3.2 Omitting element tags for selected paragraph formats on page 488
§15.4.3.3 Specifying a default element for unmapped paragraph formats on page 489
§15.4.3.4 Omitting invalid tags for default DITA block elements on page 489
§15.4.3.5 Overriding element mapping for paragraph formats on page 490
§15.4.3.6 Providing aliases for paragraph formats on page 490
§15.4.3.7 Mapping paragraph format aliases to different elements on page 491
§15.4.3.8 Mapping paragraph format aliases algorithmically on page 491
§15.4.3.9 Mapping several paragraphs formats to the same element on page 492

15.4.3.1 Assigning DITA elements to FrameMaker par agraph formats

To map paragraph formats in your document to DITA elements, assign the element name
to the format name:

[DITAParaTags]
; Frame paragraph format (wildcards OK) = DITA elem ent, can be
; overridden by a DITATag marker; or Frame format = No.
ParaFmtName = elementname

CONFIGURING DITA ELEMENTS MIF2GO USER’S GUIDE

488 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For example:
[DITAParaTags]
Heading* = title
Meta = keyword
Body = p
Example = p
List = sli
Numbered1 = p
Numbered = p
Bulleted = p
DefTerm = dt
DefDescription = dd
ParamTerm = pt
ParamDescription = pd
TableTitle = title
CellHeading = p
CellBody = p
Figure Title = title
Step = cmd
Syntax = p
CellContent = No
GlossItem = glossterm

Default element The default element for a FrameMaker paragraph format that is not mapped in
[DITAParaTags] depends on the value of [DITAOptions]UseFormatAsTag ; see
§15.4.2 Treating FrameMaker format names as DITA element names on page 486.

Do not map to
footnote or table

elements

Mif2Go processes footnotes and table components separately; do not map any paragraph
formats to footnote elements, or to any table component (table, title, row, or cell)
elements. See §15.6 Converting tables to DITA XML on page 510. If you are using the
DITA Open Toolkit, see §15.10.5 Omitting <xref> elements from footnotes on page 529.

Do not map to
element sets

You can assign element sets in [DITAParents] and in [DITAFirst] , but you cannot
use them for tags in [DITAParaTags] . See §15.5.5 Specifying alternate ancestries for the
same element on page 504.

Specify ancestry
for list formats

For list formats, if mapping the format to an element is not sufficient to identify the list
type, you must also specify the parent of the element; see §15.5.2 Designating DITA
ancestor elements on page 502. Definition lists can be derived from paragraph pairs,
possibly with run-in headings for the term.

Add typographic
elements

To add typographic elements (b, i , u, tt , sup , or sub) in addition to the element to which
a FrameMaker format is mapped, see §15.4.5 Assigning multiple typographic elements to
a format on page 494.

Manage forced
returns

Forced returns in FrameMaker have no counterpart in DITA XML. Mif2Go replaces each
forced return with a space. If you want something else to happen, use a marker to insert a
processing instruction where each forced return occurs in your document; see §15.4.8
Including PIs for line, column, or page breaks on page 499.

15.4.3.2 Omitting element tags for selected paragr aph formats

To specify that a particular FrameMaker paragraph format should not be mapped to any
element:

[DITAParaTags]
ParaFmt = No

When ParaFmt=No, tags for the format are omitted from output, leaving the text of the
paragraph inside the enclosing element. Compare this setting with the effect of the
NoPara format property; see §21.3.6 Stripping paragraph properties on page 650. The

15 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 489

ParaFmt=No setting is similar, but for DITA output it is recognized in places where the
NoPara property is not. If you do not get the correct result with one, try the other.

Mif2Go assumes a paragraph mapped to No contains PCDATA, and checks to ensure
PCDATA is valid at the current point. If a paragraph format mapped to No has no text
content, Mif2Go ignores it, checking to see if PCDATA is valid only if there really is some
PCDATA.

Delete
paragraphs with

unwanted text

If an instance of a paragraph format mapped to No contains text, and PCDATA is not valid
in the current enclosing element, then if closing current tags does not solve the problem,
Mif2Go does not try to interpolate. Instead, Mif2Go issues a “parent error”. In this case it
is your responsibility to map such a paragraph format to an appropriate element rather than
to No. For example, if you have a figure anchor paragraph that also contains text, you
would want to map its format to something allowable within <fig> , such as <desc> . If
you do not want the text to appear in DITA output, instead of mapping the paragraph
format to No in [DITAParaTags] , mark the format for deletion. For example:

[HTMLParaStyles]
FigAnchor = Delete

See §21.3.12 Eliminating unwanted paragraphs on page 652.

Map code-
example formats

to No

You can map formats to No for code examples (which can run on for pages), to avoid
having each line of code mapped to a separate <codeblock> element:

[DITAParaTags]
Code* = No

[DITAParents]
Code* = codeblock

In this example, specifying ancestry guarantees that Mif2Go will retain the original line
breaks, instead of normalizing them as for HTML or XML. See §15.5.2 Designating DITA
ancestor elements on page 502.

15.4.3.3 Specifying a default element for unmapped paragraph formats

To specify a default element to use for unmapped paragraph formats:
[DITAOptions]
; DefParaElem = element to use for Frame para forma ts that are
; not mapped in [DITAParaTags], default is "p".
DefParaElem = p

If your configuration file does not include a value for DefParaElem , Mif2Go uses one of
the following as the element for an unmapped format: if UseFormatAsTag=Yes and the
FrameMaker format name (adjusted as for CSS class names) matches the name of a valid
element in the current content model, the format is mapped to that element; otherwise, the
format is mapped to p, the default value of DefParaElem . See §15.4.2 Treating
FrameMaker format names as DITA element names on page 486.

15.4.3.4 Omitting invalid tags for default DITA bl ock elements

Some DITA block elements allow only #PCDATA, not paragraph tags. When a “normal”
paragraph must be placed inside one of these blocks, the paragraph tag should be omitted.

If some paragraph formats in your document are left unmapped, or are explicitly mapped
to the default block element (usually <p>), the presence of such paragraphs in contexts
where the default block element would not be valid could trigger unwanted interpolation
of an arbitrary parent element. For example, if your FrameMaker document uses the
standard Body paragraph format in table cells, and Body is either unmapped or is mapped

CONFIGURING DITA ELEMENTS MIF2GO USER’S GUIDE

490 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

to <p>, for cells in a DITA properties table where <p> is not allowed, Mif2Go would wrap
each instance of <p> in a parent element that is allowed.

For enclosing block elements that allow mixed content, you can avoid this problem by
directing Mif2Go to omit the default paragraph tags instead of interpolating a parent.

To omit invalid default paragraph tags where mixed content is allowed:
[DITAOptions]
; DropInvalidParaTag = No (default) or Yes (if the para tag is the
; default DefParaElem <p> and is invalid, but #PCDAT A is valid,
; drop the tag)
DropInvalidParaTag = Yes

See also:
§15.5.3 Fixing up interpolated ancestries on page 503

15.4.3.5 Overriding element mapping for paragraph formats

To override the element-name mapping for a given paragraph, insert a DITATag marker in
the paragraph, with content the desired element name.

If mapping (or overriding mapping) does not suffice, and you do not need to specify a
required ancestry for the element, use the following instead:

 • [HTMLParaStyles] CodeBefore and CodeAfter properties for the format
 • [ParaStyleCodeBefore] and [ParaStyleCodeAfter] sections to specify the

element tags to surround the text.

See §28.9.3 Surrounding or replacing text with code or macros on page 822.

Another alternative would be to bracket the text with Config markers, with content such as
[ParaStyleCodeBefore]=< element> and [ParaStyleCodeAfter]=</ element>;
see §33.2.2 Overriding settings with configuration markers on page 921.

Note: Mappings provided via [ParaStyleCode*] settings or markers do not
participate in any ancestry you specify for the element in question; see §15.5
Nesting DITA block elements on page 501.

15.4.3.6 Providing aliases for paragraph formats

If you are generating DITA from an unstructured FrameMaker document, your document
might use the same format for different purposes, each purpose requiring that format to be
mapped to a different DITA element, or to be nested in a different hierarchy, or both; or
you might have several formats that map to the same DITA element. Because DITA uses
semantic tags, whereas FrameMaker uses presentational tags, in some cases you need
alternate names for paragraph formats to clarify semantic use cases.

To specify an alternate name, or alias, for a paragraph format:
[DITAAliases]
; Frame paragraph format = Frame format name to use in place of that
; paragraph format for DITA purposes, or Mif2Go selection macro.
ParaFmtName = AlternateName

An alias works in any [DITA*] configuration section that uses format names. The alias
can be the name of another paragraph format in your document, provided the two formats
map to exactly the same element with all the same DITA settings; or, the alias can be a
name you invent.

15 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 491

For additional aliases for the same format, insert a DITAAlias marker in each instance of
the format that requires a different alias, with content the name of another alias. You can
also use a DITAAlias marker to override an alias assigned in section [DITAAliases] .

You can use as many different aliases for the same paragraph format as your document
requires. If you are creating new alias names, be careful not to duplicate the name of a
format that is already in the FrameMaker paragraph catalog.

15.4.3.7 Mapping paragraph format aliases to diffe rent elements

Suppose your FrameMaker document includes a paragraph format named Body2, used in
the following situations:

 • most often as a continuation of a Numbered1 or Numbered paragraph
 • less often as a continuation of a Bulleted paragraph
 • occasionally as a quotation, not part of any list.

This means that in different places in your document Body2 would have to be mapped to
different elements, or participate in different DITA hierarchies.

To resolve this conflict, you would assign aliases to the alternate uses of Body2. You could
keep the original format name for the most frequent use; however, the name Body2 does
not convey anything about the differing semantics. Therefore you might want to use
aliases for every use; for example, Body2OList, Body2UList, and Body2Quote.

To create an alias for the most prevalent use of Body2:
[DITAAliases]
Body2 = Body2OList

For the other two uses of Body2, you must insert a DITAAlias marker in each instance, with
content one of the other aliases: Body2UList or Body2Quote. Then you could specify the
following in configuration file m2dita.ini :

[DITAParaTags]
Body2?list = p
must = lq

Instead of using a DITAAlias marker, you can provide differential mappings of the same
format by assigning Mif2Go macros to the aliases; see §28 Working with macros on
page 787.

15.4.3.8 Mapping paragraph format aliases algorith mically

Suppose you use the same paragraph formats for numbered lists (for example, NumFirst
and NumNext) both in material for <concept> topics and in material for <task> topics:

 • When the list occurs in a <concept> , it should be mapped to ol > li .
 • When the list occurs in a <task> , it should be mapped to steps > step > cmd .

To choose between alternate format aliases depending on the DITA context, you can
assign to a FrameMaker format a Mif2Go macro that selects an alias according to the start
tag of the current topic. For example:

[DITAAliases]
NumFirst = <$(($$_ditastart is "task") ? "StepFirst " : "OLFirst")>
NumNext = <$(($$_ditastart is "task") ? "StepNext" : "OLNext")>

These assignments say that if the topic start tag is task , use the Step* format name,
otherwise use the OL* format name, in place of the original Num* format name. The
assignments use predefined macro variable $$_ditastart, which contains the start tag
of the current DITA topic.

CONFIGURING DITA ELEMENTS MIF2GO USER’S GUIDE

492 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You would assign the desired DITA elements to the alternate format names. For example:
[DITAParaTags]
Step* = step
OL* = li

You would also create entries for the alternate formats in [DITAParents] , and if needed
in [DITALevels] , and so forth. In effect, you have created semantic formats from
descriptive format.s.

The macros you assign do not have to select based on topic type; you can set macro
variables to test for other properties or situations. The ability to assign a macro to a format
name provides a general-purpose algorithmic way to map from FrameMaker formats to
DITA elements, allowing you to deal with cases that normal mapping cannot handle.

15.4.3.9 Mapping several paragraphs formats to the same element

Suppose your FrameMaker document includes three different paragraph formats for
quotations:

Quote in body text
FtnQ in footnotes
CellQ in table cells.

All three map to DITA element <lq> . You can make this semantic equivalence explicit in
section [DITAAliases] , and use the collective alias in other configuration sections:

[DITAAliases]
FtnQ = Quote
CellQ = Quote

[DITAParaTags]
Quote = lq

15.4.4 Mapping character formats to DITA inline el ements

FrameMaker character formats must be mapped to DITA inline elements, not to block
elements.

When you map character formats to DITA elements, make sure that the element mapped to
is allowed to contain text. For example, do not map to <menucascade> , map to a
<uicontrol> with <menucascade> as parent.

In this section:
§15.4.4.1 Assigning DITA elements to FrameMaker character formats on page 492
§15.4.4.2 Including typographic elements in addition to mapped formats on page 493
§15.4.4.3 Specifying a default element for unmapped character formats on page 494
§15.4.4.4 Overriding element mapping for character formats on page 494
§15.4.4.5 Using alternate character formats for menu cascades on page 494

15.4.4.1 Assigning DITA elements to FrameMaker cha racter formats

To map character formats in your document to DITA inline elements, assign the element
name to the format name:

[DITACharTags]
; Frame character format (wildcards OK) = DITA elem ent, cannot be
; overridden by a DITATag marker; or Frame format = No.
CharFmtName = elementname

For example:

15 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 493

[DITACharTags]
Strong=b
Emphasis=i
BoldItalic=b
Subscript=sub
Superscript=sup
Mono=tt
Link=No

To specify that a particular FrameMaker character format should not be mapped to an
element:

[DITACharTags]
CharFmtName = No

The value No means that the tags for the format should be omitted, leaving the text inside
the enclosing element. For example, map the character formats you use for links and cross
references to No. Mif2Go automatically generates <xref> tags from the cross references
in your FrameMaker document, based on the format, but you do not need to map the
format itself to any element. See §15.10 Configuring cross references and links for DITA
on page 527.

The default element for a FrameMaker character format that is not mapped in
[DITACharTags] is the element designated by DefCharElem ; see §15.4.4.3 Specifying
a default element for unmapped character formats on page 494. It is best to map each
character format to the most specific element possible, which is not often the default
element.

15.4.4.2 Including typographic elements in additio n to mapped formats

You can add typographic elements in addition to the element to which a FrameMaker
character format is mapped.

To include typographic elements in DITA XML output:
[Typographics]
; UseTypographicElements = No (XML default, suppres s b, i, u, tt, sub,
; and sup even when specified in a format) or Yes (HTML default)
UseTypographicElements = Yes

When UseTypographicElements=Yes , typographic elements b, i , u, tt , sup , and
sub appear in DITA XML output in addition to any elements to which character formats
are mapped. If your FrameMaker document includes change bars or overlines those are
also represented as elements in DITA XML:

 • Change bars become <chbar> elements; to convert them instead to attributes, see
§15.4.6.7 Converting FrameMaker change bars to condition attributes on page 499.

 • Overlines become <over> elements.

If any character formats are mapped to elements, and your project configuration file
includes a UseTypographicElements setting, to avoid double nesting make sure you
use the XML default value: UseTypographicElements=No .

Incorporate typographic elements sparingly, especially if you are using <outputclass> ;
see §15.4.6.6 Providing outputclass attributes for all elements on page 498. DITA asks for
semantic, not presentational, tags. It is best to let CSS handle the presentation later.

See also:
§15.4.5 Assigning multiple typographic elements to a format on page 494
§21.8 Managing typographic elements for HTML or XML on page 667

CONFIGURING DITA ELEMENTS MIF2GO USER’S GUIDE

494 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

15.4.4.3 Specifying a default element for unmapped character formats

To specify a default element to use for unmapped character formats:
[DITAOptions]
; DefCharElem = element for Frame char formats that are not
; mapped in [DITACharTags], default is "ph"
DefCharElem = ph

If your configuration file does not include a value for DefCharElem , Mif2Go uses one of
the following as the element for an unmapped format: if UseFormatAsTag=Yes and the
FrameMaker format name (adjusted as for CSS class names) matches the name of a valid
element in the current content model, the format is mapped to that element; otherwise, the
format is mapped to ph, the default value of DefCharElem . See §15.4.2 Treating
FrameMaker format names as DITA element names on page 486.

15.4.4.4 Overriding element mapping for character formats

If mapping a FrameMaker character format does not suffice for a phrase element, you can
use DITAStartElem and DITAEndElem markers placed at the start and end, respectively, of
the character span to be delimited as a phrase element. The content of each marker is the
tag name for the inline element; Mif2Go provides the < > and </ > . You cannot use a
DITATag marker to override the element-name mapping for an inline element.

15.4.4.5 Using alternate character formats for men u cascades

In FrameMaker it is not possible to distinguish between two separate applications of the
same character format to adjacent text spans, and one application of the format to both
spans. Because the DITA <menucascade> element allows only <uicontrol> as
content, text is excluded; you cannot use spaces, or any other character outside the
<uicontrol> format, as separators.

The workaround is to create two character formats; for example, mc1 and mc2; and apply
them alternately to <uicontrol> elements when those elements are in a
<menucascade> . You would map both formats to <uicontrol> :

[DITACharTags]
mc* = uicontrol

And indicate that the elements mapped from both formats must be in a <menucascade> :
[DITAParents]
mc* = menucascade

See §15.5.2 Designating DITA ancestor elements on page 502.

15.4.5 Assigning multiple typographic elements to a format

Mif2Go suppresses overrides that are not part of a paragraph or character format, and uses
only the single element mapped from the format name in [DITAParaTags] or in
[DITACharTags] . This can be problematic if, for example, a character format should
map to both and <i> . In that case, you have to map the format to one of the elements
in [DITACharTags] , and assign the other(s) as follows:

[DITACharTypographics]
; Frame character format (wildcards OK) = DITA typo graphic elements
CharFmtName = typelem1 typelem2 ...

Likewise for paragraph formats:
[DITAParaTypographics]
; Frame paragraph format (wildcards OK) = DITA typo graphic elements
ParaFmtName = typelem1 typelem2 ...

15 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 495

You can assign any or all of b, i, u, tt , sup , or sub , in addition to the element to which
the format is mapped in [DITAParaTags] or in [DITACharTags] . You must map the
format to an element (not to No) in [DITAParaTags] or in [DITACharTags] , then add
the rest of the elements (but not the one already mapped) here. For example:

[DITACharTags]
CodeBoldItal = tt

List the elements separated by spaces:
[DITACharTypographics]
CodeBoldItal = b i

The tags are applied in the order listed. For example, with these settings a CodeBoldItal text
fragment would be enclosed in <tt><i>...</i></tt> .

We advise minimal use of this feature. Typographic presentation markup is best left to
later processing, such as with a CSS rule based on the outputclass attribute of the
DITA semantic element. For example, map character format CodeBoldItal to <ph> , and
expect the HTML output to produce , which can be
handled by CSS for selector span.codeboldital .

See §15.4.6.6 Providing outputclass attributes for all elements on page 498.

15.4.6 Assigning attributes to DITA elements

You can apply attributes to a DITA block or inline element by assigning attribute=
" value" pairs to the FrameMaker format mapped to the element. The attributes you
assign with configuration settings apply to all instances of the element in question. Only
those attributes assigned to elements mapped from paragraph formats can be overridden
with markers.

The following are special cases:

 • A value for the id attribute can be assigned only with a DITAElemID marker.
 • Attributes of <xref> elements require different settings; see §15.10 Configuring

cross references and links for DITA on page 527.
 • The outputclass attribute can be assigned to the root element only with a

DITATopicOutputclass marker.

In this section:
§15.4.6.1 Specifying a value for the id attribute on page 495
§15.4.6.2 Including an id attribute in every element on page 496
§15.4.6.3 Specifying attribute values for the root element of a topic on page 497
§15.4.6.4 Specifying attribute values for a block element or parent on page 497
§15.4.6.5 Specifying attribute values for an inline element on page 498
§15.4.6.6 Providing outputclass attributes for all elements on page 498

See also:
§15.6 Converting tables to DITA XML on page 510

15.4.6.1 Specifying a value for the id attribute

To specify an ID for a block element, place a DITAElemID marker in the FrameMaker
paragraph. The content of the marker is the value of the id attribute. When you place a
DITAElemID marker at the start of a topic, the content of the marker becomes the id
attribute of the <title> element for that topic.

CONFIGURING DITA ELEMENTS MIF2GO USER’S GUIDE

496 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Note: For an embedded topic (as opposed to a block element), you must use a
DITATopicID marker instead; see §15.9.3 Specifying the ID for a DITA topic on
page 526.

If a paragraph does not contain a DITAElemID marker, Mif2Go uses the content of the first
newlink marker in the paragraph as the ID for the element. If there is no newlink marker,
Mif2Go uses for the ID a combination of the Mif2Go FileID of the FrameMaker file and
the FrameMaker ObjectID of the paragraph; see §5.3.1 Understanding how Mif2Go
creates identifiers on page 117. You can override the Mif2Go -assigned ID with a
DITAElemID marker.

Note: The id attribute value must start with a letter. All Mif2Go -assigned FileIDs
conform to this requirement. If you want your DITA XML output to validate,
avoid changing any FileID values in mif2go.ini to start with a digit.

Mif2Go provides a default id attribute for each of the following block elements:
<table> (all types)
<fig> (but not <image>)
<section>
<example>
<refsyn>
<fn>

<p> (when the paragraph contains index markers or starts a FrameMaker page).

Links to any of these elements automatically pick up the id attribute, and also the correct
type attribute of the element. For links to other elements, you have to insert either a
newlink marker or a DITAElemID marker in the target paragraph in FrameMaker, and
specify the link type attribute with a DITALinkType marker; see §15.10.6.3 Specifying the
<xref> type attribute on page 530.

Interpolated
parent id attribute

When the parent of the current block element is interpolated by Mif2Go (see §15.4.1
Understanding how Mif2Go delimits DITA elements on page 486), you cannot use a
DITAElemID marker to specify an ID for that parent.

To specify an ID for the parent of the current block element, place a DITAParentID marker
in the element, with content as follows:

parentname=parentid

Do not include spaces around the equals sign.

15.4.6.2 Including an id attribute in every elemen t

By default, Mif2Go automatically provides id attributes only for elements that require
them; basically, any element that is a link target. To direct Mif2Go to include an id
attribute in every element where the id attribute is valid:

[DITAOptions]
; SetElementIDs = No (default) or Yes (add @ids whe rever possible)
SetElementIDs = Yes

When SetElementIDs=Yes , Mif2Go constructs an ID to use for the id attribute of
every element for which an id attribute is valid, provided the element does not already
have an id attribute assigned some other way, such as with a DITAElemID marker (see
§15.4.6.1 Specifying a value for the id attribute on page 495).

See also:
§5.3 Identifying files and objects on page 117

15 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 497

15.4.6.3 Specifying attribute values for the root element of a topic

To apply attributes to the root element of the current topic, assign attribute=" value"
pairs, separated by spaces, to the FrameMaker paragraph format for the topic title:

[DITATopicRootAttrs]
; Frame para format for topic title (wildcards OK) = attributes for
; the root element of the current topic.
ParaFmt = attribute1=" value1" attribute2=" value2" ...

For example, for attributes to support another tool such as Docato that you will use to
manage the DITA XML output, suppose your FrameMaker paragraph format for concept
topic titles is ConHead:

[DITATopicRootAttrs]
ConHead = xmlns:xsa3="http://dita.oasis-open.org/ar chitecture/2005/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
xsi:noNamespaceSchemaLocation="../../catalog/concep t.xsd"

Of course this assignment would have to be all on one line in your configuration file,
though it might not look that way here.

You can override root-element attributes with a DITATopicRootAttr marker.

15.4.6.4 Specifying attribute values for a block e lement or parent

For attributes of block elements, you can do the following:
Assign block element attributes
Override block element attributes
Assign interpolated parent attributes
Override interpolated parent attributes

When you want to override default or assigned attributes, keep in mind:
Where to use DITAAttribute markers

Assign block
element attributes

To apply attributes (other than id) to a block element (other than <xref>), assign
attribute=" value" pairs, separated by spaces, to the paragraph format(s) mapped to
the element:

[DITAParaAttributes]
; Frame para format (wildcards OK) = attributes
ParaFmt = attribute1=" value1" attribute2=" value2" ...

You can use Mif2Go macros for any part of the assignment, or even for the entire
assignment. For example:

[DITAParaAttributes]
ParaFmt = <$ MacroToWriteAttrs>

Override block
element attributes

To override a setting in [DITAParaAttributes] or to override default attributes for a
particular instance of a block element, place a DITAAttribute marker in a paragraph
mapped to the element, with content as follows:

elementname: attribute1=" value1" attribute2=" value2" ...

For example:
linklist: role="friend" type="reference"

The name of the element must be followed by a colon. Separate attribute=" value"
pairs with a space. Each value must be enclosed in double quotes. You can use Mif2Go
macros for everything after the colon.

CONFIGURING DITA ELEMENTS MIF2GO USER’S GUIDE

498 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Assign
interpolated

parent attributes

To assign attributes to an interpolated parent of a block element:
[DITAParentAttributes]
; Frame para format (wildcards OK) = parentname: at tributes
ParaFmt = parentname: attribute1=" value1" attribute2=" value2" ...

You can use Mif2Go macros for the assignment.

Override
interpolated

parent attributes

To override a setting in [DITAParentAttributes] or to override default attributes for
an interpolated parent of a block element, place a DITAAttribute marker in a paragraph
mapped to the element, with content as follows:

parentname: attribute1=" value1" attribute2=" value2" ...

To apply attributes to more than one interpolated parent, use a separate marker for each
parent.

Where to use
DITAAttribute

markers

Use DITAAttribute markers only to supply attribute values other than the DTD default
values for an element, or to override attribute values specified in a configuration file. Do
not use DITAAttribute markers for any of the following:

 • The id attribute of the current element; use a DITAElemID markermarker instead. See
§15.4.6.1 Specifying a value for the id attribute on page 495.

 • The id attribute of an interpolated parent of the current element; use a DITAParentID
marker instead. See §15.4.6.1 Specifying a value for the id attribute on page 495.

 • Any <xref> element attributes; use DITALink* markers instead. See §15.10.6
Overriding <xref> attribute values on page 529.

A DITAAttribute marker overrides settings in [DITAParaAttributes] and
[DITAParentAttributes] , but does not override settings in
[DITACharAttributes] (see §15.4.6.5 Specifying attribute values for an inline
element on page 498) or [DITATableAttributes] (see §15.6 Converting tables to
DITA XML on page 510).

15.4.6.5 Specifying attribute values for an inline element

To apply attributes (other than id) to an inline element, assign attribute=" value"
pairs, separated by spaces, to the character format(s) mapped to the element:

[DITACharAttributes]
; Frame char format (wildcards OK) = attributes
CharFmt = attribute1=" value1" attribute2=" value2" ...

You cannot use markers to override settings in [DITACharAttributes] .

15.4.6.6 Providing outputclass attributes for all elements

By default, Mif2Go does not try to assign CSS classes to DITA elements (unless you set
[CSS]UseCSS=Yes ; see §22.4 Specifying CSS file and link options on page 683).

To direct Mif2Go to provide an outputclass attribute for elements that allow this
attribute:

[DITAOptions]
; UseOutputClass = No (default when [CSS]UseCSS=No)
; or Yes (default when [CSS]UseCSS=Yes)
UseOutputClass = Yes

When UseOutputClass=Yes , Mif2Go includes an outputclass attribute where
allowed. The value of the attribute is the [ParaClasses] or [CharClasses]
assignment (if any) for the FrameMaker format mapped to the element, otherwise the
name of the FrameMaker format mapped to the element. See §22.7 Assigning CSS classes
on page 691.

15 CONVERTING TO DITA XML CONFIGURING DITA ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 499

Note: To include outputclass attributes, make sure your configuration file does not
specify [CSS]WriteClassAttributes=No .

Root element
outputclass

The only way to include an outputclass attribute in the root element is with a
DITATopicOutputclass marker: place the marker anywhere in the topic, and make the
content of the marker the value of the outputclass attribute.

15.4.6.7 Converting FrameMaker change bars to cond ition attributes

When UseTypographicElements=Yes , Mif2Go creates DITA <chbar> elements
from text that has the FrameMaker character property change bar; see §15.4.4.2 Including
typographic elements in addition to mapped formats on page 493.

If instead you want to apply an attribute value to this text (such as @status=
"changed"), you can use the following workaround:

1. Create a condition in FrameMaker named (for example) Changed.

2. In FrameMaker, find all text that has the character format property change bar and
change by pasting the conditional text setting Changed. (This could be done with
FrameScript.)

3. In your project configuration file, include the following setting:
[ConditionAttributes]
Changed = status="changed"

If an entire paragraph is conditional (including the end-of-paragraph pilcrow), the
resulting element will have <p status="changed"> . If only part of a paragraph is
conditional, the element will have <ph status="changed"> . See §15.12.2 Mapping
FrameMaker conditions to element attributes on page 533.

15.4.7 Preserving whitespace in block elements

To make sure content will be processed with whitespace preserved as it is in your
FrameMaker document:

[DITAPreformatted]
; element name = Yes (default for <codeblock>)
; or No (default for all other block elements)
codeblock = Yes

When elementname=Yes , Mif2Go processes the element in question with whitespace
unchanged from that in FrameMaker, as in HTML <pre> elements (see §21.10
Configuring preformatted text for HTML/XML on page 670).

15.4.8 Including PIs for line, column, or page bre aks

To force a line break, column break, or a page break when non-preformatted text in DITA
is rendered, you can use a Code marker or a macro to insert one (or more) of the following
processing instructions in FrameMaker at the desired break point:

For example, to force an HTML-only line break at a point where you have a forced return
(Shift+Enter) in FrameMaker, immediately after the forced return insert a Code marker
with the following content:

<?dthtm Break="line" ?> HTML line break

<?dtrtf Break="line" ?> RTF line break

<?dtrtf Break="column" ?> RTF column break

<?dtrtf Break="page" ?> RTF page break

CONFIGURING DITA ELEMENTS MIF2GO USER’S GUIDE

500 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

<?dthtm Break="line" ?>

To include a processing instruction for every forced return in a given paragraph format,
you can define a macro to find the forced returns and insert the processing instructions; see
§28.6 Using expressions in macros on page 811.

15.4.9 Providing a <shortdesc> element for a DITA topic

If you use a dedicated paragraph format for topic abstracts in your FrameMaker document,
you can simply map that format to shortdesc ; see §15.4.3 Mapping paragraph formats
to DITA block elements on page 487. The content of any paragraph in that format
becomes the <shortdesc> element for the enclosing topic.

To add a <shortdesc> element to a topic without using a paragraph format, place a
DITAShortDesc marker in the topic. The content of the DITAShortDesc marker is the text
of the abstract.

Whichever way you provide the content, the resulting <shortdesc> element appears in
the map, in the <topicmeta> of the <topicref> for the topic.

15.4.10 Converting index markers to <indexterm> el ements

Mif2Go automatically converts the content of FrameMaker Index markers to DITA
<indexterm> elements, determining index levels according to the conventions and
settings described in §7.5 Configuring index entries for Help systems on page 211.

A multiple-level index entry in FrameMaker becomes a set of nested <indexterm>
elements. For example, an index entry with the following content:

adaptive table sizing:for HTML:overriding

becomes:
<indexterm>adaptive table sizing

<indexterm>for HTML
<indexterm>overriding
</indexterm>

</indexterm>
</indexterm>

When DITAVer=1 (see §15.2.3 Specifying DITA output options on page 480), Mif2Go
produces elements index-see , index-see-also , and index-sort-as , and converts
<$startrange> and <$endrange> Index markers to include DITA index range attributes. For
example:

<$startrange>converting:characters

becomes:
<indexterm>converting

<indexterm start="converting: characters">character s</indexterm>
</indexterm>

According to the DITA specification, <indexterm> is invalid in a <title> element.
Therefore, if an index marker is in a FrameMaker paragraph mapped to the DITA
<title> element, Mif2Go wraps the <indexterm> element in a <ph> element.

15 CONVERTING TO DITA XML NESTING DITA BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 501

15.5 Nesting DITA block elements
Nesting block elements is the most challenging aspect of treating unstructured
FrameMaker as though it were structured. This section discusses ancestry of paragraph-
based block elements.

In this section:
§15.5.1 Understanding how Mif2Go determines element nesting on page 501
§15.5.2 Designating DITA ancestor elements on page 502
§15.5.3 Fixing up interpolated ancestries on page 503
§15.5.4 Deciding when to fully specify ancestry on page 503
§15.5.5 Specifying alternate ancestries for the same element on page 504
§15.5.6 Avoiding invalid ancestries on page 504
§15.5.6 Avoiding invalid ancestries on page 504
§15.5.8 Configuring nested lists on page 505
§15.5.9 Closing DITA ancestor elements on page 506
§15.5.10 Opening DITA ancestor elements on page 507
§15.5.11 Configuring multi-paragraph list items on page 508
§15.5.12 Splitting a paragraph into separate DITA elements on page 508
§15.5.13 Specifying DITA element levels on page 509

See also:
§15.6.3 Designating ancestors for <table> elements on page 512
§15.7.1 Designating ancestors for <image> and <fig> elements on page 516

15.5.1 Understanding how Mif2Go determines element nesting

For each element, Mif2Go considers whether that element can go inside the current parent
element. If not, Mif2Go uses heuristic methods based on the possible parents, level
limitations, and current context. To provide a parent element Mif2Go selects, in
alphabetical order, the first wrapper element that can validly fit and that is permitted by
your settings. Mif2Go does not interpret the DTD to determine element nesting.

For example, in the absence of project configuration settings that designate valid parent
elements, you might find that most of your content ends up nested in <abstract> ,
because “abstract” is near the beginning of the alphabet.

As another example, suppose your document uses a sequential structure for steps in a
procedure: paragraph format Step1 for the first step, followed by several StepNext
paragraphs, all containing both commands and informational text. To convert this
structure to a hierarchical DITA structure, with paragraphs in both formats becoming
<step> children of a <steps> element, you would specify just one setting (see §15.4.3
Mapping paragraph formats to DITA block elements on page 487):

[DITAParaTags]
Step* = step

The first paragraph in the group forces creation of <steps> , because DITA requires
<steps> or <steps-unordered> as the parent of <step> , and of the two valid
candidate parents, <steps> comes first alphabetically. As soon as Mif2Go encounters a
paragraph format mapped to an element that is not valid in <steps> , the parent tag is
closed.

NESTING DITA BLOCK ELEMENTS MIF2GO USER’S GUIDE

502 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For problem cases, you can use a DITALevel marker to explicitly set the level for an
element; see §15.5.13 Specifying DITA element levels on page 509. However, for nested
lists, use a different approach; see §15.5.5 Specifying alternate ancestries for the same
element on page 504.

15.5.2 Designating DITA ancestor elements

For block elements such as that can have more than one possible ancestry, map any
paragraph formats to the intended (required) parent element, and if necessary, grandparent
element, even great-grandparent element. List ancestors in hierarchical order. Specify a
parent only if it is required to prevent incorrect output. If you find “Parent Error”
comments in the resulting XML, first try commenting out any related parent assignment in
[DITAParents] .

Note: Do not specify parents for paragraph formats that are part of a FrameMaker table,
nor for the table itself (see §15.6.3 Designating ancestors for <table> elements on
page 512). If necessary you can specify parents for the contents of table cells, but
do not go above <entry> . See §15.6.5.1 Omitting ancestries of DITA table
components on page 513.

To specify required ancestors of elements mapped from FrameMaker formats (for
example):

[DITAParents]
; Frame para format (wildcards OK) = required paren ts
Title = topic
Heading* = section
Numbered1 = ol li
Numbered = ol li
Bulleted = ul li
Figure Title = fig
Syntax = refsyn
Example = example

In this example a Numbered1 paragraph (which is mapped to <p> in [DITAParaTags])
must have these ancestors:

.........

Therefore, each Numbered1 paragraph starts a new if and only if an is not
already open; and starts a new if and only if an under the is not already
open. To force a new for Numbered1 paragraphs, you must also give the
Numbered1 paragraph format first-child status under both parent and grandparent
elements; see §15.5.6 Avoiding invalid ancestries on page 504.

Note: For list items that can include more than one paragraph, map the paragraph format
to <p>, then designate its including list element as a parent.

Use this mapping for formats such as lists, in which elements are needed under
 or in addition to the <p> elements mapped in [DITAParaTags] .

List ancestors in
hierarchical order

If a parent element has more than one possible parent, and only one of those parents can be
a grandparent of the paragraph format in question, list both the grandparent and parent, in
hierarchical order.

Override
individual

ancestries

To override the [DITAParents] assignment for a given instance of a paragraph format,
place a DITAParent marker in the paragraph. Make the content of the marker the name(s)
of the ancestor element(s), in hierarchical order. A DITAParent marker specifies the
required ancestry for the current block element, overriding whatever is specified in
[DITAParents] .

15 CONVERTING TO DITA XML NESTING DITA BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 503

Not for
FrameMaker

table elements

Although you can specify ancestors for tables (see §15.6.3 Designating ancestors for
<table> elements on page 512), do not specify parents for paragraph formats that are part
of a FrameMaker table. Mif2Go uses a different mechanism for table components. You
can specify parents for the contents of table cells, but do not go above <entry> . See
§15.6.5.1 Omitting ancestries of DITA table components on page 513.

See also:

§15.6.3 Designating ancestors for <table> elements on page 512
§15.7.1 Designating ancestors for <image> and <fig> elements on page 516

15.5.3 Fixing up interpolated ancestries

Creating DITA structure from FrameMaker formats necessarily involves some trial and
error. When you see unexpected interpolation of inappropriate parent elements in your
output, it is usually because you have not specified parents for a particular format-to-
element mapping. For example, suppose you map paragraph format Ref to <p>, and use a
Ref paragraph at the top level of each reference topic, where <p> is not valid. On
encountering a Ref paragraph in this situation, with no parents specified for the Ref format,
Mif2Go would go through the list of valid parents for <p> in a reference topic, and
interpolate the first set that works; which might be <codeblock><draft-comment> .

The remedy is to figure out what would be a more appropriate lineage for the element in
question. You could specify that lineage for the format in [DITAParents] if it applies
generally, or insert a DITAParent marker in the paragraph for an isolated instance. In this
example, the following mapping would produce better results:

[DITAParents]
Ref = refbody section

The Mif2Go search algorithm finds the shortest path, but that is not always the only
shortest path, or the best path.

See also:
§15.4.3.4 Omitting invalid tags for default DITA block elements on page 489
§15.5.6 Avoiding invalid ancestries on page 504

15.5.4 Deciding when to fully specify ancestry

You do not need to map paragraphs in [DITAParents] for elements that can have only
one possible ancestry, or for cases where Mif2Go can determine heuristically which of the
possible ancestors fits the context best. Specify ancestry in [DITAParents] when more
than one lineage is possible in the context of use.

Include as many ancestors as necessary to fully specify ancestry for the element to which a
paragraph format is mapped in [DITAParaTags] . If your document includes actual
instances of different ancestries for the same element, use sets of ancestors to specify the
alternatives; see §15.5.5 Specifying alternate ancestries for the same element on page 504.
In some cases you might have to include all ancestors up to the topic level, and you might
have to determine this necessity by trial and error; that is, list them all whenever not
including all ancestors causes unwanted nesting.

When Mif2Go encounters a set of ancestors specified either in [DITAParents] or in a
DITAParent marker, Mif2Go tries to nest the ancestor hierarchy in the current element. If
the entire hierarchy is valid in that position, that is where it stays. This means that if your
source document uses paragraph format Body (for example) for all text that is not nested in
a list, and you map Body to DITA element <p>, you must also specify non-list parents for
Body, because <p> can nest in ; in fact, in almost any block element. Unless you can

NESTING DITA BLOCK ELEMENTS MIF2GO USER’S GUIDE

504 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

make sure every block element that could precede a Body paragraph gets closed (see
§15.5.9 Closing DITA ancestor elements on page 506), the Body <p> is likely to be nested
in the preceding element.

15.5.5 Specifying alternate ancestries for the sam e element

If your document uses the same paragraph format in several lineages, you can create a set
of alternate ancestor elements for Mif2Go to choose from, depending on the context. The
following predefined element sets are included in your project configuration file when you
first set up a DITA project. You can alter or delete these sets, and you can define additional
sets.

To define sets of elements to be considered as alternate ancestors:
[DITAElementSets]
; $setname = DITA elements in the set.
; These element sets are predefined in the starting .ini for DITA:
$top = body conbody taskbody refbody section step
$text = body conbody taskbody refsyn section step e ntry stentry
$list= ol ul

Each set name must start with a dollar sign ($). You must define each set as a collection of
elements; you may not define one element set in terms of other element sets.

You can use an element set name in place of an element name in [DITAParents] , in
[DITAFirst] , or in the corresponding DITAParent and DITAFirst markers. For example:

[DITAParents]
Body = $text
Body2 = $top $list li

Any element in the set is acceptable at the point where it appears in the hierarchical
sequence. There is no equivalent marker.

See also:
§15.5.6 Avoiding invalid ancestries on page 504

15.5.6 Avoiding invalid ancestries

For the purpose of constructing ancestries, by default Mif2Go treats topic as a synonym
for concept , task , reference , glossentry , and any other topic type, and treats body
as a synonym for any of the body types, such as conbody . This can cause invalid
interpolated ancestries, because Mif2Go might include an element, or wrap an element in
a parent, that is not valid for the topic type.

To avoid this problem and direct Mif2Go to treat topic and body as applying only to the
generic topic type:

[DITAOptions]
; UseCommonNames = Yes (default, in [DITAParents] a nd
; in [DITAElementSets], treat "topic" as a synonym for
; concept, task, reference, glossentry, and any oth er
; topic type, and treat "body" as a synonym for any of
; the body types like conbody), or No (treat topic and
; body as applying only to the generic "topic" type)
UseCommonNames = No

For example, when UseCommonNames=Yes (the default) and UseFormatAsTag=Yes
(see §15.4.2 Treating FrameMaker format names as DITA element names on page 486), a
paragraph whose format is Body will be allowed as a <body> element n a reference
topic, where <body> is not valid.

15 CONVERTING TO DITA XML NESTING DITA BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 505

See also:
§15.5.5 Specifying alternate ancestries for the same element on page 504

15.5.7 Specifying first-child status for nested el ements

To specify parent elements in which the paragraph format mapped to a given block
element must appear as the first child:

[DITAFirst]
; Frame para format = parents under which the curre nt block element
; (or one of its parents) must be the first child.
Numbered1 = ol li
Numbered = li
Bulleted = li

If the parent element you assign to a paragraph format has more than one possible parent,
and the paragraph format in question needs to be first only for one of its possible
grandparents, list both the grandparent and parent, separated by spaces. You can list as
many ancestors as necessary to fully specify first-child status for the paragraph format.
List the ancestors in hierarchical order. The list must match the ancestor list in
[DITAParents] ; see §15.5.2 Designating DITA ancestor elements on page 502.

Use these settings mainly for lists, to ensure that a paragraph format starts a new list item
or a new list. For example, these settings specify the following for the list paragraph
formats mapped to <p> in [DITAParaTags] :

 • A Numbered1 <p> element must be the first child of its parent element, which
 element must be the first child of its parent; this setting forces first-child
status for the entire lineage of the elements listed, not just the last.

 • A Numbered <p> element or a Bulleted <p> element must be the first child of its parent
 element.

If you use definition lists or parameter lists, you must specify first-child status for the
paragraph format of the term. For example:

[DITAFirst]
DefTerm = dlentry
ParamTerm = plentry

To override the [DITAFirst] assignment for a given instance of a paragraph, place a
DITAFirst marker in the paragraph. Make the content of the marker the name(s) of the
desired ancestor element(s), in hierarchical order. A DITAFirst marker specifies that the
current block element must be the first child of its listed ancestor elements, overriding
whatever is specified in [DITAFirst] .

15.5.8 Configuring nested lists

If your document includes nested ordered or unordered lists (or a mix of the two), it is best
to specify a set of ancestor elements that includes both; see §15.5.5 Specifying alternate
ancestries for the same element on page 504. For example:

[DITAElementSets]
$list= ol ul

This particular element set is predefined in the starting configuration file for DITA output.
Specifying $list as an ancestor lets you have bullets subordinate to either bulleted or
numbered items, and vice-versa:

In your list items you must use <p> , not just , because the nested needs to
be inside the , and the smallest enclosing tag always closes at the end of the

NESTING DITA BLOCK ELEMENTS MIF2GO USER’S GUIDE

506 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

paragraph (to prevent “pernicious mixed content” wherever possible). This way, the <p>
closes, but the stays open for the nested list.

Suppose your document includes a hierarchy of paragraph formats like this:
Body

Bulleted
BulletedSub
BulletedSub

Bulleted
BulletedSub
BulletedSub
BulletedSub

Body

You would specify the following settings for the bulleted items:
[DITAParaTags]
Bulleted = p
BulletedSub = p

[DITAParents]
Bulleted = $text ul li
BulletedSub = $text $list li ul li

[DITAFirst]
Bulleted = li
BulletedSub = li

Note: Do not try to use DITA levels to nest lists.

15.5.9 Closing DITA ancestor elements

To get a block element under the correct parent, you might have to specify that an ancestor
element (and all its descendants) must end when the current block element ends; or that
the prior block must end before the current block element begins.

In this section:
§15.5.9.1 Ending ancestor elements before the current block on page 506
§15.5.9.2 Ending ancestor elements after the current block on page 507

15.5.9.1 Ending ancestor elements before the curre nt block

In some cases, it is not clear whether a paragraph is supposed to be a child of the preceding
element (or nest of elements). For example, by default a <p> element following a list item
becomes part of the , and that is not necessarily what you want.

To close an element (or a hierarchy of elements) before starting the current block (for
example):

[DITACloseBefore]
; Frame para format = elements to be closed, with a ny other elements
; nested under them, before the current block eleme nt starts.
Recap = li
Body = ul ol

Use this setting to force closure of elements that were opened based on settings in
[DITAParents] ; see §15.5.2 Designating DITA ancestor elements on page 502. You can
list as many possible ancestors as necessary; order is not important.

For individual cases, you can insert a DITACloseBefore marker in the paragraph for the
current block element instead, with content the name(s) of the element(s) to close. You can
also use a DITACloseBefore marker to override a [DITACloseBefore] setting when you
want to close a higher (or lower) ancestor than the setting specifies.

15 CONVERTING TO DITA XML NESTING DITA BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 507

15.5.9.2 Ending ancestor elements after the curren t block

In some cases, it is not clear whether the end of a block element should also end the
enclosing parent element. For example, if your document includes illustrations with the
figure title above the image, body paragraphs following the image would normally be
included in the <fig> element, because the content model allows <p> inside <fig> .

To close a parent element at the end of the current block element (for example):
[DITACloseAfter]
; Frame para format = parent to be closed, with any other elements
; nested under it, at the end of the current block e lement.
FigAnchor = fig

Use this setting to force closure of elements that were opened based on settings in
[DITAParents] ; see §15.5.2 Designating DITA ancestor elements on page 502. You can
list as many possible ancestors as necessary; order is not important.

For individual cases, you can insert a DITACloseAfter marker in the paragraph for the
current block element instead, with content the name(s) of the ancestor element(s) to
close. You can also use a DITACloseAfter marker to override a [DITACloseAfter]
setting when you want to close a higher (or lower) ancestor than the setting specifies.

15.5.10 Opening DITA ancestor elements

To get a block element in the correct position in a hierarchy, you might have to force the
opening of interpolated ancestor elements first; or, in some cases, specify elements that
must be opened after the current element ends.

In this section:
§15.5.10.1 Starting ancestor elements before the current block on page 507
§15.5.10.2 Starting a new hierarchy after the current block on page 507

15.5.10.1 Starting ancestor elements before the cu rrent block

To open interpolated ancestor elements before starting the current block:
[DITAOpenBefore]
; Frame para format = elements to be opened, with a ny other elements
; nested under them, before the current block eleme nt starts.
somefmt = someancestor

Use this setting to force opening of elements when [DITAParents] does not suffice.

For individual cases, you can insert a DITAOpenBefore marker in the paragraph for the
current block element instead, with content the name(s) of the element(s) to open. You can
also use a DITAOpenBefore marker to override a [DITAOpenBefore] setting when you
want to open a higher (or lower) ancestor than the setting specifies.

15.5.10.2 Starting a new hierarchy after the curre nt block

To open a new element or hierarchy of elements after the current block ends:
[DITAOpenAfter]
; Frame para format = elements to be opened, with a ny other elements
; nested under them, after the current block elemen t ends.
somefmt = someancestor

Use this setting to force opening of elements when [DITAParents] does not suffice.

For individual cases, you can insert a DITAOpenAfter marker in the paragraph for the
current block element instead, with content the name(s) of the element(s) to open. You can

NESTING DITA BLOCK ELEMENTS MIF2GO USER’S GUIDE

508 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

also use a DITAOpenAfter marker to override a [DITAOpenAfter] setting when you
want to open an element or hierarchy other than what the setting specifies.

15.5.11 Configuring multi-paragraph list items

By default, at the end of each paragraph Mif2Go closes the block element to which the
paragraph format is mapped (see §15.4.3 Mapping paragraph formats to DITA block
elements on page 487). If any list items in your document include multiple paragraphs or
sublists, you must make sure that each can include more than one block element, but
also that the last item in each list or sublist does not slurp up any following paragraphs.

To configure list elements:
Map formats to <p> instead of .
Specify ancestry for each format.
Make each format first in .
Make sure each list ends where it should.

Map formats to
<p> instead of

Map all list-item paragraph formats to <p> rather than to ; for example:
[DITAParaTags]
Numbered1 = p
Numbered = p
Bulleted = p
BulletedLast = p

Specify ancestry
for each format

Designate the appropriate ancestors for each type of list element:
[DITAParents]
Numbered1 = ol li
Numbered = ol li
Bulleted = ul li
BulletedLast = ul li

Make each format
first in

Make sure each list-item paragraph is first in its element:
[DITAFirst]
Numbered1 = ol li
Numbered = li
Bulleted = li
BulletedLast = li

Make sure each
list ends where it

should

If the last paragraph in a multi-paragraph list item is followed by a paragraph whose
format is mapped to an element that is valid in , that paragraph will be included in the
list item. To prevent including the following paragraph, you can explicitly close the list:

[DITACloseAfter]
BulletedLast = ul li

Or insert a DITACloseAfter marker in the last list-item paragraph, with content ul li .

As an alternative, you can make sure the list closes before the following paragraph:
[DITACloseBefore]
Body = ul ol

Or insert a DITACloseBefore marker in the following paragraph, with content ul ol .

15.5.12 Splitting a paragraph into separate DITA e lements

Suppose your FrameMaker document uses a paragraph format named Definition. The
content of a Definition paragraph consists of a term, followed by a tab character, followed
by the definition of the term. And suppose you want to convert these paragraphs to a DITA
definition list, with each Definition paragraph divided as follows:

15 CONVERTING TO DITA XML NESTING DITA BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 509

<dlentry>
<dt> term</dt>
<dd>definition</dd>

</dlentry>

To specify DITA settings for the paragraph format:
[DITAParaTags]
; Each paragraph stats with a term:
Definition = dt

[DITAFirst]
; Each paragraph becomes a separate dlentry:
Definition = dlentry

The second setting above is required because a DITA <dlentry> element can start with
more than one <dt> element; however, in this case, you would want each <dt> to begin a
new <dlentry> .

Breaking each paragraph at the tab character requires a Mif2Go macro. The macro
requires capturing the content of each Definition paragraph for parsing:

[HTMLParaStyles]
Definition = CodeStore CodeAfter

Mif2Go first surrounds the content of each Definition paragraph with tags as specified in
[DITAParaTags] , then stores the content in CodeStore variable $$Definition ; see
§28.3.7.2 Inserting code with the CodeStore property on page 804.

The CodeAfter property takes care of placing the result of macro expansion in the
output; see §28.9.3 Surrounding or replacing text with code or macros on page 822:

[ParaStyleCodeAfter]
Definition = <$DefMacro>

The macro must check the content for a tab character. However, tabs are converted to
spaces, because they are not meaningful in XML, so a compare to a tab would always fail;
see §21.6.2 Understanding how Mif2Go treats tabs in HTML/XML on page 658. Instead,
the macro compares to a space:

[DefMacro]
; $$Definition contains "<dt>term def ... </dt>"
<$$term = ($$Definition before " ")>\
<$$defn = (($$Definition after " ") before "</dt>") >\
<$$term></dt>
<dd><$$defn></dd>

This macro works correctly only when there are no terms that contain spaces. If some
terms contain spaces, you would have to devise a different method, perhaps applying a
character format to each term in FrameMaker.

15.5.13 Specifying DITA element levels

To specify the level at which a block element should appear in DITA output, you can
assign a level number to any FrameMaker paragraph formats that are mapped to the
element (see §15.4.3 Mapping paragraph formats to DITA block elements on page 487).
However, for most nesting issues, you should use settings that specify ancestry rather than
level; see §15.5.2 Designating DITA ancestor elements on page 502.

Assign levels only for the following purposes:

 • to identify paragraph formats mapped to <title> that should start new topics; assign
level 1 to each such format

 • to handle unusual situations that cannot be addressed any other way.

CONVERTING TABLES TO DITA XML MIF2GO USER’S GUIDE

510 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

To specify the level of a DITA block element:
[DITALevels]
; Frame para format (wildcards OK) = level in DITA (not Frame) file
; required for the DITAParaTag specified for this el ement.
FmtName = N

The lower the level number, the higher the level; <topic> is level 0, the root. You cannot
put anything else at level 0. The topic title is at level 1. The first heading in the topic body
is at level 3 (a title below <topic> , <body> , and <section>).

Specify level 1 for each paragraph format that starts a topic. For example:
[DITALevels]
Title = 1
Heading* = 1
GlossItem = 1

Assign level 1 only to topic-title formats. If you assign level 1 to a paragraph format that
does not start a topic, each topic in which such a paragraph occurs will end prematurely,
and a new topic will start at the level-1 paragraph. Probably not what you want.

Do not try to use DITA levels to achieve nested lists; instead see §15.5.8 Configuring
nested lists on page 505.

To override the assigned level of a particular paragraph, place a DITALevel marker in the
paragraph. A DITALevel marker specifies the level at which the current block element
should appear in the DITA file, overriding whatever is specified for the format in
[DITALevels] . The content of a DITALevel marker is a single integer.

See also:
§16.2.2 Specifying topic levels in ditamaps on page 544

15.6 Converting tables to DITA XML
In this section:

§15.6.1 Working with Mif2Go DITA table types on page 510
§15.6.2 Marking table footer rows for future reference on page 511
§15.6.3 Designating ancestors for <table> elements on page 512
§15.6.4 Applying attributes to DITA tables on page 512
§15.6.5 Configuring DITA table components on page 513
§15.6.6 Converting tables used only as image containers on page 514
§15.6.7 Omitting table coding entirely on page 515

See also:
§32.7.7 Providing table structure information for DITA topic types on page 916

15.6.1 Working with Mif2Go DITA table types

To specify how the tables in your FrameMaker document should be treated in DITA XML,
you must associate each table format with a DITA table construct. However, instead of
mapping directly to DITA table element names, you must map the formats to Mif2Go
table types. This is because more than one table format can refer to the same DITA
element, but with different properties.

In this section:
§15.6.1.1 Mapping table formats to Mif2Go table types on page 511

15 CONVERTING TO DITA XML CONVERTING TABLES TO DITA XML

ALL RIGHTS RESERVED. MAY 18, 2013 511

§15.6.1.2 Designating a default table type on page 511
§15.6.1.3 Assigning DITA attributes to table types on page 511

15.6.1.1 Mapping table formats to Mif2Go table typ es

For exceptions, you can insert a DitaTable marker at the start of the table title, with content
one of the established DITA types: simple , tgroup , properties , choice , or
definition .

To map FrameMaker table formats to Mif2Go table types (for example):
[DITATables]
; Frame table format (wildcards OK) = base table ty pe, one of table,
; simple, figure, choice (in task), property (in ref erence), or
; strip (omit table coding, keep title and cell cont ent).
FormatA = table
Format B = simple
Choices = choice
Properties = property
FigTable = figure
Holder = strip

The names of table types assigned to table formats in [DITATables] are Mif2Go
identifiers, not DITA table tags. You can define additional table types in content-model
configuration files; see §32.7.7 Providing table structure information for DITA topic types
on page 916.

15.6.1.2 Designating a default table type

To specify a default Mif2Go table type for tables not listed in [DITATables] :
[DITAOptions]
; DefTableElem = element for tables not listed in [DITATables],
; default is "table" which is the full, complex DITA table type.
DefTableElem = property

15.6.1.3 Assigning DITA attributes to table types

To assign attributes to a table type, list attribute=" value" pairs separated by spaces:
[DITATableAttributes]
; table type = attributes to be used for every inst ance
tabletype = attribute1=" value1" attribute2=" value2" ...

You can use Mif2Go macros for any part of the attribute assignment. You cannot use
markers to override settings in [DITATableAttributes] .

15.6.2 Marking table footer rows for future refere nce

The DITA specification does not encompass the notion of a table footer row. However,
you can assign an @outputclass value to the <row> and <strow> elements generated
from your FrameMaker table footer rows, to maintain that information.

To assign an @outputclass to footer rows:
[DITAOptions]
; UseTableFooterClass = No (default, treat footer r ows as
; body rows), or Yes (use body element but set outp utclass)
UseTableFooterClass = Yes
; TableFooterClass = @outputclass to use for footer rows,
; default "footer".
TableFooterClass = footer

CONVERTING TABLES TO DITA XML MIF2GO USER’S GUIDE

512 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When UseTableFooterClass=Yes , each footer row of every FrameMaker table
becomes a DITA <row> or <strow> element that includes an @outputclass attribute
with the value assigned to TableFooterClass . The default is @outputclass=
"footer" .

When UseTableFooterClass=No , footer rows become table body rows in DITA
output.

15.6.3 Designating ancestors for <table> elements

To specify the ancestor elements Mif2Go must use for <table> elements:
[DITAOptions]
; TableParents = parents for table tags, including simpletable
; and others; default none (use content model), may include sets
; from [DITAElementSets].
TableParents =

List ancestors in hierarchical order; see §15.5.2 Designating DITA ancestor elements on
page 502. You can include element sets, as well as single elements; see §15.5.5 Specifying
alternate ancestries for the same element on page 504. If you do not specify any ancestor
elements, Mif2Go picks the first valid element listed in the content model, which might
not be what you had in mind.

To specify ancestry for a single <table> element or a discrete group of <table>
elements, assign the list to the table ID (see §24.2 Defining sets of tables on page 728). For
example:

[TableGroup]
FormatA = chart
aa654321 = chart
FormatC = textframe
Unruled = textframe

[DITATableParents]
; table ID group (not type) = parents to be used fo r root table
element
chart = section
aa654321 = example
textframe = conbody

You can make a single [DITATableParents] setting in an HTMConfig marker, also;
see §33.2.2 Overriding settings with configuration markers on page 921.

15.6.4 Applying attributes to DITA tables

Suppose you want to apply a DITA outputclass attribute to a table or group of tables.

If you want to be able to use outputclass for pretty much everything, based on the table
format name (fixed for CSS use) for tables, and on either the FrameMaker paragraph or
character format name or the [Class] setting for paragraph and character elements, just
use [DITAOptions]UseOutputClass=Yes ; see §15.4.6.6 Providing outputclass
attributes for all elements on page 498.

To apply a DITA outputclass attribute value to table formats only:
[TableAttributes]
MySpecialTableFormatName = outputclass=" myspecialclass"

Add any other special attributes you want for that table format on the same line, and use
another line for each additional format; see §24.4.2 Overriding attributes for selected
tables on page 736.

15 CONVERTING TO DITA XML CONVERTING TABLES TO DITA XML

ALL RIGHTS RESERVED. MAY 18, 2013 513

You can also specify an outputclass attribute for an individual table with a
TableOutputclass marker in the text flow before the table anchor, or in the table title or
first table row; see §24.1.2 Understanding precedence of assignment methods on
page 728.

15.6.5 Configuring DITA table components

In this section:
§15.6.5.1 Omitting ancestries of DITA table components on page 513
§15.6.5.2 Retaining empty paragraph tags in DITA table cells on page 513
§15.6.5.3 Specifying relative vs. absolute widths for table columns on page 513
§15.6.5.4 Including properties of table cells in DITA XML on page 514
§15.6.5.5 Converting table titles to DITA XML on page 514

15.6.5.1 Omitting ancestries of DITA table compone nts

Do not specify required parents (see §15.5.2 Designating DITA ancestor elements on
page 502) for elements that are part of a FrameMaker table. Mif2Go uses a different
mechanism to determine nesting of table components. You can specify parents for the
contents of table cells, but do not go above <entry> .

15.6.5.2 Retaining empty paragraph tags in DITA ta ble cells

By default, for DITA output Mif2Go omits paragraph tags for otherwise empty non-
preformatted paragraphs in table cells. However, you can choose to keep the tags:

[Tables]
; RemoveEmptyTableParagraphs = No (default)
; or Yes (DITA/DocBook default)
RemoveEmptyTableParagraphs = No

When RemoveEmptyTableParagraphs=No , paragraph tags (such as <p></p>) for
empty paragraphs are retained in table cells in DITA XML.

When RemoveEmptyTableParagraphs=Yes , paragraph tags for empty paragraphs in
table cells are omitted (except for preformatted text, where tags are always preserved). A
table cell that is blank in FrameMaker (contains only empty paragraphs) would become
just <td></td> in DITA XML output.

Note: This setting is independent of the setting for removing empty paragraphs in text;
see §15.3 Specifying general options for DITA on page 483.

See also:
§24.4.10 Deciding what to do with empty paragraphs in table cells on page 744

15.6.5.3 Specifying relative vs. absolute widths f or table columns

DITA <simpletable> elements do not have absolute column widths or table widths; all
you get are relative column widths. For valid DITA XML, you have to use a PI to set
absolute column or table width. However, for <table> elements you can specify either
absolute or relative column widths. By default, Mif2Go uses absolute widths.

To specify relative instead of absolute table and column widths for <table> elements:
[DITAOptions]
; TableColsRelative = No (default, in points using pt, in colspec
; width attributes) or Yes (in percents using *)
TableColsRelative = Yes

CONVERTING TABLES TO DITA XML MIF2GO USER’S GUIDE

514 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When TableColsRelative=Yes , for relative widths Mif2Go produces (for example):
<colspec colnum="1" colname="col1" colwidth="81*" / >
<colspec colnum="2" colname="col2" colwidth="108*" />

Those relative widths (denoted by the *) turn inches into points, resulting in 1.125" = 81pt,
and 1.5" = 108pt.

When TableColsRelative=No , Mif2Go produces instead:
<colspec colnum="1" colname="col1" colwidth="81pt" />
<colspec colnum="2" colname="col2" colwidth="108pt" />

15.6.5.4 Including properties of table cells in DI TA XML

FrameMaker table cell properties such as shading and border treatments do not translate
directly to DITA XML.

For presentational properties, the standard way would be to have XSLT add shading (for
example) based on a row count or other content-independent table property.

For semantic properties, you would have to identify in FrameMaker the cells that require
treatment. If you use a dedicated FrameMaker format for the content of those cells, you
could assign an outputclass value to that format via [StyleCellAttribute] ; see
§24.4.6 Specifying attributes for table cells on page 738. Alternatively, you could use
CellOutputclass markers; see §29.2.4 Using attribute markers for HTML or XML on
page 835.

15.6.5.5 Converting table titles to DITA XML

Best practice is to include the table title as part of the table itself in FrameMaker. Mif2Go
handles such table titles automatically. If you have positioned the title as a separate
element before the table in FrameMaker, consider moving the title inside the table, using
the FrameMaker Table Designer to make the table title accessible. However, if you need
table titles to remain separate from tables, you can instruct Mif2Go to wrap both title and
table in a <section> element.

To wrap both a table and its preceding title in a <section> element:
[DITAParaTags]
TableTitleFmt = title

[DITAParents]
TableTitleFmt = section

[DITAFirst]
TableTitleFmt = section

15.6.6 Converting tables used only as image contai ners

If you use tables to hold images in FrameMaker, and the table title serves as the image
caption, you can assign Mif2Go table type figure to the FrameMaker table format. Table
type figure is an alias for table type simple . Because DITA requires a <fig> element
to have its <title> element (the image caption) before the image, for table type figure
Mif2Go does the following:

 • uses the content of the table title for the figure <title> element
 • places the generated <simpletable> after the figure <title> element
 • wraps both in a <fig> element.

This keeps the images packaged more or less the way they are in your FrameMaker
document. For example:

15 CONVERTING TO DITA XML CONVERTING TABLES TO DITA XML

ALL RIGHTS RESERVED. MAY 18, 2013 515

<fig id="ab998633"><title>Project configuration</ti tle>
<simpletable id="ab998614">
<strow>
<stentry><image href="projcfg.gif" placement="inlin e"/></stentry>
</strow>
</simpletable>
</fig>

To map a table format (for example, FigTable) to Mif2Go table type figure :
[DITATables]
FigTable = figure

Also map the table title format (for example, FigTitle) to the <title> element:
[DITAParaTags]
FigTitle = title

To ensure that the title and table are properly wrapped in a <fig> element, specify <fig>
as the parent of the title format:

[DITAParents]
FigTitle = fig

As an alternative, if you do not need the table itself in DITA, you can remove the table
coding instead:

[DITATables]
FigTable = strip

See also:
§15.6.7 Omitting table coding entirely on page 515
§15.7 Specifying options for images in DITA XML on page 516

15.6.7 Omitting table coding entirely

If your reason for using a particular table format in FrameMaker is strictly presentational,
you can have Mif2Go omit the table coding for that format, and instead just enclose the
table title (if any) and table content in the parent element of the table.

To omit table coding, assign table type strip to the table format. Mif2Go wraps the
content in the parent element assigned to the paragraph format that holds the content. If
the table has a title, that title becomes the <title> element, and its parent is used as the
wrapper; in this case, also map the table title format to the <title> element.

For example:
[DITATables]
Holder = strip

[DITAParaTags]
HoldTitle = title

[DITAParents]
HoldTitle = section

If your document has several tables in a row that are all assigned table type strip , you
might want the elements they contain to be merged under a single parent element. To
prevent the parent element from closing automatically after each table:

[Tables]
; CloseStrippedTables = Yes (default) or No (allow elements started
; in stripped tables to remain open until closed fo r other reasons)
CloseStrippedTables = No

When CloseStrippedTables=No , you must make sure the parent element gets closed
some other way after the last stripped table in each group.

SPECIFYING OPTIONS FOR IMAGES IN DITA XML MIF2GO USER’S GUIDE

516 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

15.7 Specifying options for images in DITA XML
In this section:

§15.7.1 Designating ancestors for <image> and <fig> elements on page 516
§15.7.2 Specifying what to include in a <fig> wrapper on page 517
§15.7.3 Omitting size attributes from images for DITA output on page 518
§15.7.4 Providing alternate text for images on page 518
§15.7.5 Including MathFullForm equations in <alt> elements on page 518
§15.7.6 Including the original image DPI as an attribute on page 518
§15.7.7 Understanding why images might look incorrectly scaled on page 519

15.7.1 Designating ancestors for <image> and <fig> elements

To specify the ancestor elements Mif2Go must use to wrap <image> and <fig>
elements:

[DITAOptions]
; ImageParents = parents for <image> tags, whether wrapped in <fig>
; or not; default none (use content model), may inc lude sets from
; [DITAElementSets].
ImageParents = list of parent elements

List ancestors in hierarchical order; see §15.5.2 Designating DITA ancestor elements on
page 502. You can include element sets, as well as single elements; see §15.5.5 Specifying
alternate ancestries for the same element on page 504. If you do not specify any ancestor
elements, Mif2Go picks the first valid element listed in the content model, which might
not be what you had in mind.

Note: Do not include fig either in the list for ImageParents or in an element set in
that list.

For example, suppose you want most of your images wrapped in <section> , except for
those that occur in paragraphs that are mapped to <example> :

[DITAOptions]
ImageParents = $iparents

[DITAElementSets]
$iparents = section example

To specify ancestry for a single <image> element or a discrete group of <image>
elements, assign the parent name or parent set name to the graphic ID of the image (see
§5.3 Identifying files and objects on page 117), or to the graphic group ID (see §23.5.1.4
Creating named groups of graphics on page 710). For example, to make sure icons in table
cells have <entry> as a parent:

[GraphGroup]
ab01f853 = alerts
ab012c13 = alerts
ab00b5d3 = alerts

[DITAImageParents]
; image ID (may be group) = parents to be used for image/fig element.
alerts = entry

You can make a single [DITAImageParents] setting in an HTMLConfig marker, also;
see §33.2.2 Overriding settings with configuration markers on page 921.

Sequence
matters in

element sets

Although Mif2Go knows which elements are valid within other elements, Mif2Go has no
idea at all about required sequences of elements. For example, if you set:

15 CONVERTING TO DITA XML SPECIFYING OPTIONS FOR IMAGES IN DITA XML

ALL RIGHTS RESERVED. MAY 18, 2013 517

[DITAElementSets]
$iparents = conbody section entry example context c hoice

Mif2Go will always choose example over context when in <taskbody> . Where the
image is valid in both <context> and <example> , Mif2Go lacks any real criterion for
choosing one over the other. Instead, Mif2Go selects, from the list of candidates, the first
element that is valid as a parent of the <image> element.

In this example, if more of your images belong in <context> , you could set:
[DITAElementSets]
$iparents = conbody section entry context example c hoice

and then use [DITAImageParents] for the lesser number of images that should be in
<example> .

15.7.2 Specifying what to include in a <fig> wrapp er

When Mif2Go wraps image and title in a <fig> element, by default Mif2Go closes the
<fig> element before moving on to the following content. To direct Mif2Go to include in
<fig> any following elements that are valid:

[DITAOptions]
; CloseFigAfterImage = Yes (default) or No (leave f ig open for more)
CloseFigAfterImage = No

By default, Mif2Go wraps all contiguous images and their titles in a single <fig>
element. To make sure each of a series of images is wrapped in its own <fig> element:

[DITAOptions]
; MultiImageFigures = Yes (default)
; or No (allow only one image in a fig)
MultiImageFigures = No

When an unstructured FrameMaker document includes several images in a row with only
their titles in between, by default Mif2Go assumes that these titles follow their respective
images. To specify that figure titles precede their images instead:

[DITAOptions]
; FigureTitleStartsFigure = No (default, title is b elow image),
; or Yes (title is above image)
FigureTitleStartsFigure = Yes

To prevent an image in an anchored frame from being wrapped in a <fig> element, assign
the NoFig format property to the anchor paragraph format. For example:

[HTMLParaStyles]
; NoFig is used in DITA for a graphic anchor para t o prevent wrapping
; of the image inside it in a fig tag.
GraphAnchor = NoFig

This works only if the FrameMaker anchor format is used consistently for images that
should not be wrapped, and not for any that should be wrapped.

To make sure images with one particular FrameMaker anchor format are wrapped, when
the rest are not (for example):

[HTMLParaStyles]
; Figure is used in DITA for a graphic anchor para to ensure wrapping
; of the image inside it in a fig tag.
SpecialGraphAnchor = Figure
* = NoFig

See §4.6 Using wildcards in configuration settings on page 106.

SPECIFYING OPTIONS FOR IMAGES IN DITA XML MIF2GO USER’S GUIDE

518 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

15.7.3 Omitting size attributes from images for DI TA output

To eliminate width and height attributes from images:
[Graphics]
; GraphScale = Yes (default) to put out width and h eight attributes,
; or No to eliminate them all
GraphScale = No

If you do not specify any setting for GraphScale , width and height attributes are
included.

15.7.4 Providing alternate text for images

To provide alternate text for an image in DITA, you need an <alt> tag. Instead of using a
GraphAlt marker, which causes the content to become an attribute, you have to insert the
text via the FrameMaker Object Attributes dialog for the anchored frame; see §31.4.2
Overriding graphics settings with FrameMaker object attributes on page 896. Mif2Go
produces <alt> tags if and only if you use the FrameMaker Object Attributes dialog.
Place the text in the Alternate: box under Text Attributes . Do not place the text in the
Defined Attributes: box under New or Changed Attribute ; if you do, the content will
become the attribute, which is deprecated for DITA.

15.7.5 Including MathFullForm equations in <alt> e lements

When Mif2Go encounters in your FrameMaker document an equation, which is a
MathFullForm object, Mif2Go generates a DITA <image> element for the equation. You
can also have the original MathFullForm included as the content of the <alt> tag.

To include MathFullForm equations in <alt> tags:
[HTMLOptions]
; MathFullForm = No (default) or Yes: include MathF ullForm objects
; in DITA <alt> tags for equations.
MathFullForm = Yes

See Figure 5.9.1 Understanding how equations are processed.

15.7.6 Including the original image DPI as an attr ibute

If you are using DITA-FMx (see §15.2.4 Specifying DITA version on page 480), you
might want to provide a value for fmdpi:< dpi> for the images in your document.
Mif2Go can pick up the DPI value of each image from FrameMaker, and include that
value in an @otherprops attribute for use with DITA-FMx.

To include image DPI values in @otherprops for <image> elements:
[DITAOptions]
; UseOtherpropsDPI = No (default), or Yes (use Fram eMaker image
; DPI values for DITA-FMx @otherprops fmdpi values)
UseOtherpropsDPI = Yes

When UseOtherpropsDPI=Yes , Mif2Go includes the original FrameMaker DPI value
in @otherprops attribute fmdpi for each <image> element. For example:

<image id="z108x11a50b.gif" href="LinkBttn.gif" oth erprops="fmdpi:96">

The value of the @otherprops fmdpi attribute is not affected by the setting for
GraphDPI ; see §23.9.4 Specifying image resolution for exported graphics on page 721.

15 CONVERTING TO DITA XML ORGANIZING DITA TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 519

15.7.7 Understanding why images might look incorre ctly scaled

If you use FrameMaker version 8 to open a DITA file generated by Mif2Go , images might
appear to be oversized or stretched out. This is because FrameMaker 8 assumes that image
width and height attributes are expressed in points (72/in) rather than in pixels (96/in).
FrameMaker 8 implements the DITA 1.0 specification, which does not specify the units of
measure to be used for the width and height attributes in the <image> tag, nor does it
provide a way to specify those units.

According to the DITA 1.1 specification, the default unit of measurement for width and
height attributes in the <image> tag is pixels. The specification allows any of several
suffixes for these attributes, including px for pixels and pt for points. Unfortunately,
FrameMaker treats the attribute values as points, even if they have a px suffix.
Presumably this will be fixed when FrameMaker supports the DITA 1.1 specification.

Meanwhile, to force the sizes to points, and label them so that they remain correct for
DITA 1.1:

[Graphics]
; This is effective for DITA only:
; UsePtSuffix = No (default, unless [DITAOptions]FM 8Import=Yes),
; or Yes (FM8Import default, set ConversionDPI to 7 2 so that FM8
; interprets the size correctly, and include "pt" i n the width and
; height attributes to specify that the values are in points)
UsePtSuffix = Yes

This setting forces the size to come out in points, because there are 72 points per inch.

Note: UsePtSuffix=Yes overrides UsePxSuffix=Yes ; see §23.9.5 Specifying px
units for graphics sized in pixels on page 722.

15.8 Organizing DITA topics
Unless you allow Mif2Go to split each FrameMaker file in your document into separate
DITA topic files, topics must be either nested or wrapped in a top-level <dita> element.

In this section:
§15.8.1 Understanding when to split, nest, or wrap DITA topics on page 519
§15.8.2 Splitting FrameMaker files into DITA topic files on page 520
§15.8.3 Renaming DITA topic files on page 520
§15.8.4 Nesting DITA topics in unsplit files on page 521
§15.8.5 Wrapping DITA topics in a top-level <dita> element on page 521

See also:
§16.2 Configuring DITA ditamaps on page 539

15.8.1 Understanding when to split, nest, or wrap DITA topics

Normally Mif2Go splits each FrameMaker file into individual DITA XML output topic
files. Although you can choose to generate a single DITA XML file from each
FrameMaker chapter file, this is not recommended. Unless all topics in such a monolithic
file are of the same topic type and are embedded in a single top-level topic, Mif2Go wraps
them in a top-level <dita> element. The <dita> element is an alternative to <map>, and
is meant to support legacy documents.

If you do not split FrameMaker files into topics, unless you are using the Leximation
DITA-FMx plug-in for re-import into FrameMaker, the topics from each FrameMaker file

ORGANIZING DITA TOPICS MIF2GO USER’S GUIDE

520 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

must be either nested or wrapped to allow topic IDs in map references to those topics.
However, if you nest topics, you lose most of the DITA reusability feature. Nesting applies
only to multi-topic files.

In general, nesting topics is a Very Bad Idea. It makes re-use much harder. If instead you
keep each real topic (no containers!) in a separate file, and assemble the files with
ditamaps, you have a much more flexible and capable system. There is no benefit to nested
topics, because you can aggregate the topics exactly the same way with a map as with a
container; see §16 Configuring DITA maps on page 539.

Mif2Go forces wrapping of topics in the following circumstances:

 • When NestTopicFiles=No and SplitTopicFiles=No .
 • When NestTopicFiles=Yes , but map levels are such that the first topic in a file

does not nest all the other topics in the file.
 • When WrapTopicFiles=No , but the file contains more than one topic type.

15.8.2 Splitting FrameMaker files into DITA topic files

By default, Mif2Go splits each FrameMaker file into individual DITA XML topic files,
one file per topic. To have Mif2Go generate instead a single multi-topic DITA XML file
from each FrameMaker file (not recommended):

[DITAOptions]
;SplitTopicFiles = Yes (default, each topic is a fi le)
; or No (wrap all topics in chapter together with <d ita> tag)
SplitTopicFiles = No

When SplitTopicFiles=Yes , Mif2Go splits each chapter file on topic boundaries
identified by FrameMaker paragraph formats; see §15.9.1 Designating starting points for
DITA topics on page 522. A topic ends at the start of the next topic, or at the end of the
FrameMaker file. When you split a FrameMaker file into individual DITA topic files, the
hierarchical relationship among those topics is made explicit in the map levels assigned to
those topics; see §16.2.2 Specifying topic levels in ditamaps on page 544.

When SplitTopicFiles=No , unless you nest the topics from each FrameMaker file so
there is just one top-level topic, Mif2Go wraps all topics within a top-level <dita>
element. See §15.8.4 Nesting DITA topics in unsplit files on page 521.

15.8.3 Renaming DITA topic files

Mif2Go assigns each split topic file (except the first) a base name that consists of the
FrameMaker chapter FileID followed by the ObjectID of the paragraph that caused the
split; see §5.3 Identifying files and objects on page 117. This naming method guarantees
that output file names will be unique; see §18.4.1 Understanding how split and extract
files are named on page 593. You can specify a topic-type prefix for each file name, but do
not try to rename files outside of Mif2Go , unless you use a tool designed to both fix all
interfile references and maintain uniqueness of names.

In this section:
§15.8.3.1 Prefixing split-file names to identify DITA topic type on page 520
§15.8.3.2 Renaming DITA topic files with FrameScript on page 521

15.8.3.1 Prefixing split-file names to identify DI TA topic type

When you split FrameMaker files so that each DITA topic is in its own .dita file, you
can specify a prefix to each file name to identify the topic type. For example:

15 CONVERTING TO DITA XML ORGANIZING DITA TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 521

[DITATopicFileNamePrefix]
; topictype = prefix to file names
concept = c_
task = t_
reference = r_
glossary = g_

In this example, a file containing a topic of type topic would not get a prefix.

15.8.3.2 Renaming DITA topic files with FrameScrip t

For a way to achieve human-readable DITA topic file names, see Rick Quatro’s solution:
http://frameautomation.com/2010/03/24/renaming-dita-map-topics/

From Rick’s Web site:

The script proposes new topic names, based on the navtitle value of the topicref.
You can have the script automatically use the new names, or you can use a “semi-
automatic mode” where the old names and proposed new names are written to an
Excel file. Then you can use Excel to fine-tune the new names. A second script
quickly applies the spreadsheet names to the DITA map and corresponding topic files.

Note: This method would not work for references between topics in different maps.

15.8.4 Nesting DITA topics in unsplit files

To nest the topics in a DITA XML output file:
[DITAOptions]
; NestTopicFiles = No (default, recommended),
; or Yes (if SplitTopicFiles=No, nest the topics in the <dita> file
; per their [DITAMapLevels]).
NestTopicFiles = Yes

When NestTopicFiles=Yes , topics are nested in each file according to their map
levels. To make the nesting valid using DITA Composite, in the following cases Mif2Go
wraps all topics within a top-level <dita> element:

 • map levels are such that the first topic in a file does not nest all the other topics; see
§16.2.2 Specifying topic levels in ditamaps on page 544

 • the file contains topics of more than one basic topic type (topic , concept , task , or
reference).

When NestTopicFiles=No , if SplitTopicFiles=No , Mif2Go wraps all topics from
a FrameMaker chapter file within a top-level <dita> element according to their map
levels, in a single DITA XML output file, regardless of the setting for WrapTopicFiles .

See §15.8.5 Wrapping DITA topics in a top-level <dita> element on page 521.

15.8.5 Wrapping DITA topics in a top-level <dita> element

If you split FrameMaker files into separate topic files, and you use topic IDs in map
references to those topics, for re-import into FrameMaker 8 each topic file must be
wrapped in a <dita> element (unless you are using the Leximation DITA-FMx plug-in).
Otherwise, FrameMaker version 8 will not be able to open the files.

To wrap the topics in each file in a <dita> element:
[DITAOptions]
; WrapTopicFiles = No (default), or Yes (needed to allow TopicIDs for
; Frame8 import unless DITA-FMx is installed).
WrapTopicFiles = Yes

http://frameautomation.com/2010/03/24/renaming-dita-map-topics/

CONFIGURING DITA TOPICS MIF2GO USER’S GUIDE

522 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When WrapTopicFiles=Yes , all topics are wrapped in a <dita> element in each DITA
XML output file. Within this wrapper, any topic type except glossary can nest topics of
any other type.

When WrapTopicFiles=No , topics are wrapped in <dita> tags only if required by a
mixed-type nesting condition, or if SplitTopicFiles=No and the first topic in a file
does not nest all the other topics. When topics are not wrapped, each topic type (except
glossary) can nest only instances of the same type; a glossary topic cannot nest any
topic. If any topic type nests other topic types, Mif2Go forces WrapTopicFiles=Yes . If
a glossary topic tries to nest any topic, Mif2Go promotes the nested topic to a sibling.
See §15.8.4 Nesting DITA topics in unsplit files on page 521.

You might need to set WrapTopicFiles=Yes if you are mixing single-topic DITA files
with DITA content from files that contain multiple topics in a <dita> wrapper, perhaps
from another source (so you cannot make them single-topic files). You must use topic IDs
for map references to the multi-topic files, so you would have to wrap the single-topic files
also, to make the topic IDs acceptable there.

When [DITAOptions]FM8Import=Yes , Mif2Go changes the default value of
WrapTopicFiles to Yes; see §15.2.6 Ensuring FrameMaker 8 import compatibility on
page 481.

Note: When you use topic IDs in map href attributes, chapter files produced by
FrameMaker version 8 from those topic files have names of the form
TopicFileName#TopicID.fm . See §16.2.1.7 Excluding topic IDs for
FrameMaker 8 import on page 543.

15.9 Configuring DITA topics
Mif2Go delimits DITA topics in your FrameMaker document according to paragraph
formats you identify as <title> elements at DITA level 1.

In this section:
§15.9.1 Designating starting points for DITA topics on page 522
§15.9.2 Specifying the DITA topic type on page 524
§15.9.3 Specifying the ID for a DITA topic on page 526
§15.9.4 Adjusting DITA topic IDs generated from file names on page 526
§15.9.5 Specifying alternate titles for a DITA topic on page 526
§15.9.6 Omitting a DITA topic from the TOC on page 527

15.9.1 Designating starting points for DITA topics

Mif2Go bases starting points for DITA topics on the occurrence in your FrameMaker
document of paragraph formats that have certain configuration settings. By default,
Mif2Go also treats the very first paragraph format in each FrameMaker file as the start of
a DITA topic.

In this section:
§15.9.1.1 Identifying starting elements for non-glossary topics on page 523
§15.9.1.2 Identifying the starting element for glossary topics on page 523
§15.9.1.3 Preventing the first paragraph format from starting a topic on page 523

15 CONVERTING TO DITA XML CONFIGURING DITA TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 523

15.9.1.1 Identifying starting elements for non-glo ssary topics

For topics of all built-in DITA types except glossary , the required starting element is
<title> . Mif2Go identifies a topic start by the paragraph format mapped to title in
[DITAParaTags] .

To designate a paragraph format as a DITA topic start:

1. Unless the format is already named Title, map the format to the <title> element:
[DITAParaTags]
ParaFmt = title

See §15.4.3 Mapping paragraph formats to DITA block elements on page 487.

2. Assign the format DITA level 1:
[DITALevels]
ParaFmt = 1

See §15.5.13 Specifying DITA element levels on page 509.

15.9.1.2 Identifying the starting element for glos sary topics

For glossary topics (DITA version 1.1+ only), the required starting element is
<glossterm> . Unless the default topic type is glossary , you must tell Mif2Go that the
topic start is the paragraph format mapped to glossterm in [DITAParaTags] .

You do not have to specify parents for glossary elements, because <glossterm> and
<glossdef> can have only <glossentry> as parent; and you do not have to specify an
element level for the format mapped to glossterm , because it will always be level 1.

Glossary in a
separate file

If the glossary for your document is in a separate FrameMaker file, not mixed with other
types of topics, create a file-specific configuration file glossfile.ini , and include in it
the following setting:

[DITAOptions]
DefTopic = glossary

See §15.9.2.2 Specifying a default DITA topic type on page 525.

Setting the default topic type to glossary tells Mif2Go that the topics in the current file
start with the paragraph format mapped to glossterm in [DITAParaTags] :

[DITAParaTags]
ParaFmt = glossterm

See §15.4.3 Mapping paragraph formats to DITA block elements on page 487.

Glossary mixed
with other topics

If the glossary for your document is in a FrameMaker file that includes other topic types,
you must make the starting paragraph format for the glossary topic different from the
starting formats for all other topic types in the file; and you must assign topic type
glossary to that format in [DITATopics] . For example:

[DITATopics]
; Every GlossaryTerm paragraph begins a glossary to pic:
GlossaryTerm = glossary

[DITAParaTags]
; Every glossary topic begins with a <glossterm> el ement:
GlossaryTerm = glossterm
Definition = glossdef

15.9.1.3 Preventing the first paragraph format fro m starting a topic

To prevent Mif2Go from forcing the first paragraph format in a FrameMaker file to
become a topic start:

CONFIGURING DITA TOPICS MIF2GO USER’S GUIDE

524 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[DITAOptions]
; ForceStartTopic = Yes (default, make the format o f the first para a
; topic start with tag "title" at level 1 and parent "topic"), or No.
ForceStartTopic = No

If the first paragraph format in a file is not assigned DITA level 1, or is not implicitly or
explicitly mapped to the <title> element:

 • When ForceStartTopic=Yes , Mif2Go forces these settings, overriding any other
mapping or level assignment; as a consequence, all subsequent paragraphs with the
same format in the same file also start topics.

 • When ForceStartTopic=No , Mif2Go allows the paragraph to produce invalid
DITA.

Best practice is to use the default setting (ForceStartTopic=Yes), and make sure the
first paragraph format in each FrameMaker file is mapped to title and assigned level 1.

However, if your FrameMaker document uses a table to hold the chapter title, you might
have to set ForceStartTopic=No , and make sure the table anchor paragraph does not
get converted. For example, if you use paragraph format TableAnchor for the anchor, set:

[HTMLParaStyles]
TableAnchor = Delete

If there is a second such table in the chapter file, also set:
[Tables]
AllowTbSplit = Yes

To omit the table tags for chapter-title tables:
[DITATables]
ChapTitleTableFmt = Strip

See §15.6.7 Omitting table coding entirely on page 515.

15.9.2 Specifying the DITA topic type

Mif2Go provides three ways to indicate the type of a topic: specify a default type, assign a
type to a paragraph format, or insert a marker in the topic with the name of the type.

In this section:
§15.9.2.1 Understanding DITA topic type assignment precedence on page 524
§15.9.2.2 Specifying a default DITA topic type on page 525
§15.9.2.3 Specifying the DITA topic type with a paragraph format on page 525
§15.9.2.4 Specifying the DITA topic type with a marker on page 525

15.9.2.1 Understanding DITA topic type assignment precedence

The default type for every topic Mif2Go generates from your FrameMaker document is
type concept . You can specify a different default, assign a topic type to a paragraph
format, or use a marker to specify the type of an individual topic. Table 15-2 shows the
precedence of topic type assignment methods.

Table 15-2 Precedence of DITA topic type assignment methods

Precedence Method Reference

Highest DITAtopic marker 15.9.2.4

Intermediate FrameMaker paragraph format 15.9.2.3

Lowest Default topic type 15.9.2.2

15 CONVERTING TO DITA XML CONFIGURING DITA TOPICS

ALL RIGHTS RESERVED. MAY 18, 2013 525

If you specify a custom specialized topic type (a type other than topic , concept , task ,
reference , glossary , or map), you must provide a separate content-model
configuration file for the specialized type, named DITAtopictype.ini ; see §32
Working with content models on page 905.

15.9.2.2 Specifying a default DITA topic type

By default, every topic generated is of type concept . However, you can specify a
different topic type as the default: topic , task , reference , glossary , or a custom
type.

To specify a different default topic type:
[DITAOptions]
; DefTopic = name of topic type to use, default "co ncept"
DefTopic = topic

You can override the default topic type with a DITATopic marker in the topic, or by
assigning a different topic type to a FrameMaker paragraph format used in the topic.

To specify a different default topic type for a given FrameMaker chapter, include the
DefTopic setting in a chapter configuration file named for the FrameMaker file; see
§33.1.1 Providing configuration files for individual chapters on page 919.

15.9.2.3 Specifying the DITA topic type with a par agraph format

To assign a DITA topic type to a FrameMaker paragraph format (for example):
[DITATopics]
; Frame para format = suggested topic type to use, if no DITATopic
; marker found.
Step = task
Syntax = reference
GlossItem = glossary

Assign a topic type to any paragraph format for which at least one of the following is true:

 • The format is specific to a topic type other than the default topic type; see §15.9.2.2
Specifying a default DITA topic type on page 525.

 • The format marks a transition from one topic type to another, even if the new topic is
the default topic type.

 • The format starts a topic for which the starting element is not <title> ; for example,
topics of type glossary (see §15.9.1.2 Identifying the starting element for glossary
topics on page 523). If necessary, modify your FrameMaker document to use a
dedicated format for such topic starts.

You can override the assigned topic type with a DITATopic marker placed in the topic.

If Mif2Go encounters in FrameMaker multiple paragraph formats in the same topic with
different topic type assignments in [DITATopics] , only the topic type assigned to the
last paragraph format encountered before the end of the topic is considered.

If Mif2Go encounters in FrameMaker a paragraph format that has a topic type assignment
in [DITATopics] and a conflicting element mapping in [DITAParaTags] , the topic
type takes precedence, and the tag instance is flagged as an error.

15.9.2.4 Specifying the DITA topic type with a mar ker

You can use a DITATopic marker to override the default topic type for a given topic, and
also any topic type assigned via paragraph format. The content of a DITATopic marker is
the name of the topic type. Insert the DITATopic marker anywhere in the content of the
topic.

CONFIGURING DITA TOPICS MIF2GO USER’S GUIDE

526 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

15.9.3 Specifying the ID for a DITA topic

To give a topic an ID, do one of the following:

 • Place a DITATopicID marker in the topic; the content of the DITATopicID marker is the
topic ID.

 • Place a FileName marker in the topic; the marker content specifies both the topic ID
and the base file name of the split file that contains the topic (see §34.8.3 Using
custom markers to name output files on page 947).

In the absence of either marker, the default topic ID is the base split-file name, adjusted as
for CSS class names; see §15.9.4 Adjusting DITA topic IDs generated from file names on
page 526.

If you do not split files (see §15.8.2 Splitting FrameMaker files into DITA topic files on
page 520), nor insert markers for topic IDs, Mif2Go makes up an ID for each embedded
topic after the first (which uses the base file name). These generated IDs are of the form
topic2 , topic3 , and so forth. This is not recommended practice.

To specify a default ID other than the base split-file name (but only for the first topic in a
FrameMaker file), include the following option in a chapter-specific configuration file
(see §33.1.1 Providing configuration files for individual chapters on page 919) located in
the project directory:

[DITAOptions]
; TopicID = id for topic, default is base file name
TopicID = someid

You can override the default ID with a DITATopicID marker, or with a FileName marker.

15.9.4 Adjusting DITA topic IDs generated from fil e names

By default, Mif2Go uses the base name of the output file that contains a DITA topic as the
ID for that topic. Because topic IDs may not contain spaces, by default Mif2Go removes
any spaces in the ID, and makes the ID all lowercase. You can specify other treatments: a
character to replace each space, remove underscores, keep original case.

To adjust topic IDs generated from file names:
[DITAOptions]
; These are used only when generating a TopicID fro m the file name:
; DITATopicIDSpaceChar = char to replace spaces, de fault none
; (remove space)
DITATopicIDSpaceChar=_
; DITATopicIDUnderscore = Yes (default, keep unders cores)
; or No (remove)
DITATopicIDUnderscore=Yes
; DITATopicIDLowerCase = Yes (default, make all low er)
; or No (retain original)
DITATopicIDLowerCase=Yes

If you have FrameScript installed on your system, you can use a script to create more
“human readable” topic names for DITA output. See:

http://frameautomation.com/2010/03/24/renaming-dita-map-topics/

15.9.5 Specifying alternate titles for a DITA topi c

To include an alternate title for a topic, you can use either of the following:
Dedicated paragraph format
FrameMaker marker

http://frameautomation.com/2010/03/24/renaming-dita-map-topics/

15 CONVERTING TO DITA XML CONFIGURING CROSS REFERENCES AND LINKS FOR DITA

ALL RIGHTS RESERVED. MAY 18, 2013 527

The text of an alternate title, whether provided via paragraph format or marker, appears as
follows:

In addition, both appear as elements in the topic itself, in a <titlealts> block
immediately following the <title> element. Mif2Go provides the <titlealts>
wrapper for alternate titles.

Dedicated
paragraph format

To use a dedicated paragraph format for an alternate title, place a paragraph in that format
after the main title paragraph, and map the format to the alternate-title element. For
example:

[DITAParaTags]
; Frame para format (wildcards OK) = DITA element
NavHead = navtitle
Search = searchtitle

See §15.4.3 Mapping paragraph formats to DITA block elements on page 487.

FrameMaker
marker

To use a marker for an alternate title, insert a DITANavTitle marker, a DITASearchTitle
marker, or both, in the <title> paragraph. Make the content of the marker the text of the
alternate title, which becomes the content of the navtitle attribute or <searchtitle>
element.

15.9.6 Omitting a DITA topic from the TOC

To omit any reference in the TOC to a topic whose title would otherwise appear there,
insert a marker of type DITANoTOC in <title> paragraph of the topic. The DITANoTOC
marker will have the following effects on the map <topicref> to the topic:

 • The <topicref> will include toc="no"

 • The navtitle for the <topicref> will be suppressed.

No content is required in the DITANoTOC marker.

15.10 Configuring cross references and links for D ITA
In this section:

§15.10.1 Understanding how Mif2Go converts cross references on page 527
§15.10.2 Specifying an outputclass for cross-reference wrappers on page 528
§15.10.3 Linking to elements below topic level on page 528
§15.10.4 Retaining cross-reference content in <xref> elements on page 528
§15.10.5 Omitting <xref> elements from footnotes on page 529
§15.10.6 Overriding <xref> attribute values on page 529

15.10.1 Understanding how Mif2Go converts cross re ferences

Mif2Go converts FrameMaker cross references and hypertext links to DITA <xref>
elements. DITA allows cross references to <topic> (including each basic type),
<section> (including <example> and <refsyn>), <table> , <fig> , <fn> , and .
No other elements. Mif2Go provides an ID for each instance of each of these elements, if
a suitable ID is not already present.

Navigation title: navtitle attribute in the map <topicref>

Search title: <searchtitle> element in the <topicmeta> of the map’s
<topicref>

CONFIGURING CROSS REFERENCES AND LINKS FOR DITA MIF2GO USER’S GUIDE

528 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When a <xref> tag appears in a context where it is not valid, such as in a title, Mif2Go
automatically wraps the <xref> in a <ph> element, and assigns an outputclass
attribute to the wrapper; see §15.10.2 Specifying an outputclass for cross-reference
wrappers on page 528.

To provide a link destination for target elements that do not already contain a DITAElemID
marker (see §15.4.6.1 Specifying a value for the id attribute on page 495), Mif2Go makes
the ID of the target element the content of the first newlink marker in the element; or, in
the absence of newlink markers, the numeric ID of the cross-reference marker.

15.10.2 Specifying an outputclass for cross-refere nce wrappers

When Mif2Go encounters a cross reference, index marker, or footnote reference in a
context where an <xref> tag would be invalid, the <xref> gets wrapped in a <ph>
element. These Mif2Go -generated <ph> wrapper elements need an outputclass
attribute. The default outputclass attribute names for cross-reference, index-term, and
footnote wrappers are as follows:

[DITAOptions]
; XrefWrapClass = outputclass to use for generated ph elements that
; wrap xrefs where they would otherwise be invalid
XrefWrapClass = phxref
; IndexWrapClass = outputclass to use for generated ph elements that
; wrap indexterms where they would otherwise be inv alid
IndexWrapClass = phindex
; FootnoteWrapClass = outputclass to use for genera ted ph elements
; that wrap footnotes where they would otherwise be invalid
FootnoteWrapClass = phfoot

You can specify other outputclass attribute names.

15.10.3 Linking to elements below topic level

Normally, Mif2Go can use a FrameMaker newlink marker or cross-reference marker to
create a link for an element ID. However, to provide a destination for a link to a target
element that is below topic level, in some cases you might have to insert a
DITALinkElemID marker in text just before the link, and a DITAElemID marker (or
DITAParentID marker) in the target text.

The content of the DITALinkElemID marker must match the content of the DITAElemID
marker or DITAParentID marker (see §15.4.6.1 Specifying a value for the id attribute on
page 495). This is to ensure the correct link target in cases where the built-in rules to
determine the target element ID provide the wrong choice or none at all. Mif2Go places
the DITALinkElemID marker content after the target topic ID in the href attribute of the
<xref> element.

15.10.4 Retaining cross-reference content in <xref > elements

By default, Mif2Go does not include the text of FrameMaker cross references in DITA
<xref> elements. However, you might want to retain the text, especially if you anticipate
round-tripping between DITA and FrameMaker, or using DITA output as a stepping stone
from unstructured to structured FrameMaker.

To retain the content of FrameMaker cross references in DITA <xref> elements:
[DITAOptions]
; KeepXrefText = No (default) or Yes (retain conten t of xref in DITA
; as is done for hyperlinks; prevents updating of xr ef during later

15 CONVERTING TO DITA XML CONFIGURING CROSS REFERENCES AND LINKS FOR DITA

ALL RIGHTS RESERVED. MAY 18, 2013 529

; processing by the DITA Open Toolkit).
KeepXrefText = Yes

A disadvantage of retaining cross-reference content is that doing so prevents you from
updating the text of the reference later. When the <xref> element is empty, it is populated
from the content of the referenced item.

15.10.5 Omitting <xref> elements from footnotes

The way DITA handles footnotes results in footnotes with IDs not getting callouts unless
an <xref> element is added to provide the callout. However, the DITA Open Toolkit is
inconsistent on this point. The HTML transform wants the <xref> element, but the PDF2
transform does not.

To exclude <xref> elements from footnotes:
[DITAOptions]
; FootnoteXref = Yes (default, comply with spec) or No (indulge bug in
; DITA-OT for pdf2 output using Idiom/RenderX by om itting footnote
; xref)
FootnoteXref = No

15.10.6 Overriding <xref> attribute values

You can insert markers in your FrameMaker document to change values of the scope ,
format , and type attributes of individual <xref> elements generated from cross-
reference and hypertext links.

In this section:
§15.10.6.1 Specifying the <xref> scope attribute on page 529
§15.10.6.2 Specifying the <xref> format attribute on page 529
§15.10.6.3 Specifying the <xref> type attribute on page 530

15.10.6.1 Specifying the <xref> scope attribute

By default, for most links Mif2Go omits the scope attribute of the generated DITA
<xref> element, so that the value of the scope attribute defaults to local . However, for
links that use a message URL hypertextHyperLink marker, Mif2Go sets the <xref>
scope to external .

Some applications, such as XMetaL, do not support the #IMPLIED default of <xref
scope="local"> . If you plan further DITA processing using such an application, you
can instruct Mif2Go to always make this attribute value explicit:

[DITAOptions]
; UseLocalScope = No (default, omit scope attr from xref if not
; specified and href is not to a URL) or Yes (set s cope="local" in
; those cases to satisfy applications (XMetaL) that do not respect
; #IMPLIED in the DTD).
UseLocalScope = Yes

To specify the scope attribute of an individual cross reference or hypertext link in
FrameMaker, insert a DITALinkScope marker in text just before the link. The content of
the marker is the value of the scope attribute (usually peer) of the generated <xref>
element.

15.10.6.2 Specifying the <xref> format attribute

Mif2Go bases the value of the <xref> format attribute on the apparent destination of a
FrameMaker link. To override this value, insert a DITALinkFormat marker in text just

EXPORTING FRAMEMAKER VARIABLES TO DITA XML MIF2GO USER’S GUIDE

530 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

before the link; the content of the marker is the value of the format attribute of the
generated <xref> element. DITALinkFormat markers are needed only where Mif2Go
built-in rules do not produce the correct value.

15.10.6.3 Specifying the <xref> type attribute

Mif2Go sets the type attribute of most generated <xref> elements to the DITA type
(root element) of the destination topic. However, for FrameMaker links that use a message
URL hypertextHyperLink marker, Mif2Go omits the type attribute.

To specify the type attribute of the next cross reference or hypertext link in FrameMaker,
insert a DITALinkType marker in text just before the link. The content of the marker is the
value of the type attribute of the generated <xref> element. Valid type attributes
include li , fn , fig , table , and section .

See also:
§15.4.6.1 Specifying a value for the id attribute on page 495

15.11 Exporting FrameMaker variables to DITA XML
DITA does not really support the concept of variables, other than conref attributes.
Apparently the truly DITA-proper thing to do is to use conref attributes at the <ph>
level.

In this section:
§15.11.1 Understanding how Mif2Go represents variables in DITA on page 530
§15.11.2 Specifying how to treat FrameMaker variables on page 530
§15.11.3 Treating FrameMaker variables as conrefs on page 531
§15.11.4 Retaining format properties of user variables in DITA on page 532

15.11.1 Understanding how Mif2Go represents variab les in DITA

Mif2Go can incorporate into DITA XML output (and also treat as macro variables) any
FrameMaker user variables in your document, as well as a few FrameMaker system
variables, provided you reference the names of these variables as described in §28.3.5
Treating FrameMaker user variables as macro variables on page 801.

Mif2Go supports representing a FrameMaker variable as a <ph> element with a conref
to another <ph> element located in a file of such elements, where name and value
elements are wrapped in a definition list. Mif2Go also supports including user variables as
entities, to allow round-tripping using the Leximation DITA-FMx plug-in: the successor to
the Frame 7.2 DITA AppPack withdrawn by Adobe.

However, the default treatment is to convert each variable to text; see §15.11.2 Specifying
how to treat FrameMaker variables on page 530.

15.11.2 Specifying how to treat FrameMaker variabl es

To specify a treatment for FrameMaker user variables and a few FrameMaker system
variables in DITA XML:

[DITAOptions]
; VariableType = Text (default),
; Entity (for compatibility with DITA-FMx import),
; or Conref (referring to a variable library file).
VariableType = Text

15 CONVERTING TO DITA XML EXPORTING FRAMEMAKER VARIABLES TO DITA XML

ALL RIGHTS RESERVED. MAY 18, 2013 531

This setting affects all FrameMaker user variables in your document and also the
following FrameMaker building-block system variables:

Volume Number
Chapter Number
Section Number (FrameMaker version 9+)
Subsection Number (FrameMaker version 9+)

When VariableType=Text (the default), FrameMaker variables are converted to text
before they are included in DITA XML output.

When VariableType=Entity , each FrameMaker variable used in a topic becomes an
entity. The entity name is the name of the variable, with spaces and any punctuation
removed; case is preserved. The entity definition is plain text only; character formatting
present in the FrameMaker definition of the variable is omitted. Each topic contains entity
declarations only for the entities actually used in that topic. This method allows DITA-
FMx to recognize FrameMaker variables on re-import of the generated DITA files.

See also:
§15.11.3 Treating FrameMaker variables as conrefs on page 531

15.11.3 Treating FrameMaker variables as conrefs

You can make the content of FrameMaker user variables (and some FrameMaker system
variables) available as DITA conref s; see §15.11.2 Specifying how to treat FrameMaker
variables on page 530.

To specify that FrameMaker variables should be treated as DITA conref s:
[DITAOptions]
VariableType = Conref

When VariableType=Conref , the following settings are effective:
[DITAOptions]
; VariableFile = file for referencing variables
VariableFile = ditavars.dita
; VariableTopicID = topic ID for the single topic i n the VariableFile
VariableTopicID = varset
; VariableElement = wrapper element for variables,
; valid in a dd element.
VariableElement = ph
; WriteVariableFile = No (default) or Yes (write a file containing all
; variables defined in the Frame file after process ing that file).
WriteVariableFile = Yes

The VariableFile library file for referencing variables contains a single topic, with a
single definition list in the <body> :

<dlentry>
<dt> varname</dt>
<dd><ph id=" varname"> variable content</ph></dd>

</dlentry>

Each definition term is the name of a variable with spaces and punctuation removed. The
corresponding description has an ID identical to the name, and content identical to the
FrameMaker variable definition, except in plain text only.

Re-importing to FrameMaker, you would see (for example):
 <ph conref="varfile.dita#varsetid/ varname"></ph>

EXPORTING FRAMEMAKER VARIABLES TO DITA XML MIF2GO USER’S GUIDE

532 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

If the file name and topic ID match your setting, you can be sure that varname is a
FrameMaker variable, and you can retrieve its definition.

When WriteVariableFile=Yes , Mif2Go generates a VariableFile library file for
each FrameMaker file.

Retaining
variables for an

entire book

If you are producing DITA output from a FrameMaker book, the VariableFile library
file will be overwritten for each FrameMaker chapter file until the last. Your variables-
turned-conref s will appear correctly in DITA output after conversion, but only the
variables in the last FrameMaker file processed will remain in the VariableFile library
file. This is because a FrameMaker variable does not have a single book-wide definition;
the same variable can be defined differently in every FrameMaker file, or might not be
defined at all in some files.

To preserve all the variables in a book, you can do one of the following, depending on
whether variables are always defined the same wherever they occur in your FrameMaker
book:

Defined the same wherever
Defined differently in some chapters.

Defined the same
wherever

To produce one variables library file for the entire book, create a dummy FrameMaker file
that defines all the variables, and put it last in the book. Then the last variables file written
will be complete, and all the other files will reference it.

Defined
differently in

some chapters

To produce a variables library file for a single FrameMaker chapter file, specify a different
value of [DITAOptions]VariableFile in a separate configuration file named for each
FrameMaker file. See §30.4 Including chapter-specific configuration files on page 855. If
only a few chapters have variant definitions, you can provide chapter-specific
configuration files only for those chapters, and include at the end of the book a dummy
FrameMaker file with all the standard definitions.

Note: You might have an issue with the DITA version of that last dummy file appearing
as a chapter in the bookmap.

15.11.4 Retaining format properties of user variab les in DITA

If you convert FrameMaker user variables to entities or conref s, DITA XML cannot
retain format properties of those variables, because character formats are converted to tags
only in a specific context. XML has no tag that turns off other tags, unless you specify
them explicitly; so, for example, <Default ¶ Font> has no reasonable meaning in an
entity or a conref . If you need the format properties in DITA XML, you must let
variables become part of each instance of the text, which is the default, rather than turn
them into entities or conref s; see §15.11.2 Specifying how to treat FrameMaker
variables on page 530.

To retain character format properties for a specific FrameMaker user variable, you must
use a Mif2Go macro variable of the same name to shadow that user variable; see §5.4.2
Replacing values of FrameMaker user variables on page 123. Tags must be balanced, as
in:

[MacroVariables]
TechnologyName = New Technology

Even with balanced tags, you will create invalid XML if you use the variable in an area
that does not allow ... , such as nested within another set of ... tags.

15 CONVERTING TO DITA XML CONVERTING CONDITIONS TO DITA ATTRIBUTES

ALL RIGHTS RESERVED. MAY 18, 2013 533

15.12 Converting conditions to DITA attributes
Mif2Go can convert FrameMaker text conditions to attributes in DITA output elements.

In this section:
§15.12.1 Understanding how Mif2Go converts conditional text on page 533
§15.12.2 Mapping FrameMaker conditions to element attributes on page 533
§15.12.3 Disallowing condition conversion for selected elements on page 534

See also:
§13.10 Converting conditions to HTML attributes on page 446

15.12.1 Understanding how Mif2Go converts conditio nal text

If a full DITA element (either paragraph or character, block or inline) is conditional,
Mif2Go sets attributes you designate for the element. If the condition does not apply to the
entire element, Mif2Go encloses the conditional part in a pair of tags, with the same
attributes. By default, Mif2Go uses <ph> . However, you can specify another tag to use for
this purpose:

[HTMLOptions]
; ConditionCharTag = tag to interpolate for conditi ons that affect
; only part of the enclosing element, default ph fo r DITA.
ConditionCharTag = tagname

For example:
<ph platform="linux">...</ph>

When conditions overlap each other, or overlap inline elements, Mif2Go creates a new tag
pair for each change, to respect XML no-overlap rules. For example:

<p>This paragraph contains <ph product="A">text for </ph>
<i><ph product="A">ProductA </ph><ph product="A B"> as well as</ph>
<ph product="B"> text</ph></i><ph product="B"> for ProductB</ph>,
with overlapping conditions and a character format overlapping both,
resulting in five <ph> elements.</p>

In addition to text, Mif2Go applies conditions to <table> , <image> , <xref> , and
<indexentry> elements, based on the conditions in effect in FrameMaker at the point of
the table or figure anchor, cross reference, or marker.

Mif2Go supports conditional table rows; row condition attributes are not applied to the
paragraphs within cells. Likewise, the attributes of block tags are not applied to inline tags
enclosed within the block.

Where multiple blocks make up a larger element, such as when a DITA <title> element
plus some <p> elements make up a <section> , Mif2Go does not push the attributes up
to the <section> element; they remain on the enclosed block elements.

15.12.2 Mapping FrameMaker conditions to element a ttributes

To convert conditional text to DITA attributes, you must set FrameMaker Show/Hide to
show all the conditions for which you want content present; for migration, that would be
Show All . The conditions shown are identified in DITA output. Content that remains
hidden in FrameMaker is not included. Multiple conditions result in multiple conditional
attribute values.

To map a FrameMaker condition to an element attribute:

MARKING FRAMEMAKER TEXT INSETS IN DITA MIF2GO USER’S GUIDE

534 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[ConditionAttributes]
; Condition name = attributes for elements
CondName= attrname=" attrvalue"

For DITA, the attribute name is usually one of props , platform , product , audience ,
or otherprops . For example:

[ConditionAttributes]
ProductA = product="A"
ProductB = product="B"

15.12.3 Disallowing condition conversion for selec ted elements

To disallow conversion of conditions to attributes for selected elements:
[DITAOptions]
; NoCondAttrs = space-delimited list of elements fo r which conditional
; attributes (such as props and audience) are disal lowed.
NoCondAttrs = element1 element2 ...

Usually these are elements derived from <title> . Because <title> and <glossterm>
always disallow such attributes, they need not be included in the list. Mif2Go includes
inside a <ph> nested in the element any attributes that are actually needed. This applies to
all attributes mentioned in [ConditionAttributes] ; see §15.12.2 Mapping
FrameMaker conditions to element attributes on page 533.

15.13 Marking FrameMaker text insets in DITA
If you reuse FrameMaker text insets extensively, and you do not want to lose this
capability when you migrate a document to DITA, you might want text insets to be marked
so you can separate them out for further processing. Mif2Go can delimit a FrameMaker
text inset in DITA XML output by bracketing the content with <data> elements.

To use <data> elements to mark the start and end of each FrameMaker text inset:
[DITAOptions]
; TextInsetMark = No (default) or Yes (mark text in set start and end,
; using <data> elements to specify FrameMaker sourc e for the inset)
TextInsetMark = Yes

When TextInsetMark=Yes , Mif2Go provides two <data> tags, one at each end of the
text-inset content, with attributes as follows.

 • Starting <data> element:
<data

datatype="text_inset"
name="inset N"
value="start"
href="insets/ filename#Bflowname"
format="fm"
scope="external"

/>

 • Ending <data> element:
<data

datatype="text_inset"
name="inset N"
value="end"

/>

15 CONVERTING TO DITA XML INCLUDING CSH TARGETS IN DITA XML

ALL RIGHTS RESERVED. MAY 18, 2013 535

For the name attribute, each inset Mif2Go encounters gets an incremental value. The
name attributes are numbered beginning with inset1 at the start of each FrameMaker
container file.

For the href attribute, if the inset came from a FrameMaker file but did not come from
the main flow in that file, Mif2Go adds either #B for a body flow or #R for a reference-
page flow, followed by the flow tag.

If an inset crosses a topic boundary, the start and end <data> elements will not be in the
same topic. Mif2Go does not mark the end of an inset at the end of the topic unless the
inset really ends there, by design. It would not make sense to re-start the inset in the next
topic, because the inset content in that next topic would not begin at the start of the
FrameMaker inset file.

Two consecutive FrameMaker text insets might look like this in DITA XML:
<p><data datatype="text_inset" name="inset2" value= "start"
href="insets/FlowInset.fm#BBeta" format="fm" scope= "external" />
This is the "Beta" inset body-page flow.</p>
<p><data datatype="text_inset" name="inset2" value= "end" />

<data datatype="text_inset" name="inset3" value="st art"
href="insets/FlowInset.fm#RRefInset" format="fm" sc ope="external" />
This is a reference-page flow, "RefInset".</p>
<p><data datatype="text_inset" name="inset3" value= "end" />

This is the container paragraph for the two insets. </p>

By default, Mif2Go brackets only top-level text insets with <data> elements; if an inset
contains another inset, the nested inset is not bracketed. However, you can instruct
Mif2Go to bracket nested text insets.

To use <data> elements to mark the start and end of each nested text inset:
[DITAOptions]
; TextInsetNest = No (default, ignore nested insets)
; or Yes (mark nested insets)
TextInsetNest = Yes

When TextInsetNest=Yes , nested text insets would look like this in DITA XML:
<p>Next we insert an inset which itself contains an inset:</p>

<p><data datatype="text_inset" name="inset5" value= "start"
href="insets/FlowInset.fm" format="fm" scope="exter nal" />
This is the "Alpha" inset body-page flow. In it, w e nest this:
<data datatype="text_inset" name="inset6" value="st art"
href="insets/SectInset.fm#RFM8Issue" format="fm" sc ope="external" />
This is the content of the "FM8Issue" nested inset. </p>

<p><data datatype="text_inset" name="inset6" value= "end" /></p>

<p><data datatype="text_inset" name="inset5" value= "end" />This para
is back in the container. Note the empty para, a re sult of nesting
an inset at the end of another inset.</p>

15.14 Including CSH targets in DITA XML
If your source document includes context-sensitive help targets that you want to include in
DITA output for use in further transformations, make sure those targets are in the form of
TopicAlias markers. Mif2Go includes the content of TopicAlias markers in DITA output
by default. To exclude that content from DITA output:

OVERRIDING DITA SETTINGS WITH MARKERS MIF2GO USER’S GUIDE

536 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[DITAOptions]
; UseTopicAlias = Yes (default, include in DITA out put) or No
UseTopicAlias = No

When UseTopicAlias=Yes , Mif2Go processes the content of each TopicAlias marker
into the following:

<data name="topicalias" value="IDH_ about" />

Each such <data /> element is on a line of its own in the output, placed at the beginning
of the next paragraph text (typically the <title>).

This format is similar to the DITA-FMx format, but omits the FrameMaker-specific
@datatype . For example, in DITA-FMx the same CSH target looks like this:

<data datatype="fm:marker" name="TopicAlias" value= "IDH_ about" />

See §7.10.2 Specifying CSH mappings on page 241.

15.15 Overriding DITA settings with markers
You might need to insert markers to override configuration settings for particular DITA
topics and elements. Mif2Go provides numerous predefined marker types for this
purpose, listed in Table 15-3. Most of these marker types are intended to provide ways to
cope with unusual situations. If you have a consistent template, and use normal
FrameMaker cross references and hypertext links, for the most part you can get by with
just configuration settings.

Table 15-3 Predefined marker types for DITA XML

Marker type Content Reference

DITAAlias Alternate name for FrameMaker format for the current block 15.4.3.6

DITAAttribute Attributes other than ID of a non-<xref> block element or parent 15.4.6.4

DITACloseAfter Ancestor elements to be closed just after current block element ends 15.5.9.2

DITACloseBefore Ancestor elements to be closed just before current block element starts 15.5.9.1

DITACode XML code to be inserted at the marker location

DITAElemID ID attribute for the current block element 15.4.6.1

DITAEndElem Tag name for an inline element, to place at the end of the span 15.4.4.4

DITAFirst Ancestor elements under which the current block element must be first 15.5.6

DITALevel Level where the current block element should appear in the DITA file 15.5.13

DITALinkElemID ID of the link target for the next <xref> element 15.10.3

DITALinkFormat Format attribute of the next <xref> element 15.10.6.2

DITALinkScope Scope attribute of the next <xref> element 15.10.6.1

DITALinkType Type attribute of the next <xref> element 15.10.6.3

DITANavTitle Alternate title for navigation use 15.9.5

DITANoToc Adds toc="no" to the topicref to the current topic, suppresses navtitle 15.9.6

DITAOpenAfter Elements to be opened just after current block element ends 15.5.10.2

DITAOpenBefore Enclosing elements to be opened just before current block element starts 15.5.10.1

DITAParent Required parents for the current block element 15.5.2

DITAParentID ID of the interpolated parent of the current block element 15.4.6.1

DITASearchTitle Alternate title for search-result use 15.9.5

DITAShortDesc <shortdesc> element for the current topic 15.4.9

DITAStartElem Tag name for an inline element, to place at the start of the span 15.4.4.4

15 CONVERTING TO DITA XML OVERRIDING DITA SETTINGS WITH MARKERS

ALL RIGHTS RESERVED. MAY 18, 2013 537

DITATag Element name mapping for the current block (not inline) element 15.4.3.5

DITATopic DTD type for the current topic 15.9.2

DITATopicID ID attribute for the current topic 15.9.3

DITATopicOutputclass Outputclass attribute for the root topic 15.4.6.6

DITATopicRootAttrs Attributes for the root element of a topic 15.4.6.3

Table 15-3 Predefined marker types for DITA XML (continued)

Marker type Content Reference

OVERRIDING DITA SETTINGS WITH MARKERS MIF2GO USER’S GUIDE

538 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 539

16 Configuring DITA maps

Mif2Go creates maps for DITA projects, from both structured and unstructured
FrameMaker documents. This section shows how to configure DITA maps and optionally
construct a DITA bookmap. Topics include:

§16.1 Understanding how Mif2Go generates DITA maps on page 539
§16.2 Configuring DITA ditamaps on page 539
§16.3 Constructing a DITA bookmap on page 548
§16.4 Mapping FrameMaker files to bookmap components on page 551
§16.5 Providing attributes for bookmap wrapper elements on page 555
§16.6 Overriding DITA map settings with markers on page 556

See also:
§15 Converting to DITA XML on page 473
§32 Working with content models on page 905

16.1 Understanding how Mif2Go generates DITA maps
Mif2Go generates a DITA map for each FrameMaker file in your document. The map file
has the base name of the FrameMaker file from which the map was generated, with
extension .ditamap . DITA maps are based on configuration settings and on the implied
structure of your FrameMaker document. If the first map level number is greater than 1,
Mif2Go normalizes the remaining levels to be relative to the first.

16.2 Configuring DITA ditamaps
In this section:

§16.2.1 Specifying options for ditamaps on page 539
§16.2.2 Specifying topic levels in ditamaps on page 544
§16.2.3 Accounting for missing topic levels on page 544
§16.2.4 Specifying roles for topics in ditamaps on page 545
§16.2.5 Adding relationship tables to ditamaps on page 546
§16.2.6 Providing navigation aids in ditamaps on page 547

See also:
§32.7.4 Overriding declarations in a DITA map content model on page 915

16.2.1 Specifying options for ditamaps

In this section:
§16.2.1.1 Choosing whether to overwrite ditamaps on page 540
§16.2.1.2 Choosing whether a ditamap references maps or topics on page 540
§16.2.1.3 Specifying the base file name for a ditamap on page 541
§16.2.1.4 Specifying a title for a chapter or book ditamap on page 541
§16.2.1.5 Specifying a navigation title for a ditamap on page 542
§16.2.1.6 Specifying the ID for a ditamap on page 542
§16.2.1.7 Excluding topic IDs for FrameMaker 8 import on page 543
§16.2.1.8 Excluding <topicmeta> elements for FrameMaker 8 import on page 543

CONFIGURING DITA DITAMAPS MIF2GO USER’S GUIDE

540 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

16.2.1.1 Choosing whether to overwrite ditamaps

By default, Mif2Go rewrites .ditamap files each time you run a DITA conversion.
Unless the changes you make between conversion runs (changes either to your
FrameMaker document or to configuration files) have no effect at all on DITA structure,
most likely something will be different in one or more generated maps. On the other hand,
if you have edited book or chapter maps by hand, you would not want to lose your edits.

To prevent Mif2Go from overwriting existing DITA maps:
[DITAOptions]
; WriteDitamaps = Yes (default) overwrite existing maps,
; or No (when using hand-edited chapter and book-lev el maps)
WriteDitamaps=No

When WriteDitamaps=Yes (the default), existing maps are overwritten. Also, if a
FrameMaker file is in a book, and the book file is open, Mif2Go rebuilds the map for the
book whenever you convert the file.

If you change the setting of WriteDitamaps from Yes to No for subsequent conversions
of the same project, and you make any changes that affect DITA structure, maps can get
out of synchronization with topics.

If you set WriteDitamaps=No the first time you run a DITA conversion, Mif2Go will
not produce any DITA maps.

16.2.1.2 Choosing whether a ditamap references map s or topics

Ideally, a chapter map references topics, and a book map references chapter maps.
However, not all DITA tools allow nested maps. Therefore the default Mif2Go option is to
have the book map reference topics directly rather than reference the chapter maps.

In this section:
§16.2.1.2.1 Configuring a book map to reference chapter maps on page 540
§16.2.1.2.2 Configuring chapter maps for FrameMaker 8 import on page 540

16.2.1.2.1 Configuring a book map to reference cha pter maps

When you convert a FrameMaker book to DITA XML, Mif2Go creates a .ditamap file
for the book. By default, this book map includes a <topicref> for each topic in your
project. You can have the book map reference each chapter map instead.

To include in the book .ditamap references to chapter maps instead of direct references
to each topic:

[DITAOptions]
; MapBookTopics = Yes (default, include <topicref> for each topic in
; book .ditamap), or No reference the chapter maps i nstead)
MapBookTopics = No

Referencing chapter maps is better practice, if your downstream tools support this
approach. If you plan to re-import DITA files into FrameMaker version 8, there are
additional considerations; see §16.2.1.2.2 Configuring chapter maps for FrameMaker 8
import on page 540.

If you are producing DITA version 1.1 output that includes a <bookmap> , also see §16.3.5
Choosing whether a bookmap references maps or topics on page 550.

16.2.1.2.2 Configuring chapter maps for FrameMaker 8 import

If you expect to import your DITA output into FrameMaker version 8, make sure there is a
single top-level topic in each chapter map; then the book-level map will work as expected.

16 CONFIGURING DITA MAPS CONFIGURING DITA DITAMAPS

ALL RIGHTS RESERVED. MAY 18, 2013 541

What happens depends on whether your book-level ditamap references other ditamaps or
DITA files:

 • If your book-level ditamap references other ditamaps that reference DITA files, and
you ask FrameMaker 8 to make your book-level map into a FrameMaker book, you
will get an error message (“processing instruction ignored”) for each file, but the
resulting book, and all its chapters, will be correct.

 • If your book-level ditamap references DITA files directly, each DITA file (or each
nested set of topicrefs) will become a chapter, which may be desirable for such
purposes as creating a library of DITA topics to be referenced elsewhere as insets.

The Leximation DITA-FMx plug-in permits both.

See also:
§15.8.4 Nesting DITA topics in unsplit files on page 521
§15.8.5 Wrapping DITA topics in a top-level <dita> element on page 521
§16.2.1.7 Excluding topic IDs for FrameMaker 8 import on page 543
§16.2.1.8 Excluding <topicmeta> elements for FrameMaker 8 import on page 543

16.2.1.3 Specifying the base file name for a ditam ap

By default, the file name for each DITA map file is the base name of the FrameMaker file
from which the map was generated, with extension .ditamap . This is true for both book
files and chapter files.

To specify a different base name for a chapter map file, include the following setting in a
chapter configuration file filename.ini named for the FrameMaker file (see §33.1.1
Providing configuration files for individual chapters on page 919):

[DITAOptions]
; MapName = name to use (without extension) for the chapter ditamap.
MapName = othername

Alternatively, you can insert a DITAMapName marker in the FrameMaker file. The content
of the DITAMapName marker becomes the base name for the map file, overriding any
value specified for MapName.

To specify a different base name for a book map file, in your project configuration file:
[DITAOptions]
; BookMapName = name to use (without extension) for the book ditamap.
BookMapName = bookname

You cannot use a marker to override the base name for a book map file.

16.2.1.4 Specifying a title for a chapter or book ditamap

For the <title> element of a chapter map, by default Mif2Go uses the FrameMaker
chapter title.

Arbitrary chapter
map title

To specify a different title for a chapter map, include the following setting in a chapter-
specific configuration file named for the FrameMaker file (see §33.1.1 Providing
configuration files for individual chapters on page 919):

[DITAOptions]
; MapTitle = content of <title> element for chapter map
MapTitle = This is the title of the current chapter map

When you provide a value for MapTitle , Mif2Go sets a <title> element at the start of
the chapter map (effectively at map level 0); the value assigned to MapTitle becomes the
content of the element.

CONFIGURING DITA DITAMAPS MIF2GO USER’S GUIDE

542 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Alternatively, you can insert a DITAMapTitle marker in the FrameMaker chapter file. The
content of the marker becomes the content of the <title> element for the map generated
from that file, overriding any value specified for MapTitle .

First topic title as
chapter map title

To use the title of the first topic as the chapter map title:
[DITAOptions]
; UseAltMapTitle = No (default) or Yes (if no title specified for map,
; use the navtitle of the first topic in the file a s the map title)
UseAltMapTitle = Yes

When UseAltMapTitle=Yes , the alternate title overrides the value of MapTitle .

Book map title To specify a title for the book map that is generated from a FrameMaker book file, in your
project configuration file:

[DITAOptions]
; BookMapTitle = content of <title> element for boo k map.
BookMapTitle = This is the title of the book map

You cannot use a marker to override the title for a book map file.

16.2.1.5 Specifying a navigation title for a ditam ap

To specify a navigation title for a DITA map, include the following setting in a chapter
configuration file filename.ini named for the FrameMaker file (see §33.1.1 Providing
configuration files for individual chapters on page 919):

[DITAOptions]
; MapHead = navigation title for chapter map
MapHead = Title for use by navigation links

Alternatively, you can insert a DITAMapHead marker in the FrameMaker file. The content
of the marker becomes the navtitle attribute for the map generated from the file,
overriding any value specified for MapHead.

When you provide a value for MapHead or insert a DITAMapHead marker, Mif2Go creates
a <topichd> element at the start of the chapter map (effectively at map level 0) that
contains the rest of the map entries.

16.2.1.6 Specifying the ID for a ditamap

By default, the value of the id attribute for each DITA map is the base name of the
FrameMaker file from which the map was generated. This is true for both book files and
chapter files.

Mif2Go writes a map for each FrameMaker chapter. If your FrameMaker chapter file
names contain characters that are not valid in the id attribute, you can prevent Mif2Go
from creating map @ids:

[DITAOptions]
; UseMapID = Yes (default) or No (omit entirely)
UseMapID = No

The id attribute has no use in DITA maps, so is not essential. However, without it you
might not know just which chapter the map was made for. The map file name usually tells
you, but if you change the file name to fit with a CMS requirement, for example, the @id
might be all you have left.

To specify a different map @id for a particular chapter, include the following setting in a
chapter-specific configuration file named for the FrameMaker file (see §33.1.1 Providing
configuration files for individual chapters on page 919):

16 CONFIGURING DITA MAPS CONFIGURING DITA DITAMAPS

ALL RIGHTS RESERVED. MAY 18, 2013 543

[DITAOptions]
; MapID = id for Frame chapter file ditamap, defaul t is base file name
MapID = otherid

Alternatively, you can insert a DITAMapID marker in the FrameMaker file. The content of
the marker becomes the id attribute for the map generated from the file, overriding any
value specified for MapID.

To specify a different book map @id, in your project configuration file:
[DITAOptions]
; BookMapID = id for book file ditamap, default is base book file name
BookMapID = bookid

You cannot use a marker to override the id attribute of a map generated from a
FrameMaker book file.

16.2.1.7 Excluding topic IDs for FrameMaker 8 impo rt

The setting described in this section applies only if you expect to re-import your DITA
output into FrameMaker version 8, without using the Leximation DITA-FMx plug-in.

Without DITA-FMx, FrameMaker version 8 can open topic files referenced from a
<ditamap> via TopicFileName.dita# TopicID if and only if the topics in the file are
inside a composite <dita> wrapper (see §15.8.5 Wrapping DITA topics in a top-level
<dita> element on page 521). However, the chapter files produced by FrameMaker 8 from
those topics have names of the form TopicFileName#TopicID.fm , which is probably
not what you want. To allow FrameMaker 8 to reconstruct your original FrameMaker
chapters, you must omit topic IDs from href attributes in maps.

To omit topic IDs from map references to topics:
[DITAOptions]
; MapTopicID = Yes (default, include topic ID with filename in maps)
; or No (use filename without ID, for Frame 8 import without
; DITA-FMx).
MapTopicID = No

When MapTopicID=No , you must split FrameMaker chapters into individual topic files
for the ID-less map references to work. See §15.8.2 Splitting FrameMaker files into DITA
topic files on page 520.

Note: When [DITAOptions]FM8Import=Yes , Mif2Go changes the default value of
MapTopicID to No; see §15.2.6 Ensuring FrameMaker 8 import compatibility on
page 481.

16.2.1.8 Excluding <topicmeta> elements for FrameM aker 8 import

The setting described in this section applies only if you expect to re-import your DITA
output into FrameMaker version 8, without using the Leximation DITA-FMx plug-in.

Without DITA-FMx, on import to FrameMaker version 8, if a <ditamap> contains any
<topicmeta> elements, the text content of those elements is tacked onto the end of the
topic file, after the closing tag of the root element. This causes an error message, and the
text turns up at the end of the FrameMaker topic file. The only remedy is to eliminate
<topicmeta> elements entirely.

To exclude <topicmeta> elements from map <topicref> elements:
[DITAOptions]
; MapTopicmeta = Yes (default, include topicmeta wi th
; searchtitle and shortdesc, if any, in map topicref s)
; or No (omit topicmeta, required for Frame 8 import

CONFIGURING DITA DITAMAPS MIF2GO USER’S GUIDE

544 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; without DITA-FMx).
MapTopicmeta = No

Note: When [DITAOptions]FM8Import=Yes , Mif2Go changes the default value of
MapTopicmeta to No; see §15.2.6 Ensuring FrameMaker 8 import compatibility
on page 481.

16.2.2 Specifying topic levels in ditamaps

To specify map levels for topics, assign a level number to each FrameMaker format that
you map to a <title> element at the topic level in [DITAParaTags] ; see §15.4.3
Mapping paragraph formats to DITA block elements on page 487. For example:

[DITAMapLevels]
; Frame para format = level of topics it starts in ditamap, default 1.
Heading1 = 1
Heading2 = 2

Each instance of a paragraph format assigned a level number generates a <topicref>
that nests the lower <topicref> elements. For paragraph formats that are not listed here,
but that are mapped to <title> elements at the topic level in [DITAParaTags] ,
Mif2Go uses any level assignments you have provided for those formats in
[HelpContentsLevels] . See §7.4.4 Setting contents levels for HTML-based Help on
page 210.

If you direct Mif2Go to nest topics (see §15.8.4 Nesting DITA topics in unsplit files on
page 521), Mif2Go adjusts map levels as follows:

 • If a topic is nested in a glossary topic (which is invalid), the map level of the nested
topic is decreased to make it a sibling of the glossary topic.

 • If a topic is set to a level more than one deeper than the previous topic, its level is
decreased so that no levels are skipped.

Any adjustments to map levels also affect the chapter ditamap.

See also:
§15.5.13 Specifying DITA element levels on page 509

16.2.3 Accounting for missing topic levels

If your FrameMaker document uses a hierarchy of heading formats, such as:
Heading1

Heading2
Heading3

Heading4

And you have specified the following map levels for these headings (see §16.2.2
Specifying topic levels in ditamaps on page 544):

[DITAMapLevels]
Heading1 = 1
Heading2 = 2
Heading3 = 3
Heading4 = 4

But at least some of the time a heading is skipped in FrameMaker, such as:
Heading1

Heading2
Heading4

16 CONFIGURING DITA MAPS CONFIGURING DITA DITAMAPS

ALL RIGHTS RESERVED. MAY 18, 2013 545

Wherever a Heading4 follows a Heading2, Mif2Go promotes that Heading4 to map level 3,
because DITA does not allow skipped levels in a map. Additional instances of Heading4
that follow will remain at map level 4, and thus appear to be subordinate to the instance
that was promoted to map level 3. How you adjust for this problem depends on whether a
skipped level tends to be the rule or the exception in your FrameMaker document:

Heading3 present in most files
Heading3 absent from most files
Heading3 occasionally absent in a file.

Heading3 present
in most files

If Heading3 is consistently present in most files and consistently missing in some, you
would assign map level 4 to Heading4 in your project configuration file; and for each
FrameMaker file where Heading3 is missing, include in the project directory a chapter-
specific filename.ini that contains the following setting:

[DITAMapLevels]
Heading4 = 3

For example, if intro.fm has no instances of Heading3, include this setting in
intro.ini . Mif2Go will use this setting as an override, for intro.fm only. See §33.1.1
Providing configuration files for individual chapters on page 919.

Heading3 absent
from most files

If Heading3 is consistently missing from most files and consistently present in some, you
would assign map level 3 to Heading4 in your project configuration file; and for the files
that use Heading3, include in the project directory a chapter-specific filename.ini for
each that contains the following settings:

[DITAMapLevels]
Heading3 = 3
Heading4 = 4

The setting for Heading4 will override the same setting in the project configuration file.

Heading3
occasionally

absent in a file

If Heading3 is only occasionally missing in a file where it is usually present, you would
have to use a Config marker to set the map level for Heading4 to 3 just before a group of
Heading4s that are not subordinate to a Heading3, and another Config marker after the
group to change the map level back to 4. See §33.2 Overriding settings with markers or
macros on page 920.

16.2.4 Specifying roles for topics in ditamaps

To specify the kind of entry (if any) each topic type should have in its chapter map:
[DITAMapUsage]
; Frame para format that starts topic = Topic (defa ult), Head, or None
Parafmt=Topic

You can assign one of the values Topic , Head, or None to each paragraph format that you
map to a <title> element at the topic level in [DITAParaTags] ; see §15.4.3 Mapping
paragraph formats to DITA block elements on page 487. These values have the following
effects:

Because the default value is Topic , you need list only those paragraph formats that
identify topics that should not be linked from the map, or that should be excluded from the
map.

See also:
§15.4.9 Providing a <shortdesc> element for a DITA topic on page 500

Topic (Default) Include a <topicref> element in the map for this topic
Head Include a <topichead> element only, with a title but no link
None Exclude the topic from the map

CONFIGURING DITA DITAMAPS MIF2GO USER’S GUIDE

546 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

16.2.5 Adding relationship tables to ditamaps

Mif2Go creates a relationship table for each chapter map generated from a FrameMaker
file.

In this section:
§16.2.5.1 Understanding how Mif2Go creates relationship tables on page 546
§16.2.5.2 Excluding the ALink column from relationship tables on page 546
§16.2.5.3 Adding ALink rows to relationship tables on page 546
§16.2.5.4 Specifying one-way linking for a topic in a relationship table on page 547
§16.2.5.5 Specifying a collection-type attribute for each topic type on page 547

16.2.5.1 Understanding how Mif2Go creates relation ship tables

By default, Mif2Go creates relationship tables with four columns: the first column
contains ALink subject names that apply to cells in the same row in the other columns.
The ALink column is followed by the usual three columns for topic types concept , task ,
and reference .

Each ALink subject name in the first column is expressed in a <data> element:
 <data name="subject" value=" ALink term"/>

Each row in a default relationship table has <topicref> elements for all topics that
include the ALink term named in the first column, sorted into cells by topic type.

16.2.5.2 Excluding the ALink column from relations hip tables

If the DITA tools you use cannot accommodate relationship tables that include the extra
ALink column, you can instruct Mif2Go to omit that column.

To prevent Mif2Go from including an ALink column in relationship tables:
[DITAOptions]
; UseRelNameColumn = Yes (default, first col of rel table has ALink
; name in <data> element) or No (use only usual type columns).
UseRelNameColumn = No

If your FrameMaker document does not include ALink references, and you do not insert
any DITARelRow marker (see §16.2.5.3 Adding ALink rows to relationship tables on
page 546), Mif2Go does not produce a relationship table for the map.

16.2.5.3 Adding ALink rows to relationship tables

To add a subject row to a relationship table, in FrameMaker insert a DITARelRow marker
in the topic. The content of a DITARelRow marker is a subject name, which becomes the
name of a row in the table. Each row in the table corresponds to one subject name, so
topics with the same subject name all appear in the same row.

The same topic can appear in multiple rows, sharing each row with all other topics marked
with the same subject name. Each subject name generates its own row, even if that row is
otherwise identical to other generated rows.

DITARelRow markers are equivalent to ALink markers in Help systems. If your document
already contains ALink markers, you can clone them to create DITARelRow markers.

To clone ALink markers for relationship-table entries, include the following setting in
your project configuration file:

[MarkerTypes]
ALink=DITARelRow

16 CONFIGURING DITA MAPS CONFIGURING DITA DITAMAPS

ALL RIGHTS RESERVED. MAY 18, 2013 547

16.2.5.4 Specifying one-way linking for a topic in a relationship table

To specify a value for the linking attribute of a <topicref> in a relationship table,
insert a DITARelLinking marker in the topic in FrameMaker. The content of a
DITARelLinking marker can be one of the following:

targetonly
sourceonly

16.2.5.5 Specifying a collection-type attribute fo r each topic type

To specify a collection-type attribute for a topic type in a Mif2Go -generated
relationship table for a chapter map:

[DITARelGroups]
; DITA type name = collection-type attribute to use in the <colspec>
; for the chapter map <reltable> column for that DIT A type.
topictype = colltype

To specify a collection-type attribute for a topic type in a relationship table for a
book map:

[DITARelBookGroups]
; DITA type name = collection-type attribute to use in the <colspec>
; for the book map <reltable> column for that DITA t ype.
topictype = colltype

If you do not include a setting for a topic type in [DITARelBookGroups] , Mif2Go uses
the setting for that topic type (if any) in [DITARelGroups] for the relationship table for
the book map.

We suggest the following collection-type attributes; however, you can specify
others:

The default is no collection-type , so that topics in that column do not link to each
other, but only to topics in other columns in the same row.

For example:
concept = family
task = sequence

These settings would yield the following results:

 • Concept topics would link to other concepts, and to task and reference topics in the
same row (same DITARelRow value; see §16.2.5.3 Adding ALink rows to relationship
tables on page 546).

 • Task topics would link to each other as an ordered set, and to concept and reference
topics normally.

 • Reference topics would link to tasks and concepts in the same row, but not to each
other.

16.2.6 Providing navigation aids in ditamaps

To add navigation elements to the map entry for a topic, insert custom FrameMaker
markers in the <title> paragraph of the topic. Table 16-1 shows the content and
placement of the navigation element for each custom marker type.

family (equivalent to the usual ALink behavior)
sequence (links are in order of appearance in the chapter)
choice (processor dependent)

CONSTRUCTING A DITA BOOKMAP MIF2GO USER’S GUIDE

548 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

The content of a DITAMapref marker should be a map file name. Mif2Go sets the format
attribute of the resulting <topicref> element to "ditamap" .

16.3 Constructing a DITA bookmap
Much of the information required for a DITA bookmap is not present in FrameMaker files.
This information consists of metadata that you specify in configuration files and macro
files. Mif2Go supports bookmaps for DITA version 1.1.

In this section:
§16.3.1 Specifying the type of map for a book on page 548
§16.3.2 Specifying <booktitle> information on page 548
§16.3.3 Specifying <bookmeta> information on page 549
§16.3.4 Extending <part> to include <appendix> on page 550
§16.3.5 Choosing whether a bookmap references maps or topics on page 550
§16.3.6 Excluding the book-level reltable from a bookmap on page 550

See also:
§32.7.4 Overriding declarations in a DITA map content model on page 915

16.3.1 Specifying the type of map for a book

To specify the type of map to include for a FrameMaker book:
[DITABookmapOptions]
; BookmapType = ditamap (default) or bookmap (1.1 o nly)
BookmapType = bookmap

When BookmapType=ditamap , Mif2Go uses settings described in §16.2 Configuring
DITA ditamaps on page 539.

When BookmapType=bookmap , Mif2Go uses the values of settings in section
[DITABookmapFiles] to categorize bookmap components; see: §16.3 Constructing a
DITA bookmap on page 548.

16.3.2 Specifying <booktitle> information

The following settings provide values that comprise the bookmap <booktitle> element:
[DITABookMapOptions]
; BookTitle = <mainbooktitle> for bookmap
BookTitle = My Book Title
; BookSubtitle = optional <booktitlealt> for bookma p
BookSubtitle = My Subtitle for the Book
; BookLibrary = optional library catalog informatio n text, can be a
; macro file or [section] reference.
BookLibrary = <$./ mydescription.txt>

Table 16-1 DITA map navigation elements from custom markers

Custom marker
type Marker content Map element Map placement

DITAAnchor id attribute <anchor> After the <topicref> of the topic

DITANavref mapref attribute <navref> After the <topicref> of the topic

DITAMapref href attribute <topicref> After the <topicref> of the topic

DITALinkText text for the link <linktext> In the map <topicmeta>

16 CONFIGURING DITA MAPS CONSTRUCTING A DITA BOOKMAP

ALL RIGHTS RESERVED. MAY 18, 2013 549

If you do not include a setting for BookTitle , Mif2Go uses instead the value of
[DITAOptions]BookMapTitle , in a <title> element; see §16.2.1.4 Specifying a title
for a chapter or book ditamap on page 541.

You can optionally provide content for the <booklibrary> element, in either of the
following ways:

 • a separate macro file; for example:
[DITABookMapOptions]
BookLibrary = $./ path/to/booklib.txt

 • a macro section in the same configuration file; for example:
[DITABookMapOptions]
BookLibrary = <$LibText>

[LibText]
Text description ...

See §28.1 Defining and invoking macros on page 787.

16.3.3 Specifying <bookmeta> information

You must provide valid XML content for the <bookmeta> element. Most of the
information cannot be derived from your FrameMaker document. An annotated template
for the <bookmeta> element, bookmeta.xml , is available in your Mif2Go distribution
directory; the contents of this template are listed in §E DITA <bookmeta> template on
page 1039.

An easy way to supply <bookmeta> content is to do the following:

1. Copy bookmeta.xml from your Mif2Go distribution directory to the project
directory for your DITA project (or to another directory), and optionally rename the
copy.

2. Delete from the copy elements you do not need; also delete any non-XML text.

3. Substitute appropriate values for the elements you do need, following XML rules.

4. Optionally validate the XML against the DITA version 1.1 standard.

5. Copy the entire content into your project configuration file as a macro section, or
reference the template copy as a macro file.

To specify the location of your <bookmeta> information:
[DITABookMapOptions]
; BookMeta = DITA content, can be macro file or [se ction]
BookMeta = <$.\ mymetadata.xml>

If you do not include a setting for BookMeta , the <bookmeta> element is omitted from
output.

You can reference <bookmeta> content in either of the following ways:

 • a separate macro file; for example:
[DITABookMapOptions]
BookMeta = <$.\ path\to\bookmeta.xml>

 • a macro section in your project configuration file; for example:
[DITABookMapOptions]
BookMeta = <$BookmetaElements>

[BookmetaElements]
<bookmeta>
. . .
</bookmeta>

CONSTRUCTING A DITA BOOKMAP MIF2GO USER’S GUIDE

550 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See §28.1 Defining and invoking macros on page 787.

16.3.4 Extending <part> to include <appendix>

To comply with the DITA 1.1 specification, by default Mif2Go does not allow
<appendix> elements within <part> in a bookmap. However, Mif2Go makes it
possible to go beyond the specification and include <appendix> as well as <chapter>
in <part> .

To include <appendix> elements in a bookmap <part> element:
[DITABookmapOptions]
; AllowPartAppendix = No (default, per DITA spec)
; or Yes (allow a part element in bookmap to includ e appendix
AllowPartAppendix = Yes

When AllowPartAppendix=Yes , you can assign dividers to appendix files as well as to
chapter files; see §16.4.4 Assigning a divider role to a section file or chapter on page 554.

Note: A bookmap with <appendix> inside <part> is not valid DITA 1.1.

16.3.5 Choosing whether a bookmap references maps or topics

When a FrameMaker file has a starting topic whose topicref wraps the rest of the topics
in that file, Mif2Go replaces the topicref tag with the appropriate derivative, such as
chapter . Where there is no single top-level topic, Mif2Go wraps the whole lot in a new
top-level tag with no href or navtitle . You can provide values for these tags; see §16.5
Providing attributes for bookmap wrapper elements on page 555.

The following setting determines whether a bookmap references chapter ditamaps or
references topics directly:

[DITAOptions]
; MapBookTopics = Yes (default, include <topicref> for each topic in
; book .ditamap), or No reference the chapter maps i nstead)
MapBookTopics = No

If MapBookTopics=No , the href attribute in a bookmap topicref is to the ditamap
generated for the FrameMaker chapter file.

If MapBookTopics=Yes , and the chapter file has one top-level topic in its map, that
topicref is renamed as the chapter (or other appropriate) element. If the chapter file has
more than one top-level topicref , its topicref s are instead wrapped in the
<chapter> element, which in that case has no href attribute unless you supply one in
[DITABookmapHrefs] ; see §16.5 Providing attributes for bookmap wrapper elements on
page 555.

See also:
§16.2.1.2 Choosing whether a ditamap references maps or topics on page 540

16.3.6 Excluding the book-level reltable from a bo okmap

By default, Mif2Go includes a reltable for the bookmap itself when you generate DITA
output from a FrameMaker book. You can choose to omit this reltable:

[DITAOptions]
; MapBookRelTable = Yes (default, include reltable in book-level map
; when MapBookTopics=Yes), or No (always exclude re ltable from book-
; level map)
MapBookRelTable = No

16 CONFIGURING DITA MAPS MAPPING FRAMEMAKER FILES TO BOOKMAP COMPONENTS

ALL RIGHTS RESERVED. MAY 18, 2013 551

See also:
§16.3.5 Choosing whether a bookmap references maps or topics on page 550

16.4 Mapping FrameMaker files to bookmap component s
Mif2Go does a reasonable job of constructing a <bookmap> for simple cases where your
FrameMaker book consists of chapters, TOC, IX, other generated files in front or in back,
and perhaps non-generated files before the TOC, such as a cover page. You can run the
conversion first without any files mapped to <bookmap> components, then add settings as
needed.

In this section:
§16.4.1 Assigning bookmap roles to FrameMaker files on page 551
§16.4.2 Assigning frontmatter and backmatter roles and components on page 552
§16.4.3 Including multiple booklist components of the same type on page 553
§16.4.4 Assigning a divider role to a section file or chapter on page 554
§16.4.5 Assigning a series of roles to a single FrameMaker file on page 554
§16.4.6 Assigning a single role to a series of FrameMaker files on page 554
§16.4.7 Including placeholders for additional bookmap elements on page 555

16.4.1 Assigning bookmap roles to FrameMaker files

To indicate the role and (if relevant) component that each file in your FrameMaker book
should play in the <bookmap> :

[DITABookmapFiles]
; filename without .ext = role, optionally followed by a component
; or by Lists then a booklist component, optionally followed by
; ElementBefore or ElementAfter; or None (omit from bookmap).

Table 16-2 lists the roles you can assign to FrameMaker files. The role (and components,
if any) assigned to a FrameMaker file determine which element or elements are included
in the bookmap for the DITA topic or topics generated from that file. Entries appear in the
<bookmap> element in the same order they appear in your FrameMaker book. If you need
a different sequence, create a different FrameMaker .book file and populate it with files
in the sequence you need; then construct the DITA <bookmap> from that alternate
FrameMaker book.

Table 16-2 Roles of component files in a bookmap

Role Book component Ref.

Front Frontmatter, including one or more components; place first after = 16.4.2

Back Backmatter, including one or more components; place first after = 16.4.2

Lists Generated file; must follow Front or Back . 16.4.2

Part Divider for logical groups of chapters, either explicit or implicit 16.4.4

Chapter Normal chapter files

Appendix Normal appendix files

*Seg Multiple-role chapters 16.4.5

Multiple-chapter roles 16.4.6

ElementBefore Elements to be generated precede this file 16.4.7

ElementAfter Elements to be generated follow this file 16.4.7

None Omit from the bookmap

MAPPING FRAMEMAKER FILES TO BOOKMAP COMPONENTS MIF2GO USER’S GUIDE

552 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Front, Back, and
Lists

For files that belong in frontmatter or backmatter, Front or Back must precede any other
role or component. If you assign Front or Back to a file, that role applies to the following
component, if any. Lists must follow Front or Back , and must be followed by a
booklist component. See §16.4.2 Assigning frontmatter and backmatter roles and
components on page 552.

Authored vs.
generated files

Most of the non-generated files in your FrameMaker book should be assigned either the
Chapter or Appendix role. Because Chapter is the default role, you do not have to list
single-role chapter files in [DITABookmapFiles] , except for chapters that begin implicit
multi-chapter sections; see §16.4.4 Assigning a divider role to a section file or chapter on
page 554.

Omitting a file
from the list

If you do not list in [DITABookmapFiles] a particular file in your FrameMaker book,
Mif2Go includes that file in the bookmap based on file type (authored vs. generated) and
on the position of the file relative to files that are listed. A non-generated file that occurs
after the TOC (if any) becomes a <chapter> element.

Omitting all files
from the list

If you do not list any files, the bookmap contains one entry for each FrameMaker file, with
a <frontmatter> element for the FrameMaker TOC and a <backmatter> element for
the FrameMaker IX. References to any other generated files appear in <frontmatter>
or <backmatter> as <booklist> elements, based on their location in the FrameMaker
book. All non-generated files become <chapter> elements, except for any preceding the
TOC (such as a cover page), which become <topicref> elements in <frontmatter> .

Omitting a file
from the bookmap

When filename=None, the file listed is not included in the bookmap.

16.4.2 Assigning frontmatter and backmatter roles and components

When filename=Front , follow Front with one of Lists (default), Notice ,
Dedication , Colophon , Abstract , Draftintro , or Preface . For example:

[DITABookmapFiles]
legalpage = Front Notice

When filename=Back , follow Back with one of Lists (default), Notice ,
Dedication , Colophon , or Amendment. For example:

[DITABookmapFiles]
endpage = Back Colophon

When filename=Front Lists or filename=Back Lists (or just Front or Back),
follow Front , Back , or Lists with one of TOC (default for Front Lists), LOF, LOT,
Abbr , Trademark , Biblio , Glossary , IX (default for Back Lists), or Booklist
(used for other types of FrameMaker generated files such as LOM and IOM). For
example:

[DITABookmapFiles]
mybookTOC = Front Lists TOC
mybookLOF = Front Lists LOF
keywords = Back Lists Booklist
mybookIX = Back Lists IX

Table 16-3 shows the roles each component can follow in frontmatter or backmatter.

16 CONFIGURING DITA MAPS MAPPING FRAMEMAKER FILES TO BOOKMAP COMPONENTS

ALL RIGHTS RESERVED. MAY 18, 2013 553

Booklist
components

TOC, and all components that have an element name that ends in list , are booklist items
and must follow Lists , which should follow non-booklist items. Booklist items should be
together, at one end or the other of Front or Back , preferably following any other items.
However, you might have to put some booklist items before other items; for example, to
get the glossary and index before the colophon:

[DITABookmapFiles]
endpage = Back Lists Glossary IX Colophon

If you omit Lists before a booklist item, or Front or Back before Lists , Mif2Go can
usually figure out what is needed and interpolate the missing item. However, it is best to
be explicit about which items belong where.

16.4.3 Including multiple booklist components of t he same type

If you need more than one instance of a component (for example, a second TOC or
multiple indexes), append a different number to each instance of the component name:

[DITABookmapFiles]
endpage = Back Lists IX1 IX2 IX3

In the case of multiple indexes, all FrameMaker markers used to generate all of them must
be mapped to Index first. This is because all must become <indexterm> elements in
DITA output, even though they are destined for different <indexlist> elements.

To map other index markers to Index (for example):
[Markers]
RTFkeyword = Index
HTMkeyword = Index
XMLkeyword = Index

See §29.3.1 Remapping and cloning marker types on page 836.

Table 16-3 Components for bookmap frontmatter and backmatter

Component DITA element

Can follow these roles in [DITABookmapFiles]:

Front Back Front Lists Back Lists

Lists <booklists> Yes Yes

Notice <notices> Yes Yes

Dedication <dedication> Yes Yes

Colophon <colophon> Yes Yes

Abstract <bookabstract> Yes

Draftintro <draftintro> Yes

Preface <preface> Yes

Amendment <amendments> Yes

TOC <toc> Yes Yes

LOF <figurelist> Yes Yes

LOT <tablelist> Yes Yes

Abbr <abbrevlist> Yes Yes

Trademark <trademarklist> Yes Yes

Biblio <bibliolist> Yes Yes

Glossary <glossarylist> Yes Yes

IX <indexlist> Yes Yes

Booklist <booklist> Yes Yes

MAPPING FRAMEMAKER FILES TO BOOKMAP COMPONENTS MIF2GO USER’S GUIDE

554 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

To associate each set of index markers with the corresponding index, assign each set a
different @outputclass , and assign the same @outputclass to the IX component
where they belong. For example:

[IndexMarkerOutputClass]
RTFkeyword = rtfix
HTMkeyword = htmix
XMLkeyword = htmix

[DITABookmapOutputclasses]
IX1 = rtfix
IX2 = htmix

See §16.5 Providing attributes for bookmap wrapper elements on page 555.

You can leave any original FrameMaker Index markers and their corresponding IX
component (in this example, IX3) without an @outputclass .

16.4.4 Assigning a divider role to a section file or chapter

When filename=Part , filename logically contains all Chapter s until the next Part ,
or the first Appendix , or the first Back item. Part may precede Chapter if the intended
divider is not a file of its own; for example:

[DITABookmapFiles]
advanced = Part Chapter

Part may precede Appendix when AllowPartAppendix=Yes (see §16.3.4 Extending
<part> to include <appendix> on page 550), although this is not valid DITA 1.1.

16.4.5 Assigning a series of roles to a single Fra meMaker file

If a FrameMaker file contains more than one bookmap component, assign role MultiSeg
to that file, along with a sequential list of the topicref s to the starting topics of all
components. Also provide a separate entry for each topicref , assigning the roles
described in §16.4.1 Assigning bookmap roles to FrameMaker files on page 551. Use the
following syntax:

[DITABookmapFiles]
filename = MultiSeg # topicid1 # topicid2 ... # topicidN
#topicid1 = role1 role2 ...
...
#topicidN = role1 role2 ...

Each topicref for the specified topic ID includes any topicref s nested within it. Each
topicref listed may be nested at any level in its chapter ditamap, or not nested. List
topics in the sequence used in the bookmap; the original sequence in the chapter ditamap
is ignored. Any topicref that is not mentioned after MultiSeg , and is not nested in a
topicref that is mentioned, is excluded from the bookmap.

16.4.6 Assigning a single role to a series of Fram eMaker files

If multiple consecutive FrameMaker files comprise a single bookmap component, use the
following syntax to assign the same role to those files:

[DITABookmapFiles]
filename1 = StartSeg role component ...
filename2 = ContinueSeg
...
filenameN = EndSeg

16 CONFIGURING DITA MAPS PROVIDING ATTRIBUTES FOR BOOKMAP WRAPPER ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 555

All topicref s from all the segment chapter ditamaps are wrapped within one new
chapter-level element with no href attribute.

16.4.7 Including placeholders for additional bookm ap elements

You can include placeholders for DITA elements that are not being converted from
FrameMaker, but instead will be produced when the bookmap is rendered for presentation;
for example, a glossary or an index.

Items you can use for placeholders include roles Front , Back , and Lists , and any of the
components in Table 16-3. However, you cannot assign roles Part , Chapter , or
Appendix , or a Seg directive.

To position a placeholder in the bookmap:

 • In [DITABookmapFiles] , assign property ElementBefore or ElementAfter to
the file the placeholder should precede or follow.

 • In [BookmapElementBefore] or [BookmapElementAfter] , assign the desired
placeholder component to the file.

For example, to specify that one or more DITA elements should precede the preface for
the Mif2Go User’s Guide, FrameMaker file about.fm :

[DITABookmapFiles]
about = Front Preface ElementBefore

To list components for the DITA elements to precede the preface:
[BookmapElementBefore]
about = Front Lists TOC LOF LOT

And to specify that three different indexes should follow the last appendix file,
m2cmod.fm :

[DITABookmapFiles]
m2cmod = Appendix ElementAfter

[BookmapElementAfter]
m2cmod = Back Lists IX1 IX2 IX3

Each component you assign creates an element in the bookmap. Table 16-3 on page 553
shows the name of the element inserted for each component.

16.5 Providing attributes for bookmap wrapper elem ents
For situations in bookmap construction where Mif2Go must provide a wrapper element
that does not directly correspond to a file in your FrameMaker book or to a component
specified in [DITABookmapFiles] , unless you supply values for navtitle , href ,
type , format , scope , and outputclass attributes, these attributes are not present in
the wrapper elements.

Mif2Go uses the settings described in this section only when wrappers are produced for a
bookmap. In particular:

 • For a FrameMaker file mapped to Part as well as to Chapter , the navtitle
attribute applies to the Part tag.

 • If the file is MultiSeg , and a wrapper is needed for one segment, the #topicID is
used as the file name.

 • For a StartSeg /EndSeg group, the StartSeg file name specifies the navtitle for
the full wrapper.

OVERRIDING DITA MAP SETTINGS WITH MARKERS MIF2GO USER’S GUIDE

556 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • The href attribute is to a topic that is not already in your FrameMaker .book , and is
provided as an introduction to the wrapped topics.

To specify a value for the navtitle attribute:
[DITABookmapTitles]
; filename (without .ext) or component name = navti tle attribute
; for its wrapper element

To specify a value for the outputclass attribute:
[DITABookmapOutputclasses]
; filename (without .ext) or component name = outpu tclass attribute
; for its wrapper element

To specify a value for the href attribute:
[DITABookmapHrefs]
; filename (without .ext) or component name = href attribute
; for its wrapper element

To specify a value for the type attribute:
[DITABookmapHrefTypes]
; filename (without .ext) or component name = type attribute
; for its wrapper element, for the specified href.

To specify a value for the format attribute:
[DITABookmapHrefFormats]
; filename (without .ext) or component name = forma t attribute
; for its wrapper element, for the specified href.

To specify a value for the scope attribute:
[DITABookmapHrefScopes]
; filename (without .ext) or component name = scope attribute
; for its wrapper element, for the specified href.

16.6 Overriding DITA map settings with markers
You might need to insert markers to override configuration settings for particular DITA
maps or for a bookmap. Mif2Go provides predefined marker types for this purpose, listed
in Table 16-4. Most of these marker types are intended to provide ways to cope with
unusual situations.

(No illustrations)

Table 16-4 Predefined marker types for DITA maps and bookmaps

Marker type Content Ref.

DITAAnchor ID attribute of a map <anchor> element 16.2.6

DITALinkText Text of a map <linktext> element 16.2.6

DITAMapHead Navigation title for the current chapter map 16.2.1.5

DITAMapID ID attribute for the current chapter map 16.2.1.6

DITAMapName Base name (without extension) of map file for current chapter 16.2.1.3

DITAMapref href attribute of a map <topicref> element 16.2.6

DITAMapTitle Text of <title> element inserted at map level 0 16.2.1.4

DITANavref mapref attribute of a map <navref> element 16.2.6

DITARelLinking Linking attribute for a topic in a relationship table 16.2.5.4

DITARelRow ALink subject name for a row in a relationship table 16.2.5.3

ALL RIGHTS RESERVED. MAY 18, 2013 557

17 Converting to DocBook XML

Mif2Go generates DocBook projects from both structured and unstructured FrameMaker
documents, producing DocBook XML output. This section shows how to configure
DocBook-specific options. Topics include:

§17.1 Generating DocBook XML with Mif2Go on page 557
§17.2 Setting up a DocBook XML project on page 559
§17.3 Specifying general options for DocBook on page 562
§17.4 Configuring DocBook elements on page 564
§17.5 Nesting DocBook block elements on page 573
§17.6 Designating ancestors for table elements on page 580
§17.7 Specifying options for figure elements on page 581
§17.8 Overriding DocBook settings with markers on page 582

See also:
§32 Working with content models on page 905

17.1 Generating DocBook XML with Mif2Go
Before you set up a Mif2Go DocBook project, be clear about what level of familiarity
with DocBook you need, what you intend to do with the output, and what role you want
Mif2Go to play in producing DocBook output.

In this section:
§17.1.1 Understanding what you need to know about DocBook on page 557
§17.1.2 Clarifying your purpose for creating DocBook output on page 557
§17.1.3 Understanding what information you must supply on page 558

17.1.1 Understanding what you need to know about D ocBook

To use Mif2Go effectively to produce DocBook output, you need a basic knowledge of
DocBook, from study of other materials. Teaching our customers DocBook is beyond the
scope of the Mif2Go User’s Guide. You have to know what you want; then perhaps we
can tell you how to make it happen with Mif2Go .

If you are not familiar with DocBook, here is a good starting point:
http://www.docbook.org/tdg/en/html/docbook.html

If you intend to produce output from the DocBook XML files Mif2Go produces, you will
also need DocBook XSL: The Complete Guide by Bob Stayton:

http://sagehill.net/docbookxsl/index.html

For a reference to DocBook style sheets, see:
http://docbook.sourceforge.net/release/xsl/current/doc/index.html

Be aware that conversions to another source format, such as DocBook XML, can be
difficult. There are no shortcuts. You might need days or weeks to get it right, working
with small test documents, before you can go into production.

17.1.2 Clarifying your purpose for creating DocBoo k output

Mif2Go supports two general purposes for creating DocBook output from FrameMaker:

http://www.docbook.org/tdg/en/html/docbook.html
http://sagehill.net/docbookxsl/index.html
http://docbook.sourceforge.net/release/xsl/current/doc/index.html

GENERATING DOCBOOK XML WITH MIF2GO MIF2GO USER’S GUIDE

558 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Migrate legacy content to DocBook XML
Export current content to DocBook as needed.

A third potential purpose might be to use DocBook as an intermediate step in converting
documents from unstructured to structured FrameMaker. You could use Mif2Go to
produce DocBook XML from your unstructured files, then bring the results back into
structured FrameMaker. This should be a lot faster than developing FrameMaker
conversion tables.

Migrate legacy
content to

DocBook XML

When you migrate legacy content from FrameMaker to DocBook XML, completeness is
less important than it would be if you retain source in FrameMaker. After converting your
document you edit in an XML environment. Even validity can be relaxed, if your existing
document does not quite measure up. As long as the XML is well formed, you can use
XSLT to make adjustments. You can even run XSLT from within Mif2Go . See §34.4
Executing operating-system commands on page 937.

Export current
content to

DocBook as
needed

To continue using FrameMaker as source, and export content to DocBook as needed, you
must interpolate into the DocBook output any data required by DocBook but not needed in
FrameMaker. You can use FrameMaker markers or dedicated conditional paragraph
formats for file-specific data, and Mif2Go configuration settings for general data items
such as book revision level. You do not need XSLT for this purpose. In fact, you should
not need XSLT at all, unless your FrameMaker document does not follow the same
sequence of items that DocBook expects.

With Mif2Go you can continue to write in FrameMaker, and get a matching DocBook set
any time you need one. And you can produce DocBook output from unstructured as well
as from structured FrameMaker.

17.1.3 Understanding what information you must sup ply

You do not have to use structured FrameMaker to produce DocBook XML with Mif2Go .
You can use structured FrameMaker, provided you use named formats rather than the
Word-style formatting some structured-FrameMaker users prefer. Whether you use
structured or unstructured FrameMaker, you must arrange the content of your document to
fit the DocBook architecture before you can convert to completely valid DocBook output.

Mif2Go does not try to validate the output; you must use a validating parser to check
output validity. However, Mif2Go does ensure valid parental relationships and first-child
restrictions. Valid sequence of items within those constraints has to come from the implied
or explicit structure of the FrameMaker document.

Mif2Go support for DocBook requires you to supply the following kinds of information in
addition to your FrameMaker document:

DTD properties
FrameMaker mappings
Disambiguation

DTD properties Mif2Go provides two built-in configurations for content models for DocBook version 4.5:
one for articles, and one for books.

If you need to modify one of these content models, you can download a copy from Omni
Systems; see §32.2.1 Obtaining a copy of a built-in content-model on page 906. However,
the only valid purpose for modifying a built-in content model would be to correct settings
for element types. See §32.6 Inspecting and correcting element types on page 912.

17 CONVERTING TO DOCBOOK XML SETTING UP A DOCBOOK XML PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 559

To replace a content model, use free command-line utility dtd2ini to generate a content
model from another DTD, and produce a content-model configuration file for your
DocBook project. See §32.2.2 Generating a content model from a DTD on page 906.

FrameMaker
mappings

You must map FrameMaker file information, such as formats, to DocBook elements. This
information goes into configuration file m2docbook.ini , and possibly into chapter-
specific configuration files. You might have to use marker in your FrameMaker document
to provide information such as topic IDs, element names, and attributes, in cases where
these items cannot be derived from the document.

Note: The name of your FrameMaker book must not duplicate the name of any chapter
file.

Disambiguation In an unstructured FrameMaker document, presentation might be the same for several
different usages. Mif2Go cannot necessarily determine whether (for example) text tagged
<Italic> is a computer term, a foreign language term, or a long quote, all of which have
different representations in DocBook, based on the context. The onus is on the author to
disambiguate these usages, if necessary by inserting DocBook-specific custom markers in
individual instances of particular formats. Mif2Go does handle a few presentational
features automatically; for example, by default forced returns (FrameMaker Shift+Enter)
are converted to spaces.

17.2 Setting up a DocBook XML project
When you set up a DocBook XML project from within FrameMaker, if configuration file
_m2docbook.ini is not already present in the project directory, Mif2Go creates this
configuration file for you; see §3 Converting a book or document on page 77.

To add or change any of the options described in this section, edit configuration file
_m2docbook.ini , located in the project directory. Or, to apply the changes to all of your
DocBook XML projects, edit the configuration template referenced by
_m2docbook.ini :

%omsyshome%\m2g\local\config\local_m2docbook_config .ini .

See §30.5 Deciding which configuration file to edit on page 856.

In this section:
§17.2.1 Creating a DocBook project on page 559
§17.2.2 Choosing set-up options for a DocBook project on page 560
§17.2.3 Specifying DocBook output options on page 561

17.2.1 Creating a DocBook project

To create a DocBook XML project:

1. Create a directory for DocBook output, separate from the directory where your
FrameMaker document is located.

2. With your FrameMaker book or document file open, choose File > Set Up Mif2Go
Export ; the Choose Project dialog opens (see §3.3 Creating a Mif2Go conversion
project on page 78).

3. Name your DocBook project, and browse to the project directory you created in
Step 1.

4. Choose output type DocBook and click OK.

SETTING UP A DOCBOOK XML PROJECT MIF2GO USER’S GUIDE

560 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

5. Check options in the Set Up DocBook Project dialog (see §17.2.2 Choosing set-up
options for a DocBook project on page 560).

6. Click OK to dismiss the dialog.

When you click OK on the Set Up DocBook Project dialog, Mif2Go copies a new project
configuration file, _m2docbook.ini , to your project directory. In addition to the settings
you specified in the set-up dialog, this file contains a series of empty configuration
sections. It is up to you to fill these sections with the rest of the settings required to
convert your document. Use a text editor to edit _m2docbook.ini ; see §4.1 Working
with Mif2Go configuration files on page 91.

17.2.2 Choosing set-up options for a DocBook proje ct

When you choose DocBook as the output type for a new project, the Set Up dialog shown
in Figure 17-1 opens. Table 17-1 shows the corresponding settings in the configuration
file. You must edit the configuration file to specify additional options.

See also:
§3.4 Choosing project set-up options on page 79
§13.2.2 Choosing set-up options for an HTML or XHTML project on page 425

Figure 17-1 Set Up DocBook Project

17 CONVERTING TO DOCBOOK XML SETTING UP A DOCBOOK XML PROJECT

ALL RIGHTS RESERVED. MAY 18, 2013 561

17.2.3 Specifying DocBook output options

When you set up a DocBook project, Mif2Go includes settings for several output options.
You can specify values for these options and a few more in configuration file
_m2docbook.ini .

In this section:
§17.2.3.1 Changing the DocBook output file extension on page 561
§17.2.3.2 Specifying content model and root element on page 561
§17.2.3.3 Specifying book file options on page 562

17.2.3.1 Changing the DocBook output file extensio n

To change the file extension for DocBook chapter files:
[Setup]
FileSuffix = . ext

The default extension is .ent .

17.2.3.2 Specifying content model and root element

By default, Mif2Go uses the built-in DocBook version 4.5 content model. To specify a
different DocBook content model:

[DocBookOptions]
; ContentModel = name of content-model .ini, withou t extension,
; with which to replace the built-in DocBook 4.5 c ontent model.
ContentModel = docbook45

If you specify a different content model, you must generate a configuration file for that
model from the DTD. See §32 Working with content models on page 905.

To specify the root element:

Table 17-1 DocBook set-up options and configuration settings

Set-up dialog Configuration file
Option Section Setting Default Ref.

Use Cascading
Style Sheets

[CSS] UseCSS=Yes No 22.4

Path to CSS file [CSS] CssFileName= mycss.css local.css 22.4.3

Create CSS from
FM styles

[CSS] WriteCssStylesheet=O
nce

Never 22.4.3

DocBook Root is: [DocBookOptions] DocBookRoot= book |
article

book

Use CALS Table
Model

[Tables] UseCALSModel=Yes Yes 17.3.4

Chapter File is: (None) See below * Entity 17.2.3

Chapter File Ext. [Setup] XMLSuffix=. ext .ent 17.2.3

Book File Name [DocBookOptions] BookFileName= nm.xml mydoc.xml 17.2.3

Book File Title [DocBookOptions] BookFileTitle= Title Your Book
Title

17.2.3

* Selects the root (book or article) and the chapter-file extension (.ent or .xml). If the root is book , do
not check Use Cascading Style Sheets.

SPECIFYING GENERAL OPTIONS FOR DOCBOOK MIF2GO USER’S GUIDE

562 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[DocBookOptions]
; DocBookRoot = element to use at the XMLRoot.
DocBookRoot = book

Content models for both <article> and <book> are built in. You can use others, such as
<set> , by replacing the content model and specifying the root name here. See §32.2.2
Generating a content model from a DTD on page 906.

17.2.3.3 Specifying book file options

By default, Mif2Go writes a DocBook book file for the FrameMaker book, with the
DocBook chapter files included as entity references.

To omit the book file:
[DocBookOptions]
; WriteBookFile = Yes (default, write one file for Frame book) or No
; Sets UseDOCTYPE and UseXMLRoot to No for the chapt er entity files.
WriteBookFile = No

See §17.3.2 Configuring entity information for DocBook XML on page 563.

To specify the name of the DocBook book file and title of the book:
[DocBookOptions]
; BookFileName = name to use for book file, with ex t, default is
; Frame book file name with extension .xml
BookFileName = YourBookFileName.xml
; BookFileTitle = text of title for book, default i s literally
; Your Book Title
BookFileTitle = Your Book Title

17.3 Specifying general options for DocBook
This section lists DocBook-specific default values and recommended options for XHTML
and XML configuration settings.

In this section:
§17.3.1 Configuring styles for DocBook XML on page 562
§17.3.2 Configuring entity information for DocBook XML on page 563
§17.3.3 Configuring links for DocBook XML on page 563
§17.3.4 Configuring tables for DocBook XML on page 563
§17.3.6 Configuring footnotes for DocBook XML on page 564

17.3.1 Configuring styles for DocBook XML

By default, Mif2Go suppresses FrameMaker autonumbers for DocBook:
[HTMLParaStyles]
* = NoAnum

However, if you use FrameMaker numbering properties for things that have nothing to do
with numbering, you can override the suppression for selected paragraph formats:

[HTMLParaStyles]
ParaFmt = Anum

By default, Mif2Go converts forced returns (FrameMaker Shift+Enter) to spaces for
DocBook. To simply close then reopen the paragraph tag (without attributes) instead:

[HTMLOptions]
XMLBreakPara = Yes

17 CONVERTING TO DOCBOOK XML SPECIFYING GENERAL OPTIONS FOR DOCBOOK

ALL RIGHTS RESERVED. MAY 18, 2013 563

To do so selectively by paragraph format:
[HTMLParaStyles]
ParaFmt = XMLBreak

See §21.3.8 Deciding how to treat forced returns on page 651.

17.3.2 Configuring entity information for DocBook XML

Set the following options to values appropriate for DocBook:
[HTMLOptions]
; UseDOCTYPE = Yes (default) or No (when writing Do cBook entity files)
UseDOCTYPE = No
; UseXMLRoot = Yes (default) or No (when writing Do cBook entity files)
UseXMLRoot = No
; XHLangAttr = xml:lang (default, set as needed)
XHLangAttr = xml:lang

When [DocBookOptions]WriteBookFile=Yes , Mif2Go sets UseDOCTYPE and
UseXMLRoot to No for chapter entity files; see §17.2.3 Specifying DocBook output
options on page 561.

17.3.3 Configuring links for DocBook XML

DocBook requires linking mark-up that is slightly different from mark-up for generic
XML. The following settings require other than the default value:

[HTMLOptions]
; HrefAttribute = name to use for link source attr, default href; use
; linkend for DocBook
HrefAttribute = linkend
; UseHash = Yes (default, start local hrefs with #)
; or No; the # is not valid in DocBook
UseHash = No
; UseUlink = No (default, use ATagName for URLs) or Yes (use
; ulink for URLs, and url as the HrefAttribute wit hin them)
UseUlink = Yes
; RemoveXrefHotspots = No (default) or Yes (remove hotspot text for
; xrefs and hyperlinks to Frame files, retain it f or external URLs)
RemoveXrefHotspots = Yes
; UseListedXrefFilesOnly = No (default) or Yes (con sider any xref
; target files not listed in [XrefFiles] to refer to the current
; file.) This suppresses filenames for DocBook where files are in the
; same DocBook book; files not in the book must be l isted in
; [XrefFiles].
UseListedXrefFilesOnly = Yes

See also:
§14.6 Configuring links for generic XML on page 467

17.3.4 Configuring tables for DocBook XML

DocBook supports both the CALS table model and the HTML table model:
[Tables]
; UseCALSModel = No (HTML default) or Yes (XML defa ult)
UseCALSModel = Yes
; UseInformaltableTag = No (default) or Yes (use wh en there is no
; table caption)
UseInformaltableTag = Yes
; InternalTableCaption = Yes (default) or No (put o utside table)
InternalTableCaption = No

CONFIGURING DOCBOOK ELEMENTS MIF2GO USER’S GUIDE

564 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; TableCaptionTag = tag for internal table captions , default "caption"
TableCaptionTag = caption

17.3.5 Retaining empty paragraph tags in DocBook t able cells

By default, for DocBook output Mif2Go omits paragraph tags from otherwise empty non-
preformatted paragraphs in table cells. However, you can choose to keep the tags:

[Tables]
; RemoveEmptyTableParagraphs = No (default)
; or Yes (DITA/DocBook default)
RemoveEmptyTableParagraphs = No

When RemoveEmptyTableParagraphs=No , paragraph tags (such as <para></para>)
for empty paragraphs are retained in table cells in DocBook XML.

When RemoveEmptyTableParagraphs=Yes , paragraph tags for empty paragraphs in
table cells are omitted (except for preformatted text, where tags are always preserved). A
table cell that is blank in FrameMaker (contains only empty paragraphs) would become
just <entry></entry> in DocBook XML output.

Note: This setting is independent of the setting for removing empty paragraphs in text;
see §21.3.10 Eliminating empty paragraphs in text on page 652.

See also:
§24.4.10 Deciding what to do with empty paragraphs in table cells on page 744

17.3.6 Configuring footnotes for DocBook XML

Footnotes in DocBook require other than the default settings for some features:
[HTMLOptions]
; Footnotes = Jump (HTML default, at end), Embed (b etween []),
; Inline (XML default), or None
Footnotes = Inline
; FootInlineParaTag = tag for beginning and ending inline footnote
; paras
FootInlineParaTag = para
; FootInlineIDPrefix = start of ID attr for inline footnotes; rest
; is sequential number starting with 1 at start of f ile.
FootInlineIDPrefix = foot
; UseFootXrefTag = No (HTML default) or Yes (XML de fault)
UseFootXrefTag = Yes
; FootInlineRefTag = tag for xrefs to inline footno tes, uses linkend
; for href attribute, for DocBook
FootInlineXrefTag = footnoteref

See also:
§21.11 Converting footnotes to HTML or XML on page 671

17.4 Configuring DocBook elements
In this section:

§17.4.1 Treating FrameMaker format names as element names on page 565
§17.4.2 Mapping paragraph formats to DocBook elements on page 565
§17.4.3 Mapping character formats to DocBook elements on page 568
§17.4.4 Assigning ID attributes to DocBook block elements on page 569
§17.4.5 Assigning attributes other than ID to DocBook elements on page 571

17 CONVERTING TO DOCBOOK XML CONFIGURING DOCBOOK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 565

17.4.1 Treating FrameMaker format names as element names

If some of your FrameMaker formats are already named for DocBook elements, you can
lessen the chore of mapping formats to elements by directing Mif2Go to use the format
name as the DocBook element name wherever possible (that is, when the content model
includes an element of that name). This works only if the named element is of an
appropriate type: block allowing text for a paragraph format, or inline allowing text for a
character format.

However, leaving any paragraph format unmapped is risky; some formats might match the
names of DocBook elements that do not do what you want.

To map FrameMaker format names to DocBook elements of the same name, where
possible:

[DocBookOptions]
; UseFormatAsTag = No (default, if tag unmapped use default elem),
; or Yes (if unmapped, use Frame format name if va lid in content
; model).
UseFormatAsTag = Yes

When UseFormatAsTag=Yes , any FrameMaker format with a name that is the same as a
DocBook element name in the current content model is mapped to that element.

Unmapped format names that do not correspond to such element names are mapped to the
default element; see:

§17.4.2.2 Specifying a default element for unmapped paragraph formats on page 566
§17.4.3.2 Specifying a default element for unmapped character formats on page 569.

17.4.2 Mapping paragraph formats to DocBook elemen ts

When you map paragraph formats to DocBook elements, you must ensure that the element
mapped to is allowed to contain text.

In this section:
§17.4.2.1 Assigning DocBook elements to paragraph formats on page 565
§17.4.2.2 Specifying a default element for unmapped paragraph formats on page 566
§17.4.2.3 Omitting invalid tags for default DocBook block elements on page 566
§17.4.2.4 Overriding element mapping for paragraph formats on page 567
§17.4.2.5 Providing aliases for paragraph formats on page 567

17.4.2.1 Assigning DocBook elements to paragraph f ormats

To map paragraph formats in your document to DocBook elements, assign the element
name to the format name:

[DocBookParaTags]
; Frame paragraph format (wildcards OK) = DocBook e lement, can be
; overridden by a DocBookTag marker; or Frame format = No.
ParaFmtName = elementname

Default element The default element for a FrameMaker paragraph format that is not mapped in
[DocBookParaTags] is one of the following:

 • If UseFormatAsTag=Yes and the name of the format matches the name of a
DocBook element, the format is mapped to that element.

 • If UseFormatAsTag=No or the format name does not match an element name, the
format is mapped to the element designated by DefParaElem ; see §17.4.2.2
Specifying a default element for unmapped paragraph formats on page 566.

CONFIGURING DOCBOOK ELEMENTS MIF2GO USER’S GUIDE

566 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Specify ancestry
for list formats

For list formats, if mapping the format to an element is not sufficient to identify the list
type, you must also specify the parent of the element; see §17.5.2 Designating DocBook
ancestor elements on page 573. Definition lists can be derived from paragraph pairs,
possibly with run-in headings for the term.

Omit element
mapping

To specify that a particular FrameMaker paragraph format should not be mapped to any
element:

[DocBookParaTags]
ParaFmtName = No

The value No means that the tags for the format should be omitted, leaving the text inside
the enclosing element. Use this mapping for code examples (which can run on for pages),
to avoid having each line of code mapped to a separate <codeblock> element. For
example:

[DocBookParaTags]
PgmCode* = No

[DocBookParents]
PgmCode* = codeblock

Specifying ancestry guarantees that Mif2Go will retain the original line breaks, instead of
normalizing them as for HTML or XML.

See §17.5.2 Designating DocBook ancestor elements on page 573.

17.4.2.2 Specifying a default element for unmapped paragraph formats

To specify a default element to use for unmapped paragraph formats:
[DocBookOptions]
; DefParaElem = element to use for Frame para forma ts that are neither
; named for DocBook elements nor mapped in [DocBook ParaTags].
DefParaElem = para

If your configuration file does not include a value for DefParaElem , Mif2Go uses one of
the following as the element for an unmapped format: if UseFormatAsTag=Yes and the
FrameMaker format name (adjusted as for CSS class names) matches the name of a valid
element in the current content model, the format is mapped to that element; otherwise, the
format is mapped to para , the default value of DefParaElem . See §17.4.1 Treating
FrameMaker format names as element names on page 565.

17.4.2.3 Omitting invalid tags for default DocBook block elements

Some DocBook block elements allow only #PCDATA, not paragraph tags. When a
“normal” paragraph must be placed inside one of these blocks, the paragraph tag should be
omitted.

If some paragraph formats in your FrameMaker document are left unmapped, or are
explicitly mapped to the default block element (usually <para>), the presence of such
paragraphs in contexts where the default block element would not be valid could trigger
unwanted interpolation of an arbitrary parent element. For enclosing block elements that
allow mixed content, you can avoid this problem by directing Mif2Go to omit the default
paragraph tags.

To omit invalid default paragraph tags where mixed content is allowed:
[DocBookOptions]
; DropInvalidParaTag = No (default) or Yes (if the para tag is the
; default DefParaElem <para> and is invalid, but #PC DATA is valid,
; drop the tag)
DropInvalidParaTag = Yes

17 CONVERTING TO DOCBOOK XML CONFIGURING DOCBOOK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 567

See also:
§17.5.3 Fixing up interpolated ancestries on page 574

17.4.2.4 Overriding element mapping for paragraph formats

To override the element-name mapping for a given paragraph, insert a DocBookTag
marker in the paragraph, with content the desired element name.

If mapping (or overriding mapping) does not suffice, and you do not need to specify a
required ancestry for the element, use the following instead:

 • [HTMLParaStyles] CodeBefore and CodeAfter properties for the format
 • [ParaStyleCodeBefore] and [ParaStyleCodeAfter] sections to specify the

element tags to surround the text.

See §28.9.3 Surrounding or replacing text with code or macros on page 822.

Another alternative would be to bracket the text with Config markers, with content such as
[ParaStyleCodeBefore]=< element> and [ParaStyleCodeAfter]=</ element>;
see §33.2.2 Overriding settings with configuration markers on page 921.

Note: Mappings provided via [ParaStyleCode*] settings or markers do not
participate in any ancestry you specify for the element in question; see §17.5
Nesting DocBook block elements on page 573.

17.4.2.5 Providing aliases for paragraph formats

If you are generating DocBook from an unstructured FrameMaker document, your
document might use the same format for different purposes, each purpose requiring that
format to be mapped to a different DocBook element, or to be nested in a different
hierarchy, or both; or you might have several formats that map to the same DocBook
element. Because DocBook uses semantic tags, whereas FrameMaker uses presentational
tags, in some cases you need alternate names for paragraph formats to clarify semantic use
cases.

To specify an alternate name, or alias, for a paragraph format:
[DocBookAlias]
; Frame paragraph format = Frame format name to use in place of that
; paragraph format for DocBook purposes
ParaFmtName = AlternateName

An alias works in any [DocBook*] configuration section that uses format names. The
alias can be the name of another paragraph format in your document, provided the two
formats map to exactly the same element with all the same DocBook settings; or, the alias
can be a name you invent.

For additional aliases for the same format, insert a DocBookAlias marker in each instance
of the format that requires a different alias, with content the name of another alias. You can
also use a DocBookAlias marker to override an alias assigned in section
[DocBookAlias] .

You can use as many different aliases for the same paragraph format as your document
requires. If you are creating new alias names, be careful not to duplicate the name of a
format that is already in the FrameMaker paragraph catalog.

You might need to create aliases in the following situations:
One-to-many mappings of the same format to different DocBook elements
Many-to-one mappings of two or more formats to the same DocBook element.

CONFIGURING DOCBOOK ELEMENTS MIF2GO USER’S GUIDE

568 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

One-to-many
mappings

Suppose your FrameMaker document includes a paragraph format named Body2, used in
the following situations:

 • most often as a continuation of a Numbered1 or Numbered paragraph
 • less often as a continuation of a Bulleted paragraph
 • occasionally as a quotation, not part of any list.

This means that in different places in your document Body2 would have to be mapped to
different elements, or participate in different DocBook hierarchies.

To resolve this conflict, you would assign aliases to the alternate uses of Body2. You could
keep the original format name for the most frequent use; however, the name Body2 does
not convey anything about the differing semantics. Therefore you might want to use
aliases for every use; for example, Body2OList, Body2IList, and Body2Quote.

To create an alias for the most prevalent use of Body2:
[DocBookAlias]
Body2 = Body2OList

For the other two uses of Body2, you would have to insert a DocBookAlias marker in each
instance, with content one of the other aliases: Body2IList or Body2Quote. Then you could
specify the following in your project configuration file:

[DocBookTags]
Body2?list = para
Body2Quote = blockquote

Many-to-one
mappings

Suppose your FrameMaker document includes three different paragraph formats for
quotations:

Quote in body text
FtnQ in footnotes
CellQ in table cells.

All three map to DocBook element <blockquote> . You can make this semantic
equivalence explicit in section [DocBookAlias] , and use the collective alias in other
configuration sections:

[DocBookTags]
Quote = blockquote

[DocBookAlias]
FtnQ = Quote
CellQ = Quote

17.4.3 Mapping character formats to DocBook elemen ts

When you map character formats to DocBook elements, make sure that the element
mapped to is allowed to contain text.

In this section:
§17.4.3.1 Assigning DocBook elements to character formats on page 568
§17.4.3.2 Specifying a default element for unmapped character formats on page 569
§17.4.3.3 Overriding element mapping for character formats on page 569

17.4.3.1 Assigning DocBook elements to character f ormats

To map character formats in your document to DocBook elements, assign an element
name to each character format name:

[DocBookCharTags]
; Frame character format (wildcards OK) = DocBook e lement, cannot be

17 CONVERTING TO DOCBOOK XML CONFIGURING DOCBOOK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 569

; overridden by a DocBookTag marker; or Frame format = No.
CharFmtName = elementname

To specify that a particular FrameMaker character format should not be mapped to an
element:

[DocBookCharTags]
CharFmtName = No

The value No means that tags for the format should be omitted, leaving the text inside the
enclosing element. For example, map the character formats you use for links and cross
references to No. Mif2Go automatically generates <xref> tags from the cross references
in FrameMaker, based on the format, but you do not need to map the format itself to any
element.

The default element for a FrameMaker character format that is not mapped in
[DocBookCharTags] is the element designated by DefCharElem ; see §17.4.3.2
Specifying a default element for unmapped character formats on page 569. It is best to
map each character format to the most specific element possible, which is not often the
default element.

17.4.3.2 Specifying a default element for unmapped character formats

To specify a default element to use for unmapped character formats:
[DocBookOptions]
; DefCharElem = element for Frame char formats that are neither
; named for DocBook elements nor mapped in [DocBook CharTags]
DefCharElem = phrase

If your configuration file does not include a value for DefCharElem , Mif2Go uses one of
the following as the element for an unmapped format: if UseFormatAsTag=Yes and the
FrameMaker format name (adjusted as for CSS class names) matches the name of a valid
element in the current content model, the format is mapped to that element; otherwise, the
format is mapped to phrase , the default value of DefCharElem . See §17.4.1 Treating
FrameMaker format names as element names on page 565.

17.4.3.3 Overriding element mapping for character formats

If mapping a FrameMaker character format does not suffice for an inline element, you can
use DocBookStartElem and DocBookEndElem markers placed at the start and end,
respectively, of the character span to be delimited as an element. The content of each
marker is the tag name for the inline element; Mif2Go provides the < > and </ > . You
cannot use a DocBookTag marker to override the element-name mapping for an inline
element.

17.4.4 Assigning ID attributes to DocBook block el ements

Every block element in DocBook that is the target of a cross reference or hypertext link
must have an ID attribute. You can have Mif2Go automatically assign an ID to each block
element derived from a FrameMaker paragraph (or to an interpolated parent of such a
block element). You can also use markers to assign IDs to specific block elements, or to
override a Mif2Go -assigned ID.

In this section:
§17.4.4.1 Understanding how Mif2Go creates ID attribute values on page 570
§17.4.4.2 Providing IDs for block elements on page 570
§17.4.4.3 Providing IDs for interpolated parents of block elements on page 570

CONFIGURING DOCBOOK ELEMENTS MIF2GO USER’S GUIDE

570 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§17.4.4.4 Specifying an ID for an individual block element or parent on page 571

17.4.4.1 Understanding how Mif2Go creates ID attri bute values

When Mif2Go assigns an ID to a block element in DocBook, the value of the ID attribute
is a combination of the Mif2Go FileID of the FrameMaker file being processed and the
FrameMaker ObjectID of the paragraph from which the element was generated; see
§5.1.10 Preserving Word-generated cross-reference markers on page 114.

If a particular block element requires an ID value, Mif2Go looks for a DocBookElemID
marker in the paragraph from which the element was generated. If that paragraph does not
contain a DocBookElemID marker, Mif2Go uses the content of the first newlink marker in
the paragraph as the ID for the element. If there is no newlink marker, and you have
requested automatic ID assignment for that element, Mif2Go assigns an ID.

You can override an automatically assigned ID for a particular block element by inserting
either a newlink marker or a DocBookElemID marker in the paragraph from which the
element is generated; see §17.4.4.4 Specifying an ID for an individual block element or
parent on page 571.

17.4.4.2 Providing IDs for block elements

To direct Mif2Go to automatically include an ID attribute in each instance of a block
element mapped from a particular FrameMaker paragraph format:

[DocBookParaIDs]
; Frame para format = No (default, no ID set automa tically) or Yes
ParaFmt = Yes

When ParaFmt=Yes , Mif2Go includes an ID attribute in the element generated from
each paragraph in that format. The default is not to include an ID attribute.

When ParaFmt=No (or when no [DocBookParentIDs] setting is present for
ParaFmt), Mif2Go does not include an ID attribute in the elements generated. For an
individual element that is the target of a link or cross reference, unless a newlink marker is
already present in the FrameMaker paragraph from which the element was generated, you
must insert a DocBookElemID marker to provide an ID for the element; see §17.4.4.4
Specifying an ID for an individual block element or parent on page 571.

Note: If you list the same paragraph format in [DocBookParentIDs] , Mif2Go
changes the value in [DocBookParaIDs] to No; see §17.4.4.3 Providing IDs for
interpolated parents of block elements on page 570.

You can override the value of an automatically assigned ID attribute with a newlink
marker or a DocBookElemID marker inserted in the paragraph in FrameMaker; see
§17.4.4.4 Specifying an ID for an individual block element or parent on page 571.

17.4.4.3 Providing IDs for interpolated parents of block elements

To direct Mif2Go to include an ID attribute in each instance of an interpolated parent of an
element mapped from a particular FrameMaker paragraph format:

[DocBookParentIDs]
; Frame para format = single parent element for whi ch the Frame ID
; of the para should be used.
ParaFmt = ParentElement

When you assign a parent element in [DocBookParentIDs] , Mif2Go includes in the
specified interpolated parent of each element mapped from ParaFmt the ID attribute
assigned (or that would have been assigned) to that element in [DocBookParaIDs] . The

17 CONVERTING TO DOCBOOK XML CONFIGURING DOCBOOK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 571

ID attribute is added only if the parent is interpolated by Mif2Go as a required ancestor of
the current element. Because IDs must be unique, an automatically assigned parent ID
disables any Yes setting for the same format in [DocBookParaIDs] ; see §17.4.4.2
Providing IDs for block elements on page 570. And it also eliminates any ID assigned to
the child via DocBookElemID marker; see §17.4.4.4 Specifying an ID for an individual
block element or parent on page 571.

You can override the value of an automatically assigned parent ID attribute with a
DocBookParentID marker inserted in the child paragraph in FrameMaker; see §17.4.4.4
Specifying an ID for an individual block element or parent on page 571.

17.4.4.4 Specifying an ID for an individual block element or parent

To specify an ID for a single instance of a block element, place a DocBookElemID marker
in the FrameMaker paragraph. The content of the marker is the value of the id attribute.
You can also override any Mif2Go -assigned ID with a DocBookElemID marker.

To specify an ID for the interpolated parent of the block element derived from a particular
paragraph, place a DocBookParentID marker in the paragraph, with content as follows:

parentname=parentid

Do not include spaces around the equals sign.

See also:
§17.4.4.2 Providing IDs for block elements on page 570

17.4.5 Assigning attributes other than ID to DocBo ok elements

You can include non-ID attributes in a DocBook block or inline element by assigning
attribute=" value" pairs to the FrameMaker format mapped to the element. The
attributes you assign with configuration settings apply to all instances of the element in
question. Only those attributes assigned to elements mapped from paragraph formats can
be overridden with markers; attributes of elements mapped from character formats cannot
be overridden with markers.

In this section:
§17.4.5.1 Specifying attribute values for a block element or ancestor on page 571
§17.4.5.2 Specifying attribute values for an inline element on page 572

17.4.5.1 Specifying attribute values for a block e lement or ancestor

You can do any of the following for block elements:
Assign block element attributes
Override block element attributes
Assign interpolated parent attributes
Override interpolated parent attributes

When you want to override default or assigned attributes, keep in mind:
Where to use DocBook Attribute markers

Assign block
element attributes

To apply attributes (other than id) to a block element (other than <xref>), assign
attribute=" value" pairs, separated by spaces, to the paragraph format(s) mapped to
the element:

[DocBookParaAttributes]
; Frame para format (wildcards OK) = attributes
ParaFmt = attribute1=" value1" attribute2=" value2" ...

CONFIGURING DOCBOOK ELEMENTS MIF2GO USER’S GUIDE

572 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You can use Mif2Go macros for any part of the assignment, or even for the entire
assignment. For example:

[DocBookParaAttributes]
ParaFmt = <$ WriteAttrMacro>

Override block
element attributes

To override a setting in [DocBookParaAttributes] or to override default attributes for
a particular instance of a block element, place a DocBookAttribute marker in a paragraph
mapped to the element, with content as follows:

elementname: attribute1=" value1" attribute2=" value2" ...

For example:
step: performance="optional"

The name of the element must be followed by a colon. Separate attribute=" value"
pairs with a space. Each value must be enclosed in double quotes. You can use Mif2Go
macros for everything after the colon.

Assign
interpolated

parent attributes

To assign attributes to an interpolated parent of a block element:
[DocBookParentAttributes]
; Frame para format (wildcards OK) = parentname: at tributes
ParaFmt = parentname: attribute1=" value1" attribute2=" value2" ...

You can use Mif2Go macros for the assignment.

Override
interpolated

parent attributes

To override a setting in [DocBookParentAttributes] or to override default attributes
for an interpolated parent of a block element, place a DocBookAttribute marker in a
paragraph mapped to the element, with content as follows:

parentname: attribute1=" value1" attribute2=" value2" ...

To apply attributes to more than one interpolated parent, use a separate marker for each
parent.

Where to use
DocBook

Attribute markers

Use DocBookAttribute markers only to supply attribute values other than the DTD default
values for an element, or to override attribute values specified in a configuration file. Do
not use DocBookAttribute markers for either of the following:

 • The id attribute of the current element; use a DocBookElemID marker instead. See
§17.4.4.4 Specifying an ID for an individual block element or parent on page 571.

 • The id attribute of an interpolated parent of the current element; use a
DocBookParentID marker instead. See §17.4.4.4 Specifying an ID for an individual
block element or parent on page 571.

A DocBookAttribute marker overrides settings in [DocBookParaAttributes] and
[DocBookParentAttributes] , but does not override settings in
[DocBookCharAttributes] (see §17.4.5.2 Specifying attribute values for an inline
element on page 572).

17.4.5.2 Specifying attribute values for an inline element

To apply attributes (other than id) to an inline element, assign attribute=" value"
pairs, separated by spaces, to the character format(s) mapped to the element:

[DocBookCharAttributes]
; Frame char format (wildcards OK) = attributes
CharFmt = attribute1=" value1" attribute2=" value2" ...

You cannot use markers to override settings in [DocBookCharAttributes] .

17 CONVERTING TO DOCBOOK XML NESTING DOCBOOK BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 573

17.5 Nesting DocBook block elements
Nesting block elements is the most challenging aspect of treating unstructured
FrameMaker as though it were structured.

In this section:
§17.5.1 Understanding how Mif2Go determines element nesting on page 573
§17.5.2 Designating DocBook ancestor elements on page 573
§17.5.3 Fixing up interpolated ancestries on page 574
§17.5.4 Deciding when to fully specify ancestry on page 575
§17.5.5 Specifying alternate ancestries for the same element on page 575
§17.5.6 Specifying first-child status for nested elements on page 576
§17.5.7 Specifying full ancestry for nested sections on page 576
§17.5.8 Closing DocBook ancestor elements on page 577
§17.5.9 Opening DocBook ancestor elements on page 578
§17.5.10 Configuring multi-paragraph list items on page 578
§17.5.11 Specifying DocBook element levels on page 579

See also:
§17.6 Designating ancestors for table elements on page 580
§17.7 Specifying options for figure elements on page 581

17.5.1 Understanding how Mif2Go determines element nesting

For each element, Mif2Go considers whether that element can go inside the current parent
element. If not, Mif2Go uses heuristic methods based on the possible parents, level
limitations, and current context.

For example, suppose your document uses a sequential structure for steps in a procedure:
paragraph format Step1 for the first step, followed by several StepNext paragraphs. To
convert this structure to a hierarchical DocBook structure, with paragraphs in both formats
becoming <step> children of a <procedure> element, you would specify just one
setting (see §17.4.2 Mapping paragraph formats to DocBook elements on page 565):

[DocBookParaTags]
Step* = step

As soon as Mif2Go encounters a paragraph format that is not valid in <procedure> , the
parent tag is closed.

For problem cases, you can use a DocBookLevel marker to explicitly set the level for an
element; see §17.5.11 Specifying DocBook element levels on page 579. However, for
nested lists, use a different approach; see §17.5.5 Specifying alternate ancestries for the
same element on page 575.

Leaving any paragraph or character format unmapped to a parent is risky; Mif2Go might
interpolate the name of a DocBook element that does not do what you want.

17.5.2 Designating DocBook ancestor elements

For block elements such as <listitem> that can have more than one possible ancestry,
map any paragraph formats to the intended (required) parent element, and if necessary,
grandparent element, even great-grandparent element. List ancestors in hierarchical order.
For example:

NESTING DOCBOOK BLOCK ELEMENTS MIF2GO USER’S GUIDE

574 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[DocBookParents]
; Frame para format (wildcards OK) = required paren ts
Heading* = section
Numbered1 = orderedlist listitem
Numbered = orderedlist listitem
Bulleted = itemizedlist listitem
TableTitle = table
Figure Title = mediaobject
Example = example

These settings specify, for example, that a Numbered1 paragraph (which is mapped to
<para> in [DocBookParaTags]) has these ancestors:

<orderedlist>...<listitem>...</listitem>...</ordere dlist>

Therefore, each Numbered1 paragraph starts a new <orderedlist> if and only if an
<orderedlist> is not already open; and starts a new <listitem> if and only if an
<listitem> under the <orderedlist> is not already open. To force a new
<orderedlist><listitem> for Numbered1 paragraphs, you must also give the
Numbered1 paragraph format first-child status under both parent and grandparent
elements; see §17.5.6 Specifying first-child status for nested elements on page 576.

Note: For list items that can include more than one paragraph, map the paragraph format
to <para> , then designate its including list element as a parent.

Use this mapping for formats such as lists, in which <listitem> elements are needed
under <itemizedlist> or <orderedlist> in addition to the <para> elements
mapped in [DocBookParaTags] .

List ancestors in
hierarchical order

If a parent element has more than one possible parent, and only one of those parents can be
a grandparent of the paragraph format in question, list both the grandparent and parent, in
hierarchical order.

Override
individual

ancestries

To override the [DocBookParents] assignment for a given instance of a paragraph
format, place a DocBookParent marker in the paragraph. Make the content of the marker
the name(s) of the ancestor element(s), in hierarchical order. A DocBookParent marker
specifies the required ancestry for the current block element, overriding whatever is
specified in [DocBookParents] .

17.5.3 Fixing up interpolated ancestries

Creating DocBook structure from FrameMaker formats necessarily involves some trial
and error. When you see unexpected interpolation of inappropriate parent elements in your
output, it is usually because you have not specified parents for a particular format-to-
element mapping. For example, suppose you map paragraph format Ref to <para> , and
use a Ref paragraph at the top level of each reference section, where <para> is not valid.
On encountering a Ref paragraph in this situation, with no parents specified for the Ref
format, Mif2Go would go through the list of valid parents for <para> in a reference
section, and interpolate the first set that works.

The remedy is to figure out what would be a more appropriate lineage for the element in
question. You could specify that lineage for the format in [DocBookParents] if it
applies generally, or insert a DocBookParent marker in the paragraph for an isolated
instance. In this example, the following mapping would produce better results:

[DocBookParents]
Ref = refentry refsect1

The Mif2Go search algorithm finds the shortest path, but that is not always the only
shortest path, or the best path.

17 CONVERTING TO DOCBOOK XML NESTING DOCBOOK BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 575

See also:
§17.4.2.3 Omitting invalid tags for default DocBook block elements on page 566

17.5.4 Deciding when to fully specify ancestry

You do not need to map paragraphs in [DocBookParents] for elements that can have
only one possible ancestry, or for cases where Mif2Go can determine heuristically which
of the possible ancestors fits the context best. Specify ancestry in [DocBookParents]
when more than one lineage is possible in the context of use. This is especially important
if your document includes nested section elements; see §17.5.7 Specifying full ancestry
for nested sections on page 576.

Include as many ancestors as necessary to fully specify ancestry for the element to which a
paragraph format is mapped in [DocBookParaTags] . If your document includes actual
instances of different ancestries for the same element, use sets of ancestors to specify the
alternatives; see §17.5.5 Specifying alternate ancestries for the same element on page 575.
In some cases you might have to include all ancestors up to the topic level, and you might
have to determine this necessity by trial and error; that is, list them all whenever not
including all ancestors causes unwanted nesting.

When Mif2Go encounters a set of ancestors specified either in [DocBookParents] or in
a DocBookParent marker, Mif2Go tries to nest the ancestor hierarchy in the current
element. If the entire hierarchy is valid in that position, that is where it stays. This means
that if your FrameMaker document uses paragraph format Body (for example) for all text
that is not nested in a list, and you map Body to DocBook element <para> , you must also
specify non-list parents for Body, because <para> can nest in <listitem> ; in fact, in
almost any block element. Unless you can make sure every block element that could
precede a Body paragraph gets closed (see §17.5.8 Closing DocBook ancestor elements on
page 577), the Body <para> is likely to be nested in the preceding element.

17.5.5 Specifying alternate ancestries for the sam e element

If your document uses the same paragraph format in several lineages, you can create a set
of alternate ancestors for Mif2Go to choose from, depending on the context. The
following predefined element sets are included in your project configuration file when you
first set up a DocBook project. You can alter or delete these sets, and you can define
additional sets.

To define sets of elements to be considered as alternate ancestors:
[DocBookElementSets]
; $setname = DocBook elements in the set.
; These element sets are predefined in the starting .ini for DocBook:
$top = chapter appendix preface article
$sections = sect1 sect2 sect3 sect4 sect5 section s implesect
$text = sect1 sect2 sect3 sect4 sect5 section simpl esect chapter
appendix preface article entry
$list = itemizedlist orderedlist

Each set name must start with a dollar sign ($). You must define each set as a collection of
elements; you may not define one element set in terms of other element sets. The list of
elements in the set must be all on the same line, even if it does not appear that way here.

Note: Element set $list does not include element simplelist , because simplelist
is more restricted as to content than the other list types.

NESTING DOCBOOK BLOCK ELEMENTS MIF2GO USER’S GUIDE

576 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You can use an element set name in place of an element name in [DocBookParents] , in
[DocBookFirst] , or in the corresponding DocBookParent and DocBookFirst markers.
For example:

[DocBookParents]
Body = $text
Body2 = $text $list listitem

Any element in the set is acceptable at the point where it appears in the hierarchical
sequence. There is no equivalent marker.

17.5.6 Specifying first-child status for nested el ements

To specify parent elements in which the paragraph format mapped to a given block
element must appear as the first child:

[DocBookFirst]
; Frame para format = parents under which the curre nt block element
; (or one of its parents) must be the first child.
Numbered1 = orderedlist listitem
Numbered = listitem
Bulleted = listitem

If the parent element you assign to a paragraph format has more than one possible parent,
and the paragraph format in question needs to be first only for one of its possible
grandparents, list both the grandparent and parent, separated by spaces. You can list as
many ancestors as necessary to fully specify first-child status for the paragraph format.
List the ancestors in hierarchical order. The list must match the ancestor list in
[DocBookParents] ; see §17.5.2 Designating DocBook ancestor elements on page 573.

Use these settings mainly for lists, to ensure that a paragraph format starts a new list item
or a new list. For example, these settings specify the following for the list paragraph
formats mapped to <para> in [DocBookParaTags] :

 • A Numbered1 <para> element must be the first child of its parent <listitem>
element, which <listitem> element must be the first child of its <orderedlist>
parent; this setting forces first-child status for the entire lineage of the elements listed,
not just the last.

 • A Numbered <para> element or a Bulleted <para> element must be the first child of
its parent <listitem> element.

To override the [DocBookFirst] assignment for a given instance of a paragraph, place a
DocBookFirst marker in the paragraph. Make the content of the marker the name(s) of the
desired ancestor element(s), in hierarchical order. A DocBookFirst marker specifies that
the current block element must be the first child of its listed ancestor elements, overriding
whatever is specified in [DocBookFirst] .

17.5.7 Specifying full ancestry for nested section s

When you have nested DocBook section s you must specify parentage starting with
$top for every section title. For example:

[DocBookParents]
Heading1 = $top section
Heading2 = $top section section
Heading3 = $top section section section
Heading4 = $top section section section section

Otherwise, the higher levels would also match the rule for the lower levels; so, for
example, the following settings:

17 CONVERTING TO DOCBOOK XML NESTING DOCBOOK BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 577

[DocBookParents]
Heading1 = section
Heading2 = section section

would allow another Heading1 section to follow a Heading2 section without closing the
lower-level Heading2 section . The starting $top prevents this.

In addition, you would need to specify:
[DocBookFirst]
Heading* = section

so that each heading starts a new section when it occurs at the same level as the
preceding section . Otherwise a second Heading2 section would be valid inside the
first Heading2 section , and would not close that section and start a new section of
its own at the same level.

See also:
§17.5.5 Specifying alternate ancestries for the same element on page 575
§17.5.6 Specifying first-child status for nested elements on page 576

17.5.8 Closing DocBook ancestor elements

To get a block element under the correct parent, you might have to specify that an ancestor
element (and all its descendants) must end when the current block element ends; or that
the prior block must end before the current block element begins.

In this section:
§17.5.8.1 Ending ancestor elements before the current block on page 577
§17.5.8.2 Ending ancestor elements after the current block on page 577

17.5.8.1 Ending ancestor elements before the curre nt block

In some cases, it is not clear whether a paragraph is supposed to be a child of the preceding
element (or nest of elements). For example, by default a <para> element following a list
item becomes part of the <listitem> , and that is not necessarily what you want.

To close an element (or a hierarchy of elements) before starting the current block (for
example):

[DocBookCloseBefore]
; Frame para format = elements to be closed, with a ny other elements
; nested under them, before the current block eleme nt starts.
Recap = listitem
Body = itemizedlist orderedlist

Use this setting to force closure of elements that were opened based on settings in
[DocBookParents] ; see §17.5.2 Designating DocBook ancestor elements on page 573.
You can list as many possible ancestors as necessary; order is not important.

For individual cases, you can insert a DocBookCloseBefore marker in the paragraph for
the current block element instead, with content the name(s) of the element(s) to close. You
can also use a DocBookCloseBefore marker to override a [DocBookCloseBefore]
setting when you want to close a higher (or lower) ancestor than the setting specifies.

17.5.8.2 Ending ancestor elements after the curren t block

In some cases, it is not clear whether the end of a block element should also end the
enclosing parent element. To close a parent element at the end of the current block element
(for example):

NESTING DOCBOOK BLOCK ELEMENTS MIF2GO USER’S GUIDE

578 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[DocBookCloseAfter]
; Frame para format = parent to be closed, with any other elements
; nested under it, at the end of the current block e lement.
FigAnchor = figure

Use this setting to force closure of elements that were opened based on settings in
[DocBookParents] ; see §17.5.2 Designating DocBook ancestor elements on page 573.
You can list as many possible ancestors as necessary; order is not important.

For individual cases, you can insert a DocBookCloseAfter marker in the paragraph for the
current block element instead, with content the name(s) of the ancestor element(s) to
close. You can also use a DocBookCloseAfter marker to override a
[DocBookCloseAfter] setting when you want to close a higher (or lower) ancestor than
the setting specifies.

17.5.9 Opening DocBook ancestor elements

To get a block element in the correct position in a hierarchy, you might have to force the
opening of interpolated ancestor elements first; or, in some cases, specify elements that
must be opened after the current element ends.

In this section:
§17.5.9.1 Starting ancestor elements before the current block on page 578
§17.5.9.2 Starting a new hierarchy after the current block on page 578

17.5.9.1 Starting ancestor elements before the cur rent block

To open interpolated ancestor elements before starting the current block:
[DocBookOpenBefore]
; Frame para format = elements to be opened, with a ny other elements
; nested under them, before the current block eleme nt starts.
somefmt=someancestor

Use this setting to force opening of elements when [DocBookParents] does not suffice.

For individual cases, you can insert a DocBookOpenBefore marker in the paragraph for
the current block element instead, with content the name(s) of the element(s) to open. You
can also use a DocBookOpenBefore marker to override a [DocBookOpenBefore]
setting when you want to open a higher (or lower) ancestor than the setting specifies.

17.5.9.2 Starting a new hierarchy after the curren t block

To open a new element or hierarchy of elements after the current block ends:
[DocBookOpenAfter]
; Frame para format = elements to be opened, with a ny other elements
; nested under them, before the current block eleme nt starts.
somefmt=someancestor

Use this setting to force opening of elements when [DocBookParents] does not suffice.

For individual cases, you can insert a DocBookOpenAfter marker in the paragraph for the
current block element instead, with content the name(s) of the element(s) to open. You can
also use a DocBookOpenAfter marker to override a [DocBookOpenAfter] setting when
you want to open an element or hierarchy other than what the setting specifies.

17.5.10 Configuring multi-paragraph list items

By default, at the end of each paragraph Mif2Go closes the block element to which the
paragraph format is mapped (see §17.4.2 Mapping paragraph formats to DocBook

17 CONVERTING TO DOCBOOK XML NESTING DOCBOOK BLOCK ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 579

elements on page 565). If any list items in your document include multiple paragraphs or
sublists, you must make sure that each <listitem> can include more than one block
element, but also that the last item in each list or sublist does not slurp up any following
paragraphs.

To configure list elements:
Map formats to <para> instead of to <listitem> .
Specify ancestry for each format.
Make each format first in <listitem> .
Make sure each list ends where it should.

Map formats to
<para> instead of

to <listitem>

Map list-item paragraph formats to <para> rather than to <listitem> :
[DocBookParaTags]
Numbered1 = para
Numbered = para
Bulleted = para
BulletedLast = para

Specify ancestry
for each format

Designate the appropriate ancestors for each type of list element:
[DocBookParents]
Numbered1 = orderedlist listitem
Numbered = orderedlist listitem
Bulleted = itemizedlist listitem
BulletedLast = itemizedlist listitem

Make each format
first in

<listitem>

Make sure each list-item paragraph is first in its <listitem> element:
[DocBookFirst]
Numbered1 = orderedlist listitem
Numbered = listitem
Bulleted = listitem
BulletedLast = listitem

Make sure each
list ends where it

should

If the last paragraph in a multi-paragraph list item is followed by a paragraph whose
format is mapped to an element that is valid in <listitem> , that paragraph will be
included in the list item. To prevent including the following paragraph, you can explicitly
close the list:

[DocBookCloseAfter]
BulletedLast = itemizedlist listitem

Or insert a DocBookCloseAfter marker in the last list-item paragraph, with content
itemizedlist orderedlist .

As an alternative, you can make sure the list closes before the following paragraph:
[DocBookCloseBefore]
Body = itemizedlist orderedlist

Or insert a DocBookCloseBefore marker in the following paragraph, with content:
itemizedlist orderedlist

17.5.11 Specifying DocBook element levels

Generally speaking, you should not specify element levels unless there really is no other
way to properly nest an element; hard-coded levels can cause obscure damage to the
output.

To specify the level at which a block element should appear in DocBook output, you can
assign a level number to any FrameMaker paragraph formats that are mapped to the
element (see §17.4.2 Mapping paragraph formats to DocBook elements on page 565).
However, for most nesting issues, you should use settings that specify ancestry rather than

DESIGNATING ANCESTORS FOR TABLE ELEMENTS MIF2GO USER’S GUIDE

580 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

level; see §17.5.2 Designating DocBook ancestor elements on page 573. Assign levels
only for the following purposes:

 • to identify paragraph formats mapped to <title> that should start new topics; assign
level 1 to each such format

 • to handle unusual situations that cannot be addressed any other way.

To specify the level of a DocBook block element:
[DocBookLevels]
; Frame para format (wildcards OK) = level in DocBo ok (not Frame) file
; required for the DocBookParaTag specified for this element.
FmtName = N

The lower the level number, the higher the level; <set> is level 0, the root. You cannot
put anything else at level 0. The set title is at level 1. The first book title in the set is at
level 2 (a title below <set> and <book>).

For example:
[DocBookLevels]
Title=1
GlossItem=1
Heading1=3
DefTerm=5
ParamTerm=5

In this example the element levels would be <body> = 1, <section> = 2, the title under
<topic> (mapped implicitly from paragraph format Title) = 1, and any title under
<section> (mapped explicitly from a Heading1 format) = 3. GlossItem is assigned level 1
because this format is mapped to <glossterm> , which is the first element in a glossary
topic (equivalent to <title> in other topic types).

To override the assigned level of a particular paragraph, place a DocBookLevel marker in
the paragraph. A DocBookLevel marker specifies the level at which the current block
element should appear in the DocBook file, overriding whatever is specified for the format
in [DocBookLevels] . The content of a DocBookLevel marker is a single integer.

17.6 Designating ancestors for table elements
To specify the ancestor elements Mif2Go must use for <table> elements:

[DocBookOptions]
; TableParents = parents for table tags, default no ne (use content
; model), may include sets from [DocBookElementSets].
TableParents =

List ancestors in hierarchical order; see §17.5.2 Designating DocBook ancestor elements
on page 573. You can include element sets, as well as single elements; see §17.5.5
Specifying alternate ancestries for the same element on page 575. If you do not specify
any ancestor elements, Mif2Go picks the first valid element listed in the content model,
which might not be what you had in mind.

To specify ancestry for a single <table> element or a discrete group of <table>
elements, assign the list to the table ID (see §24.2 Defining sets of tables on page 728). For
example:

[TableGroup]
FormatA = chart
aa654321 = chart
FormatC = textframe
Unruled = textframe

17 CONVERTING TO DOCBOOK XML SPECIFYING OPTIONS FOR FIGURE ELEMENTS

ALL RIGHTS RESERVED. MAY 18, 2013 581

[DocBookTableParents]
; table ID (not type) = parents to be used for root table element
chart = section
aa654321 = example
textframe = conbody

You can make a single [DocBookTableParents] setting in an HTMConfig marker,
also; see §33.2.2 Overriding settings with configuration markers on page 921.

17.7 Specifying options for figure elements
In this section:

§17.7.1 Deciding what to include in a figure element on page 581
§17.7.2 Specifying ancestry for figure elements on page 581
§17.7.3 Omitting size attributes from images for DocBook on page 582

17.7.1 Deciding what to include in a figure elemen t

When Mif2Go wraps image and title in a <figure> element, by default Mif2Go closes
the <figure> element before moving on to the following content. To direct Mif2Go to
include in <figure> any following elements that are valid:

[DocBookOptions]
; CloseFigAfterImage = Yes (default)
; or No (leave figure open for more)
CloseFigAfterImage = No

By default, Mif2Go wraps all contiguous images and their titles in a single <figure>
element. To make sure each of a series of images is wrapped in its own <figure>
element:

[DocBookOptions]
; MultiImageFigures = Yes (default)
; or No (allow only one image in a figure)
MultiImageFigures = No

When an unstructured FrameMaker document includes several images in a row with only
their titles in between, by default Mif2Go assumes that these titles follow their respective
images. To specify that figure titles precede their images instead:

[DocBookOptions]
; FigureTitleStartsFigure = No (default, title is b elow image),
; or Yes (title is above image)
FigureTitleStartsFigure = Yes

17.7.2 Specifying ancestry for figure elements

To specify the ancestor elements Mif2Go must use to wrap <figure> elements:
[DocBookOptions]
; ImageParents = parents for image tags, default no ne (use content
; model), may include sets from [DocBookElementSets].
ImageParents = list of parent elements

List ancestors in hierarchical order; see §17.5.2 Designating DocBook ancestor elements
on page 573. You can include element sets, as well as single elements; see §17.5.5
Specifying alternate ancestries for the same element on page 575. If you do not specify
any ancestor elements, Mif2Go picks the first valid element listed in the content model,
which might not be what you had in mind.

OVERRIDING DOCBOOK SETTINGS WITH MARKERS MIF2GO USER’S GUIDE

582 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For example, suppose you want most of your images wrapped in <section> , except for
those that occur in paragraphs that are mapped to <example> :

[DocBookOptions]
ImageParents = $iparents

[DocBookElementSets]
$iparents = section example

To specify ancestry for a single image element or a discrete group of image elements,
assign the parent name or parent set name to the graphic ID of the image (see §5.3
Identifying files and objects on page 117), or to the graphic group ID (see §23.5.1.4
Creating named groups of graphics on page 710). For example, to make sure icons in table
cells have <entry> as a parent:

[GraphGroup]
ab01f853 = alerts
ab012c13 = alerts
ab00b5d3 = alerts

[DocBookImageParents]
; image ID (may be group) = parents to be used for image element.
alerts = entry

You can make a single [DocBookImageParents] setting in an HTMLConfig marker,
also; see §33.2.2 Overriding settings with configuration markers on page 921.

Sequence matters
in element sets

Although Mif2Go knows which elements are valid within other elements, Mif2Go has no
idea at all about required sequences of elements. For example, if you set:

[DocBookElementSets]
$iparents = section entry example graphic

Mif2Go will always choose example over graphic . Where the image is valid in both
<graphic> and <example> , Mif2Go lacks any real criterion for choosing one over the
other. Instead, Mif2Go selects, from the list of candidates, the first element that is valid as
a parent of the image element.

In this example, if more of your images belong in <graphic> , you could set:
[DocBookElementSets]
$iparents = section entry graphic example

and then use [DocBookImageParents] for the lesser number of images that should be
in <example> .

17.7.3 Omitting size attributes from images for Do cBook

To eliminate width and height attributes from images for DocBook:
[Graphics]
; GraphScale = Yes (default) to put out width and h eight attributes,
; or No to eliminate them all
GraphScale = No

If you do not specify any setting for GraphScale , width and height attributes are
included.

17.8 Overriding DocBook settings with markers
You might need to insert markers in your FrameMaker document to override configuration
settings for particular DocBook elements. Mif2Go provides predefined marker types for
this purpose, listed in Table 17-2. Most of these marker types are intended to provide ways
to cope with unusual situations. If you have a consistent template, and use normal

17 CONVERTING TO DOCBOOK XML OVERRIDING DOCBOOK SETTINGS WITH MARKERS

ALL RIGHTS RESERVED. MAY 18, 2013 583

FrameMaker cross references and hypertext links, for the most part you can get by with
just configuration settings.

Table 17-2 Predefined marker types for DocBook

marker type Content Ref.

DocBookAlias Alternate name for FrameMaker format for the current block 17.4.2.5

DocBookAttribute Attributes other than ID of a non-<xref> block element or parent 17.4.5.1

DocBookCloseAfter Ancestor elements to be closed just after current block element
ends

17.5.8.2

DocBookCloseBefore Ancestor elements to be closed just before current block element
starts

17.5.8.1

DocBookCode XML code to be inserted at the marker location

DocBookElemID ID attribute for the current block element 17.4.4.4

DocBookEndElem Tag name for an inline element, to place at the end of the span 17.4.3.3

DocBookFirst Ancestor elements under which the current block element must be
first

17.5.6

DocBookLevel Level where the current block element should appear in the
DocBook file

17.5.11

DocBookOpenAfter Elements to be opened just after current block element ends 17.5.9.2

DocBookOpenBefore Enclosing elements to be opened just before current block element
starts

17.5.9.1

DocBookParent Required ancestors for the current block element 17.5.2

DocBookParentID ID of the interpolated parent of the current block element 17.4.4.4

DocBookStartElem Tag name for an inline element, to place at the start of the span 17.4.3.3

DocBookTag Element name mapping for the current block (not inline) element 17.4.2.4

OVERRIDING DOCBOOK SETTINGS WITH MARKERS MIF2GO USER’S GUIDE

584 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 585

18 Splitting and extracting files

This section shows how Mif2Go can divide a FrameMaker file, based on criteria you
provide, into smaller files, to convert to HTML; and how Mif2Go can extract sections out
of the middle of a file, to create excerpts in their own files. Topics include:

§18.1 Splitting versus extracting on page 585
§18.2 Splitting files on page 586
§18.3 Extracting files on page 591
§18.4 Identifying split and extract files on page 593
§18.5 Inserting HTML code in split and extract files on page 598
§18.6 Referencing split and extract files on page 600
§18.7 Customizing and replacing extracts on page 601

18.1 Splitting versus extracting
When you split a FrameMaker file, as Figure 18-1 shows, each piece of the file becomes a
file in its own right, typically addressing a single topic; see §18.2 Splitting files on
page 586.

Figure 18-1 Splitting a file

When you extract part of a FrameMaker file, the parent file is converted minus the
extracted portion, and the extracted portion becomes a file in its own right. The extracted
part is usually replaced in the parent file by a link to the extract file, as Figure 18-2 shows;
see §18.3 Extracting files on page 591.

Figure 18-2 Extracting a file

Original file

Output files

Material to
Link

Extracted file

Original file
Output file

be extracted

SPLITTING FILES MIF2GO USER’S GUIDE

586 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

If you do not split files, you might want some space or a separator in HTML output
between the end of one topic and the start of the next.

To insert code before topic-start titles (for example):
[Inserts]
TopicBreak = <p class="Body">

</p>

See §18.5.2 Assigning code to [Inserts] keywords for splits and extracts on page 599.

18.2 Splitting files
HTML files are typically much smaller than FrameMaker chapter files. A large HTML file
can take an unacceptable amount of time to download from the Web. If you are producing
HTML, XML, or HTML-based Help, you will want to split up your FrameMaker files so
each topic is in its own file.

If you are converting your FrameMaker index to HTML, or using Mif2Go to generate an
index for HTML-based Help, Mif2Go automatically creates an index entry for each split
file when a split occurs within text between index-marker <$startrange> and <$endrange>
entries.

In this section:
§18.2.1 Designating split points on page 586
§18.2.2 Managing split points on page 588
§18.2.3 Combining instead of splitting files on page 591

18.2.1 Designating split points

You can designate places to split a FrameMaker file based on the occurrence of any of the
following:

Paragraph or character formats in text on page 586
Paragraph formats in tables on page 587
Page breaks on page 587
FrameMaker markers on page 587
Hypertext alert markers on page 587

Although you can use all these methods in the same FrameMaker document, usually the
paragraph-format method alone is adequate. (Do not use any of these methods if you are
producing DITA XML output; files are split another way for DITA.)

Note: If you are using the Mif2Go plug-in, Mif2Go tries to determine automatically the
most likely split points; see §1.5 How Mif2Go works on page 62. Mif2Go lists
under [HTMLParaStyles] the paragraph formats it chooses for split points. Be
sure you inspect these proposed assignments, and correct any that are
inappropriate. If you are generating HTML-based help, also check the matching
list under [HelpContentsLevels] .

Paragraph or
character formats

in text

You can assign the Split property to a paragraph or character format, so a new HTML
page begins wherever an instance of the format appears in your FrameMaker document:

[HTMLParaStyles]
; Paragraph format = Split starts a new HTML page a t the start of the
; paragraph.
HeadingPara = Split

If you use this method to designate split points you will almost certainly want to add the
Title property too, maybe others:

18 SPLITTING AND EXTRACTING FILES SPLITTING FILES

ALL RIGHTS RESERVED. MAY 18, 2013 587

[HTMLParaStyles]
HeadingPara = Split Title NoFrameBelow

Note: In your FrameMaker document, if you separate the HeadingPara paragraph from
following text with an empty paragraph in the same HeadingPara format (perhaps
for spacing), you will get two split files: one containing only the heading, the other
containing only the text. See §18.2.2 Managing split points on page 588.

Paragraph
formats in tables

Normally Mif2Go does not allow a file split when a paragraph for which you have
specified the Split property occurs within a table. However, you can override this
prohibition with the following setting:

[Tables]
; AllowTbSplit = No (default)
; or Yes (allow file split for head in table)
AllowTbSplit=Yes

When AllowTbSplit=Yes , the actual split is made at the paragraph containing the table
anchor, not at the paragraph in the table.

Page breaks You can designate whether “hard” page breaks in your FrameMaker document result in a
new HTML page, a horizontal bar, or neither:

[HTMLOptions]
; PageBreaks = Rule (<hr>), None, or Split
PageBreaks=Split

Setting PageBreaks=Split does not cause splitting at page breaks that are automatically
generated by FrameMaker (in the middle of a paragraph, for example), but only at page
breaks specified as part of a paragraph format, either by definition (start at top of page) or
as an override.

FrameMaker
markers

You can add FrameMaker marker type Split to your FrameMaker document, and insert a
Split marker wherever you want a split point. However, f you insert a Split marker in a
paragraph whose format is also assigned the Split property, the Split marker is ignored.

You can also invent a new marker type (for example, Splitmark) to use for split points, or
you can add the Split property to an existing marker:

[MarkerTypes]
Splitmark = Split
Subject = Split

Note: If you also assign one or more of marker type properties Cross-Ref , Title , or
FileName , those properties must be specified after the Split property; for
example:

[MarkerTypes]
Filespec = Split FileName

Topicmark = Split Title

See §29.4.2 Observing restrictions on redefining marker behavior on page 840.

A Split marker can be placed before the title element in the topic. It must be placed to the
left of any Title , FileName , or Cross-Ref marker that occurs in the same paragraph.

See §29 Working with FrameMaker markers on page 831 for more information.

Hypertext alert
markers

You can mark a split point in your document by inserting a hypertext alert marker that
contains only the word “split”. See §34.1.2 Using markers to add links and instructions on
page 935.

SPLITTING FILES MIF2GO USER’S GUIDE

588 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

18.2.2 Managing split points

You can selectively disable splitting to keep content together, such as at the start of a
FrameMaker file, or when a single heading would be the only content.

In this section:
§18.2.2.1 Preventing splits that leave empty files on page 588
§18.2.2.2 Preventing splits that create unwanted files on page 588
§18.2.2.3 Preventing splits that leave dangling headings on page 589
§18.2.2.4 Keeping headings together when other content intervenes on page 590
§18.2.2.5 Specifying split points for multiple-paragraph headings on page 590

18.2.2.1 Preventing splits that leave empty files

Often the first split point is at the very first paragraph in a FrameMaker file, which results
in an empty first HTML file. You could discard this file when you package output for
production; however, doing so would mean that you might not be able to use navigation
macros (see §20.4 Creating a browse sequence on page 635). Unless the HTML output is
destined for an automated system that requires renaming files, a better approach is to
prevent the split.

To suppress the first split if it would result in an empty file, set StartingSplit=No :
[HTMLOptions]
; StartingSplit = Yes (default, allows split at sta rt of file) or No
StartingSplit = No

When StartingSplit=Yes , the first HTML file (which is named for the FrameMaker
parent file) cannot be given a title based on a split-point paragraph format; see §18.4.2
Specifying page titles for split or extract files on page 594. If you discard empty files,
Mif2Go removes the unwanted empty files from the wrap directory and omits them from
the navigation sequence; however, the empty files remain in the project folder, where they
still serve a purpose.

When StartingSplit=No , you can use a FileName marker to rename the first “real”
split file to the FrameMaker chapter name with extension .htm , forcing this file to
overwrite the empty file; see §34.8.3 Using custom markers to name output files on
page 947. This method allows page titles based on split-point paragraphs, and does not
interfere with navigation macros.

To avoid creating empty files, we recommend:
[HTMLOptions]
StartingSplit = No

 If the first split is not at the first paragraph in a FrameMaker file, see §18.2.2.2 Preventing
splits that create unwanted files on page 588.

18.2.2.2 Preventing splits that create unwanted fi les

Suppose each of your FrameMaker chapters begins with a paragraph tagged ChapHead,
followed by a Heading1 paragraph. Suppose you use Heading1 as a split point, and the
ChapHead paragraph merely provides formatting or decoration on the chapter title page.
The output will include an HTML file named for the chapter file; and that non-empty file
will be included in any browse sequence.

To eliminate the unwanted paragraphs, you have the following choices:
Assign both Split and Delete
Apply a condition in FrameMaker.

18 SPLITTING AND EXTRACTING FILES SPLITTING FILES

ALL RIGHTS RESERVED. MAY 18, 2013 589

Assign both Split
and Delete

Assigning format property Delete to ChapHead would eliminate paragraph content; also
assigning format property Split would allow you to use SmartSplit :

[HTMLParaStyles]
ChapHead = Split Delete
Heading1 = Split

You must set SmartSplit=Yes and assign appropriate level numbers, as described in
§18.2.2.3 Preventing splits that leave dangling headings on page 589, to get rid of the
unwanted file. You will not be able to give the first split file a name different from the
FrameMaker chapter file.

Apply a condition
in FrameMaker

Instead, you could use conditional text in FrameMaker to mark ChapHead paragraphs for
hiding. For example, apply a condition named HeadStuff to each ChapHead paragraph, and
in your configuration file specify the following:

[Setup]
SetFrameConditions = Yes

[ConditionsShown]
HeadStuff = No

See §5.4.1 Applying condition Show/Hide settings on page 123.

See also:
§18.6 Referencing split and extract files on page 600
§21.3.12 Eliminating unwanted paragraphs on page 652

18.2.2.3 Preventing splits that leave dangling hea dings

Suppose you have designated the following criterion for split points:
[HTMLParaStyles]
Heading2 = Split

Now suppose your FrameMaker document has content organized as follows:
Heading1

Heading2
Body text

Heading2
Body text

Heading1
. . .

And you want split points as follows:
Heading1

Heading2
Body text

------------------- split here
Heading2

Body text
------------------- split here
Heading1

. . .

That is, you want to suppress a split between the first Heading1 and the first Heading2.

Instead of the first Heading2 you could use a different paragraph format that is not
assigned the Split property, such as Heading2First, and add that format to the paragraph
catalog. Or, you could use [HelpContentsLevels] to assign level numbers to your
heading formats, and set SmartSplit=Yes :

[HelpContentsLevels]
; FM paragraph format name = TOC level (MS or Java)

SPLITTING FILES MIF2GO USER’S GUIDE

590 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Heading1 = 1
Heading2 = 2

[HTMLParaStyles]
Heading1 = Split
Heading2 = Split

[HTMLOptions]
StartingSplit=No
; SmartSplit = No (default) or Yes (suppress splits in sequences of
; heads which lack text bodies, as long as the [He lpContentsLevels]
; values continue to increase)
SmartSplit = Yes

You need StartingSplit=No to avoid creating a blank file; see §18.2.2.1 Preventing
splits that leave empty files on page 588.

The effect of these settings is to suppress splits as long as the heading level number
increases for each paragraph in an unbroken sequence of paragraphs. For example, these
settings would keep all of the following together:

Heading1
Heading2

Heading3
Body text

In other words, SmartSplit prevents splits when both of the following are true:

 • the later heading is subordinate to the earlier heading
 • there is no body content between headings (but see §18.2.2.4 Keeping headings

together when other content intervenes on page 590).

Note: It is not a good idea to use SmartSplit in conjunction with trails of links; see
§20.2.1 Understanding trails of links on page 627.

Note: It is not a good idea to use SmartSplit in conjunction with local TOCs; see
§20.3 Including local TOCs on page 631.

18.2.2.4 Keeping headings together when other cont ent intervenes

To keep sections from splitting into separate HTML files even when there is body content
between headings that are assigned the Split property, you have two choices:

Prevent the content from affecting the split
Use alternative heading formats.

Prevent the
content from

affecting the split

To prevent a paragraph format (for example, ThinLine) that occurs between headings from
interfering with keeping the headings together when SmartSplit=Yes :

[HTMLParaStyles]
; NoSplit prevents the para format from interfering with SmartSplit
; when it occurs between heads that would otherwise be kept together.
ThinLine = NoSplit

Use alternative
heading formats

For the affected headings, consider using alternate paragraph formats with the same
properties. For example, you could define a paragraph format named Heading1x and use
that format instead of Heading1 wherever you want to prevent a Heading1 split.

18.2.2.5 Specifying split points for multiple-para graph headings

Suppose the main headings in your FrameMaker document use two paragraph formats,
one for the text of the heading, and another for the heading number; for example,
ChapterTitle and ChapterNumber. You might assume that splitting files on ChapterNumber
would be the right thing to do, and usually that would be true:

18 SPLITTING AND EXTRACTING FILES EXTRACTING FILES

ALL RIGHTS RESERVED. MAY 18, 2013 591

[HTMLParaStyles]
ChapterNumber=Title Split

[HelpContentsLevels]
ChapterTitle=1

If ChapterNumber precedes ChapterTitle in your FrameMaker document, Mif2Go splits the
file at ChapterNumber, and the text of ChapterTitle becomes the reference to that file.

However, if ChapterNumber follows ChapterTitle, as it does in some designs, the text of
ChapterTitle becomes a reference to the previous split file, and appears at the end of that
file. To correct this problem you would specify ChapterTitle instead of ChapterNumber for
the split point:

[HTMLParaStyles]
ChapterTitle=Title Split

[HelpContentsLevels]
ChapterTitle=1

18.2.3 Combining instead of splitting files

To convert a FrameMaker book to a single HTML output file instead of splitting the
chapters into smaller topics, you must start with a single FrameMaker file. Create a new
FrameMaker file, and import into the new file, by reference, each of the chapter files, in
the same order they appear in the book. Each chapter file becomes a text inset in the new
file. You never edit this file again; just update it after you make changes in your
FrameMaker book, then use Mif2Go to export the new file to HTML.

We do not recommend this method, even for small projects, because it produces an HTML
page that is very slow to load.

For HTML, the best practice is to reduce the size of each page to one topic, preferably a
topic that does not require any scrolling to see the whole page. When people scan for
information, they might go from page to page without looking past the first screen of each.

18.3 Extracting files
You can direct Mif2Go to extract part of a document into an extract file, optionally
replacing the extracted portion in the original document with a link to the extract file, as
shown in Figure 18-2 on page 585. You can use this feature to move material such as
graphics and stepwise procedures into their own files.

In this section:
§18.3.1 Enabling and disabling extract processing on page 591
§18.3.2 Delimiting material to extract on page 592

18.3.1 Enabling and disabling extract processing

To enable extracts for your entire document, specify the following setting:
[HTMLOptions]
; ExtractEnable = Yes (allow extract files) or No (default, disable)
ExtractEnable=Yes

To turn extract processing on and off for some parts of your document, you can assign
extract switch properties ExtrEnable and ExtrDisable to paragraph formats. For
example, you might define paragraph formats ExEnable and ExDisable, and use them to
delineate the portions of your document where extract processing should occur:

EXTRACTING FILES MIF2GO USER’S GUIDE

592 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[HTMLParaStyles]
; ExtrEnable and ExtrDisable turn extract processin g on or off; the
; starting state is given in [HTMLOptions]ExtractE nable=Yes or No
ExEnable=ExtrEnable Delete
ExDisable=ExtrDisable Delete

Once you have placed such paragraphs in your document, you cannot turn off all extract
processing just by setting [HTMLOptions]ExtractEnable=No ; instead you must delete
all ExtrEnable assignments in [HTMLParaStyles] .

18.3.2 Delimiting material to extract

To mark the start and end points of material to be extracted, you can assign properties to
paragraph formats, or you can use markers. For either of these methods to take effect, you
must also enable extract processing; see §18.3.1 Enabling and disabling extract processing
on page 591.

In this section:
§18.3.2.1 Using existing paragraph formats to delimit extracts on page 592
§18.3.2.2 Creating special paragraph formats to delimit extracts on page 592
§18.3.2.3 Using markers to delimit extracts on page 593

See also:
§18.3.1 Enabling and disabling extract processing on page 591

18.3.2.1 Using existing paragraph formats to delim it extracts

To use paragraph formats that are already in place to mark the start and end points of
material to extract, assign [HTMLParaStyles] extract properties to those paragraph
formats. For example:

[HTMLParaStyles]
; doc format (para or char) = keywords for function s and properties
; ExtrStart begins an extract.
; ExtrFinish is the last part of the extract.
; ExtrEnd ends the extract, but is not part of the extract itself
FigureTitle=ExtrStart
zFigAnchor=ExtrFinish

To extract a single paragraph, assign both ExtrStart and ExtrFinish to the paragraph
format.

ExtrFinish and ExtrEnd are alternate ways to end an extract. You do not have to use
both, but doing so is harmless. If you do not use one or the other, the extract ends
gracefully at the next split point, or at the end of the file.

Note: For any of these settings to take effect, you must enable extracts; see §18.3.1
Enabling and disabling extract processing on page 591.

For examples, see §18.7.4 Specifying extracts: an example on page 607.

18.3.2.2 Creating special paragraph formats to del imit extracts

You can create special paragraph formats to mark the boundaries of extracts, as follows:

1. Invent two new paragraph formats; for example, ExStart and ExEnd.

2. Insert an element with outputclass=ExStart just before material to be extracted.

3. Put an ExStart paragraph just before material to be extracted.

4. Insert an element with outputclass=ExEnd just after material to be extracted.

18 SPLITTING AND EXTRACTING FILES IDENTIFYING SPLIT AND EXTRACT FILES

ALL RIGHTS RESERVED. MAY 18, 2013 593

5. Put an ExEnd paragraph just after material to be extracted.

6. Make the ExStart and ExEnd paragraphs conditional for on-line use, so they do not
appear in your regular print files.

7. Assign the following properties to these special paragraph formats:
[HTMLParaStyles]
ExStart=ExtrStart Delete
ExEnd=ExtrEnd Delete

The Delete property excludes the ExStart and ExEnd paragraphs from text in the HTML
file. In effect, these special paragraphs serve only as directives to Mif2Go . If you omit the
ExEnd paragraph, the extract ends at the next split point, or at the end of the file.

Note: For these settings to take effect, you must enable extracts; see §18.3.1 Enabling
and disabling extract processing on page 591.

18.3.2.3 Using markers to delimit extracts

You can specify the boundaries of an extract with carefully placed markers. Mif2Go
ignores the content of these markers, so you can use the content for comments:

For easy maintenance, the best place for these markers is at the start of a paragraph.

To extract a single paragraph, insert both ExtrStart and ExtrFinish markers in the
paragraph; the ExtrStart marker must precede the ExtrFinish marker.

ExtrFinish and ExtrEnd markers are alternate ways to end an extract. You do not have to
use both, but doing so is harmless. If you do not use one or the other, the extract ends
gracefully at the next split point, or at the end of the file.

Note: For any of these markers to take effect, you must enable extracts; see §18.3.1
Enabling and disabling extract processing on page 591.

18.4 Identifying split and extract files
You can specify titles and meta information for split and extract files. Mif2Go names the
files, and retains those names for internal purposes; it is best not to try to rename split or
extract files.

In this section:
§18.4.1 Understanding how split and extract files are named on page 593
§18.4.2 Specifying page titles for split or extract files on page 594
§18.4.3 Supplying <meta> text for split or extract files on page 598

18.4.1 Understanding how split and extract files a re named

When Mif2Go splits a FrameMaker file, the result is a series of HTML files. The first
HTML file contains whatever was in the FrameMaker file before the first split point; this
file keeps the name of the FrameMaker file, but with extension .htm . Do not rename this
file, because it is required for subsequent conversions. Mif2Go names the rest of the split

ExtrStart First part of an extract; insert in the first paragraph in the extract, to the
left of any Title , FileName , or Cross-Ref marker that occurs in the
same paragraph.

ExtrFinish Last part of an extract; insert in the last paragraph of the extract.

ExtrEnd End of an extract; insert after the last paragraph of the extract, and
before the end of the next paragraph.

IDENTIFYING SPLIT AND EXTRACT FILES MIF2GO USER’S GUIDE

594 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

files, and all extracted files, as described in §5.3.1 Understanding how Mif2Go creates
identifiers on page 117.

In this section:
§18.4.1.1 Keeping split and extract file names unique on page 594
§18.4.1.2 Replacing split and extract file names on page 594

18.4.1.1 Keeping split and extract file names uniq ue

To determine in advance what ObjectID will be used to name a split or extract file, click
the heading that will start the file. Then, without moving the mouse, Shift-click. The
paragraph’s decimal ObjectID appears on the status line as the FrameMaker ParaID.

Because the name of a split or extract file depends only on the FileID of the parent file and
the ObjectID of the paragraph at the split or extract point, the file name is not likely to
change, even if you add more split points earlier in the file.

However, the paragraph ObjectID will change if you do any of the following (see §5.3.2
Working with FrameMaker ObjectIDs on page 118):

 • copy and paste the paragraph
 • delete the paragraph and then retype it
 • hide the paragraph with a condition and then show it.

Just editing a paragraph does not affect its ObjectID. See §5.3 Identifying files and objects
on page 117.

18.4.1.2 Replacing split and extract file names

If your HTML output will be used in an automated system with file-name requirements
that conflict with Mif2Go -assigned file names, see §34.8 Renaming output files for
automated systems on page 946.

When you use Mif2Go -provided options to automatically gather and package HTML files
for production (see §35 Producing deliverable results on page 955), all the HTML files
Mif2Go creates in the course of a conversion are included in the production package. This
means that the very first HTML file for each FrameMaker file (the file named for the
parent file) will be included, even if it is an empty file. For ways to eliminate these empty
files, see §18.2.2.2 Preventing splits that create unwanted files on page 588.

18.4.2 Specifying page titles for split or extract files

You can specify the HTML page <title> values for HTML output files in any of the
following ways:

 • via [HTMLOptions]Title = My default title for all files

 • via [Titles] filename = My title for this file

 • via [HTMLParaStyles] first paragraph format = Title

 • via FrameMaker marker Title

You can use more than one method, and you can use macros and macro variables with any
of these methods.

In this section:
§18.4.2.1 Understanding title assignment precedence on page 595
§18.4.2.2 Assigning a title with a paragraph format on page 595
§18.4.2.3 Specifying a title prefix or suffix on page 596

18 SPLITTING AND EXTRACTING FILES IDENTIFYING SPLIT AND EXTRACT FILES

ALL RIGHTS RESERVED. MAY 18, 2013 595

§18.4.2.4 Assigning a title with a file name on page 596
§18.4.2.5 Assigning a title with a marker on page 597
§18.4.2.6 Assigning a default title on page 597
§18.4.2.7 Assigning a computed title on page 597

18.4.2.1 Understanding title assignment precedence

You can specify the HTML page title for a particular output file more than one way. For
example, in general you might want to use the paragraph-format method (which applies to
all files), then override that method with a Title marker or a [Titles] assignment for
selected files. Table 18-1 shows which method takes precedence if more than one method
applies to a given output file.

Default title If you do not specify any page titles, the default title for each output file is Test File from
Mif2Go; any other title specification overrides this default. If some of your output files
show Test File from Mif2Go as the title, this means you did not manage to specify titles for
those files. See §18.4.2.6 Assigning a default title on page 597.

18.4.2.2 Assigning a title with a paragraph format

For the page title of a split or extract file, you can use the content of the heading that
caused the split or extract, or the content of the first instance of any other paragraph in the
split or extracted part. Optionally, you can also specify a prefix or suffix or both; see
§18.4.2.3 Specifying a title prefix or suffix on page 596.

Heading content
as title

To use the content of a heading as a page title, assign the Title property to the heading
paragraph format; for example:

[HTMLParaStyles]
; Title uses head as HTML page title, see [Titles]; may be preceded
; by [StyleTitlePrefix] and followed by [StyleTitleS uffix]
FigCaption=ExtrStart Title
Heading2=Split Title

Headings in
tables

Normally Mif2Go does not create a page title if the heading for which
[HTMLParaStyles] has the Title property is within a table. If you need titles from
headings in tables (for example, if your chapter headings are in single-cell tables) specify
the following setting:

[Tables]
; AllowTbTitle = No (default) or Yes (allow title f rom head in table)
AllowTbTitle=Yes

Otherwise, an HTML page title will not be created from such a heading.

Macros and
macro variables

If you use macros or macro variables in the text of a paragraph to which you have assigned
the Title property, you must also assign property Raw; otherwise, the characters <, >, and

Table 18-1 Precedence of HTML page titles

Precedence Method Comments

Highest [Titles] Titles assigned in this section cannot be overridden

Intermediate [HTMLParaStyles]
or
Title , Config , or
HTMConfig marker

If you use both methods for a given split or extract part,
whichever occurs first in the source file (the Title , Config , or
HTMConfig marker or an instance of the Title paragraph
format) takes precedence

Lowest [HTMLOptions] Any other method overrides an [HTMLOptions]Title
value

IDENTIFYING SPLIT AND EXTRACT FILES MIF2GO USER’S GUIDE

596 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

& all get turned into HTML entities; and instead of being expanded, a macro appears
literally in the output. See §21.3.6 Stripping paragraph properties on page 650.

See also:
§18.7.2 Customizing title text for extracts on page 602
§21.3.1 Assigning HTML tags and attributes to paragraph formats on page 646

18.4.2.3 Specifying a title prefix or suffix

If you assign titles with paragraph formats (see §18.4.2.2 Assigning a title with a
paragraph format on page 595), you can also specify a prefix, a suffix, or both as part of
the title. For example:

[HTMLParaStyles]
Heading2=Split Title

[StyleTitlePrefix]
; doc style = prefix to use (if any) for file title in para content
Heading2=Course IV:

[StyleTitleSuffix]
; doc style = suffix to use (if any) for file title in para content
Heading2= (draft 1)

With these settings, a Heading2 paragraph that has content Prerequisites would result in a
split file with the following <title> element:

<title>Course IV: Prerequisites (draft 1)</title>

Excluded from
trails and local

TOCs

Any title prefix or suffix you specify with these settings is excluded from the title when it
appears in a trail of links (see §20.2 Generating trails of links on page 627) or in a local
TOC (see §20.3 Including local TOCs on page 631).

Trailing spaces Trailing spaces you type at the end of the title prefix setting are included in the prefix.

Leading spaces If you type one or more leading spaces after the equals sign at the beginning of the title
suffix text, Mif2Go removes exactly one of them (see §4.4 Understanding the rules for
configuration settings on page 102). If you want a single leading space for the title suffix,
supply exactly two spaces after the equals sign.

Macros and
macro variables

You can use macros and macro variables (see §28.1 Defining and invoking macros on
page 787) in sections [StyleTitlePrefix] and [StyleTitleSuffix] . For example,
suppose you have defined a FrameMaker variable called CourseNum in your document,
and you want to use the value of that variable as a title prefix:

[StyleTitlePrefix]
Heading2=<$$CourseNum>:

This works because FrameMaker variables can be employed as Mif2Go user variables;
see §28.3.1 Creating and invoking macro variables on page 796.

18.4.2.4 Assigning a title with a file name

You can assign title text to the name of a split or extract file, to specify a title explicitly;
this assignment takes precedence over a title for the same file specified with a format. You
must assign the title text to the internal file name assigned by Mif2Go (see §18.4.1
Understanding how split and extract files are named on page 593), not to any replacement
name you may have specified for a split or extract file. For example:

[Titles]
; html filename = title, overrides [HTMLParaStyles] Title setting
; for split or extract files, use FileID+UID, such as mr516387
af345674=HTML Help, JavaHelp, and Oracle Help for J ava
ba134256=Export dialog

18 SPLITTING AND EXTRACTING FILES IDENTIFYING SPLIT AND EXTRACT FILES

ALL RIGHTS RESERVED. MAY 18, 2013 597

Macros and
macro variables

You can use macros and macro variables in the [Titles] section. For example, suppose
you want to use as a title the name of the FrameMaker file from which the HTML file was
generated:

[Titles]
*=<$$_basefile>

This setting would provide the base name (without extension) of the FrameMaker source
file as the title of each HTML output file. However, a more efficient way to do the same
thing would be to assign macro variable <$$_basefile> to the Title keyword; see
§18.4.2.7 Assigning a computed title on page 597.

See also:
§4.6 Using wildcards in configuration settings on page 106
§28.3.4 Using predefined macro variables on page 800

18.4.2.5 Assigning a title with a marker

You can insert a FrameMaker marker of type Title in the first paragraph of a split or
extract, and supply the text of the title as the marker content. To use this method you must
add custom marker type Title to your FrameMaker document. The content of the marker
becomes the page title of the split or extract file. You can use macros and macro variables
in the marker content.

As an alternative, you can add the Title property to a different marker type: for example,
custom marker type Split (see §18.2.1 Designating split points on page 586), or custom
marker type ExtrStart ; and specify the title as the content. See §29 Working with
FrameMaker markers on page 831 for more information.

18.4.2.6 Assigning a default title

To specify a default title for any otherwise untitled HTML page:
[HTMLOptions]
;Title = default title for HTML files,
; overridden by all other settings
Title= My default page title

Titles specified any other way override the value assigned to Title .

Note: If you do not specify a value for Title , the title of any otherwise untitled HTML
page in your output is Test File from Mif2Go.

18.4.2.7 Assigning a computed title

If titles for your HTML pages can be determined based on the value of a macro variable,
or on values obtained by expanding a macro, you can assign the macro or macro variable
to the [HTMLOptions]Title keyword.

For example, to provide a page title that consists of the FrameMaker source file name
followed by an integer that increments for each HTML file generated:

[HTMLOptions]
Title=<$PageTitle>

[PageTitle]
<$$_basefile><$$PgNumber++ as %-0.3d>

[MacroVariables]
PgNumber=0

Any other title specification overrides a computed [HTMLOptions]Title value.

INSERTING HTML CODE IN SPLIT AND EXTRACT FILES MIF2GO USER’S GUIDE

598 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See also:
§28.1 Defining and invoking macros on page 787
§28.3.3 Incrementing and decrementing macro variables on page 799
§28.6.3 Displaying expression results in output on page 813

18.4.3 Supplying <meta> text for split or extract files

To supply text for the <meta> tag content attribute in the head section of each split or
extract file, assign the Meta property to a paragraph format. For example:

[HTMLParaStyles]
; Meta uses the contents of the para as the content attribute of
; a meta tag in the head.
Metakeys=Meta

To supply the name attribute of the meta tag, assign the name to the same format:
[StyleMetaName]
; doc style = name to use for meta tag whose conten t is the para text
Metakeys=keywords

See §13.4.6 Supplying content for the <meta> tag on page 434 for more information.

18.5 Inserting HTML code in split and extract file s
Split and extract files require the usual HTML <head> and <body> sections. Mif2Go
provides code for these sections, just as for any other HTML output file. You can specify
additional HTML code, including macros, for Mif2Go to insert at several points in these
HTML sections.

In this section:
§18.5.1 Choosing how to insert code in extracts on page 598
§18.5.2 Assigning code to [Inserts] keywords for splits and extracts on page 599
§18.5.3 Using special sections to insert code in extracts on page 600

18.5.1 Choosing how to insert code in extracts

You can specify code to be inserted in extract files by any of the methods listed in
Table 18-2. Code can be placed at any of the following locations in an extract file:

 • Within the <head> element, after the <title> element
 • At the beginning of the <body> element
 • Just before the end of the <body> element.

The methods in Table 18-2 are listed in order of precedence. For example, if you use both
an ExtrHead marker containing HTML code and supply an [Inserts]ExtrHead entry
specifying HTML code, Mif2Go inserts the marker code in the <head> element of the

Table 18-2 Extract code insertion methods

Precedence Type Code insertion method Ref.

Highest Marker Make code the text (maximum 256 characters) of a
marker placed anywhere in the extract

18.7.1

Intermediate Configuration
section

Assign code to the paragraph format designated to
start the extract (see 18.3.2.1)

18.5.3

Lowest Configuration
keyword

Assign code to an [Inserts] keyword 18.5.2

18 SPLITTING AND EXTRACTING FILES INSERTING HTML CODE IN SPLIT AND EXTRACT FILES

ALL RIGHTS RESERVED. MAY 18, 2013 599

extract and ignores the [Inserts]ExtrHead entry. This allows you to override code
specified in the configuration file for any extracts that require different code.

18.5.2 Assigning code to [Inserts] keywords for sp lits and extracts

To specify a predetermined location for HTML code, you can assign the code to a
keyword in the [Inserts] section. For example:

[Inserts]
Top=<$TopNavTable>

Bottom=
<$BtmNavTable>

Table 18-3 lists the basic [Inserts] location keywords, and for each keyword describes
where the HTML code assigned to that keyword would be invoked in an output file.

[Inserts] file-type
prefixes

Table 18-4 lists prefixes for the basic keywords (except TopicBreak), and for each prefix
describes the type of file where HTML code assigned to a keyword with that prefix would
be invoked.

[Inserts]
location/file-type

variants

Table 18-5 combines prefixes and keywords to show all the keyword variants you can use
in the [Inserts] section, by type of file and by location within a file.

Table 18-3 Basic macro-insertion keywords and locations

[Inserts] keyword Location of macro in HTML file

TopicBreak Before the <title> element (between topics) when files are not split

Head Within the <head> element, after the <title> element

HeadEnd At the very end of the <head> element

Frames Between <head> and <body> elements, for framesets (split files only)

Top At the beginning of the <body> element.

Bottom Just before the end of the <body> element.

End After the end of the <body> element (to close noframes ; split files only)

Table 18-4 Keyword prefixes for split or extract code insertion

[Inserts] keyword prefix Type of split or extract fi le where applicable

First First split part

Split Split parts between the first and the last

Last Last split part

Nonsplit Files that are not split (among files that are split); use only with Top or
Bottom

Extr Extract file; use only with Head, Top, or Bottom

REFERENCING SPLIT AND EXTRACT FILES MIF2GO USER’S GUIDE

600 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

18.5.3 Using special sections to insert code in ex tracts

You can assign HTML code (including macros) to the [HTMLParaStyles]ExtrStart
format or ExtrStart marker (whichever you used to designate the start of the extract) to be
invoked in the following sections:

[ExtrHead]
; starting format = HTML code for the head of the e xtract file

[ExtrTop]
; starting format = HTML code for the top of the ex tract body

[ExtrBottom]
; starting format = HTML code for the bottom of the extract body

These sections correspond to [Inserts] keywords ExtrHead , ExtrTop , and
Extrbottom ; and to marker types ExtrHead , ExtrTop , and Extrbottom ; and are used for
the same purposes. A marker type overrides a [Extr*] section of the same name, and an
[Extr*] section overrides an [Inserts] keyword of the same name; see §18.5.1
Choosing how to insert code in extracts on page 598.

For examples, see §18.7.4 Specifying extracts: an example on page 607.

18.6 Referencing split and extract files
You can use the predefined macro variables listed in Table 18-6 to refer to file names and
titles of split and extract files. You can use these variables anywhere in a macro, including
within JavaScript sections. They are valid in all parts of a file, including within the base
part from which the other parts are split or extracted.

For navigation links between FrameMaker files, use Mif2Go -supplied navigation macros
instead; see §18.5 Inserting HTML code in split and extract files on page 598.

Table 18-5 Code insertion keywords for split and extract files

Solitary file First* split file
Intermediate
split files Last** split file

Non-split file
(among splits) Extract file

Head FirstHead SplitHead LastHead --- ExtrHead

HeadEnd FirstHeadEnd SplitHeadEnd LastHeadEnd --- ExtrHe adEnd

Frames FirstFrames SplitFrames LastFrames --- ---

Top FirstTop SplitTop LastTop NonsplitTop ExtrTop

Bottom FirstBottom SplitBottom LastBottom NonsplitBotto m ExtrBottom

End FirstEnd SplitEnd LastEnd --- ---

* If FirstBottom is not defined, SplitBottom is used. If SplitBottom is not defined, Bottom is used. If any others are not defined, the
corresponding non-First form is used.
** If any of the first three is not defined, the corresponding Split form is used; otherwise the non-Last form (as for the last two).

18 SPLITTING AND EXTRACTING FILES CUSTOMIZING AND REPLACING EXTRACTS

ALL RIGHTS RESERVED. MAY 18, 2013 601

Interfile links When the current split part is the first or the last in a FrameMaker file, the following
macro variables can also apply to the preceding or following FrameMaker file when you
use Mif2Go navigation macros

$$_prevfile
$$_prevtitle
$$_nextfile
$$_nexttitle

Note: Predefined macro variables $$_firstsfile and $$_prevsfile are no longer
needed, and their use is deprecated; however, existing deployments are not
affected, so you can continue to use these variables in macro code.

See §18.5 Inserting HTML code in split and extract files on page 598 for additional
settings you can use for links between FrameMaker files.

18.7 Customizing and replacing extracts
In this section:

§18.7.1 Using markers for extract processing on page 602
§18.7.2 Customizing title text for extracts on page 602
§18.7.3 Replacing extracts with links in the parent file on page 603
§18.7.4 Specifying extracts: an example on page 607

Table 18-6 Predefined macro variables for splits and extracts

Type Variable Description

File name $$_basefile Base name only of the parent file, without extension.

$$_currbase Base name only of the current split part, without extension.

$$_currfile Current split part: file name with extension

$$_currfilepath Current split part: full path and file name with extension

$$_extrgraphid Internal file name of first graphic referenced in an extract

$$_extrfile Current extract file name

$$_extrgraph File name of first graphic in an extract, as modified by any
[Graphics]ExtrGraphSuffix ; use for thumbnails (see §18.7.3
Replacing extracts with links in the parent file on page 603)

$$_extrgraphid Mif2Go internal name of first graphic in an extract

$$_nextfile Split part that follows $$_currfile

$$_prevfile Split part that precedes $$_currfile

Title $$_currtitle Current file title, unaffected by extracts, so it can be used in an extract
to get the parent file title.

$$_basetitle Original document title, unaffected by splits.

$$_prevtitle Title of $$_prevfile split part.

$$_nexttitle Title of $$_nextfile split part.

$$_extrtitle Current extracted-part title; used in a replacement macro for the
extract, to reference the extract title.; see §18.7.3 Replacing extracts
with links in the parent file on page 603.

Boolean $$_firstfile 1 if this is the first split part, otherwise 0; intended for JavaScript use.

$$_lastfile 1 if this is the last split part; otherwise 0; intended for JavaScript use.

CUSTOMIZING AND REPLACING EXTRACTS MIF2GO USER’S GUIDE

602 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

18.7.1 Using markers for extract processing

You can use predefined marker types to supply most extract-file properties. Table 18-7
lists the predefined marker types for extracts.

You can also use any of the Extr* marker-type names listed in Table 18-7 as properties of
other markers; see §29 Working with FrameMaker markers on page 831 for more
information.

Mif2Go processes every marker that has the same name as an
[HTMLParaStyles]Extr* property the same way as that property. Properties assigned
via markers take precedence over the same properties assigned via formats; see §18.5.1
Choosing how to insert code in extracts on page 598.

18.7.2 Customizing title text for extracts

In the [ExtrTitle] section you can assign text for the extract title to the ExtrStart
format or ExtrStart marker, whichever you used to designate the start of the extract:

[ExtrTitle]
; doc format = text for title of the extract file, which may use
; macros, including <$$_currtitle> which has the title of the parent
; file. This is ignored if the Title is set for any para in the
; extract file.
ExtractStartPara=Title for extract file

Predefined macro variable <$$_currtitle> is the <title> string of the file that
originally contained the extracted text; see §18.6 Referencing split and extract files on
page 600.

For example, suppose your FrameMaker document contains a paragraph format that
always marks the start of an extract; for example ProcedureStart; and suppose you want

Table 18-7 Predefined marker types for extracts

Marker type Purpose Content use Placement Ref.

ExtrBottom Insert HTML code Last item in extract
<body>

Anywhere in the extract* 18.5.1

ExtrDisable Turn off extract
processing

Ignored After all or a group of extracts 18.3.1

ExtrEnable Turn on extract
processing

Ignored Before all or a group of
extracts

18.3.1

ExtrEnd End an extract; Ignored After end of last paragraph in
extract, and before end of
following paragraph

18.3.2

ExtrFinish Mark last part of
extract

Ignored In the last paragraph of the
extract

18.3.2

ExtrHead Insert HTML code Placed in extract
<head>

Anywhere in the extract* 18.5.1

ExtrReplace Insert HTML code Replaces extract in
parent file

Anywhere in the extract* 18.7.3

ExtrStart Begins extract Ignored In the first paragraph of the
extract; can be used in
[Extr*] sections

18.3.2,
18.5.3

ExtrTop Insert HTML code First item in extract
<body>

Anywhere in the extract* 18.5.1

* To avoid maintenance headaches, pick a consistent location, such as at the start of the first paragraph.

18 SPLITTING AND EXTRACTING FILES CUSTOMIZING AND REPLACING EXTRACTS

ALL RIGHTS RESERVED. MAY 18, 2013 603

each such extract to have a title that includes the title of the file from which it was
extracted. You could achieve this effect with the following setting:

[ExtrTitle]
ProcedureStart=<$$_currtitle>: Procedure

If the original file’s <title> string was “Setting up a customer account”, the extract file’s
<title> section would be:

<title>Setting up a customer account: Procedure</ti tle>

Note: If you assign [HTMLParaStyles] property Title to a paragraph format in the
extract, the content of that paragraph overrides anything you specify in
[ExtrTitle] .

18.7.3 Replacing extracts with links in the parent file

In this section:
§18.7.3.1 Assigning replacement code on page 603
§18.7.3.2 Using thumbnails for links to illustrations in HTML on page 604
§18.7.3.3 Supplying properties for extracted graphics on page 607

18.7.3.1 Assigning replacement code

In the [ExtrReplace] section you can assign HTML code, including macros, to the
ExtrStart format or ExtrStart marker, whichever you used to designate the start of the
extract. The code you assign replaces the entire extract in the parent file. For example:

[HTMLParaStyles]
Heading2=ExtrStart

[ExtrReplace]
; doc format = HTML code to use instead of extracte d para
Heading2=<$ YourMacroForTheReplacement>

If you need different replacements for different extracts, you could either use different
starting formats, or you could use an ExtrReplace marker to specify replacement code for
a particular extract; the marker takes precedence over anything you specify in the
[ExtrReplace] section.

You can use several predefined macro variables in replacement code to reference the
replaced extract file, the extract title, and the first graphic in the extract. Table 18-8 lists
the variables you can use in extract replacement code. Also, predefined macro
<$_extrthumb> provides a convenient way to include scaled thumbnails of graphics as
replacement links; see §18.7.3.2.3 Providing scaled thumbnails on page 605.

Table 18-8 Predefined macro variables for extract replacement code

Macro variable Definition Reference

<$$_extrgraph> File name, as modified by any value specified for
[Graphics]ExtrGraphSuffix , of the first graphic in an
extract; use to include a thumbnail of the graphic

18.7.3.2.2

<$$_extrgraphclass> CSS class name to use in <$_extrthumb> macro 18.7.3.2.3

<$$_extrgraphhigh> Thumbnail height in pixels, for use in <$_extrthumb>
macro

18.7.3.2.3

<$$_extrgraphtarget> target attribute for window used by <$_extrthumb> 18.7.3.2.3

<$$_extrgraphid> Mif2Go internal name of the first graphic in an extract; use
to reference properties

18.7.3.3

CUSTOMIZING AND REPLACING EXTRACTS MIF2GO USER’S GUIDE

604 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For example, the following code uses a thumbnail graphic to link to an extract:
[HTMLParaStyles]
FigCaption=Contents ExtrStart Title
FigAnchor=ExtrFinish

[ExtrReplace]
FigCaption=<$ThumbCode>

[ThumbCode]
<p class="thumbnail"><a href="<$$_extrfile>">
 <img src="<$$_extrgraph>" alt="<$$_extrtitle>" /> </p>

See §18.7.3.2 Using thumbnails for links to illustrations in HTML on page 604.

18.7.3.2 Using thumbnails for links to illustratio ns in HTML

In extract replacement code you can provide a thumbnail—a miniature version—of the
first graphic in the extract, and use the thumbnail as a link to the extract.

In this section:
§18.7.3.2.1 Choosing a thumbnail method on page 604
§18.7.3.2.2 Providing separate thumbnails on page 605
§18.7.3.2.3 Providing scaled thumbnails on page 605
§18.7.3.2.4 Including text with a thumbnail on page 606

18.7.3.2.1 Choosing a thumbnail method

The best way to provide thumbnails depends in part on which of the following you are
generating:

 • server-based HTML
 • compiled or local-based Help system.

The issue is the thumbnail graphic itself.

Server-based
systems

For server-based HTML or OmniHelp, you can include an additional smaller version of
each image, to replace (and provide a link to) the original image. Providing an additional
image for a thumbnail makes sense if users are downloading a page at a time; if they do
not want to view the full-size image, they can avoid the time cost of downloading it.

Local-based
systems

However, for a compiled Help system (such as HTML Help), or a local-based system
(such as JavaHelp, Oracle Help for Java, or local HTML or OmniHelp), the additional-
image method increases the file size (and download time), because of the added size of the
thumbnails themselves. For these cases it can make more sense to use the original image
file, but specify a smaller size, and let the browser do the scaling. The resulting thumbnail
might not be as pretty but it should still be identifiable, and that is really all that is required
of thumbnails.

Which method is better for a given project? It depends. The graphics count and sizes are
among the factors to consider.

<$$_extrgraphwide> Thumbnail width in pixels, for use in <$_extrthumb>
macro

18.7.3.2.3

<$$_extrfile> Extract file name 18.7.3.3

<$$_extrtitle> Extract title 18.7.3.3

Table 18-8 Predefined macro variables for extract replacement code

Macro variable Definition Reference

18 SPLITTING AND EXTRACTING FILES CUSTOMIZING AND REPLACING EXTRACTS

ALL RIGHTS RESERVED. MAY 18, 2013 605

18.7.3.2.2 Providing separate thumbnails

If you provide separately created thumbnails, use the following option, which is the
default:

[Graphics]
; ExtrGraphThumbnail = Named (default,
; use original name plus ExtrGraphSuffix)
ExtrGraphThumbnail=Named

When ExtrGraphThumbnail=Named , you provide a thumbnail version of the first
image in each extract. You must create the thumbnails yourself, using a third-party
graphics tool, and store them in the same directory with the output graphics. Each
thumbnail must have the same file name as the corresponding output graphic, but with a
suffix added to the base name. You specify the suffix as follows:

[Graphics]
; ExtrGraphSuffix = suffix for file name of first g raphic in an
; extract, used in the predefined <$$_extrgraph> mac ro to identify
; its thumbnail
ExtrGraphSuffix=tn

Name thumbnail
after output

graphic

Except for the suffix, each thumbnail must have the same name as the corresponding
output graphic.This means that if your project involves having Mif2Go produce graphics
with generated names, you must make each thumbnail name match the Mif2Go -generated
name (not the original name).

Place thumbnail
in project
directory

Each thumbnail you create must be placed in the same directory with the corresponding
output graphic; this might be different from the directory where your original graphics are
located.

For example, suppose your document references the following graphic:
D:\MyDoc\graphics\jaguar.bmp

And suppose Mif2Go generates from jaguar.bmp the following output graphic:
D:\MyDoc\HTMout\aa0f3de8.jpg

You must provide the following thumbnail for jaguar.jpg :
D:\MyDoc\HTMout\aa0f3de8tn.jpg

Thumbnail not
found

If Mif2Go does not find a properly named thumbnail for the first graphic in an extract,
you get either a broken link or just the alt text in the replacement code.

Graphic not
present

If there is no graphic in the extract, the value of <$$_extrgraph> for that extract is
NULL, and the literal name extrgraph appears in the replacement code wherever you
specified <$$_extrgraph> .

18.7.3.2.3 Providing scaled thumbnails

When you use scaled thumbnails, the name of each thumbnail is the same as the name of
the full-size graphic. To provide thumbnails scaled by the browser at run time from your
original graphics, specify the following option:

[Graphics]
ExtrGraphThumbnail=Scaled

When ExtrGraphThumbnail=Scaled , Mif2Go uses the original image, applying
scaling factors that you can specify:

[Graphics]
; ExtrGraphHigh = size in pixels for height of thum bnail
; display of graphic when ExtrGraphThumbnail=Scaled
; default 96 pixels (one inch)
ExtrGraphHigh=96

CUSTOMIZING AND REPLACING EXTRACTS MIF2GO USER’S GUIDE

606 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; ExtrGraphWide = size in pixels for width of thumb nail
; display of graphic when ExtrGraphThumbnail=Scaled
; default 96 pixels (one inch)
ExtrGraphWide=96
; ExtrGraphClass = name of CSS class to use in pred efined
; <$_extrthumb> macro
;ExtrGraphClass=thumbnail
; ExtrGraphTarget = target attribute for window use d by <$_extrthumb>
ExtrGraphTarget=_blank

For the thumbnail, ExtrGraph* settings override any [Graph*] settings for width and
height values. The ExtrGraph* settings do not conflict with (for example) a user-defined
<$ExtrGraphHigh> macro, nor with predefined macro variable <$$_extrgraphhigh>
or <$$_extrgraphwide> ; all are in different Mif2Go internal namespaces.

Preserve aspect
ratio

If you want to use a reduced size for thumbnails, but not all images have the same aspect
ratio, set only one of ExtrGraphHigh or ExtrGraphWide to the number of pixels you
want, and set the other to 0 (zero).

Preserve image
size

If you want the thumbnail to be the size of the original image as it appears in FrameMaker,
instead of specifying width and height values, set the following option:

[Graphics]
; OrigSizedThumbnail = No (default)
; or Yes (use original Frame size for it)
OrigSizedThumbnail=Yes

When OrigSizedThumbnail=Yes , the size specified for the image in FrameMaker is
used for the thumbnail instead of any size values specified with ExtrGraphHigh or
ExtrGraphWide . This can be a reasonable way to present screenshots when you do not
want the thumbnail to be any smaller, but you want users to have a way to make the
screenshot legible. For a simpler way to accomplish the same objective, without using
extracts, see §23.5.2 Replacing or surrounding a graphic with macro code on page 710.

Predefined macro
<$_extrthumb>

For convenience you can use built-in macro <$_extrthumb> , which is defined as
follows:

<p class="<$$_extrgraphclass>"><a href="<$$_extrfil e>">
target="<$$_extrgraphtarget>"><img src="<$$_extrgra ph>" \

<$_if ($$_extrgraphhigh > 0)> height="<$$_extrgraph high>"<$_endif>\
<$_if ($$_extrgraphwide > 0)> width="<$$_extrgraphw ide>"<$_endif>\

alt="<$$_extrtitle>" /></p>

Using this macro, the settings you need for scaled thumbnails can be reduced to the
following:

[Graphics]
ExtrGraphThumbnail=Scaled

[ExtrReplace]
*=<$_extrthumb>

18.7.3.2.4 Including text with a thumbnail

Suppose you want to display, next to each thumbnail, text to indicate that a full-size
version of the graphic is but a click away; for example, Click to enlarge .

If you use extraction to create the thumbnails (see §18.7.3.2.3 Providing scaled thumbnails
on page 605), you can do something like the following to put the text next to the image:

[ExtrReplace]
Thumbfmt=<$thumbnail>

[thumbnail]
<table border="0"><tr>

<td><$_extrthumb></td>

18 SPLITTING AND EXTRACTING FILES CUSTOMIZING AND REPLACING EXTRACTS

ALL RIGHTS RESERVED. MAY 18, 2013 607

<td><p class="thumbtext">Click to enlarge</p></td>
</tr></table>

Add an entry for p.thumbtext to your CSS, perhaps in [CSSStartMacro] if you have
Mif2Go generate CSS each time. You could also give the table a class, and define its
properties in the CSS file.

18.7.3.3 Supplying properties for extracted graphi cs

You can use predefined macro variable <$$_extrgraphid> to access properties you
have assigned to individual graphics in the configuration file.

For example, suppose you are using JavaScript in extract replacement code to specify
characteristics of the secondary window in which each extracted graphic will appear. And
suppose you want each window to be the same size as the graphic. You could place code
like the following in an ExtrReplace marker for each individual extract, with the
dimensions for that particular graphic:

<p class="fig"><a href="javascript:location='<$$_cu rrfile>';
 window.open('<$$_extrfile>','height=387,width=550 ')">
 <$$_extrtitle></p>

Or, you could specify the dimensions of any extractable graphics in the project
configuration file: (see §23.9.2 Adjusting image size for selected graphics on page 720):

[GraphWide]
; Graphic file name = number of pixels wide, 0 to o mit width attribute
aa123456=525
ab654321=440

[GraphHigh]
; Graphic file name = number of pixels high, 0 to o mit height
; attribute
aa123456=150
ab654321=220

Then you could access the dimensions with a list variable (see §28.4 Using multiple-value
list variables on page 806) in the replacement code. For example, you could replace the
JavaScript height and width clause with the following code, where $$graphhigh and
$$graphwide are list variables:

'height=<$$graphhigh[$$_extrgraphid]>,
width=<$$graphwide[$$_extrgraphid]>'

You could define macros to supply default values for graphics not listed in the
configuration sections that your list variables access. For example:

[ExtrGraphHigh]
<$$ht = ($$graphhigh[$$_extrgraphid])>
<$_if ($$ht==0)><$$ht=387><$_endif><$$ht>

18.7.4 Specifying extracts: an example

This example delimits figures, sidebars, and procedures to be extracted from the parent
file, and specifies macros to be inserted in the extracts.

Assign extract properties and macros to paragraph formats:
[HTMLParaStyles]
; Extract figures and sidebars:
ArtAnchor=ExtrStart LEnd
SideBarAnchor=ExtrStart LEnd

; Extract procedures:
ProcHead=ExtrStart Title CodeAfter CodeBefore LEnd

CUSTOMIZING AND REPLACING EXTRACTS MIF2GO USER’S GUIDE

608 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; Put titles on the figure and sidebar extracted pa ges:
SideBarHeading=Title CodeBefore
ArtCaption=Title CodeBefore

; End extracts:
Body=ExtrEnd LEnd
Heading3=ExtrEnd LEnd

Call macros to put a Close Window button before the topic:
[ParaStyleCodeBefore]
SideBarHeading=<$CWbutton>
ArtCaption=<$CWbutton>

In the parent file, substitute links to the extracts for the extracted material:
[ExtrReplace]
; Replace extracted sidebars with "See..." links:
SideBarAnchor=<a href="<$$_extrfile>">See...
; Replace extracted figures with "Figure..." links:
ArtAnchor=<a href="<$$_extrfile>">Figure...
; Replace extracted procedures with links to the pr ocedures:
ProcHead= <a href="<$$_extrfile>"> <$$_extrtitle>

Assign macros to specify links from and within the extract files:
[ExtrTop]
; Place a link at the top to the More Topics sectio n at the bottom:
ProcHead=<$MoreTopicsJump>
SideBarAnchor=<$MoreTopicsJump>
ArtAnchor=<$MoreTopicsJump>

[ExtrBottom]
; At the bottom add links back to the parent doc an d to other topics:
ProcHead=

<$NavListExtract><$BackToTop>
SideBarAnchor=

<$NavListExtract><$BackToTop>
ArtAnchor=

<$NavListExtract><$BackToTop>

[ExtrHead]
; Add a link to the style sheet that overrides sele cted formats:
ProcHead=<link rel="stylesheet" href="Ovr.css" type ="text/css">
SideBarAnchor=<link rel="stylesheet" href="Ovr.css" type="text/css">
ArtAnchor=<link rel="stylesheet" href="Ovr.css" typ e="text/css">

ALL RIGHTS RESERVED. MAY 18, 2013 609

19 Creating HTML links

This section shows how to provide basic links in HTML output. Topics include:
§19.1 Understanding sources of links on page 609
§19.2 Specifying link appearance on page 609
§19.3 Specifying link destination on page 613
§19.4 Creating jumps to particular windows for HTML on page 616
§19.5 Converting FrameMaker links to HTML on page 617
§19.6 Linking to other files and other Mif2Go projects on page 621
§19.7 Linking to external destinations on page 625

See also:
§20 Providing navigation in HTML on page 627

19.1 Understanding sources of links
Mif2Go creates HTML links from the following items in FrameMaker:

19.2 Specifying link appearance
Link presentation is typically set in the browser, by the user. If you do nothing, links come
out the color the user specifies; with or without underlines, as the user chooses. It is best
not to impose your own ideas on users in this area.

In this section:
§19.2.1 Specifying link colors on page 610
§19.2.2 Specifying link class on page 610
§19.2.3 Assigning link attributes with markers on page 612
§19.2.4 Specifying link properties with macros on page 612
§19.2.5 Replacing problem characters in links on page 612
§19.2.6 Forcing link text to lowercase on page 613

Cross references: Cross references are converted to links to cross-
reference sources; see §19.5.1 Converting FrameMaker
cross references to HTML on page 617.

Hypertext internal links: Hypertext links (gotolink and openlink link to
newlink) are activated in HTML; see §19.5.2
Converting FrameMaker hypertext links to HTML on
page 619.

ObjectID links: Links created by FrameMaker for TOC, Index, and
other generated lists are enabled; see §19.5.3 Including
ObjectID anchors as link targets on page 620.

Hypertext “message”
commands:

Hypertext message URL and message openlink are
activated in HTML; see §19.7 Linking to external
destinations on page 625.

Paragraph formats: Links connecting a hierarchy of headings can form a
“breadcrumb trail”; see §20.2 Generating trails of links
on page 627.

SPECIFYING LINK APPEARANCE MIF2GO USER’S GUIDE

610 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

19.2.1 Specifying link colors

If you really must specify link color for some reason, always use the attributes intended
for this purpose, either in the <body> tag or in CSS (see §22 Setting up CSS for HTML on
page 681). You must specify three color values: for unvisited links, for active (already
selected) links, and for visited links. For example:

<body link="#0000ff" alink="#ff0000" vlink="#800080 " >

The defaults of blue for link and purple for vlink (the default for alink varies) are best
left alone unless you have a compelling reason to use something else. An alink is in an
“active” state only while the mouse is clicked on it with the button held down. The rest of
the time, it is either unvisited or visited.

Set via <body>
tag

You can set link appearance in the attributes for the <body> tag. For example:
[Attributes]
; link = hyperlink active color,
; alink = hyperlink color when clicked,
; vlink = visited hyperlink color, and
; #...... = your hex color for any of these
body= bgcolor="#FFFFE1" text="#000080" link="#00802 0" vlink="#804000"

Keep all attributes for a given element on one line, regardless of line length.

Set via CSS In CSS (browser-dependent at present) you could use, for example:
a:link { color: blue }
a:active { color: red }
a:visited { color: #800080 }

To override CSS-defined colors for some or all links, see §19.2.2 Specifying link class on
page 610.

19.2.2 Specifying link class

To give some of the links in your document an appearance different from that produced by
the “a: ” class properties specified in CSS or the default browser settings, you can name
and define other CSS classes, and apply them selectively to the links in your document.

For example, suppose you want certain links to be red except when the mouse hovers over
them, when they should change to green underlined. In CSS you might define link class
traffic :

a.traffic:link,a.traffic:visited,a.traffic:active { color: #ff0000;}
a.traffic:hover {color: #00ff00; text-decoration: u nderlined;}

You can apply such a class to selected links via marker in FrameMaker, or via paragraph-
format assignment in the Mif2Go configuration file. To change just one or two links,
probably a marker is easier. To change many links, you might want to use a special
paragraph format for the text where the links occur.

In this section:
§19.2.2.1 Assigning a link class with a marker on page 610
§19.2.2.2 Assigning a link class with a paragraph format on page 611

19.2.2.1 Assigning a link class with a marker

You can use custom FrameMaker marker LinkClass to assign a CSS class to a single link,
as follows:

1. Create a FrameMaker marker type named LinkClass (see §29.2 Adding custom
marker types on page 832).

19 CREATING HTML LINKS SPECIFYING LINK APPEARANCE

ALL RIGHTS RESERVED. MAY 18, 2013 611

2. For each link to be altered:
2.1. Place a LinkClass marker in your document, just before the link.
2.2. Make the content of the marker the name of the CSS class you want applied.

For example, to apply CSS class traffic to a particular link, somewhere before the link
you would insert a LinkClass marker with content:

traffic

CSS class traffic would be applied (only) to the next link after the marker:
 link text

See also:
§19.2.3 Assigning link attributes with markers on page 612
§25.3.3 Assigning WAI link attribute values with custom markers on page 759
§29.2.4 Using attribute markers for HTML or XML on page 835

19.2.2.2 Assigning a link class with a paragraph f ormat

You can cause all links in your document to inherit the class properties of the paragraphs
where the links occur, or you can assign a CSS class to all the links that occur in
paragraphs of a particular format.

To make all links use the same CSS class properties as their containing paragraphs:
[CSS]
; LinkClassIsParaClass = No (default)
; or Yes (adds the same class attribute as is used f or
; the current para to all links within that para)
; Default is reversed to Yes if UseCSS=Yes.
LinkClassIsParaClass=Yes

When you use CSS, the default value of LinkClassIsParaClass is reversed to Yes;
see §22.5 Understanding how CSS affects other options on page 687.

To assign a class to the links in a particular paragraph format:
[HTMLParaStyles]
; ParaLinkClass uses the name in [StyleParaLinkClas s]
; as the class attribute of the contained links; if none is
; specified, it uses the same class as the para itse lf
ParaFmt=ParaLinkClass

[StyleParaLinkClass]
; doc style = name to use in the class attribute
; of the links in the para
ParaFmt=classname

A ParaLinkClass assignment overrides any LinkClassIsParaClass setting in
[HTMLOptions] .

For example, to assign CSS class traffic to all links that occur in text with paragraph
format Blurb, and cause all links in Intro paragraphs to look just like the rest of Intro text:

[HTMLParaStyles]
Intro=ParaLinkClass
Blurb=ParaLinkClass

[StyleParaLinkClass]
Blurb=traffic

A Blurb paragraph that contains a link would convert to HTML like this:
<p class="blurb">Text containing a link to <a class ="traffic" href=
"#">somewhere.</p>

SPECIFYING LINK APPEARANCE MIF2GO USER’S GUIDE

612 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

An Intro paragraph that contains a link would convert like this:
<p class="intro">Text containing a link to <a class ="intro" href=
"#">somewhere.</p>

19.2.3 Assigning link attributes with markers

To assign an HTML attribute to a link, just before the link insert a marker with a name that
starts with Link and ends with the name of the link attribute. Make the content of the
marker the value of the named attribute. Mif2Go puts the attribute and its value in the
generated <a> tag.

See also:
§19.2.2.1 Assigning a link class with a marker on page 610
§25.3.3 Assigning WAI link attribute values with custom markers on page 759
§29.2.4 Using attribute markers for HTML or XML on page 835

19.2.4 Specifying link properties with macros

To include a macro in the href attribute of HTML links, assign the LinkSrc property to
any paragraph formats that contain links you wish to modify:

[HTMLParaStyles]
ParaFmt = LinkSrc

To specify the macro code:
[ParaStyleLinkSrc]
ParaFmt = code for the href attribute value

You can include macro variable <$$_linksrc> in the macro to insert the default content
of the href attribute.

For example, suppose you want to use JavaScript for all links that occur in Body
paragraphs, changing the links from the default format:

 Some text

to this format:
 Some text

To make the links look like this in HTML output:
[HTMLParaStyles]
Body = LinkSrc

[ParaStyleLinkSrc]
Body = javascript:LinkTo('<$$_linksrc>');

Macro variable <$$_linksrc> provides the original destination value for the href
attribute. Mif2Go supplies the double quotes around the entire attribute value; do not
include them in the macro definition. Any quote marks needed within the macro must be
single quotes.

Macros are also helpful when you need more than one line of href attribute information,
or when you want to use the same href attributes in many different configuration files.
See §28 Working with macros on page 787.

19.2.5 Replacing problem characters in links

Some characters that are acceptable in FrameMaker hypertext links and cross references
cause problems for browsers; for example, HTML insists on all-lowercase IDs. Mif2Go
processes FrameMaker hypertext link and cross-reference markers to ensure acceptable

19 CREATING HTML LINKS SPECIFYING LINK DESTINATION

ALL RIGHTS RESERVED. MAY 18, 2013 613

IDs, similar to the way CSS class names are processed; see §22.7.1 Understanding CSS
class name restrictions on page 691.

Spaces are
removed or

replaced

Part of the job is to remove all spaces, possibly replacing them with another character
when that is necessary to prevent name clashes. You can specify any alphanumeric
character (or a hyphen or an underscore) to replace spaces.

To set the character used to replace spaces in links:
[HTMLOptions]
; These alphanumeric chars are used as space replac ements in IDs;
; if non-alphanumeric (other than hyphen or undersc ore), spaces are
; stripped instead (default)
; XrefSpaceChar = alphanumeric char to use in xref markers
XrefSpaceChar=-
; HyperSpaceChar = alphanumeric char to use in hype rlinks (not URLs)
HyperSpaceChar=-

By default, Mif2Go removes spaces without replacing them. The same thing happens if
you set XrefSpaceChar or HyperSpaceChar to any non-alphanumeric character other
than a hyphen or an underscore: Mif2Go removes all spaces without replacing them.

19.2.6 Forcing link text to lowercase

To make sure all hypertext links are lowercase in HTML output:
[HTMLOptions]
; MakeFileHrefsLower = No (leave case unchanged) or Yes
MakeFileHrefsLower = Yes

MakeFileHrefsLower is set to Yes in system configuration file d2htm_config.ini .
If you want Mif2Go to leave case alone in hypertext links, you must override this setting
in a project or local configuration file.

MakeFileHrefsLower applies to hypertext links and interfile cross references. When
you use the FileName property to name the section that contains the cross-reference
destination, the setting applies also to cross references within the same file (see §34.8.4.4
Creating special paragraph formats to name output files on page 950).

Case mismatch
can cause links to

fail

If you change the case of a FrameMaker file name in your document after you have
created cross references or hypertext links to that file, the original case is preserved in the
markers. If your HTML output will be deployed on a UNIX system, links based on those
markers will fail because of the case mismatch. For JavaHelp, Oracle Help for Java, and
Eclipse Help (which is based on Java), the links fail on Windows systems, also. Java was
created by a UNIX company (Sun Microsystems) and uses UNIX rules, in which file-
name case is always significant.

19.3 Specifying link destination
In this section:

§19.3.1 Forcing links to top-of-page for selected paragraph formats on page 614
§19.3.2 Forcing all links to top-of-page on page 614
§19.3.3 Linking to an arbitrary location on page 614
§19.3.4 Providing alternate link destinations on page 615
§19.3.5 Troubleshooting bad links on page 616

See also:
§19.6 Linking to other files and other Mif2Go projects on page 621

SPECIFYING LINK DESTINATION MIF2GO USER’S GUIDE

614 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

19.3.1 Forcing links to top-of-page for selected p aragraph formats

You can specify that all interfile links in a particular paragraph format should go to the
start of the target page instead of to the cross-reference marker or hypertext newlink
marker location on the page, by assigning property NoRef to the format. For example:

[HTMLParaStyles]
zNextSection=NoRef
zPrevSection=NoRef

You can assign property NoRef to cross-reference formats, also; see §19.5.1.3 Specifying
HTML options for selected cross-reference formats on page 618.

19.3.2 Forcing all links to top-of-page

You can specify that all interfile links should go to the start of the target page rather than to
the cross-reference marker or hypertext newlink marker location. This is equivalent to
setting NoRef for all paragraph styles in [HTMLParaStyles] ; see §19.3.1 Forcing links
to top-of-page for selected paragraph formats on page 614:

[HTMLOptions]
; NoLocations = No (default)
; or Yes (suppresses the part of all links after the filename)
NoLocations = Yes

To remove all named anchors also:
[HTMLOptions]
; RemoveANames = No (default)
; or Yes (DITA, eliminate tags)
RemoveANames = Yes

19.3.3 Linking to an arbitrary location

To create a link to an arbitrary location in a file, you must identify or establish a target at
that location. You can use an existing FrameMaker ObjectID as the target, and in the
reference follow the file name with # then the ObjectID:

However, a FrameMaker ObjectID will change if you do any of the following to the
paragraph containing the object (see §5.3.2 Working with FrameMaker ObjectIDs on
page 118):

 • copy and paste the paragraph (the pasted copy gets a new ID)
 • delete the paragraph and then retype it
 • hide the paragraph with a condition and then show it.

You can also use a format macro to create and name the target. For example, suppose one
of your HTML files includes a procedure, and you want to create a link to the procedure
rather than to the beginning of the file. Suppose your procedures always start with a
paragraph format called ProcHead. You could assign the following properties and code to
ProcHead:

[HTMLParaStyles]
ProcHead=CodeBefore

[ParaStyleCodeBefore]
ProcHead=

If the procedure is in HTML file xx123456 , the link would look like this:

19 CREATING HTML LINKS SPECIFYING LINK DESTINATION

ALL RIGHTS RESERVED. MAY 18, 2013 615

You must ensure the target file contains no conflicting uses of the same target name, for
example in newlinks.

19.3.4 Providing alternate link destinations

You can use a macro to place a copy of a paragraph ID or a cross-reference ID somewhere
in the generated HTML code other than immediately before the content of the paragraph
in question. Two predefined macro variables capture the values of these Mif2Go -
generated IDs:

Each returns what would normally go in the tag:

where:

For example, if the anchor Mif2Go creates from the first cross-reference marker in a
paragraph looks like this:

The value of <$$_xrefid> for that paragraph would be:
Rxxaa39983

Note: FrameMaker ObjectIDs can change; see §19.3.3 Linking to an arbitrary location
on page 614.

See §5.3 Identifying files and objects on page 117.

Move a jump
destination

Suppose you want to display something (perhaps a table, a link, or a graphic) above a mid-
topic (non-split) heading, so that jumps to that heading show the preceding something at
the top of the window, above the heading.

You could use [ParaStyleCodeBefore] to place HTML code just before the content of
each such mid-topic heading, and include a copy of the paragraph ID (or cross-reference
marker ID) in that code. This would force hypertext jumps (or cross references) to the
paragraph to go to the preceding code instead of to the paragraph content. Whatever is
produced by that code would then appear at the top of the window when you click a link to
the paragraph.

For example, to precede a mid-topic heading with a one-cell table containing a link back
to a local TOC:

[HTMLParaStyles]
SubHead=CodeBefore

[ParaStyleCodeBefore]
SubHead=<p><a name="<$$_xrefid>"></p><$BackToTO C>

[BackToTOC]
<table cellpadding="5" border="1" cellspacing="2">
 <tr>
 <td>Contents< /a></td>

<$$_parauid> Paragraph ID of the current paragraph

<$$_xrefid> Cross-reference ID (if any) of the current paragraph

Xaannnnnn for a paragraph ID

Raannnnn for the ID of the first cross-reference marker in a paragraph

aa is the FileID of the HTML file (provided
[HTMLOptions]UseFileIDs=Yes , which is the default)

nnnnnnn is the ObjectID of the paragraph or cross reference.

CREATING JUMPS TO PARTICULAR WINDOWS FOR HTML MIF2GO USER’S GUIDE

616 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 </tr>
</table>

Clicking a cross-reference link to any SubHead paragraph would show a box containing a
link to Contents above the SubHead paragraph.

See also:
§28.3.4 Using predefined macro variables on page 800
§28.9.3 Surrounding or replacing text with code or macros on page 822

19.3.5 Troubleshooting bad links

If you find that a link always jumps to the top of a file even when the destination is
specified as mid-file, check for the presence of non-alphanumeric characters in the link;
see §19.2.5 Replacing problem characters in links on page 612.

However, usually the reason a link takes you to the top rather that the desired location is
that the anchor part, after the #, is wrong; see §19.3.3 Linking to an arbitrary location on
page 614.

Also check that the destination anchor is actually present in the destination file; see §19.6
Linking to other files and other Mif2Go projects on page 621, and §19.7 Linking to
external destinations on page 625.

See also:
§5.1.5 Checking for broken links in HTML or XML output on page 112

19.4 Creating jumps to particular windows for HTML
You can assign a particular window type as a jump destination. A window assignment can
specify jumps the following ways:

 • all jumps from a character or paragraph format
 • all jumps to a particular file or URL
 • individual jumps to a particular window.

A window assignment supplies a value for the target attribute of the
tag Mif2Go generates for the jump. If you are using framesets that value must be the name
of a frame (see §13.14 Using framesets on page 450), possibly one of several names
reserved by JavaScript, such as _top or _blank :

 • A jump to _top gets you out of a frameset; it does not open a new window.
 • A jump to _blank always opens a new window.

A jump to a window with a non-reserved name, if the window is not in the current
frameset (if any), opens a window of that name; and the next jump to the same name
reuses that same window. You can specify target windows the following ways:

Specify window by jump format
Specify window by jump destination
Specify window with a marker.

See also:
§7.7 Jumping to secondary windows in Help systems on page 224
§7.8 Creating pop-up topics for Help systems on page 225

Specify window
by jump format

You can use a character format to mark all jumps to a particular window type. For
example:

19 CREATING HTML LINKS CONVERTING FRAMEMAKER LINKS TO HTML

ALL RIGHTS RESERVED. MAY 18, 2013 617

[Targets]
; doc format = name of frame to use for jumps from within this style
; For OmniHelp ALink and KLink jumps, targets make no sense
; and are ignored.
JumpNew=_blank

If you know that such jumps always occur in a particular type of paragraph, such as Step
paragraphs in procedures, you could use a paragraph format. For example:

[Targets]
Step*=procwin

Specify window
by jump

destination

If you know that all jumps to a particular HTML page (such as glossary.htm) should go
to a particular window type, you can specify the window to use for that page. For example:

[TargetFiles]
; filename (no ext) or URL destination = target fra me to be used
; a URL destination is the last element in the URL (no extension)
glossary=glosswin

Specify window
with a marker

If you need case-by-case handling of jumps to other windows, put a marker of type
LinkTarget (see §29.2 Adding custom marker types on page 832), with marker content the
name of the window, anywhere before the relevant hypertext jump marker.

19.5 Converting FrameMaker links to HTML
Mif2Go automatically converts FrameMaker cross references and hypertext links to
 links in HTML output. You can specify options for these links.

In this section:
§19.5.1 Converting FrameMaker cross references to HTML on page 617
§19.5.2 Converting FrameMaker hypertext links to HTML on page 619
§19.5.3 Including ObjectID anchors as link targets on page 620

19.5.1 Converting FrameMaker cross references to H TML

You can specify settings to prevent some cross references from being converted to links, to
customize cross-reference behavior, or to direct Mif2Go to produce diagnostic
information about broken cross-reference links.

In this section:
§19.5.1.1 Identifying cross-reference markers on page 617
§19.5.1.2 Specifying HTML options for all cross references on page 618
§19.5.1.3 Specifying HTML options for selected cross-reference formats on page 618

See also:
§19.6 Linking to other files and other Mif2Go projects on page 621

19.5.1.1 Identifying cross-reference markers

FrameMaker identifies cross-reference markers with a unique reference number; Mif2Go
prefixes the letter “R” and the FileID to this number, and discards the rest of the marker
text. If you create markers without reference numbers, Mif2Go prefixes your marker text
with “R” and the FileID, and uses the full marker text, up to a 127-character limit. Mif2Go
truncates marker text at 127 characters.

See also:
§5.3.4 Working with Mif2Go FileIDs on page 119

CONVERTING FRAMEMAKER LINKS TO HTML MIF2GO USER’S GUIDE

618 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§19.6.1 Identifying HTML link destinations with FileIDs on page 621

19.5.1.2 Specifying HTML options for all cross ref erences

You can specify several processing options that apply to all cross references:
[HTMLOptions]
; XrefType = Full (default) or Numeric (shorter, sa ves space)
XrefType=Numeric
; RemoveFilePaths = Yes (default, strip hyperlink a nd xref paths)
; or No
RemoveFilePaths=No
; ListMissingRefs = No (default)
; or Yes (identify missing xrefs to stderr)
ListMissingRefs=No
; CheckAllRefs = Yes (default, even if they seem un changed)
; or No
CheckAllRefs=Yes

See also:
§19.6.2 Retaining file paths in interfile links on page 622

19.5.1.3 Specifying HTML options for selected cros s-reference formats

You might not want every cross reference in your document to become a link in the
HTML output, or you might want to specify HTML attributes for the links generated from
some cross references. You can choose to have Mif2Go delete cross references of a certain
format, convert them to text, redirect them to top-of-page, or enhance them with link
attributes:

[XrefStyles]
; xref format name = properties (Delete, Text, NoRe f, or LinkSrc)
; if omitted, xref is treated as link

These properties have the following effects:

For example:

Delete Omits the cross reference entirely from HTML output. You can assign
this property to remove unwanted page references, provided you have
set up the format so that deleting the cross-reference content leaves
readable text.

Text Prevents creation of the tag, so the cross reference
does not become a link. You might want to assign this property to a
cross-reference format you have used to insert short insets in
FrameMaker.

NoRef Creates the tag, but omits any hash part of the href
attribute; for example, file.htm# heading would become just
file.htm . The result is that the jump goes to the start of the file, not to
a point within the file. Assign this property if you want the top of the
page to show, instead of the referenced object, when a jump goes to a
split file.

LinkSrc Allows a Mif2Go macro in the href attribute of the link; you define the
macro in section [XrefStyleLinkSrc] . If you assign property
LinkSrc to a cross reference, and also to a character format applied to
the same cross reference (see §19.2.4 Specifying link properties with
macros on page 612), the cross-reference LinkSrc macro prevails. In
the macro definition you can use predefined macro variable
<$$_linksrc> , which provides the normal href content of the link.

19 CREATING HTML LINKS CONVERTING FRAMEMAKER LINKS TO HTML

ALL RIGHTS RESERVED. MAY 18, 2013 619

[XrefStyles]
zSectionLink=NoRef
Heading & Page=Text
Page=Delete

With these settings, Mif2Go would do the following:

 • Omit the #heading part of the href attribute from any link generated from a cross
reference that uses the zSectionLink format.

 • Render any cross reference that uses the Heading & Page format as plain text rather
than as a link.

 • Omit any cross reference that uses the Page format.

To use macros (see §28 Working with macros on page 787) in the href attribute of the
links generated from cross references, you assign property LinkSrc to the cross-reference
format, and you specify the macro in the following section:

[XrefStyleLinkSrc]
; xref format name = text macro to use in the href attribute
; of the xref link; <$$_linksrc> is available to use in the macro,
; with the normal href content.

To assign properties LinkSrc and NoRef to paragraph formats, see:
§19.2.4 Specifying link properties with macros on page 612
§19.3.1 Forcing links to top-of-page for selected paragraph formats on page 614.

19.5.2 Converting FrameMaker hypertext links to HT ML

Mif2Go imposes an internal limit of 255 characters on HTML anchor names (the part
after the “#”).

In this section:
§19.5.2.1 Understanding how Mif2Go treats hypertext links on page 619
§19.5.2.2 Understanding when to use openlink or gotolink on page 619

See also:
§5.10 Creating hotspots for hypertext links on page 138
§34.1.2 Using markers to add links and instructions on page 935

19.5.2.1 Understanding how Mif2Go treats hypertext links

Mif2Go converts most FrameMaker hypertext links into HTML links. Many kinds of
hypertext markers are available:

 • Hypertext jumps use gotolink, openlink, or one of their cousins (such as
gotolinkfitwin) to link to a matching newlink marker. The :firstpage and :lastpage
forms are converted into simple links to the beginning of the file named.

 • Message URL markers are passed through untouched as normal
links. Use these for links to external Web sites, mailto: links, and so forth.

 • Markers of the gotopage type cause a jump to the start of what was the first paragraph
on the specified page, even if the file has been split.

 • Markers for previouspage, nextpage, previouslink, opennew, popup (menu),
matrix , quit , quitall , and exit are always ignored.

 • Alert boxes are used only for MS HTML Help, where they provide simple pop-ups.
They are not effective in generic HTML.

19.5.2.2 Understanding when to use openlink or got olink

The syntax for openlink is ambiguous. The FrameMaker Hypertext dialog says it is:

CONVERTING FRAMEMAKER LINKS TO HTML MIF2GO USER’S GUIDE

620 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

openlink filename: linkname

which could mean either:
openlink [filename:] linkname

(link name required, file name optional) which is how gotolink works, or:
openlink filename[: linkname]

(file name required, link name optional) which how openlink works.

Use gotolink for targets within the same FrameMaker file.

Use openlink only for targets that are in a different FrameMaker file; always specify the
file name, including the .fm extension. If your document uses openlink hyperjumps
specified with a single argument that is the name of a file, and not the name of a link, set
this option:

[HtmlOptions]
; OpenlinkIsFile = No (default) or Yes (if no colon , dest is filename)
OpenlinkIsFile=Yes

See §34.1.2 Using markers to add links and instructions on page 935.

19.5.3 Including ObjectID anchors as link targets

When FrameMaker generates a TOC, IX, or other list or index, and you check the box to
request hypertext links, FrameMaker inserts jumps to the referenced items, using their
ObjectIDs as targets. By default, Mif2Go includes in HTML output an anchor for every
FrameMaker ObjectID, for references from the TOC and IX; and also includes the
ObjectIDs of all tables and anchored frames. See §5.3.1 Understanding how Mif2Go
creates identifiers on page 117.

To specify whether Mif2Go should include in HTML output all, a subset, or none of the
ObjectIDs from your FrameMaker document:

[HTMLOptions]
; ObjectIDs = All (default), Referenced, or None

Values for ObjectIDs have the following effects:

When is a default
value not the

default?

ObjectIDs=All is the default value, provided your configuration file has no setting at
all for ObjectIDs . However, when generating a new configuration file at set-up time,
Mif2Go specifies ObjectIDs=All only for HTML-based Help formats, and specifies
ObjectIDs=Referenced for all other formats.

See §4.3 Understanding where project settings come from on page 102.

ObjectIDs=All Keeping all ObjectIDs in the output can result in significant HTML bloat from all the
 tags. However, you need this setting if you are
converting a FrameMaker-generated index to HTML-based Help and you use the
following option:

[Index]
KeywordRefs=Para

See §7.5.8 Specifying index link destinations for HTML-based Help on page 215.

ObjectIDs=All An anchor is created for every ObjectID in your
document.

ObjectIDs=Referenced Anchors are created only for ObjectIDs that appear
to be referenced in your document.

ObjectIDs=None Anchors for ObjectIDs are not included in HTML
output.

19 CREATING HTML LINKS LINKING TO OTHER FILES AND OTHER MIF2GO PROJECTS

ALL RIGHTS RESERVED. MAY 18, 2013 621

ObjectIDs=
Referenced

Although ObjectIDs=Referenced reduces anchor bloat in the output, there are other
considerations if you are converting either of the following to HTML-based Help:

FrameMaker-generated TOC
FrameMaker-generated IX

FrameMaker-
generated TOC

When you specify ObjectIDs=Referenced , you must tell Mif2Go which paragraph
formats are referenced from the TOC. Assign the Contents property to each TOC-
referenced paragraph format, along with any other properties needed. For example:

[HTMLParaStyles]
; Contents (when ObjectIDs=Referenced) causes the O bjectID to be
; retained so that FM-generated links from the TOC w ill work
heading 1=Contents Split Title
heading 2=Contents

See §7.4.3 Including contents entries in HTML-based Help on page 209.

FrameMaker-
generated IX

When you specify ObjectIDs=Referenced , you might lose index links if you also set
[Index]KeywordRefs=Para . See §7.5.8 Specifying index link destinations for HTML-
based Help on page 215 and §13.8.2.2 Including paragraph references on page 445.

ObjectIDs=None ObjectIDs=None disables several features, such as file-splitting, that require ObjectIDs.
Therefore, this property is deprecated: do not specify ObjectIDs=None . See §18
Splitting and extracting files on page 585.

19.6 Linking to other files and other Mif2Go proje cts
With default configuration settings, Mif2Go successfully converts cross references and
hypertext links within and between HTML files generated in the same project. However,
you might need additional settings if your project includes any of the following:

 • links to or from files in other projects
 • links to files whose names or locations will change after conversion
 • links to FrameMaker text-inset files.

In this section:
§19.6.1 Identifying HTML link destinations with FileIDs on page 621
§19.6.2 Retaining file paths in interfile links on page 622
§19.6.3 Enabling links to renamed or relocated files on page 622
§19.6.4 Enabling links to files in other projects on page 623
§19.6.5 Updating links between files in different projects on page 624
§19.6.6 Mapping links to text insets on page 624

See also:
§19.7 Linking to external destinations on page 625
§20 Providing navigation in HTML on page 627
§C.5 Working with reference files for HTML or XML on page 1027

19.6.1 Identifying HTML link destinations with Fil eIDs

Unless your project consists of only one file, with no cross references to other HTML
files, use the following default setting:

[HTMLOptions]
; UseFileIDs = Yes (default, xrefs and ObjectIDs) o r No (single file)
UseFileIDs=Yes

LINKING TO OTHER FILES AND OTHER MIF2GO PROJECTS MIF2GO USER’S GUIDE

622 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When UseFileIDs=Yes , Mif2Go includes a FileID in the link code, so links do not get
confused if a cross-reference number or ObjectID is not unique. Mif2Go assigns FileIDs
to your FrameMaker files; see §5.3.4 Working with Mif2Go FileIDs on page 119.

19.6.2 Retaining file paths in interfile links

By default, Mif2Go removes paths from interfile links in your FrameMaker files. If your
HTML files will be maintained in a directory structure identical to the structure used for
the FrameMaker files from which they are generated, you must direct Mif2Go to retain
the paths in all interfile links, and then move the output files after conversion.

To retain file paths in interfile links:
[HTMLOptions]
; RemoveFilePaths = Yes (default, strip hyperlink a nd xref paths)
; or No
RemoveFilePaths = No

When RemoveFilePaths=Yes (the default), Mif2Go places all HTML files in the
project directory, regardless of where the originating FrameMaker files are located. Links
work as created, regardless of the original directory structure. A problem arises only if
both of the following are true:

 • Your FrameMaker files are in a non-flat directory structure (some FrameMaker files
are in different directories).

 • You move the resulting HTML files to an identical directory structure.

Note: You might still get link errors (see §5.1.5 Checking for broken links in HTML or
XML output on page 112) for links between FrameMaker files, especially if you
are using the CodeStore property (see §28.9.3 Surrounding or replacing text
with code or macros on page 822); however, the links should work.

When RemoveFilePaths=No , you must place HTML output files in a directory structure
on the target system that is identical to your FrameMaker directory structure. This means
that after conversion, you must move HTML files from the project directory to other
directories that correspond in name and relative position to the directories where the
FrameMaker files are located. You can do this with system commands; see §34.4
Executing operating-system commands on page 937.

19.6.3 Enabling links to renamed or relocated file s

You might run into situations where the names of FrameMaker files are not usable for
HTML files. For example, files on UNIX systems must not have spaces in their names.
And for HTML Help, the use of underscores in names seems to manifest defects.

Note: To stay out of trouble, restrict file names to letters and digits only, no spaces or
other characters. See §1.1.2 File, directory, and path names on page 51.

If you need to rename HTML files after Mif2Go produces them, you must tell Mif2Go
the names (and possibly the file paths) to use for the renamed files in links. This step is
essential if any links exist between the renamed files and other files in the project, or other
files in another directory. For example:

[XrefFiles]
; original filename (no ext) = html filename (no ex t, path OK)
Code1 = ../codes/federal/Code1
Cover = 00begin

Note: Even if you rename a file in [XrefFiles] , Mif2Go goes by the original
FrameMaker name in all other sections of the configuration file.

19 CREATING HTML LINKS LINKING TO OTHER FILES AND OTHER MIF2GO PROJECTS

ALL RIGHTS RESERVED. MAY 18, 2013 623

Entries in [XrefFiles] replace the href link to the file named on the left of the equals
sign (base name) with the path and name on the right. Therefore you can also use this
method to provide paths to files that will be relocated to a directory different from the
main project directory.

19.6.4 Enabling links to files in other projects

You can create HTML output from one Mif2Go project that has active links to HTML
files in another Mif2Go project, provided the two projects meet the following
requirements:

 • For each project, all HTML files generated from a given FrameMaker file are in the
same directory as the corresponding reference (.ref) file (see §C.5 Working with
reference files for HTML or XML on page 1027).

 • FrameMaker file names in the two projects are unique (for example, you cannot have
files in both called Intro.fm), unless there are no inter-project links to or from files
that have the same name.

FileID files must
match

All FrameMaker files in both projects must be listed in the same FileID file
(mif2go.ini); see §5.3.4.1 Understanding how and where FileIDs are assigned on
page 120.

To reference the same FileID file from the configuration files for both projects, include the
following setting in each project configuration file:

[Setup]
; IDFileName = name of file that contains FileIDs f or this project
IDFileName= F:/path/to/combined/mif2go.ini

See §C.4 Renaming or relocating the Mif2Go FileID file on page 1027.

Reference files
must reciprocate

If the two projects produce HTML files (and reference files) in different project
directories, for each project you must tell Mif2Go where to find the appropriate reference
files that go with the FrameMaker files in the other project. For example:

[RefFiles]
; original .fm filename = path to directory contain ing its .ref file
omnihelp=g:/omnisys/ug/oh
ohdesign=g:/omnisys/omhelp

You must include [RefFiles] sections in the configuration files for both projects, each
with entries that point to the location of .ref files in the other project.

Wildcards in file
names

You can use wildcards in the FrameMaker file names you specify in [RefFiles] ,
provided the result does not inadvertently subsume the name of any FrameMaker file in
the other project. The settings in section [RefFiles] are the first things Mif2Go checks.

As a worst case, if you were to specify *=some/other/directory , Mif2Go would do
the following:

 • direct all interfile links in the second project to some/other/directory

 • write all *.ref files for the second project to some/other/directory .

This is a spectacularly Bad Idea.

If a reference file
is not found

If Mif2Go cannot find (or create) a reference file, links to any HTML files split from the
FrameMaker file in question revert to links to the base name of that FrameMaker file, with
extension .htm ; and those links do not work.

To find a reference file, Mif2Go looks in the following places, in this order:

 • the directory (if any) you specified in [RefFiles]

 • the directory where the FrameMaker file in question resides

LINKING TO OTHER FILES AND OTHER MIF2GO PROJECTS MIF2GO USER’S GUIDE

624 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • the project directory for the current conversion.

If you specify a path in [RefFiles] , but the required reference file is not in the specified
location, Mif2Go creates a reference file in that directory. Mif2Go goes on to look at other
possibilities only if writing the new reference file fails, perhaps due to server permissions.

If Mif2Go cannot create a reference file in the directory you specified, Mif2Go looks in
the directory where the link is pointing: at the FrameMaker file. If the reference file is not
there, Mif2Go looks for a matching MIF file in the same directory; if a MIF file is present,
Mif2Go creates a reference file in that directory.

If the write fails this time, or if there is no MIF file, Mif2Go looks in the current project
directory. If the reference file is not there, Mif2Go creates a reference file in the current
project directory.

19.6.5 Updating links between files in different p rojects

For each FrameMaker file, Mif2Go requires both the corresponding .ref file, and all the
.htm files produced from that FrameMaker file, to reside in the same directory as the
.ref file itself. Then when you convert a different book, and links from an external file
change because a split name changed, Mif2Go updates the files of the referencing book at
the same time as the referenced book. This way you do not have to reconvert the other
books.

However, if you are using wrap directories (see §35.6 Assembling files for distribution on
page 961), you do have to copy the changed files from their project directories to the
corresponding wrap directories. Mif2Go does not copy the changed files to the wrap
directories for the other books. To automate this process, create a .bat file that copies all
the output files of all the books to their final destinations, and run that as a
SystemEndCommand (see §34.4 Executing operating-system commands on page 937)
whenever you rerun any book in the group. Copying the files should take only a few
seconds to run.

19.6.6 Mapping links to text insets

If your document includes text insets imported by reference, and contains links to those
text insets, provide settings in section [XrefFiles] to map the insets to their containers.

For example, suppose Mydoc.book contains the following files:
Chap1.fm , which imports insets from file Boiler.fm

Chap2.fm

Chap3.fm , which imports insets from file Trouble.fm

Suppose you have cross references or other links (working properly in FrameMaker) to,
from, and between insets. You would specify these settings in the configuration file:

[XrefFiles]
Boiler=Chap1
Trouble=Chap3

That is, you need only specify the container file for each inset. As long as all cross-
reference markers (and hypertext newlinks) in insets are accessible from the container by
normal means (for example, gotolink), this is all you need to do. If links are made only
from insets to their containers, you do not need any [XrefFiles] entries.

See also:
§2.5.4 Setting up cross references to and from text insets on page 70

19 CREATING HTML LINKS LINKING TO EXTERNAL DESTINATIONS

ALL RIGHTS RESERVED. MAY 18, 2013 625

19.7 Linking to external destinations
To include a link in your FrameMaker document to a Web site, to a PDF file, or to some
other destination, use a hypertext “message” command. Mif2Go produces HTML links
from hypertext markers in your document that contain the following types of hypertext
“message” commands (see §34.1.2 Using markers to add links and instructions on
page 935):

message URL
message openfile

To specify a target for a message URL link (for example, _blank):
[HTMLOptions]
; URLTarget = name of target to use for all message URL links unless
; otherwise set, default none
URLTarget=_blank

To specify an email address:
[HTMLOptions]
URLTarget=mailto: name@company.com

When a message openfile link specifies an absolute path (which must start with a drive
letter), Mif2Go prefixes the path with “file:/// ”. For example:

message openfile file:///g:/omnisys/ug/out/ugmif2go .pdf

For a relative path, Mif2Go includes just the text of the destination. For example:
message openfile ../out/ugmif2go.pdf

Other hypertext “message” commands do not work in HTML, so Mif2Go treats them as
hypertext alerts instead, to bring them to your attention; when you click such a link an
“alert” window pops up that displays the contents of the marker as entered in
FrameMaker.

(No tables)
(No illustrations)

LINKING TO EXTERNAL DESTINATIONS MIF2GO USER’S GUIDE

626 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 627

20 Providing navigation in HTML

To provide a navigation system for HTML output, you can use Mif2Go navigation
macros, FrameMaker cross references or hypertext links, or a combination of these, to link
together the HTML files Mif2Go generates from your FrameMaker document. Topics
include:

§20.1 Understanding how navigation links work on page 627
§20.2 Generating trails of links on page 627
§20.3 Including local TOCs on page 631
§20.4 Creating a browse sequence on page 635

See also:
§19 Creating HTML links on page 609

20.1 Understanding how navigation links work
Mif2Go navigation features are designed to work in cases where parallel or subordinate
headings are in split files of their own, not in the same file as the headings to which they
will be linked. This is not a minor point; in fact, the code for local TOCs, trails, and
browse sequences depends heavily on the code for file splitting. That is where Mif2Go
gets the titles and links to use. If you do not split FrameMaker files into topics, those lists
of titles and links have no content. For example, a trail link would show only the last
Heading1 in the file, a local TOC would be completely empty, and browse links would go
nowhere.

See §18.2 Splitting files on page 586.

20.2 Generating trails of links
You can have Mif2Go generate a trail of links to each topic level in the hierarchy above
the current HTML page, and display the trail on each page as an additional navigation aid.

In this section:
§20.2.1 Understanding trails of links on page 627
§20.2.2 Specifying whether to include trails of links on page 628
§20.2.3 Specifying what to include in trails of links on page 628
§20.2.4 Specifying heading levels for trails of links on page 630
§20.2.5 Specifying where to display trails of links on page 630

20.2.1 Understanding trails of links

A trail of links, often called a “breadcrumb trail”, typically looks something like this:
Home & Garden > Kitchen > Small appliances > Coffee makers

The trail does not necessarily consist of links someone followed to reach a given page;
instead, it represents the hierarchical position of the page in the structure of the HTML
document.

Each heading in your FrameMaker document that has subheadings can be used as a link in
a trail leading to successively lower subheadings. For each trail of links Mif2Go inserts
the current value of predefined macro <$_trail> , which consists of the following:

GENERATING TRAILS OF LINKS MIF2GO USER’S GUIDE

628 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • Starting HTML code for the trail
 • Text of each item in the trail (content of the heading in question)
 • Separator code between items in the trail
 • Ending code for the trail.

Except for the very last item, a trail of links can include only headings at which file splits
occur; see §18.2 Splitting files on page 586.

Trails of links are not compatible with [HTMLOptions]SmartSplit (see §18.2.2.3
Preventing splits that leave dangling headings on page 589). If you set SmartSplit=Yes ,
wherever a heading level is missing the previous heading in the trail will be duplicated.
The link will be correct, but the heading text will not.

20.2.2 Specifying whether to include trails of lin ks

To have Mif2Go create trails of links, specify the following setting:
[Trails]
; MakeTrail = No (default) or Yes (enable use of <$ _trail>)
MakeTrail=Yes

The default setting, MakeTrail=No , ensures that the overhead of collecting information
to construct trails will not be imposed if you do not use this feature.

When MakeTrail=Yes , Mif2Go creates a trail for any heading (or other paragraph
format) for which both of the following are true:

 • The format is assigned the [HTMLParaStyles]Trail and Title properties
(see §20.2.3 Specifying what to include in trails of links on page 628)

 • Either of the following is true:
 – The format is assigned the [HTMLParaStyles]Split property

(see §18.2.1 Designating split points on page 586)
 – [Trails]SplitTrail=Yes

(see §20.2.5 Specifying where to display trails of links on page 630).

For both split and extracted files, and for the original file, predefined macro <$_trail>
causes insertion of a trail according to the settings in [Trails] . The trail is always to the
first paragraph in the file. Mif2Go inserts trails only if MakeTrail=Yes .

20.2.3 Specifying what to include in trails of lin ks

In the usual case, you can set MakeTrail=Yes and SplitTrail=Yes , and appropriate
trails of links will appear in the HTML output for headings assigned format properties
Split , Trail , and Title . Other settings allow you to override Mif2Go defaults for
what to include in trails and where to position trails.

Content of trail
entries

To include in the trails of links the content of a heading format (or other format, for
extracted files), assign both the Title property and the Trail property to that format.
For example:

[HTMLParaStyles]
; Trail, if [Trails]MakeTrail=Yes, causes the <$_t rail> to be put out
; as specified by [Trails] settings.
ChapTitle=Title Trail
FigCaption=ExtrStart Title Trail

Heading prefix or
suffix

To provide a prefix or suffix for heading content as it appears in trails:
[StyleTrailPrefix]
; doc style = prefix to use (if any) for file title in trails
HeadFmt=prefix

20 PROVIDING NAVIGATION IN HTML GENERATING TRAILS OF LINKS

ALL RIGHTS RESERVED. MAY 18, 2013 629

[StyleTrailSuffix]
; doc style = suffix to use (if any) for file title in trails
HeadFmt=suffix

The heading content displayed in a trail excludes any prefix or suffix values assigned to
heading formats via [StyleTitlePrefix] or [StyleTitleSuffix] (see §18.4.2.3
Specifying a title prefix or suffix on page 596).

Code to start,
end, separate

entries

You can specify the HTML starting, ending, and separator code for the trail. For example:
[Trails]
; TrailStart = starting code for <$_trail>
TrailStart=<p>
; TrailSep = code between <$_trail> elements
TrailSep= >
; TrailEnd = ending code for <$_trail>
TrailEnd=</p>
; TrailLinkClass = value for class attribute in tra il links,
; default is none
;TrailLinkClass=trlink

You can use TrailStart to put a class attribute on the <p> tag, and use CSS to style it, if
the regular italic form (from) does not suffice. And you can add a class attribute for
the links used in trails.

Stack trail entries If the text of your headings tends to be lengthy, you might want to put each item in a trail
of links on a separate line, instead of having them all on one line; and you might want to
indent each successive entry.

To stack trail entries, replace the final of the TrailSep value with
 .

To indent successive stacked entries incrementally, specify the number of spaces to indent;
the maximum is four spaces per level:

[Trails]
; TrailIndent = number of s to put after Trai lSep for each
; output line to create indentation; a value of 1 puts one space
; before the second line, two before the third, th ree before
; the fourth, etc. A value of 2 puts 2, 4, 6, etc . Zero disables.
; If a value over 4 is set, it is reduced to 4.
TrailIndent=2

Current heading By default, a trail consists of links to headings above the current page. It can also include,
as text rather than as a link, the heading (or other first paragraph) of the current page, as
the final item in the trail:

[Trails]
; TrailCurrent = Yes (default), No, or Always
TrailCurrent=Yes

TrailCurrent can have the following values:

You would specify TrailCurrent=Always if, for example, you had embedded another
link in TrailStart , perhaps to the table of contents.

Yes Include the current-page heading only when the trail already contains at
least one item; otherwise omit the trail. This is the default.

No Never include the current-page heading in the trail.

Always Always include the current-page heading, even if it is the only item in
the trail.

GENERATING TRAILS OF LINKS MIF2GO USER’S GUIDE

630 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

20.2.4 Specifying heading levels for trails of lin ks

You can specify the range of heading levels to include in trails of links. The following
settings determine the level at which each trail starts and the lowest level where it can end.
If headings at a given level are missing from a FrameMaker file, that level is skipped when
trails are constructed.

[Trails]
; Trail*Level = heading level number
TrailFirstLevel=1
TrailLastLevel=9

Normally you would not want trails displayed for headings that do not start new HTML
pages, so you would set TrailLastLevel to the lowest heading level that actually does
start a new page.

You can use the [TrailLevels] section to assign a level in the trail to each heading
paragraph format. Absent this section, Mif2Go uses the levels specified in
[HelpContentsLevels] . For example:

[TrailLevels]
; paraformat = level, from 1 to 9, or 0 to exclude from trails
ChapTitle=1
Heading1=2
Heading1NoNum=2
Heading2=3

To exclude a heading format from the trail, you can assign level 0 to that format.

To include a non-heading format as the current (last) item at any level in the trail, you can
assign level 9 to that format. For example, if you assign the [HTMLParaStyles]Trail
property to a paragraph format such as a figure caption that is not part of the hierarchy of
headings, and can therefore appear at any level, assign level 9 to that format.

20.2.5 Specifying where to display trails of links

To display a trail of links in each split or extracted file, specify the following setting:
[Trails]
; SplitTrail = No (default) or Yes (put <$_trail> o ut for each split)
SplitTrail=Yes

You can specify where the trail of links should appear on each HTML page: before the
heading (that is, the first paragraph in the file), after the heading, or at other locations you
specify via [Inserts] .

[Trails]
; TrailPosition = Before (default), After, or Macro
TrailPosition=Before

The value of TrailPosition determines where the trail appears:

When you specify TrailPosition=Macro , automatic placement relative to the heading
is eliminated, and the trail appears wherever you have included <$_trail> in another
macro or assigned <$_trail> to a specific location.

For example, to show a trail of links at the top of each HTML file and also at the bottom of
each split file after the first, you would assign the <$_trail> macro to a location

Before Immediately above the heading (first paragraph). This is the default.

After Immediately below the heading.

Macro Wherever you insert predefined macro <$_trail> .

20 PROVIDING NAVIGATION IN HTML INCLUDING LOCAL TOCS

ALL RIGHTS RESERVED. MAY 18, 2013 631

keyword in the [Inserts] section (see §18.5 Inserting HTML code in split and extract
files on page 598):

[Inserts]
Top=<$_trail>
SplitBottom=<$_trail>
LastBottom=<$_trail>

When Mif2Go inserts trails specified by a <$_trail> macro assigned in the [Inserts]
section, if the first paragraph in the file does not have [HTMLParaStyles] property
Trail , the trail is not displayed. Otherwise, wherever you assign the <$_trail> macro,
Mif2Go inserts a trail according to the settings you specify in the [Trails] section.

20.3 Including local TOCs
You might want to include in each HTML output file a list of links to all files at the next
level down: a “local TOC” for subordinate topics, based on the split points you specify
(see §18.2 Splitting files on page 586). For example, if you split FrameMaker files on
Heading1 and Heading2 paragraphs, at the end of each Heading1 section you could list
links to all Heading2 paragraphs until the next Heading1.

Note: It is not a good idea to use SmartSplit in conjunction with local TOCs; see
§18.2.2.3 Preventing splits that leave dangling headings on page 589.

In this section:
§20.3.1 Directing Mif2Go to generate local TOCs on page 631
§20.3.2 Configuring local TOCs on page 631
§20.3.3 Positioning local TOCs in HTML topics on page 634
§20.3.4 Creating local TOCs in FrameMaker on page 635

20.3.1 Directing Mif2Go to generate local TOCs

You can direct Mif2Go to create a local TOC automatically for each HTML output file
that has subordinate split files. By default, each local TOC consists of links to split files at
the next level down; or, you can include all subordinate levels. If an HTML output file has
no subordinate files, no local TOC is written.

To direct Mif2Go to construct local TOCs:
[LocalTOC]
; MakeLocalTOC = No (default) or Yes (enable use of <$_localtoc>)
MakeLocalTOC=Yes

This option is required for any other local-TOC settings to take effect.

20.3.2 Configuring local TOCs

In this section:
§20.3.2.1 Specifying links to include in local TOCs on page 632
§20.3.2.2 Providing HTML code before and after local TOCs on page 632
§20.3.2.3 Providing HTML code for each local-TOC entry on page 633
§20.3.2.4 Producing multiple-level local TOCs on page 633
§20.3.2.5 Overriding default title text for a local-TOC entry on page 634

INCLUDING LOCAL TOCS MIF2GO USER’S GUIDE

632 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

20.3.2.1 Specifying links to include in local TOCs

To specify which subordinate split files to list in a local TOC, you assign a level number to
each of the FrameMaker paragraph formats (usually headings) that designate split points
in your document. In other words, you assign a level number to each paragraph format to
which you have assigned the [HTMLParaStyles]Split property (see §18.2.1
Designating split points on page 586):

[LocalTOCLevels]
; If this section is missing, [HelpContentsLevels] is used instead.
; Only formats for which [HTMLParaStyles] Split is set are recognized:
; paraformat = level, from 1 to anything; 0 to excl ude from local TOC

For example, if you split at Heading1, Heading2, HeadProc (which is at the same
hierarchical level in your document as Heading2), Heading3, and AppxHead1, you could
specify the following settings:

[LocalTOCLevels]
Heading1=1
Heading2=2
HeadProc=2
Heading3=3
AppxHead1=0

In this example:

 • Each Heading1 split file would have a local TOC consisting of links to all subordinate
Heading2 and HeadProc split files.

 • Each Heading2 split file and each HeadProc split file that has subordinates would have
a local TOC consisting of links to all subordinate Heading3 split files (if any).

 • AppxHead1 split files would not have local TOCs.

In the [LocalTOCLevels] section, list only paragraph formats that are also split points
(have been assigned the [HTMLParaStyles]Split property), and make sure your level
number series starts with 1. Otherwise, you might get unwanted blank topics.

If you omit a [LocalTOCLevels] section, Mif2Go includes instead any split-point
paragraph formats listed in [HelpContentsLevels] . Paragraph formats not listed in
either section are ignored.

Note: For any of these settings to take effect, you must enable local TOCs; see §20.3.1
Directing Mif2Go to generate local TOCs on page 631.

20.3.2.2 Providing HTML code before and after loca l TOCs

You can specify starting and ending HTML code to surround local TOCs. For example,
you might want to provide an introductory phrase before each TOC, and add some space
after each TOC.

Mif2Go uses the following default code if you do not specify other values for
LocalTOCStart or LocalTOCEnd :

[LocalTOC]
; LocalTOCStart = starting code for <$_localtoc>
LocalTOCStart=<p class="localtocstart">In this sect ion:</p>
; LocalTOCEnd = ending code for <$_localtoc>
LocalTOCEnd=

To prevent Mif2Go from including starting or ending code, you can set either or both
options to a blank value:

[LocalTOC]
LocalTOCStart=
LocalTOCEnd=

ALL RIGHTS RESERVED. MAY 18, 2013 633

Note: For either of these settings to take effect, you must enable local TOCs; see §20.3.1
Directing Mif2Go to generate local TOCs on page 631.

20.3.2.3 Providing HTML code for each local-TOC en try

You can specify the HTML code to use for local-TOC entries. You can include the
following predefined macro variables:

These macro variables are effective only when Mif2Go produces a local TOC; in any
other context they would appear literally, as is usual for undefined macro variables.

Mif2Go uses the following default code if you do not specify another value:
[LocalTOC]
; LocalTOCItem = code for each <$_localtoc> item
LocalTOCItem=<p class="localtocitem">\
<a href="<$$_loctocfile>"><$$_loctoctitle></p>

However, if you specify multiple-level local TOCs, the default is different; see §20.3.2.4
Producing multiple-level local TOCs on page 633.

The content displayed in a local-TOC item excludes any prefix or suffix value assigned
via [StyleTitlePrefix] or [StyleTitleSuffix] (see §18.4.2.3 Specifying a title
prefix or suffix on page 596).

Note: For these macros to take effect, you must enable local TOCs; see §20.3.1
Directing Mif2Go to generate local TOCs on page 631.

20.3.2.4 Producing multiple-level local TOCs

By default, a local TOC includes links only to split files at the next level down: those that
are immediately subordinate to the file where the local TOC appears. To include links to
all subordinate split files at all levels:

[LocalTOC]
; LocalTOCSubs = No (default, include only next lev el below
; current para) or Yes (include all levels below cur rent para)
LocalTOCSubs = Yes

When LocalTOCSubs=Yes , the LocalTOCItem default is changed to begin with:
<p class="loctocind<$$_loctocind>">

where the value of macro variable <$$_loctocind> is the indentation level of the item,
starting with 1.

To increase indentation for each subsequent level you will need a set of CSS classes
named p.loctocind1 , p.loctocind2 , and so forth, with increasing margin-left or
text-indent values. However, if all links include autonumbers, those might serve as
level indicators, and you would not need to provide indentation. In that case, you can
define LocalTOCItem as you wish; see §20.3.2.3 Providing HTML code for each local-
TOC entry on page 633.

Note: For this setting to take effect, you must enable local TOCs; see §20.3.1 Directing
Mif2Go to generate local TOCs on page 631.

To provide a multiple-level local TOC only for the first HTML file split from a given
FrameMaker file, you can use a list variable in a macro to reset the value of
LocalTOCSubs after the first local TOC. For example:

<$$_loctocfile> Name of the subordinate file

<$$_loctoctitle> Title of the subordinate file

INCLUDING LOCAL TOCS MIF2GO USER’S GUIDE

634 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[TOCstuff]
<$_localtoc><$$LocalTOC[LocalTOCSubs]=0>

See §28.4 Using multiple-value list variables on page 806.

20.3.2.5 Overriding default title text for a local -TOC entry

Local-TOC links are plain text. By default, the title of the referenced subordinate file
becomes the text of each local-TOC link, minus any formatting, embedded links, in-line
graphics, and so forth. You can override the default, if you must have formatting in the
local-TOC link text, or if you want some other content for the link.

To override the default local-TOC link text, place a custom LocalTOCTitle marker in the
first paragraph (usually a heading) of the subordinate file, and provide alternate text as the
marker content.

See §29.2 Adding custom marker types on page 832.

20.3.3 Positioning local TOCs in HTML topics

To specify where in an HTML topic a local TOC should appear, assign a predefined local-
TOC macro to one of the following:

 • a fixed location in each HTML output file
 • a location relative to a paragraph format (usually a split-file heading).

The predefined local TOC macros are as follows:

Use predefined macro <$_lastlocaltoc> to repeat the last local TOC generated; for
example, to provide in each subordinate topic a set of links to all sibling topics.

Note: For either of these macros to take effect, you must enable local TOCs; see §20.3.1
Directing Mif2Go to generate local TOCs on page 631.

Local TOC
position in a file

To specify a position for a local TOC in every HTML output file that should include a
local TOC, assign predefined macro <$_localtoc> to a location keyword in the
[Inserts] section. For example, to place a local TOC at the bottom of each split file that
has subordinate files:

[Inserts]
FirstBottom=<$_localtoc>
SplitBottom=<$_localtoc>

See §18.5 Inserting HTML code in split and extract files on page 598.

Local TOC
position relative to

a heading

To specify a position for a local TOC with respect to a paragraph format, assign a local-
TOC macro to the format in one of the [ParaStyleCode*] sections. For example:

[HTMLParaStyles]
Heading1=Split Title CodeAfter
Heading2=Split Title CodeBefore

[ParaStyleCodeAfter]
Heading1= <$_localtoc>

[ParaStyleCodeBefore]
Heading2= <$_lastlocaltoc>

Depending on what other local-TOC settings you specify, these assignments would result
in the following:

 • a list of links to all subordinate Heading2 files just after each Heading1 paragraph

<$_localtoc> A set of links to subordinate topics

<$_lastlocaltoc> A copy of the last local TOC generated

20 PROVIDING NAVIGATION IN HTML CREATING A BROWSE SEQUENCE

ALL RIGHTS RESERVED. MAY 18, 2013 635

 • a copy of the list of links to all Heading2 files subordinate to the same Heading1, just
before each Heading2 paragraph (at or near the top of each file split at Heading2).

See §28.9.3 Surrounding or replacing text with code or macros on page 822.

20.3.4 Creating local TOCs in FrameMaker

You can create local-TOC lists of links in FrameMaker and have Mif2Go convert them to
HTML, instead of using Mif2Go to generate local TOCs. At the end of each section in
your document that has subordinate sections, include one of the following:

 • a manually inserted list of cross references.
 • a generated-TOC text inset.

Mif2Go converts either kind of list to HTML links. The structure of your FrameMaker
document would look something like this, with HTML split points indicated:

1. Heading1 <-------------------- split here for HTML
body text . . .

link to 1.1 Heading2
link to 1.2 Heading2

1.1 Heading2 <------------- split here for HTML
body text . . .

link to 1.1.1 Heading3
link to 1.1.2 Heading3

1.1.1 Heading3 <---- split here for HTML
body text . . .

1.1.2 Heading3 <---- split here for HTML
body text . . .

1.2 Heading2 <------------- split here for HTML
body text . . .

2. Heading1 <-------------------- split here for HTML
body text . . .

20.4 Creating a browse sequence
You can use Mif2Go -supplied navigation macros to create a browse-type navigation
system in HTML, with previous and next links connecting all files in a single bidirectional
series:

<$_prev> for a link to the preceding HTML file
<$_next> for a link to the following HTML file.

Mif2Go also provides predefined macro <$_top> for a jump to top-of-page.

In this section:
§20.4.1 Understanding how browse macros work on page 636
§20.4.2 Choosing buttons versus text links for a browse sequence on page 638
§20.4.3 Formatting browse-link labels on page 639
§20.4.4 Modifying macros <$_prev>, <$_next>, and <$_top> on page 639
§20.4.5 Understanding browse keyword scope and default values on page 641
§20.4.6 Specifying where to invoke a browse macro on page 642
§20.4.7 Considering an example of browse navigation on page 643
§20.4.8 Specifying an alternate file sequence for browse links on page 644

See also:
§18 Splitting and extracting files on page 585
§19 Creating HTML links on page 609

CREATING A BROWSE SEQUENCE MIF2GO USER’S GUIDE

636 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§28 Working with macros on page 787

20.4.1 Understanding how browse macros work

The macros described in this section employ the file sequence information from your
FrameMaker .book file to simplify setting up navigation tables at the start and end of
HTML pages. Mif2Go browse macros use more than one level of indirection to
incorporate other macros and macro variables, so that browse links do the right thing in
every situation.

In this section:
§20.4.1.1 Understanding how browse macros vary by file position on page 636
§20.4.1.2 Understanding how to split files for a browse sequence on page 636
§20.4.1.3 Understanding equivalent browse macros and macro variables on page 636
§20.4.1.4 Understanding how browse macros employ macro variables on page 637

20.4.1.1 Understanding how browse macros vary by f ile position

Default definitions of browse macros <$_prev> and <$_next> , and the meanings of the
macro variables these macros employ, vary according to:

 • whether the macros produce text links or buttons (see §20.4.2 Choosing buttons
versus text links for a browse sequence on page 638)

 • the sequential position of the HTML file in which the macros are invoked; one of:
 – a split file that is neither the first nor the last split from its FrameMaker file
 – the first file split from any but the first FrameMaker file
 – the last file split from any but the last FrameMaker file
 – the first file split from the first FrameMaker file
 – the last file split from the last FrameMaker file.

You can change any of the definitions by changing the macro code assigned to appropriate
navigation keywords; see §20.4.4 Modifying macros <$_prev>, <$_next>, and <$_top>
on page 639.

20.4.1.2 Understanding how to split files for a br owse sequence

To create a browse sequence that works across topics split from two or more FrameMaker
files, when you direct Mif2Go to split FrameMaker files into smaller topics, you must
make sure that the very first HTML file split from each FrameMaker chapter actually
contains a topic that belongs in the browse sequence. This is always the case when the first
paragraph in the FrameMaker file is a heading that you have designated as a split point.
Otherwise, if any paragraphs precede the first split-point heading, those paragraphs will
end up in an extra HTML file that gets included in the browse sequence, even though it
does not contain a topic. You can prevent this from happening with split settings that
exclude the unwanted paragraphs; see §18.2.2.2 Preventing splits that create unwanted
files on page 588.

20.4.1.3 Understanding equivalent browse macros an d macro variables

For links between book files, Mif2Go provides two additional browse macros that are
used by indirection: <$_seqprev> and <$_seqnext> . Table 20-1 shows the default
definitions of these macros.

20 PROVIDING NAVIGATION IN HTML CREATING A BROWSE SEQUENCE

ALL RIGHTS RESERVED. MAY 18, 2013 637

Because of the equivalences listed in Table 20-2, you do not need to use <$_seqprev>
and <$_seqnext>. You can link together all the HTML pages split from all the
FrameMaker files in the sequence, using only macros <$_prev> and <$_next> .

When you are converting a book rather than a single FrameMaker file, for the first split
part of any but the very first file in the book, the definition of <$_prev> changes to use
predefined macro <$_seqprev> , which links to the last HTML file split from the
previous FrameMaker file in the book. Likewise, for the last HTML file split from any but
the last FrameMaker file in the book, the definition of <$_next> changes to use
predefined macro <$_seqnext> , which links to the first HTML file split from the next
FrameMaker file in the book. Table 20-2 shows how browse macros and macro variables
are equivalent depending on the position of a file in the sequence.

20.4.1.4 Understanding how browse macros employ ma cro variables

The definition of each browse macro includes predefined macro variables for a destination
for the link and for a label. Table 20-3 shows the default values of the link destination and
link label used in <$_prev> and <$_next> for each file position.

Table 20-1 Indirect navigation macros for files in a book

Macro Default definition

<$_seqprev> <a href="<$$_seqprevfile>"><$$_seqprevti tle>

<$_seqnext> <a href="<$$_seqnextfile>"><$$_seqnextti tle>

Table 20-2 Equivalent browse macros and variables by file position

File position Equivalent macros, macro variables, an d values

First file split from first
FrameMaker file in the
sequence

<$_prev> = <$_seqprev> (produces At Start)

<$$_prevfile> = <$$_seqprevfile> = <$$_seqcurrfile>

<$$_prevtitle> = <$$_seqprevtitle> = <$$_seqcurrtit le>

First file split from each non-
first FrameMaker file, and all
non-first unsplit files

<$_prev> = <$_seqprev>

<$$_prevfile> = <$$_seqprevfile>

<<$_prevtitle> = <$$_seqprevtitle>

Last file split from last
FrameMaker file in the
sequence

<$_next> = <$_seqnext> (produces At End)

<$$_nextfile> = <$$_seqnextfile> = <$$_seqcurrfile>

<$$_nexttitle> = <$$_seqnexttitle> = <$$_seqcurrtit le>

Last file split from each non-
last FrameMaker file, and all
non-last unsplit files

<$_next> = <$_seqnext>

<$$_nextfile> = <$$_seqnextfile>

<<$_nexttitle> = <$$_seqnexttitle>

Table 20-3 Default destination and label values for browse macros

Macro File position in sequence Destination value Labe l value

<$_prev> First file split from first
FrameMaker file in sequence

None (no destination
code)

At Start

First file split from:
- each non-first FrameMaker file
- all non-first unsplit files

<$$_seqprevfile> <$$_seqprevtitle>

All other split files <$$_prevfile> <$$_prevtitle>

CREATING A BROWSE SEQUENCE MIF2GO USER’S GUIDE

638 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Table 20-4 shows the meanings of the macro variables used in browse-macro definitions.

See §18.6 Referencing split and extract files on page 600 for additional macro variables
that refer to file names and titles of split and extracted files.

20.4.2 Choosing buttons versus text links for a br owse sequence

By default, Mif2Go navigation macros <$_prev> and <$_next> produce simple text
links. However, you can specify buttons instead:

[NavigationMacros]
; UseNavButtons = No (default, use links for <$_pre v> and <$_next>)
; or Yes (change the set of defaults to those for buttons instead)
UseNavButtons = Yes

When UseNavButtons=Yes , Mif2Go navigation macros produce JavaScript code such
as the following:

<button type="button"
onclick="javascript:location.href=' Destination'"> Label</button>

When UseNavButtons=No , Mif2Go navigation macros produce HTML code such as
this:

 Label

Both button and text-link navigation macros use predefined macro variables to provide
appropriate values for Destination and Label; see Table 20-3 on page 637.

<$_next> Last file split from last
FrameMaker file in sequence

None (no destination
code)

At End

Last file split from:
- each non-last FrameMaker file
- all non-last unsplit files

<$$_seqnextfile> <$$_seqnexttitle>

All other split files <$$_nextfile> <$$_nexttitle>

Table 20-4 Component macro variables for browse macros

Macro Macro variable Description

<$_prev> <$$_prevfile> File name of preceding split file

<$$_prevtitle> Title of preceding split file

<$$_seqprevfile> Name of preceding file in sequence, with extension .htm

<$$_seqprevtitle> Title listed in sequence for preceding FrameMaker file
<$_next> <$$_nextfile> File name of following split file

<$$_nexttitle> Title of following split file

<$$_seqnextfile> Name of following file in sequence, with extension .htm

<$$_seqnexttitle> Title listed in sequence for following FrameMaker file
Either macro <$$_currfile> File name of current split file

<$$_currtitle> Title of current split file (the one used in HTML <title>
element)

<$$_seqcurrfile> Name of current file in sequence, with extension .htm

<$$_seqcurrtitle> Title listed in sequence for current FrameMaker file

Table 20-3 Default destination and label values for browse macros

Macro File position in sequence Destination value Labe l value

20 PROVIDING NAVIGATION IN HTML CREATING A BROWSE SEQUENCE

ALL RIGHTS RESERVED. MAY 18, 2013 639

20.4.3 Formatting browse-link labels

You can provide formatting for Label content wherever you invoke text-link <$_prev>
and <$_next> macros. For example:

<p class="navlabel"><$_prev></p>

Button labels are at the mercy of default browser rendering, unless you redefine
<$_prev> and <$_next> macros so they include formatting. For buttons, formatting tags
must be placed within the <button> tag, surrounding Label text. For example (must be
all on one line):

<button type="button"
onclick="javascript:location.href='somefile.htm'">
<p class="navlabel">Previous</p></button>

20.4.4 Modifying macros <$_prev>, <$_next>, and <$ _top>

With care, you can redefine any of the browse macros to include formatting, alternate link
destinations, or alternate labels. Mif2Go provides keywords to which you assign macro
code for this purpose.

In this section:
§20.4.4.1 Redefining text-link browse macros on page 639
§20.4.4.2 Redefining button browse macros on page 640

20.4.4.1 Redefining text-link browse macros

When UseNavButtons=No (the default) you can redefine browse macros for text links by
changing the code assigned to the keywords listed in this section.

Do not try to duplicate <$_prev> and <$_next> logic by using the predefined macro
variable components outside of the definitions for <$_prev> and <$_next> . The browse
sequence would fail on inter-file links, because you would be missing some critical
internal code that is required to handle such links.

Note: In your configuration file each code assignment must be all on one line, even if it
does not look that way here.

To redefine macros for text links between HTML files split from a FrameMaker file,
change the following default definitions:

[NavigationMacros]
; PrevMacro = content to put out for <$_prev>
PrevMacro = <a href="<$$_prevfile>"><$$_prevtitle>< /a>
; NextMacro = content to put out for <$_next>
NextMacro = <a href="<$$_nextfile>"><$$_nexttitle>< /a>

For a previous text link in the first and a next text link in the last HTML file split from a
FrameMaker file, change the following default definitions:

[NavigationMacros]
; PrevFSMacro = <$_seqprev>, macro to use for <$_pr ev>
; at start of file
PrevFSMacro= <a href="<$$_seqprevfile>"><$$_seqprev title>
; NextFSMacro = <$_seqnext>, macro to use for <$_ne xt> at end of file
NextFSMacro= <a href="<$$_seqnextfile>"><$$_seqnext title>

For a previous text “link” in the first and a next text “link” in the last HTML file in the
entire sequence, change the following default definitions:

[NavigationMacros]
; StartingPrevFSMacro = <$_prev> to use at start of first file in book

CREATING A BROWSE SEQUENCE MIF2GO USER’S GUIDE

640 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

StartingPrevFSMacro = <$$_seqstarttitle>
; EndingNextFSMacro = <$_next> to use at end of las t file in book
EndingNextFSMacro = <$$_seqendtitle>

For a text link to the top of the current page, change the following default definition:
[NavigationMacros]
; TopMacro = content to put out for <$_top>,
; link to top of current file
TopMacro = <a href="<$$_currfile>"><$$_toptitle>

To change a macro definition, modify or replace the macro code assigned to the
appropriate keyword. For example, to add a title attribute to the <$_prev> link for
WAI purposes (the definition must be all on the same line):

PrevMacro =
<a href="<$$_prevfile>" title="<$$prevtitle>"><$$_p revtitle>

For the first and last HTML files in the entire sequence, <$_prev> and <$_next> do not
use links at all, but only label content. If you want static labels for the other links, you
could redefine the text-link macros as follows:

[NavigationMacros]
PrevMacro = <a href="<$$_prevfile>">Prev
NextMacro = <a href="<$$_nextfile>">Next
PrevFSMacro = <a href="<$$_prevfile>">Prev
NextFSMacro = <a href="<$$_nextfile>">Next

To make the first and last links to reference places outside the document (for example):
[NavigationMacros]
StartingPrevFSMacro = <a href="<$$HomeURL>">Home
EndingPrevFSMacro =< a href="<$$Plan2URL>">Plan 2</ a>

[MacroVariables]
HomeURL = http://www.oursite.org/index.htm
Plan2URL = http://www.oursite.org/greatplans/plan2. htm

20.4.4.2 Redefining button browse macros

When UseNavButtons=Yes , you can redefine browse macros for buttons by changing
the code assigned to the keywords listed in this section.

Do not try to duplicate <$_prev> and <$_next> logic by using the predefined macro
variable components outside of the definitions for <$_prev> and <$_next> . The browse
sequence would fail on inter-file links, because you would be missing some critical
internal code that is required to handle such links.

Note: In your configuration file each code assignment must be all on one line, even if it
does not look that way here.

To redefine macros for buttons that activate links between the HTML files split from a
FrameMaker file, change the following default definitions:

[NavigationMacros]
UseNavButtons = Yes
; PrevButton = content to put out for <$_prev>
PrevButton = <button type="button"

onclick="javascript:location.href='<$$_prevfile>'">
<$$_prevtitle></button>

; NextButton = content to put out for <$_next>
NextButton = <button type="button"

onclick="javascript:location.href='<$$_nextfile>'">
<$$_nexttitle></button>

20 PROVIDING NAVIGATION IN HTML CREATING A BROWSE SEQUENCE

ALL RIGHTS RESERVED. MAY 18, 2013 641

For a previous button in the first and a next button in the last HTML file split from a
FrameMaker file, change the following default definitions:

[NavigationMacros]
UseNavButtons = Yes
; PrevFSButton = <$_seqprev>, macro to use for <$_p rev>
; at start of file
PrevFSButton = <button type="button"

onclick="javascript:location.href='<$$_seqprevfile> '">
<$$_seqprevtitle></button>

; NextFSButton = <$_seqnext>, macro to use for <$_n ext> at end of file
NextFSButton = <button type="button"

onclick="javascript:location.href='<$$_seqnextfile> '">
<$$_seqnexttitle></button>

For a previous button in the first and a next button in the last HTML file in the entire
sequence, change the following default definitions:

[NavigationMacros]
UseNavButtons = Yes
; StartingPrevFSButton = <$_prev> to use at start o f first file
; in book
StartingPrevFSButton = <button type="button">

<$$_seqstarttitle></button>
; EndingNextFSButton = <$_next> to use at end of la st file in book
EndingNextFSButton = <button type="button">

<$$_seqendtitle></button>

For a button link to the top of the current page, change the following default definition:
[NavigationMacros]
UseNavButtons = Yes
; TopButton = content to put out for <$_top>,
; link to top of current file
TopButton = <button type="button"

onclick="javascript:location.href='<$$_currfile>'">
<$$_toptitle></button>

To provide label formatting (for example):
[NavigationMacros]
UseNavButtons = Yes
PrevButton = <button type="button"

onclick="javascript:location.href='<$$_prevfile>'">
<p class="navcell">Prev</p></button>

To provide different text for the (non-link) very first and very last buttons, or no text at all:
[NavigationMacros]
UseNavButtons = Yes
StartingFSButton =
EndingFSButton = Stop!

Typing nothing (or only a single space) after the equals sign results in a null value.

20.4.5 Understanding browse keyword scope and defa ult values

Table 20-5 shows the scope of each browse-macro keyword with respect to file position,
the macros each keyword defines, and the macro variables used in each default value.

CREATING A BROWSE SEQUENCE MIF2GO USER’S GUIDE

642 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Table 20-6 shows the default value Mif2Go uses for each browse-macro keyword when
the navigation macros produce text links; Table 20-7 shows the default values when
macros produce buttons (see §20.4.2 Choosing buttons versus text links for a browse
sequence on page 638).

20.4.6 Specifying where to invoke a browse macro

To specify where in an HTML output file to invoke one or more browse macros, in the
[Inserts] section assign the macro(s) to one or both of the following keywords:

Table 20-5 Scope of [NavigationMacros] keywords

Scope

Keyword
(* = Macro or
Button) Defines:

Default value uses:

File name Label

Very first file StartingPrevFS* None None At Start

Very last file EndingNextFS* None None At End

First split PrevFS* <$_seqprev> <$$_seqprevfile> <$$_seqprevtitle>

Last split NextFS* <$_seqnext> <$$_seqnextfile> <$$_seqnexttitle>

All other split
files

Prev* <$_prev> <$$_prevfile> <$$_prevtitle>

Next* <$_next> <$$_nextfile> <$$_nexttitle>

Table 20-6 Default values of text-link browse keywords

Keyword Default value

PrevMacro <a href="<$$_prevfile>"><$$_prevtitle>

NextMacro <a href="<$$_nextfile>"><$$_nexttitle>

PrevFSMacro <a href="<$$_seqprevfile>"><$$_seqprevti tle>

NextFSMacro <a href="<$$_seqnextfile>"><$$_seqnextti tle>

StartingPrevFSMacro At Start

EndingNextFSMacro At End

Table 20-7 Default values of button browse keywords

Keyword Default value

PrevButton <button type="button"
onclick="javascript:location.href='<$$_prevfile>'">
<$$_prevtitle></button>

NextButton <button type="button"
onclick="javascript:location.href='<$$_nextfile>'">
<$$_nexttitle></button>

PrevFSButton <button type="button"
onclick="javascript:location.href='<$$_seqprevfile> '">
<$$_seqprevtitle></button>

NextFSButton <button type="button"
onclick="javascript:location.href='<$$_seqnextfile> '">
<$$_seqnexttitle></button>

StartingPrevFSButton <button type="button">At Start</ button>

EndingNextFSButton <button type="button">At End</butt on>

Top At the beginning of the <body> element.

Bottom Just before the end of the <body> element.

20 PROVIDING NAVIGATION IN HTML CREATING A BROWSE SEQUENCE

ALL RIGHTS RESERVED. MAY 18, 2013 643

For example:
[Inserts]
Top = <$_prev>

<$_next>

Bottom = <$_top>

See §18.5 Inserting HTML code in split and extract files on page 598 for additional
[Inserts] keywords you can use to specify other file locations, and for keyword
prefixes you can use to restrict macro assignment by output file type.

20.4.7 Considering an example of browse navigation

Suppose your project involves a FrameMaker document named TechGuide.book that
consists of three files: Intro.fm , Examples.fm , and Summary.fm ; and suppose you
want Prev and Next links at the top of each HTML file generated from
TechGuide.book .

In the [Inserts] section of the configuration file you would specify where on each page
of HTML output the links should appear (see §20.4.6 Specifying where to invoke a
browse macro on page 642). For Examples, at the top of each HTML page:

[Inserts]
Top = <$_prev>

<$_next>

Suppose Mif2Go splits the files in TechGuide.book as follows (see §18.2 Splitting files
on page 586):

Intro.fm: Intro.htm aa100002.htm aa100003.htm
Examples.fm: Examples.htm bb200002.htm bb200003. htm bb200004.htm
Summary.fm: Summary.htm cc300002.htm

Figure 20-1 shows the positions of these files with respect to the differences in default
definitions of <$_prev> and <$_next> (see Table 20-3 on page 637).

Figure 20-1 Positions of files in TechGuide.book

Table 20-8 Values of variables in navigation links for TechGuide.book

HTML file

<$_prev> <$_next>

<$$_prevfile> <$$_prevtitle> <$$_nextfile> <$$_nexttit le>

Intro.htm None (no link) At Start aa100002.htm Intro section 2 title

aa100002.htm Intro.htm Introduction aa100003.htm Intro section 3 title

aa100003.htm aa100002.htm Intro section 2 title Examples.htm Brilliant examples
and exposition

Examples.htm Intro.htm Introduction bb200002.htm Examples section 2
title

bb200002.htm Examples.htm Brilliant examples
and exposition

bb200003.htm Examples section 3
title

bb200003.htm bb200002.htm Examples section 2
title

bb200004.htm Examples section 4
title

Other splits

Intro.htm

aa100002.htm

aa100003.htm

Examples.htm

bb200002.htm

bb200003.htm

bb200004.htm

Summary.htm

cc300002.htm

First & last files

First & last splits

Intro.fm Examples.fm Summary.fm

CREATING A BROWSE SEQUENCE MIF2GO USER’S GUIDE

644 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Table 20-8 shows the values that <$_prev> and <$_next> macros would use in each
HTML file; in particular:

 • For the very first and very last files, the default definitions of <$_prev> and
<$_next> do not include links, but only predefined text for titles.

 • For all other files, the title is that used in the HTML <title> element, and usually
comes from a paragraph or a FrameMaker marker, as determined by settings described
in §18.4.2 Specifying page titles for split or extract files on page 594.

20.4.8 Specifying an alternate file sequence for b rowse links

If you are converting a FrameMaker book, the browse sequence includes all files in the
book. To exclude one or more FrameMaker files from the browse sequence, or to change
the order in which files are linked, you must create an alternate FrameMaker book that
contains the files you want in the order you want.

Note: The former [FileSequence] section is deprecated, and is no longer used by
Mif2Go .

bb200004.htm bb200003.htm Examples section 3
title

Summary.htm Conclusion

Summary.htm Examples.htm Brilliant examples
and exposition

cc300002.htm Summary section 2
title

cc300002.htm Summary.htm Conclusion None (no link) At End

Table 20-8 Values of variables in navigation links for TechGuide.book

HTML file

<$_prev> <$_next>

<$$_prevfile> <$$_prevtitle> <$$_nextfile> <$$_nexttit le>

ALL RIGHTS RESERVED. MAY 18, 2013 645

21 Mapping text formats to HTML/XML

This section shows how to assign HTML elements to FrameMaker paragraph and
character formats. Topics include:

§21.1 Understanding how Mif2Go converts text on page 645
§21.2 Choosing how to map formats on page 645
§21.3 Mapping paragraph formats on page 646
§21.4 Mapping character formats on page 653
§21.5 Assigning properties to text formats on page 653
§21.6 Mapping special characters on page 658
§21.7 Mapping fonts on page 663
§21.7 Mapping fonts on page 663
§21.8 Managing typographic elements for HTML or XML on page 667
§21.9 Specifying text colors for HTML on page 669
§21.10 Configuring preformatted text for HTML/XML on page 670
§21.11 Converting footnotes to HTML or XML on page 671
§21.12 Converting list formats to HTML on page 674

See also:
§22 Setting up CSS for HTML on page 681

21.1 Understanding how Mif2Go converts text
Format overrides

included
By default, Mif2Go writes tags for all FrameMaker text properties, even for overrides.
This preserves text appearance in HTML. However, you can provide configuration
settings that disallow all or selected overrides, for all or selected formats; see §21.5
Assigning properties to text formats on page 653.

Master-page text
not included

Mif2Go does not convert master page headers and footers at all for HTML; you hardly
ever want the same page top and bottom as in print files. However, you can specify
predetermined HTML to appear at the top and bottom of output pages; see §28.9.2
Invoking macros at predetermined points in output on page 821.

21.2 Choosing how to map formats
Mif2Go provides several ways to map FrameMaker formats to HTML, with considerable
overlap among methods. You might want to use some or all of the following:

Conversion template
Configuration settings
Cascading style sheets

Conversion
template

Import formats from a FrameMaker template you design specifically to produce HTML
that looks the way you want. When you import formats from an alternate FrameMaker
template, you can control text appearance; you can also redefine cross-reference formats
to remove page numbers, which is not possible with other methods. See:

§2.4 Importing formats from a conversion template on page 67
§30.7 Applying FrameMaker conversion templates on page 863.

Configuration
settings

Insert settings in a configuration file to map paragraph and character formats individually
to HTML tags. The display attributes of HTML tags to which you map individual formats

MAPPING PARAGRAPH FORMATS MIF2GO USER’S GUIDE

646 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

are browser dependent. All you can be sure of is that, by default (without CSS), an h1 will
look “bigger” than an h2, and so forth. Sometimes the “biggerness” is questionable,
especially at the lower end (h4, h5, h6). However, you can use configuration settings to
achieve effects not possible with CSS or with a FrameMaker template, such as the macro
insertion of content. See:

§21.3 Mapping paragraph formats on page 646
§21.4 Mapping character formats on page 653.

Cascading style
sheets

Use cascading style sheets (CSS). Using CSS might cause different effects in different
browsers, or even in different versions of the same browser. However, you can override
CSS with individual settings in the configuration file. See §22 Setting up CSS for HTML
on page 681.

Note: Any formatting that is directly created by an HTML tag overrides CSS. Using
HTML presentational tags and attributes cripples your ability to use CSS, and
therefore to adjust formatting easily without having to alter content.

21.3 Mapping paragraph formats
By default, if you do not explicitly map FrameMaker formats to HTML tags, Mif2Go
does the following:

 • Uses <p> as the tag for all paragraph formats.
 • Treats all character formats as overrides.
 • Creates tags for all format properties, including overrides.
 • Converts all tag names to valid CSS names, without spaces or non-alphanumeric

characters, leading digits, or accented characters (the latter become unaccented).

This might be adequate, especially if you are using CSS. However, you might want your
headings to come out with <hn> styles, your emphasized text to be tagged , and your
lists to become real HTML indented lists, without requiring CSS.

In this section:
§21.3.1 Assigning HTML tags and attributes to paragraph formats on page 646
§21.3.2 Converting sidehead and run-in paragraph formats on page 648
§21.3.4 Including text-frame content in line on page 649
§21.3.5 Designating script paragraph formats on page 650
§21.3.6 Stripping paragraph properties on page 650
§21.3.7 Keeping or removing reference frames on page 651
§21.3.8 Deciding how to treat forced returns on page 651
§21.3.9 Providing content for empty paragraphs on page 651
§21.3.10 Eliminating empty paragraphs in text on page 652
§21.3.11 Eliminating invisible paragraphs on page 652
§21.3.12 Eliminating unwanted paragraphs on page 652

See also:
§21.10 Configuring preformatted text for HTML/XML on page 670
§21.11 Converting footnotes to HTML or XML on page 671
§21.12 Converting list formats to HTML on page 674

21.3.1 Assigning HTML tags and attributes to parag raph formats

To specify the HTML tag to be used for headings and other special-purpose formats:

21 MAPPING TEXT FORMATS TO HTML/XML MAPPING PARAGRAPH FORMATS

ALL RIGHTS RESERVED. MAY 18, 2013 647

[ParaTags]
; Document para format name = HTML style name (defa ult is <p>)
; use h1-h6, pre, script, address, or blockquote fo r HTML styles

Although these (and span) are the only valid HTML tag names you can specify in this
section, Mif2Go does not require you to stick to valid tags. You can use any tags, to allow
XML within HTML. In fact, you can use any text that can go inside the <> brackets
Mif2Go supplies around the text. However, only tags valid in HTML for paragraphs
produce effects in HTML output.

If you are creating Web pages that will be available to search engines, keep in mind that
headings that are actually tagged as headings (h1 through h6) can be important for search
ranking. For example, Google search might look at the following (rather than keywords in
meta tags):

1. titles of pages

2. words displayed in links to those pages

3. words used in headings that are tagged as such

4. words used within the pages.

With paragraph tag settings in [ParaTags] you can also do the following:
Add attributes to a tag
Apply a character tag to a paragraph format
Provide a CSS class name
Suppress paragraph tags entirely.

Add attributes to
a tag

To add attributes to the paragraph tag, list them after the tag. For example:
[ParaTags]
CodeBold = pre type="bold"

Everything after the first space that follows the tag name is removed for the end tag. To
apply an attribute to an individual instance of a paragraph format, insert an attribute
marker in the paragraph; see §29.2.4 Using attribute markers for HTML or XML on
page 835. For this example, you would use a marker of type ParaType with content bold
(no quotation marks).

Apply a character
tag to a

paragraph format

To apply an HTML character tag (for example, em) to a paragraph format, you would have
to do something like this:

[HTMLParaStyles]
ParaFmt = CodeStart CodeEnd

[ParaStyleCodeStart]
ParaFmt =

[ParaStyleCodeEnd]
ParaFmt =

(With CSS, it might be simpler to add font-style: italic; to the CSS style for the
<p. parafmt> tag.)

Provide a CSS
class name

If you are using CSS, by default the tag name becomes the CSS class name for HTML
output; for XML output, the default is reversed. See §22.5 Understanding how CSS affects
other options on page 687.

You can provide your own class names. For example:
[ParaTags]
Heading 1 = H1 class="tophead"

results in:

MAPPING PARAGRAPH FORMATS MIF2GO USER’S GUIDE

648 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

<h1 class="tophead">

for all Heading 1 paragraphs in HTML output.

If you do provide your own class names, do not also have Mif2Go generate a style sheet
(see §22.4.1 Specifying CSS options at project set-up time on page 683); you would get
duplicate class entries for any such paragraph formats. See also §22.7.2 Mapping
paragraph formats to CSS classes on page 692.

For XML output, see §14.4.2 Deriving XML tags from format and class names on
page 462.

Suppress
paragraph tags

entirely

To eliminate style tags entirely, map the paragraph format to nothing:
[ParaTags]
ParaFmt =

Specifying an empty [ParaTags] class is equivalent to assigning format property
NoPara to the paragraph format; see §21.3.6 Stripping paragraph properties on page 650.

If you are producing DITA XML output, see also §15.4.3.2 Omitting element tags for
selected paragraph formats on page 488.

21.3.2 Converting sidehead and run-in paragraph fo rmats

Mif2Go does not provide any special treatment for sideheads in HTML. A sidehead
paragraph appears in HTML output as a normal paragraph.

HTML does not support run-in formats. By default, Mif2Go tries to duplicate the
FrameMaker run-in effect in HTML by converting a run-in heading to use the paragraph
format and CSS class of the run-in body paragraph (the paragraph the heading runs into),
modified by the character formatting, first-line indent, and space-before of the run-in
heading.

To have Mif2Go instead place the run-in heading on a line previous to the following
paragraph, preserving all paragraph and character properties of the heading:

[HTMLOptions]
; RunInHeads = Runin (default) or Normal (head on p revious line,
; default for DITA output)
RunInHeads = Normal

To have Mif2Go base the HTML tag used for the combined paragraphs on the paragraph
format name of the run-in head, instead of on the format of the following paragraph:

[HTMLOptions]
; UseRunInTag = No (default, get tag from body para)
; or Yes (from runin)
UseRunInTag = Yes

For example, if Heading4 is a run-in heading followed by a Body paragraph, to combine
both into an HTML heading:

[HTMLOptions]
UseRunInTag = Yes

[ParaTags]
Heading4 = H1

21.3.3 Converting paragraph formats with autonumbe rs

By default, for HTML output Mif2Go omits autonumber characters from paragraph
formats that are mapped to HTML list styles, and converts autonumbers to text for all
other paragraph formats. For XML output, the default is to omit all autonumbers.

21 MAPPING TEXT FORMATS TO HTML/XML MAPPING PARAGRAPH FORMATS

ALL RIGHTS RESERVED. MAY 18, 2013 649

To eliminate autonumbers from selected paragraph formats:
[HTMLParaStyles]
; NoAnum excludes autonumber in non-list items, def ault keeps it
; for formats other than DocBook and DITA.
ParaFmt = NoAnum

For example, to eliminate bullets:
[HTMLParaStyles]
Bulleted = NoAnum

To eliminate autonumbers from all paragraph formats:
[HTMLOptions]
; UseAnums = Yes (HTML default, use unless list typ e)
; or No (XML default)
UseAnums = No

To override UseAnums=No for selected paragraph formats:
[HTMLParaStyles]
; Anum includes Frame autonumber in para. For list s, and for
; DocBook and DITA, the default omits it.
ParaFmt = Anum

To override UseAnums=Yes for lists in FrameMaker generated files, apply a unique
character format (for example, ListAnum) to the <paranum> part of each entry on the
reference page for the generated file; and include the following setting:

[HTMLParaStyles]
ListAnum = Delete

To eliminate unwanted tabs from paragraph autonumbers:
[HTMLOptions]
; AnumTabs = Yes (default, make tab in numbering pr operties into space
; unless in [HTMLParaStyles] List format, in which c ase remove it)
; or No (remove)
AnumTabs = Yes

See also:
§21.6.2 Understanding how Mif2Go treats tabs in HTML/XML on page 658
§21.12 Converting list formats to HTML on page 674
§34.7 Converting autonumbers for database systems on page 944

21.3.4 Including text-frame content in line

If your FrameMaker document includes text frames inside anchored frames (for example,
for sidebars or notes), you might want the text in those frames to appear in line with the
main flow in HTML.

To include text-frame content in line:
[HTMLParaStyles]
; TextFrameIsText is applied to an anchor para form at to cause
; anchored frames containing a text frame to be r endered as in-line
; text.
AnchorParaFmt = TextFrameIsText

Use TextFrameIsText to include the content of a separate FrameMaker text frame (a
text frame within an anchored frame) directly in line with the body text where the frame is
anchored. Assign TextFrameIsText to the paragraph format that contains the anchor. If
you are using a dedicated paragraph format for anchors, also assign NoPara and NoTags
to the format (see §21.3.6 Stripping paragraph properties on page 650) to eliminate the
empty anchor paragraph. For example:

MAPPING PARAGRAPH FORMATS MIF2GO USER’S GUIDE

650 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[HTMLParaStyles]
SideBarAnchor = TextFrameIsText NoPara NoTags

21.3.5 Designating script paragraph formats

A paragraph tagged as script in [ParaTags] (see §21.3.1 Assigning HTML tags and
attributes to paragraph formats on page 646) includes a type attribute that is always added
in the opening tag:

[HTMLOptions]
; ScriptType = text/javascript (default) or other M IME type
ScriptType = text/javascript

If you apply the [HTMLParaStyles]Comment attribute to such a paragraph, the script
body begins and ends with automatic comment delimiters. See §21.3.6 Stripping
paragraph properties on page 650.

21.3.6 Stripping paragraph properties

You can designate text in your FrameMaker document that you do not want fully
converted to HTML. For example, you can include material pre-written in HTML, and
direct Mif2Go to insert the material as is in the HTML output. Create a special paragraph
format to use only for this purpose, and assign to it one of the following properties:

[HTMLParaStyles]
; para format = keywords for functions and properti es
; Comment makes the element a comment, replacing th e para tags,
; unless ParaStyle is "script", then the comment is in the tags
; NoTags suppresses any attributes for the para tag , and suppresses
; any tags within
; NoPara eliminates the para tags only, to be provi ded in a macro
; NoWrap suppresses \n line breaks and preserves le ading spaces
; Raw acts like NoTags, and also eliminates the par a tags entirely
; It is used to put macro inclusions in between d ocument elements

Comment Use Comment to cause a paragraph to appear only as a comment in the generated HTML
source code. Mif2Go substitutes <!-- and --> tags for the <p> and </p> tags, unless
you have also assigned a script tag to the paragraph format in [ParaTags] ; see §21.3.5
Designating script paragraph formats on page 650.

NoTags Use NoTags to suppress all tags between <p> and </p> (such as , , <i> , and
so forth) in the generated HTML for the paragraph. Only the <p> tags themselves and the
paragraph content are included in the output.

NoPara Use NoPara to suppress only the <p> tags in the output. You might want to do this when
either of the following is true:

 • The paragraph will be part of a Mif2Go macro that already supplies <p> ... </p> .
 • You are generating XML instead of HTML; see §14.4.3 Eliminating HTML attributes

and tags for generic XML on page 463. If you are producing DITA XML output, also
see §15.4.3.2 Omitting element tags for selected paragraph formats on page 488.

NoWrap Use NoWrap to suppress \n line breaks and preserve leading spaces in preformatted text.
This property has the same effect as [HTMLOptions]NoWrap , but applied at the
paragraph format level; see §13.6.4 Suppressing line breaks in HTML and XML output on
page 437.

Raw Use Raw to insert straight HTML code wherever you want it to appear in your document.
Mif2Go embeds the content of the paragraph in the output without generating HTML
tags, and without processing any macro invocations the content might include.

21 MAPPING TEXT FORMATS TO HTML/XML MAPPING PARAGRAPH FORMATS

ALL RIGHTS RESERVED. MAY 18, 2013 651

21.3.7 Keeping or removing reference frames

Sometimes you want the Frame Above and Frame Below specified with your paragraph
formats to be converted, and sometimes not. For DITA XML output, most likely you do
not want them converted.

To set the default behavior to remove all reference frames:
[HTMLOptions]
; RemoveFramesAbove = No (default) or Yes (can be o verridden)
RemoveFramesAbove = Yes
; RemoveFramesBelow = No (default) or Yes (can be o verridden)
RemoveFramesBelow = Yes

You can override the default, format by format:
[HTMLParaStyles]
; FrameAbove and NoFrameAbove override the RemoveFr amesAbove default
ChapHead = NoFrameAbove
; FrameBelow and NoFrameBelow override the RemoveFr amesBelow default
ChapClose = NoFrameBelow

Reference frames must be in a usable format: imported GIFs or JPEGs, or images
produced by the FrameMaker graphic export filter.

See also:
§23.5.4 Converting reference-page graphics for HTML on page 712
§31.2.5 Converting graphics with FrameMaker export filters on page 883
§31.2.5.7 Converting graphics on reference pages on page 885

21.3.8 Deciding how to treat forced returns

Except within preformatted text, by default Mif2Go converts a forced return
(FrameMaker Shift+Enter , a typesetting “hard return”) to one of the following, depending
on the output type:

For HTML and XHTML output only, to override the default for selected paragraph
formats:

[HTMLParaStyles]
; NoBreak changes any Shift+Enter in the para to sp ace instead of
;
 for HTML and XHTML.
ParaFmt = NoBreak

The NoBreak property has no effect in <pre> where a forced return becomes a line break,
nor in those XML formats where
 is invalid, such as DITA and DocBook.

See also:
§13.6.4 Suppressing line breaks in HTML and XML output on page 437
§14.4.5 Configuring forced returns for XML on page 465
§21.10 Configuring preformatted text for HTML/XML on page 670

21.3.9 Providing content for empty paragraphs

To specify text content for paragraphs that are otherwise blank (empty):

HTML:

XHTML:

XML: a space

MAPPING PARAGRAPH FORMATS MIF2GO USER’S GUIDE

652 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[HTMLOptions]
; EmptyParaContent = string to put in otherwise-emp ty paragraphs
EmptyParaContent =

A single nonbreaking space is the default.

Note: Setting EmptyParaContent=0 (zero) inserts a literal “0”: a string, not a number.

21.3.10 Eliminating empty paragraphs in text

If a paragraph is empty, it usually takes up more space in HTML than it did in
FrameMaker, often three times as much. To eliminate empty paragraphs:

[HTMLOptions]
; RemoveEmptyParagraphs = No (default) or Yes (remo ve paras w/o text)
RemoveEmptyParagraphs = Yes

When RemoveEmptyParagraphs=Yes , tags for empty paragraphs in text are not
included in HTML output. This setting does not affect either of the following:

 • empty paragraphs in table cells, for which there is a separate configuration setting; see
§24.4.10 Deciding what to do with empty paragraphs in table cells on page 744

 • preformatted text, where empty paragraph tags are always preserved.

Mif2Go considers a paragraph that contains only markers (no text) to be empty for the
purpose of generating HTML tags. Therefore when RemoveEmptyParagraphs=Yes , the
markers still work, even though the paragraph itself disappears. However, any macro code
you assign to the paragraph format will not be executed for empty instances of that format.

See also:
§23.5.7 Retaining run-in images in otherwise empty paragraphs on page 713
§24.4.10 Deciding what to do with empty paragraphs in table cells on page 744

21.3.11 Eliminating invisible paragraphs

One way to put “invisible” text into FrameMaker is to make the text white. FrameMaker
does not display white text, unless it is against a dark background. You can make Mif2Go
ignore white text, so that paragraphs containing only white text are removed entirely.

To omit from HTML output paragraphs that contain only white text:
[HTMLOptions]
; HideWhiteText removes any white text (standard Fr ameMaker behavior)
HideWhiteText = Yes

If your FrameMaker document contains any white text you want to retain, you must set
HideWhiteText=No , and get rid of the unwanted instances either by assigning their
formats the [HTMLParaStyles]Delete property (see §21.3.12 Eliminating unwanted
paragraphs on page 652), or by using FrameMaker conditional text, as appropriate.

21.3.12 Eliminating unwanted paragraphs

Suppose your FrameMaker document contains manually inserted page-oriented
navigation aids, such as the text “(Continued)” when a procedure breaks across a
FrameMaker page boundary. To prevent this text from appearing in HTML output, you
can use conditional text, or you can do the following:

1. Use a special paragraph format for all instances of the text in your document.

2. In the configuration file, assign property Delete to the paragraph format:

21 MAPPING TEXT FORMATS TO HTML/XML MAPPING CHARACTER FORMATS

ALL RIGHTS RESERVED. MAY 18, 2013 653

[HTMLParaStyles]
; Delete removes the style and all of its content
ParaFmt = Delete

The Delete format property works whether or not the paragraph actually has content. It
omits paragraph content, and any Frames Above/Below, from HTML output, and omits
the format from any consideration in mapping to DITA parent elements.

Any paragraph content is still available, and can be used in Mif2Go macros; see §28.3.7
Creating macro variables from paragraph content on page 802.

Note: Applied to an anchor paragraph, Delete does not remove any anchored frames or
tables that are anchored in the paragraph; Delete merely causes the anchor
paragraph itself to be omitted from HTML output.

21.4 Mapping character formats
You can specify HTML tags to be used for character formats; for example:

[CharTags]
; Document character format name = HTML starting el ement name(s)
; use strong, em, code, cite, var, or blink, or spa n for HTML elements
Emphasis=strong
ProgramListing=code

Although the format properties listed here are the only valid HTML styles, Mif2Go lets
you specify any tag, to permit XML markup and CSS span class assignments. However,
only valid HTML tags have an effect in Mif2Go HTML output.

For XHTML, all format names must be lowercase.

Include attributes To add attributes to a character tag, list them after the tag. For example:
[CharTags]
Bold = strong type="bold"

Everything after the first space is removed for the end tag. To apply an attribute to an
individual instance of a character format, insert an attribute marker in the character span;
see §29.2.4 Using attribute markers for HTML or XML on page 835. For this example,
you would use a marker of type CharType with content bold (no quotation marks).

If no tags are specified in [CharTags] for a particular character format, by default that
format gets a span class; see §22.7.3 Mapping character formats to tags or span classes on
page 693.

Suppress tags To eliminate style tags entirely, map the character format to nothing:
[CharTags]
CharFmt =

See also:
§14.4.2 Deriving XML tags from format and class names on page 462
§22.7.3 Mapping character formats to tags or span classes on page 693

21.5 Assigning properties to text formats
You can override some FrameMaker paragraph and character format properties directly,
and you can assign additional properties to paragraph and character formats.

In this section:
§21.5.1 Understanding where to specify format property overrides on page 654

ASSIGNING PROPERTIES TO TEXT FORMATS MIF2GO USER’S GUIDE

654 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§21.5.2 Overriding paragraph alignment and size properties on page 656
§21.5.3 Overriding properties added by typographic elements on page 657
§21.5.4 Overriding properties specified in font tags on page 657

21.5.1 Understanding where to specify format prope rty overrides

In prior versions of Mif2Go , you could specify overrides to both character (inline) formats
and paragraph (block) format properties in section [HTMLStyles] . That section is now
deprecated, in favor of two new sections:

[HTMLParaStyles] for paragraph overrides
[HTMLCharStyles] for character overrides.

Some former [HTMLStyles] format properties can be assigned either to paragraph
formats or to character formats, and so can be used in either of the new sections.
Table 21-1 lists all the properties alphabetically, and shows the sections in which they are
valid: Para for [HTMLParaStyles] and Char for [HTMLCharStyles] .

Table 21-1 HTML properties for paragraph and character formats

Format property Purpose Para Char Ref.
Abbr Gets value for abbr attribute from [StyleCellAbbr] X 26.2.2.2

AbbrVal Make content into abbr for table cell X 26.2.3

ALink Uses content for ALink Name property of ALink object X 7.6.4.2

Alt Makes content into alt attribute for next X 25.2.2

Anum Includes autonumber in format X 21.3.3

Axis Gets value for axis attribute from [StyleCellAxis] X 26.2.2.2

AxisVal Makes content into axis for table cell X 26.2.3

Bold Encloses text in this format in ... X X 21.5.3

CellAttribute Applies attributes in [StyleCellAttribute] to enclosing cell X 24.4.6

Center Centers text between left and right margins X 21.5.2

CodeAfter Puts code from [ParaStyleCodeAfter] or
[CharStyleCodeAfter] after closing tag

X X 28.9.3

CodeAfterAnum Puts code from [AnumCodeAfter] after autonumber X 28.9.3

CodeBefore Puts code from [ParaStyleCodeBefore] or
[CharStyleCodeBefore] before opening tag

X X 28.9.3

CodeBeforeAnum Puts code from [AnumCodeBefore] before autonumber X 28.9.3

CodeEnd Puts code from [ParaStyleCodeEnd] or
[CharStyleCodeEnd] before closing tag

X X 28.9.3

CodeReplace Replaces content with code from [ParaStyleCodeReplace] or
[CharStyleCodeReplace]

X X 28.9.3

CodeStart Puts code from [ParaStyleCodeStart] or
[CharStyleCodeStart] after opening tag

X X 28.9.3

CodeStore Stores content in macro variable named in [StyleCodeStore] X 28.3.7.2

ColGroup Marks enclosing cell as a header cell that starts a column group X 26.2.2.2

Color N Makes text color N, where N is in the range 1 - 254 X X 21.5.4

Comment Makes paragraph a comment, replacing tags X X 21.3.6

Config Makes content act as a configuration override for all outputs X 33.3

Contents Includes content in this format in the TOC X 7.4.3

CSSReplace Gets code for CSS from [ParaStyleCSS] or [CharStyleCSS] X X 22.8.4

Delete Omits content from text output X X 21.3.12

21 MAPPING TEXT FORMATS TO HTML/XML ASSIGNING PROPERTIES TO TEXT FORMATS

ALL RIGHTS RESERVED. MAY 18, 2013 655

DListDD Uses dd instead of dt for items in dl lists X 21.12.2.1

DropDown Content is a block to be expanded; bracket with macros X 7.9.3.1

DropDownBlock Content is a block to be expanded X 7.9.3.1

DropDownEnd Content is last paragraph in expandable block X 7.9.3.1

DropDownLink Content is a link to expandable text X X 7.9.3.1

DropDownStart Content is a link, next content is an expandable block X 7.9.3.1

ExtrDisable Turns off extract processing X 18.3.1

ExtrEnable Turns on extract processing X 18.3.1

ExtrEnd Paragraph ends an extract, but is not part of the extract X 18.3.2.1

ExtrFinish Paragraph is the last item in an extract X 18.3.2.1

ExtrStart Paragraph begins an extract X 18.3.2.1

Figure Uses paragraph for anchor tag to ensure wrapping image in <fig> X 15.7.2

FileName Uses content to name split files X 34.8.4.1

FrameAbove Overrides [HTMLOptions]RemoveFramesAbove=Yes X 21.3.7

FrameBelow Overrides [HTMLOptions]RemoveFramesBelow=Yes X 21.3.7

GlossTerm Uses content for a glossary term in JavaHelp X 11.7.2

GlossTitle Content is a key to hover text X 13.11

HTMConfig Makes content act as a configuration override for HTML output X 33.3

Ital Italics: encloses text in this format in <i>...</i> X X 21.5.3

KeepLink Retains the first hypertext link in text replaced via [CodeReplace] X X 13.8.1.3

Left Aligns text with left margin X 21.5.2

LEnd Non-list format that ends any prior lists X 21.12.2.1

LFirst Content in this format starts a list X 21.12.2.1

LinkClass Makes content into CSS class attribute value X 25.3.2

LinkSrc Puts code from [StyleLinkSrc] in href attribute X X 28.9.3

LinkTitle Makes content into title attribute value X 25.3.2

List N List1 - List12 specify different list styles X 21.12.2.1

LLevel N LLevel1 - LLevel30 specify nesting levels X 21.12.2.1

LNest Nests in an enclosing list X 21.12.2.1

Longdesc Makes content into longdesc attribute value X 25.2.2

Meta Makes content a <meta content=...> attribute value X 18.4.3

NoAnum Excludes autonumber from non-list formats X 21.3.3

NoBreak Changes any Shift+Enter to space instead of
 for HTML and XHTML X X 21.3.8

NoColID Prevents assignment of id for ColID s (enabled in [Tables]) X 26.2.2.2

NoColor Omits for this format X X 21.5.4

NoContLink Suppresses linkage for the corresponding TOC item in HTML Help X 9.9.5

NoCSS Omits any CSS entry for this format X X 22.8.4

NoFig Uses paragraph for anchor tag to prevent wrapping image in <fig> X X 15.7.2

NoFrameAbove Overrides [HTMLOptions]RemoveFramesAbove=No X 21.3.7

NoFrameBelow Overrides [HTMLOptions]RemoveFramesBelow=No X 21.3.7

NoHref Suppresses tags X X 13.8.1.5

NoPara Eliminates only paragraph tags, for use in macros X X 21.3.6

NoRef Forces links to top of page by suppressing part of link after file name X X 19.3.1

Table 21-1 HTML properties for paragraph and character formats (continued)

Format property Purpose Para Char Ref.

ASSIGNING PROPERTIES TO TEXT FORMATS MIF2GO USER’S GUIDE

656 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

21.5.2 Overriding paragraph alignment and size pro perties

To override paragraph alignment and size properties:
[HTMLParaStyles]
; Paragraph format = keywords for properties
; Left, Center, Right: alignment properties
; Size1 - Size7 apply those props to head

The alignment properties (Left , Center , Right) override the align attribute in the
paragraph tag. For the size properties, see §21.7.3 Mapping font sizes on page 664.

To omit align attributes from all paragraph tags:
[HTMLOptions]
; AlignAttributes = Yes (default)
; or No (no align attribute in paragraph tags)

NoSize Omits size attribute from tags for this format X X 21.5.4

NoSplit Prevents format from interfering with SmartSplit X 18.2.2.4

NoTags Suppresses attributes and omits any tags between <p> and </p> X X 21.3.6

NoWrap Suppresses \n line breaks and preserves leading spaces X 21.3.6

Overrides Allows format properties Bold , Ital , Uline , and Strike X X 21.5.3

Plain Turns off Bold , Ital , Uline , and Strike format properties X X 21.5.3

ParaLink Prevents character spans from affecting a link in the paragraph X 5.10.2

ParaLinkClass Links have a class assigned in [StyleParaLinkClass] X 19.2.2.2

Raw Suppresses all tags to allow macro inclusions between document elements X X 21.3.6

Right Aligns text with right margin X 21.5.2

RowAttribute Attributes in [StyleRowAttribute] are applied to enclosing row X 24.4.5

RowGroup Marks enclosing cell as a header cell that starts a row group X 26.2.2.2

Scope Gets value for scope attribute from [StyleCellScope] X 26.2.2.2

Size N Size1 - Size7 sets font size attribute to 1 through 7, corresponding to
maximum point sizes 8, 10, 14, 20, 28, or 36

X 21.5.2

Span Causes assignment of ColSpanID or RowSpanID, as enabled in [Tables] X 26.2.2.2

Split Starts a new HTML page X 18.2.1

Strike Strikethrough: enclose text in this format in <strike>...</strike> X X 21.5.3

Summary Makes content into summary for table tag X 25.4.3.2

TableBody Forces containing cell tag to td instead of th X 26.2.2.4

TableHead Forces containing cell tag to th instead of td X 26.2.2.4

TableTitle Makes content into title attribute for table X 25.4.3.2

TextFrameIsText Renders text frames anchored to paragraph as inline text X 21.3.4

TextStore Stores content in macro variable named in [StyleTextStore] X 28.3.7.1

Title Content in this format becomes HTML page title X 13.4.5

Trail Includes content in breadcrumb trail of links X 20.2.3

ULine Underline: encloses text in this format in <u>...</u> X X 21.5.3

Window Opens topic in window named in [StyleWindow] for HTML Help X 9.8.3.1

XMLBreak Closes tag at Shift+Enter; overrides [HTMLOptions]XMLBreakPara=No X X 14.4.5

XMLNoBreak Changes Shift+Enter to space; overrides [HTMLOptions]XMLBreakPara=
Yes

X X 14.4.5

Table 21-1 HTML properties for paragraph and character formats (continued)

Format property Purpose Para Char Ref.

21 MAPPING TEXT FORMATS TO HTML/XML ASSIGNING PROPERTIES TO TEXT FORMATS

ALL RIGHTS RESERVED. MAY 18, 2013 657

; Default is reversed to No if UseCSS=Yes.
AlignAttributes = No

If you use CSS, the default value of AlignAttributes is reversed to No; see §22.5
Understanding how CSS affects other options on page 687.

21.5.3 Overriding properties added by typographic elements

To override properties added by typographic elements:
[HTMLParaStyles] or [HTMLCharStyles]
; Format (para or char) = keywords for functions an d properties
; Bold, Ital, ULine, and Strike apply those char pr ops to text
; Plain turns all four of those char properties off by default.

These are properties added by typographic elements, as opposed to CSS. The use case is
for browsers that have poor support for CSS, such as JavaHelp and, to some degree,
Eclipse Help. For current popular browsers, you are better off using CSS. However, if you
are stuck with a company-mandated CSS and want to tweak something, you can use these
properties as overrides.

To eliminate bold, italic, underline, and strikethrough properties (, <i> , <u>, and
<strike> tags) from selected paragraph or character formats:

[HTMLParaStyles] or [HTMLCharStyles]
Format = Plain

No overrides Mif2Go preserves character overrides by default. To eliminate bold, italic, underline, and
strikethrough properties (, <i> , <u>, and <strike> tags) from all paragraph and
character formats:

[HTMLOptions]
; AllowOverrides = Yes (default) or No (ignore unta gged char props,
; default for XML and DITA)
AllowOverrides = No

Override “no
overrides”

You can still allow certain overrides on a format-by-format basis:
[HTMLParaStyles] or [HTMLCharStyles]
; Overrides allows text prop overrides for , <i >, <u>,
; and <strike>, even if [HTMLOptions]AllowOverrides is turned off
Format = Overrides

See also:
§21.8 Managing typographic elements for HTML or XML on page 667

21.5.4 Overriding properties specified in font tag s

To override paragraph or character properties added as attributes:
[HTMLParaStyles] or [HTMLCharStyles]
; Color1 - Color254 color text as defined in Frame and [Colors]
; NoColor suppresses use of the in the style.
; NoSize eliminates the size attribute of the font tag, if used.

These properties affect the tags used within a paragraph or character span for its
default style, provided you are including tags. Using CSS turns tags off
by default; see §21.7 Mapping fonts on page 663 and §22.5 Understanding how CSS
affects other options on page 687.

The Color nnn properties use color numbers to assign text colors to paragraph or
character formats; see §21.9 Specifying text colors for HTML on page 669.

MAPPING SPECIAL CHARACTERS MIF2GO USER’S GUIDE

658 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

21.6 Mapping special characters
Special-character handling is not a strong point of HTML. Mif2Go automatically maps
characters with ASCII codes 128 through 159, the “high ASCII” characters, to equivalent
HTML character entity references. You can specify other character mappings, or even
prevent Mif2Go from mapping special characters.

In this section:
§21.6.1 Understanding how Mif2Go represents characters on page 658
§21.6.2 Understanding how Mif2Go treats tabs in HTML/XML on page 658
§21.6.3 Understanding Mif2Go support for FrameMaker 8+ Unicode on page 659
§21.6.4 Converting Western European accented characters on page 660
§21.6.5 Mapping individual special characters on page 660
§21.6.6 Mapping characters in a special font on page 662
§21.6.7 Avoiding use of special characters in URIs on page 663
§21.6.8 Preventing character mapping on page 663

See also:
§13.4.3 Specifying character encoding for HTML on page 431
§13.16.2 Replacing high ASCII characters for W3C validation on page 454
§14.3.3 Specifying character encoding for generic XML on page 460

21.6.1 Understanding how Mif2Go represents charact ers

Mif2Go has two internal ways to represent text: as printable strings, or as single
characters. For compactness, Mif2Go uses the single-character form for all of the
following:

 • characters not in the regular printable set, such as curly quotes (straight quotes are in
the printable set)

 • a printable string that consists of only one character
 • a printable character to which a character format has been singly applied.

Mapped entity
references use

Unicode

The high ASCII characters, which are not in the printable set, are heavily used in
Windows. The ASCII codes for these characters are not valid in Unicode. However, the
same glyphs occur in Unicode at other code points, so Mif2Go first maps them to their
Unicode counterparts. For example, a bullet character in your FrameMaker document
becomes numeric entity reference • in HTML. The ASCII decimal code for a
bullet is 149, whereas the Unicode decimal code for a bullet is 8226. This mapping is
applied only to text in the single-character form.

If you specify the following option, Mif2Go omits some high ASCII characters and maps
others to printable characters:

[HTMLOptions]
ValidOnly = Yes

See §13.16.2 Replacing high ASCII characters for W3C validation on page 454.

21.6.2 Understanding how Mif2Go treats tabs in HTM L/XML

Because tab characters in text are not meaningful in HTML or XML, by default Mif2Go
converts each tab in your FrameMaker document to a space, with the following
exceptions:

Tabs in preformatted text or in comments

21 MAPPING TEXT FORMATS TO HTML/XML MAPPING SPECIAL CHARACTERS

ALL RIGHTS RESERVED. MAY 18, 2013 659

Tabs in autonumbers
Tabs you replace with code.

HTML and XML coalesce spaces as part of normalization. Several tabs in a row become
one space on output, except in preformatted elements or in comments.

Tabs in
preformatted text

or in comments

Tabs in the following places become multiple spaces, based on Mif2Go line-position
calculations that determine where the next “tab stop” should be:

 • text in formats mapped to preformatted elements, such as <pre> in HTML
 • text enclosed in comment tags.

The line-position calculations are accurate only for monospaced fonts. See §21.10
Configuring preformatted text for HTML/XML on page 670.

Tabs in
autonumbers

Mif2Go converts tabs in autonumbers to spaces. However, for paragraph formats assigned
the NoAnum property, and when [HTMLOptions]UseAnums=No , Mif2Go removes tabs
within or immediately following the autonumbers. See §21.3.3 Converting paragraph
formats with autonumbers on page 648.

Tabs you replace
with code

If your document uses tabs for a special purpose, you can replace the tab characters in
selected formats with HTML code. The HTML code can be in the form of a Mif2Go
macro (see §28 Working with macros on page 787). For example:

[StyleTabReplace]
; doc style = HTML code to use instead of tab seque nce, can be macro
Flags = <$ReplaceTabWithTD>

[ReplaceTabWithTD]
</td><td>

You can assign HTML code to either a character format or a paragraph format. The code is
included once for each tab sequence, not for each tab, so if your document has one tab in
one paragraph and three in a row in another, they will be treated the same way. Any open
inline elements such as <i> are closed before the code is inserted, and any new tags for the
following text are opened after the code.

21.6.3 Understanding Mif2Go support for FrameMaker 8+ Unicode

FrameMaker (version 8 and later versions) supports only one part of Unicode, the BMP
(Basic Multilingual Plane), which is from U+0000 to U+FFFF. FrameMaker does not
support the “astral planes”, above 0xFFFF. FrameMaker does store the characters in those
planes, using 4-byte UTF-8 encoding, but will not display them, showing just a
placeholder (the question mark or a space) instead. However, if you export to HTML
using Mif2Go , the characters will appear in the output, and anyone with the appropriate
font installed can see them in their browser.

Mif2Go provides improved Unicode processing for FrameMaker version 8 and later
versions, supporting characters in the “astral planes” above Plane 0 (the Basic
Multilingual Plane or BMP), such as the characters in Plane 1 (the Supplementary
Multilingual Plane or SMP) and Plane 2 (the Supplementary Ideographic Plane or SIP).
UTF-8 can encode characters through Plane 31, if any are ever defined; only Planes 0, 1,
2, 14, 15, and 16 are used in the current specification (Version 5.0). Each plane can include
64K characters. Mif2Go produces CJK output using UTF-8, including characters above
the BMP, such as Chinese Extension B. Viewing such characters requires a font that shows
them; but even if such a font is not present on your system, Mif2Go produces the correct
characters.

Mif2Go does not support non-Unicode double-byte character sets, except for Asian and
Cyrillic code pages used by HTML Help; see §9.13 Generating HTML Help in non-

MAPPING SPECIAL CHARACTERS MIF2GO USER’S GUIDE

660 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Western languages on page 331 and §13.4.3 Specifying character encoding for HTML on
page 431.

See also:
§22.7.6 Assigning CSS classes based on Unicode character ranges on page 694
§38.2.4 Saving FrameMaker 8 files as FrameMaker 8 MIF on page 1008

21.6.4 Converting Western European accented charac ters

Mit freundlichen Grüßen . Mif2Go converts Western European languages to HTML;
your text and tags should appear as usual, except that CSS class names cannot contain
accented characters. For class names, where possible Mif2Go replaces an accented
character with the corresponding non-accented character; see §22.7.1 Understanding CSS
class name restrictions on page 691.

21.6.5 Mapping individual special characters

To force a mapping different from the Mif2Go mapping of a particular character, or to
map any arbitrary Unicode character (for example):

[CharConvert]
; Unicode char num = HTML numeric value or string r eplacement
; nonbreaking hyphen is decimal 8209, becomes entit y –
8209 = 150
; em space is x2003, becomes three nonbreaking spac es
x2003 =

Character to
replace

To the left of the equals sign, specify any of the following for the character you want to
replace:

 • the decimal ASCII character code; you can find these codes in FrameMaker
Character_Sets.pdf , in the OnlineManuals directory

 • the decimal Unicode character number
 • x followed by the hexadecimal code for the character
 • u+ or U+ followed by the hexadecimal code for the character
 • the character itself, if it is one of the following:

 – a character in the printable set other than the asterisk (*) or question mark (?),
both of which Mif2Go treats as wildcards unless you disable this feature; see
§5.1.7 Specifying how to treat cases, spaces, and wildcards on page 113

 – a high ASCII character (decimal code 128 through 159).

The easiest way to specify a character to be replaced (except asterisk or question mark) is
to copy and paste the character from your FrameMaker document into section
[CharConvert] . This works for most symbols, but not for variant spaces, which turn
into plain spaces, nor for hard or soft hyphens, which turn into plain hyphens. For these
characters, and for a few others, Table 21-2 shows the Unicode or other hexadecimal (and
in some cases, decimal) value you can specify to the left of the equals sign.

21 MAPPING TEXT FORMATS TO HTML/XML MAPPING SPECIAL CHARACTERS

ALL RIGHTS RESERVED. MAY 18, 2013 661

Replacement
character

To the right of the equals sign, specify any of the following:

 • the decimal ASCII character code for the replacement character
 • x followed by the hexadecimal code for the replacement character
 • a string, which can include HTML code and Mif2Go macro references.

When you supply a string rather than a character code, Mif2Go expands any macros
referenced, but includes the rest of the string in the output as is. Therefore you must
escape any literal characters such as < by providing an entity reference instead; in this
case, < .

Examples To map the bullet to a middle dot:
[CharConvert]
149 = 183

To map the bullet to a bold middle dot:
[CharConvert]
149 = ·

To map the bullet to an image:
[CharConvert]
149 =

To map the ohm symbol from Unicode to the Symbol font for HTML Help:
[CharConvert]
U+2126 = W

and add the class to your CSS:

Table 21-2 Special characters to replace for HTML/XML output

Category Character to replace Unicode/Hex
ASCII
decimal

Quote marks Low single quote x201A 130

Left single quote x2018 145

Right single quote x2019 146

Low double quote x201E 132

Left double quote x201C 147

Right double quote x201D 148

Spaces Hard space x00A0 160

En space x2002 ---

Em space x2003 ---

Numeric (figure) space x2007 ---

Thin space x2009 ---

Dashes En dash x2013 150

Em dash x2014 151

Hyphens Discretionary hyphen x00AD 173

Nonbreaking hyphen x2011 ---

Wildcards Asterisk x002A 042

Question mark x003F 063

Miscellaneous Bullet x2022 149

Fraction bar x2044 ---

Paragraph symbol x00B6 182

Section symbol x00A7 167

MAPPING SPECIAL CHARACTERS MIF2GO USER’S GUIDE

662 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[CSSEndMacro]
.Symbol {font-family: Symbol; }

In code-page encoding, as for HTML Help output, the only valid solution for handling
out-of-range characters is to use a font that has the desired glyph within the code page. In
this case, the glyph for ohm is in Symbol, which will work in all single-byte code pages
(but not in Asian code pages, where an Asian symbol font is needed instead).

To prevent Mif2Go from mapping the curly right single quote to its corresponding HTML
entity, and replace it instead with a straight apostrophe (which is in the printable set):

[CharConvert]
146 = '

Use only to map
non-printable

characters

Although you can specify any decimal integer to the left of the equals sign, this mapping
option is intended only for characters that are not in the regular printable set. Using
[CharConvert] to map a character in the printable set can result in surprises. You can
try mapping other integers, but the odds are poor for values not in the range 128 through
255. There are a few exceptions. For example, Mif2Go automatically converts a solidus to
a forward slash, which is in the printable set. You can prevent this conversion by mapping
the solidus to itself, specifying the Unicode value to the left of the equals sign and again
on the right, as a numeric entity reference:

[CharConvert]
8260 = ⁄

See §21.6.1 Understanding how Mif2Go represents characters on page 658.

Font is ignored Character mapping via [CharConvert] takes no notice of font. For example, if you map
a character that appears as a check mark in WingDings 2 to the Unicode radical sign, any
instance of capital “P” in your document that occurs by itself (away from other letters, or
with a character format applied to it alone) will appear as a radical sign in HTML output.
This is because in the WingDings 2 character set, the check mark has ASCII decimal code
80, the same code as a capital “P” in the standard character set:

[CharConvert]
; WingDings 2 check marks (and individual text Ps) become radicals:
80 = 8730

To get around this problem, see §21.6.6 Mapping characters in a special font on page 662.

21.6.6 Mapping characters in a special font

Characters in special fonts such as Wingdings or Webdings might not be rendered
correctly by non-Microsoft browsers; see §21.7.7 Accommodating browser font-rendering
differences on page 666. However, you can direct Mif2Go to replace a character in any
font with its Unicode equivalent, or with an image, or with any HTML code, by providing
a macro section for that font in your configuration file.

The following Web site suggests mappings from Symbol and Wingdings characters to the
closest Unicode code points:

http://www.alanwood.net

With the kind permission of Alan Wood, we have incorporated these mappings as defaults
for all Mif2Go HTML conversions. The defaults should handle all Symbol characters
(except for one, the radical extender) and the majority of Wingdings characters. You can
override the defaults, or set mappings for any characters that have no equivalent Unicode
representation.

To specify a macro section for Wingdings (for example):

http://www.alanwood.net

21 MAPPING TEXT FORMATS TO HTML/XML MAPPING FONTS

ALL RIGHTS RESERVED. MAY 18, 2013 663

[MacroFonts]
; Frame font name = section to use for mapping char s in that font
Wingdings = WingChars

In the macro section, you can represent an individual character as itself, as its decimal
value, or (prefixed with x) as its hexadecimal value; and you can map it to its Unicode
equivalent, to a string, to HTML code, or to a Mif2Go macro. The rules are the same as
for mapping individual characters in section [CharConvert] ; see §21.6.5 Mapping
individual special characters on page 660.

For example:
[WingChars]
; char n maps to a square bullet, char p to a graph ic:
n = x25a0
p =

To produce the Unicode equivalent of Ž and ž (Z caron and z caron) listed in Table 13-6
on page 454, for example:

[MacroFonts]
Courier New = ZCaron

[ZCaron]
142 = U+017D
158 = U+017E

To map characters that are not in the printable set, see §21.6.5 Mapping individual special
characters on page 660.

21.6.7 Avoiding use of special characters in URIs

URI (Uniform Resource Identifier) encoding rules are different from HTML and XML
encoding rules. There is no way to URI-encode characters that have a decimal value
greater than 255; you get only eight bits for each character. Mif2Go does not know that a
particular attribute value or text string is intended to become part of a URI, and by default
converts any characters outside this range to numeric entities. Therefore, avoid special
characters such as trademarks and registration marks in any Internet or email addresses in
your document.

21.6.8 Preventing character mapping

You can prevent Mif2Go from mapping high ASCII characters to entity references:
[HTMLOptions]
Encoding = None

However, this option does not produce valid HTML; see §13.16 Passing W3C validation
tests on page 453.

See also:
§13.4.3.3 Specifying encoding for double-byte characters on page 432

21.7 Mapping fonts
Try to keep your font usage in HTML very simple, using only fonts that you are certain
your readers have on their systems. A browser’s substitution for an unavailable font can be
quite ugly.

In this section:
§21.7.1 Specifying a default font and size on page 664

MAPPING FONTS MIF2GO USER’S GUIDE

664 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§21.7.2 Remapping fonts on page 664
§21.7.3 Mapping font sizes on page 664
§21.7.4 Including or excluding font tags on page 665
§21.7.5 Managing font tags for symbol fonts on page 666
§21.7.6 Excluding face and size attributes from font tags on page 666
§21.7.7 Accommodating browser font-rendering differences on page 666

21.7.1 Specifying a default font and size

You can specify the default font and size to use; for example:
[Base]
; Font name and size put out at start of file, defa ult none
Font=Times
Size=3

Not all browsers respect this setting. If you use CSS, the default value of Basefont is
reversed to No; see §22.5 Understanding how CSS affects other options on page 687.

You can suppress the <basefont> tag entirely, or omit the face attribute while retaining
size:

[HTMLOptions]
; Basefont = Yes (default) or No (no <basefont> tag put out)
; Default is reversed to No if UseCSS=Yes.
Basefont = No
; UseFontSize = Yes (default, allow size attrib in font tags) or No;
; reversed for Eclipse Help and JavaHelp
UseFontSize = No
; UseFontFace = Yes (default, allow face attrib in font tags) or No
UseFontFace = No

For Eclipse Help and JavaHelp, the default value of UsefontSize is reversed to No.

If you do not use CSS, and you are not using tags either, you will get whatever
fonts a browser specifies as defaults.

21.7.2 Remapping fonts

You can remap the fonts used in your FrameMaker document; for example:
[Fonts]
; Document font name = HTML font name (comma-delimi ted list allowed)
Helvetica = Arial,MSSansSerif
Myria* = Arial
NewCenturySchlbk = Times
Century Schoolbook = Times

You can use wildcards to change all font names that share a base name. This is helpful
with multiple-master fonts, where you might have many very long names.

See also:
§22.8.1 Assigning a CSS generic font family on page 698

21.7.3 Mapping font sizes

For CSS, Mif2Go shows the font size just as it is in FrameMaker. For HTML itself,
Mif2Go must convert point size to an HTML size number, 2 through 7. To modify the way
Mif2Go maps the size, you can replace all or part of this table:

21 MAPPING TEXT FORMATS TO HTML/XML MAPPING FONTS

ALL RIGHTS RESERVED. MAY 18, 2013 665

[FontSizes]
; HTML font size = pt size it starts with for defau lt usage
; for example, if 3=10 and 4=14, 12pt type becomes size=3
; computed size is overridden by [HTMLParaStyles] o r [HTMLCharStyles]
; SizeN setting
2 = 8
3 = 10
4 = 14
5 = 20
6 = 28
7 = 36

The number on the right side of the equals sign is the largest point size to be rendered as
the HTML size number on the left. In the example above, 8-pt and smaller is size 2, 9-pt
and 10-pt are size 3, and so on. To make 10-pt text appear as size 4, you would lower the
limit for size 3; for example, 3=9 . If the size 4 font is too large and heavy, try changing 4=
14 to 4=15 . That makes for 14-point text, by raising the start of the
size 4 range to 15-point text.

The [FontSizes] settings determine how Mif2Go converts from points to HTML size
numbers, regardless of any other settings. Also see §21.5.2 Overriding paragraph
alignment and size properties on page 656.

To change CSS entries from points to other size units, see §22.8.3 Specifying CSS size
values and units of measurement on page 699.

21.7.4 Including or excluding font tags

Older versions of Internet Explorer contain a defect in how tags are handled. If
your HTML output includes a tag, and the specified font does not include the
glyph, Internet Explorer changes the glyph to another that does occur in that font, and does
a poor job of selection. Firefox simply ignores the tag and shows the correct
character, in compliance with the W3 specification.

By default, when you use CSS, Mif2Go does not include tags in HTML output,
except for symbols in autonumbers; see §21.7.5 Managing font tags for symbol fonts on
page 666. However, you might need additional tags in some circumstances. For
example:

 • If you use an OpenType or TrueType font, some browsers require tags to
correctly display content in these fonts; see §21.7.7 Accommodating browser font-
rendering differences on page 666.

 • If you are producing JavaHelp or Oracle Help, you might need tags to get
around viewer deficiencies; see §11.3.9 Coping with JavaHelp / Oracle Help viewer
limitations on page 384.

To turn on tags in HTML output:
[HTMLOptions]
; NoFonts = Yes (default, prohibit tags except for symbol
; fonts) or No (use <font...> tags, default if UseCS S=No)
NoFonts = No

If you turn off CSS, Mif2Go turns on tags by default; see §22.5 Understanding
how CSS affects other options on page 687. If you do use CSS, you can create
tags instead, with a single setting for each character format; see §22.7.3 Mapping
character formats to tags or span classes on page 693.

If you do not use CSS, and you are not using tags either, you will get whatever
fonts a browser specifies as defaults.

MAPPING FONTS MIF2GO USER’S GUIDE

666 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

21.7.5 Managing font tags for symbol fonts

By default, Mif2Go inserts inner tags when the source character format specifies
the Symbol font, even when NoFonts=Yes . This is done to ensure that bullets from the
Symbol font come out right. However, Mif2Go suppresses tags for characters in
the Symbol font (or in any of its brothers, such as Zapf Dingbats, Webdings, or
Wingdings) that occur outside of autonumbers.

To preserve tags when the source character format specifies a symbol font (even
when you have explicitly set NoFonts=Yes):

[HTMLOptions]
; NoSymbolFont = Yes (default, prohibit <font...> t ags even for symbol
; fonts), or No (use <font...> tags for symbol fonts)
NoSymbolFont = No

When NoSymbolFont=Yes , Mif2Go maps non-autonumber symbols in your document
to appropriate Unicode numeric character entities; see §21.6.6 Mapping characters in a
special font on page 662.

If you set NoSymbolFont=No , one alternative is to keep the tags, but omit the
face attribute; see §21.7.6 Excluding face and size attributes from font tags on page 666.

21.7.6 Excluding face and size attributes from fon t tags

To suppress the face attribute in tags:
[HTMLOptions]
; UseFontFace = Yes (default, allow face attribute in) or No
UseFontFace = No

The default value of UseFontFace is Yes, except for JavaHelp and Eclipse Help; for
those output types, the default is No.

Allowing tags for size but not for face avoids interfering with CSS
specifications. For example, omitting the face attribute is required for W3C validation of
HTML 3.2 for JavaHelp; see §11.3.9 Coping with JavaHelp / Oracle Help viewer
limitations on page 384.

On the other hand, if you use non-Unicode-compliant fonts such as Webdings and
Wingdings, the only way to get certain non-Microsoft browsers to render characters in
those fonts is to use the face attribute; see §21.7.7 Accommodating browser font-
rendering differences on page 666.

To suppress the size attribute in tags:
[HTMLOptions]
;UseFontSize = Yes (default, allow size attribute i n) or No
UseFontSize = No

21.7.7 Accommodating browser font-rendering differ ences

Some browsers (Opera and Safari, for example) do not support OpenType and TrueType
fonts. Mozilla browsers (Firefox, for example) support these fonts only when you use
 tags. For example, you cannot get Firefox to render a character in a special font
such as Webdings or Wingdings unless you enclose the character (using its standard
ASCII equivalent) in a tag with the face attribute. For example, you would need
the following code to make Firefox display a Wingdings square bullet:

n

You could direct Mif2Go to use tags:

21 MAPPING TEXT FORMATS TO HTML/XML MANAGING TYPOGRAPHIC ELEMENTS FOR HTML OR XML

ALL RIGHTS RESERVED. MAY 18, 2013 667

[HTMLOptions]
NoFonts = No
UseFontFace = Yes

However, this workaround is not effective for Opera or Safari, and might not be reliable
for any non-Microsoft browser. A better solution is to map any special characters to their
Unicode counterparts; see:

§21.6.5 Mapping individual special characters on page 660
§21.6.6 Mapping characters in a special font on page 662.

21.8 Managing typographic elements for HTML or XML
By default, for HTML output Mif2Go provides typographic elements for FrameMaker
paragraph or character formats that specify bold, italic, underline, subscript, or superscript
as part of the format. For example, for every paragraph format whose definition includes
bold formatting, by default HTML output includes elements as well as the code for
the paragraph tag.

In this section:
§21.8.1 Deciding whether to suppress typographic elements on page 667
§21.8.2 Choosing how to treat typographic elements on page 667

21.8.1 Deciding whether to suppress typographic el ements

You might want to suppress some or all typographic elements for either of the following
reasons:

 • To ensure that output is free of direct formatting, because:
 – you are producing XML output, or
 – your output uses CSS.

 • To make overrides show up in the output, so you can insert semantic tags or
subsequently provide better formatting in FrameMaker.

For XML output, including DITA XML and DocBook XML, the default is to suppress all
typographic elements.

21.8.2 Choosing how to treat typographic elements

To specify how typographic elements should be treated:
[Typographics]
; UseTypographicElements = Yes (HTML default) or No (XML default,
; suppress b, i, u, tt, sub, and sup even when spec ified in a format)
; UseFormatTypographics = Yes (default, use b, i, u , strike, sub
; and sup when set in paragraph or character forma ts), or No
; (suppress in both para and char formats)
; UseParagraphTypographics = Yes (default, use abov e when set in
; paragraph formats), or No (suppress in para form ats)
; UseCharacterTypographics = Yes (default, use abov e when set in
; character formats), or No (suppress in char form ats)
; UseTypographicStyles = No (default) or Yes (use t ags below if set)
; typographic tag (b, i, u, strike, sub, sup) = tag to use instead,
; possibly followed by attributes. Replaces overri des if used
; while [HTMLOptions]AllowOverrides=Yes, UseTypogra phicElements=Yes,
; and UseFormatTypographics=No.
; Both "over" for overline and "chbar" for change b ar can be used
; as pseudotags here.

MANAGING TYPOGRAPHIC ELEMENTS FOR HTML OR XML MIF2GO USER’S GUIDE

668 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[HtmlOptions]
; AllowOverrides = Yes (default) or No (ignore unta gged char props,
; default for XML and DITA)

You can choose to:
Suppress all typographics
Suppress typographics used as overrides
Suppress typographics in formats
Suppress typographics only in paragraph formats
Suppress typographics only in character formats
Replace typographics with other tags.

Suppress all
typographics

To eliminate all typographic elements, both those used as overrides in FrameMaker and
those that are intrinsic to a FrameMaker paragraph or character format:

[Typographics]
UseTypographicElements = No

When UseTypographicElements=No , all settings of character properties are
eliminated, including font size, font color, and font name in addition to bold, italic,
underline, strike, subscript, and superscript; regardless of whether those properties are
intrinsic to a FrameMaker character or paragraph format or were applied as an override.
This setting, UseTypographicElements=No , cannot be overridden by any other
settings in section [Typographics] , nor by [HtmlOptions]AllowOverrides . This
is the appropriate value for DITA XML output; see §15.4.4 Mapping character formats to
DITA inline elements on page 492.

Suppress
typographics

used as overrides

To suppress only those typographic elements used as overrides, but keep typographic
elements intrinsic to formats:

[Typographics]
UseTypographicElements = Yes
UseFormatTypographics = Yes

[HtmlOptions]
AllowOverrides = No

When AllowOverrides=No , bold, italic, underline, strike, subscript, and superscript are
eliminated when they are applied as overrides in FrameMaker; see §21.5 Assigning
properties to text formats on page 653.

Suppress
typographics in

formats

To eliminate typographic elements that are intrinsic to formats, but keep overrides:
[Typographics]
UseTypographicElements = Yes
UseFormatTypographics = No

[HtmlOptions]
AllowOverrides = Yes

When UseFormatTypographics=No , intrinsic format properties eliminated include
bold, italic, underline, strike, subscript, and superscript; however, font size, font color, and
font name are retained in the output.

Suppress
typographics only

in paragraph
formats

To eliminate typographic elements intrinsic to paragraph formats, but keep those intrinsic
to character formats:

[Typographics]
UseTypographicElements = Yes
UseParagraphTypographics = No
UseCharacterTypographics = Yes

21 MAPPING TEXT FORMATS TO HTML/XML SPECIFYING TEXT COLORS FOR HTML

ALL RIGHTS RESERVED. MAY 18, 2013 669

When UseParagraphTypographics=No , format properties intrinsic to paragraph
formats are eliminated; these include bold, italic, underline, strike, subscript, and
superscript. Font size, font color, and font name are retained in the output.

Suppress
typographics only

in character
formats

To eliminate overrides and typographic elements intrinsic to character formats, but keep
those intrinsic to paragraph formats:

[Typographics]
UseTypographicElements = Yes
UseParagraphTypographics = Yes
UseCharacterTypographics = No

[HtmlOptions]
AllowOverrides = No

When UseCharacterTypographics=No , format properties intrinsic to character
formats are eliminated; these include bold, italic, underline, strike, subscript, and
superscript. Font size, font color, and font name are retained in the output.

Replace
typographics with

other tags

To specify tags to use for individual typographic elements:
[Typographics]
UseTypographicElements = Yes
UseTypographicStyles = Yes
typographic = tag

When UseTypographicStyles=Yes , you can specify other tags to use in place of
typographic elements. The typographic elements you can replace are b, i , u, strike ,
sub , and sup . You can also replace “pseudo tags” over for overline, and chbar for
change bar. You can specify attributes as well. For example:

[Typographics]
UseTypographicStyles = Yes
i = emphasis
b = emphasis role="bold"

If UseFormatTypographics=Yes , the tags you specify replace any named typographics
intrinsic to formats.

If [HtmlOptions]AllowOverrides=Yes , the tags you specify replace any named
typographics used as overrides.

21.9 Specifying text colors for HTML
You can specify colors for both character and paragraph formats. Text color is set in CSS;
and also in tags, if you leave them enabled; see§21.7.4 Including or excluding
font tags on page 665.

To use colors different from those in your FrameMaker document:

1. Identify the color you want (or define a new color) by number (in the range 9-254),
and assign to it a hexadecimal color value:

[Colors]
nnn = ffffff

See §13.7.2 Mapping FrameMaker colors to new values on page 439.

2. Assign the color, by number prefixed with the word Color , to the paragraph or
character format:

[HTMLParaStyles] or [HTMLCharStyles]
; Color1 - Color254 color text as defined in Frame and [Colors]
; NoColor suppresses use of the in the style.
Fmtname = Color nnn

CONFIGURING PREFORMATTED TEXT FOR HTML/XML MIF2GO USER’S GUIDE

670 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For example:
[Colors]
; Major headings should be blue:
102 = 0000ff
; Cautionary notes should be red:
99 = ff0033

[HTMLParaStyles]
Heading1 = Color102
Caution = Color99
Sidetip = NoColor

21.10 Configuring preformatted text for HTML/XML
Paragraphs to which you have assigned the pre format property (for “preformatted” text)
become blocks enclosed in <pre> tags in HTML. Browsers and other HTML viewers
treat text within <pre> tags differently from other text. For example, long lines do not
wrap when you narrow the viewer window, and whitespace is preserved.

In this section:
§21.10.1 Eliminating line wraps in preformatted text on page 670
§21.10.2 Replacing tabs with spaces in preformatted text on page 671.

21.10.1 Eliminating line wraps in preformatted tex t

For preformatted text in HTML and XML, by default Mif2Go retains line breaks exactly
as they appear in your FrameMaker document. This applies to all of the following:

FrameMaker line wraps
Shift+Enter forced returns
Paragraph breaks.

To omit only FrameMaker line wraps (typesetting “soft returns”) and show wrapped lines
full length in HTML or XHTML <pre> elements and XML preformatted elements:

[HTMLOptions]
; IgnoreWrap = No (default, \n where wrap occurs) o r Yes
IgnoreWrap=Yes

When IgnoreWrap=Yes , line wraps introduced by FrameMaker are ignored for any pre
element; see §21.3.1 Assigning HTML tags and attributes to paragraph formats on
page 646.

When IgnoreWrap=No , line wraps introduced by FrameMaker in paragraphs mapped to
pre elements become line breaks in HTML output.

To omit all line breaks from text mapped to pre elements;
[HTMLOptions]
; UnwrapPRE = No (default) or Yes (ignore line brea ks in PRE)
UnwrapPRE = Yes

When UnwrapPRE=Yes, Mif2Go ignores all line breaks in text mapped to preformatted
elements: those caused by FrameMaker line wraps, those caused by FrameMaker
Shift+Enter forced returns (typesetting “hard returns”), and those caused by paragraph
breaks. UnwrapPRE is effective only within <pre> elements in HTML and XHTML, and
within preformatted elements in XML.

To preserve leading spaces in preformatted text, also assign the following format property
to the paragraph format:

21 MAPPING TEXT FORMATS TO HTML/XML CONVERTING FOOTNOTES TO HTML OR XML

ALL RIGHTS RESERVED. MAY 18, 2013 671

[HTMLParaStyles]
ParaFmt = NoWrap

See also:
§13.6.4 Suppressing line breaks in HTML and XML output on page 437
§14.4.5 Configuring forced returns for XML on page 465
§21.3.8 Deciding how to treat forced returns on page 651

21.10.2 Replacing tabs with spaces in preformatted text

For HTML preformatted text, Mif2Go converts tabs to spaces. To specify how many
spaces to use per tab inch:

[HTMLOptions]
; TabCharsPerInch = count of spaces to use in PRE f or 1" of tabbing
; the default, 16, makes ¼" tabs into 4 chars, and ½" tabs into 8
TabCharsPerInch = 16

The default works well with 9-pt Courier New, for displaying code sections. In
FrameMaker, set tabs at the interval specified to get the same appearance. You can skip
unused tab stops. See §21.6.2 Understanding how Mif2Go treats tabs in HTML/XML on
page 658.

21.11 Converting footnotes to HTML or XML
Mif2Go reads FrameMaker document settings for footnote properties (including
numbering properties) and sets footnotes for HTML or XML output accordingly. If you
are not using CSS (see §22.1 Deciding whether to use CSS on page 681), Mif2Go sets the
type attribute of the used for the footnotes. If the document has a custom footnote
type, Mif2Go uses a <div> with the class instead of , and a <p> instead of ,
and writes out the symbols.

In this section:
§21.11.1 Configuring and placing footnotes on page 671
§21.11.2 Eliminating links to jump footnotes on page 672
§21.11.3 Using list tags or <div> and <p> tags for jump footnotes on page 672
§21.11.4 Formatting jump footnote text with macros on page 673

See also:
§22.7.5 Assigning CSS classes to text and table footnotes on page 694
§24.5.2 Configuring and positioning table titles on page 747

21.11.1 Configuring and placing footnotes

Mif2Go provides the following options for placement of footnotes from your
FrameMaker document:

 • embed footnotes in text, [between brackets]
 • embed footnotes in text, enclosed in tags
 • place footnotes at the end of the output file, after a separator
 • omit footnotes entirely.

For table footnotes, see §24.5.4 Positioning table footnotes on page 748.

To specify placement of footnotes:

CONVERTING FOOTNOTES TO HTML OR XML MIF2GO USER’S GUIDE

672 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[HTMLOptions]
; Footnotes = Jump (HTML default, at end), Embed (b etween []),
; Inline (XML default), or None
Footnotes = Jump
; FootnoteSeparator is used at end of doc before Ju mp footnotes
FootnoteSeparator =

<hr />

Values for Footnotes have the following effects:

To specify configuration of footnotes and footnote links when Footnote=Inline :
[HTMLOptions]
; FootInlineTag = tag for beginning and ending inli ne footnotes
FootInlineTag=footnote
; FootInlineParaTag = tag for beginning and ending inline footnote
; paras
FootInlineParaTag=para
; FootInlineIDPrefix = start of ID attr for inline footnotes; rest
; is sequential number starting with 1 at start of file.
FootInlineIDPrefix=foot
; UseFootXrefTag = No (HTML default) or Yes (XML de fault)
UseFootXrefTag=No
; FootInlineRefTag = tag for xrefs to inline footno tes, uses linkend
; for href attribute, for DocBook
FootInlineXrefTag=footnoteref

21.11.2 Eliminating links to jump footnotes

By default, Mif2Go creates a link for each reference to a Jump footnote (see §21.11.1
Configuring and placing footnotes on page 671).

To eliminate links to footnotes:
[HTMLOptions]
; NoFootnoteLinks = No (default) or Yes (eliminate links to footnotes)
NoFootnoteLinks = Yes

When NoFootnoteLinks=Yes and Footnotes=Jump (see §21.11.1 Configuring and
placing footnotes on page 671), footnotes appear where and how specified, but references
to them do not contain active links.

21.11.3 Using list tags or <div> and <p> tags for jump footnotes

By default, Mif2Go uses list tags for Jump footnotes in both text and tables (see §21.11.1
Configuring and placing footnotes on page 671). For numbered footnotes, Mif2Go
supplies Arabic numerals, even if your FrameMaker document uses Roman numerals. For
alphabetic footnotes, if the quantity of footnotes per page exceeds the length of the
alphabet, Mif2Go repeats the sequence.

To use <div> and <p> for footnotes instead of list tags:

Jump All footnotes referenced in a file appear at the end of the file. If you are
splitting files (see §18 Splitting and extracting files on page 585), the
footnotes for each split file appear at the end of that file. Footnote text
follows a separator that you can specify by providing a value for
FootnoteSeparator . The default value is

<hr /> .

Embed Each footnote appears where it is referenced in text, enclosed in square
brackets [footnote text] , replacing the reference.

Inline Each footnote appears where it is referenced in text, enclosed in tags,
replacing the reference. This is the default for XML, DITA, and DocBook.

None Footnote reference and text are both omitted from output.

21 MAPPING TEXT FORMATS TO HTML/XML CONVERTING FOOTNOTES TO HTML OR XML

ALL RIGHTS RESERVED. MAY 18, 2013 673

[HTMLOptions]
; UseFootnoteLists = Yes (default, use and for footnotes
; in text, except for those using symbols),
; or No (always use <div> and <p>).
UseFootnoteLists = No
; UseTbFootnoteLists = Yes (default, use and < li> for footnotes
; in tables, except for those using symbols),
; or No (always use <div> and <p>).
UseTbFootnoteLists = No

Using <div> and <p> is likely to give better cross-browser consistency; we advise
avoiding HTML list tags whenever possible.

See also §22.7.5 Assigning CSS classes to text and table footnotes on page 694.

21.11.4 Formatting jump footnote text with macros

By default, Mif2Go removes any paragraph start/end coding within a footnote. However,
for Jump footnotes (see §21.11.1 Configuring and placing footnotes on page 671) you can
provide HTML formatting by specifying macros to precede and follow each footnote.

To surround footnotes with HTML code:
[HtmlOptions]
; FootnoteStartCode macro is used after
; of each Jump footnote
;FootnoteStartCode =
; FootnoteEndCode macro is used at end of each Jump footnote
;FootnoteEndCode =

For example, if some footnotes include bulleted lists, you could assign starting and ending
macro code to the paragraph formats you use for list items in footnotes. Suppose you use
formats FootBullet1 and FootBullet2 (for bullet items indented within other bullet
items). You could specify the following settings, macros, and macro variables:

[HTMLOptions]
FootnoteEndCode = <$FootEnd>

[HtmlParaStyles]
FootBullet1 = CodeStart NoAnum
FootBullet2 = CodeStart NoAnum

[ParaStyleCodeStart]
FootBullet1 = <$FootBullStart1>
FootBullet2 = <$FootBullStart2>

[FootBullStart1]
<$_if ($$F2Started)>\n<$$F2Started=0><$_endif> \
<$_if not ($$F1Started)><ul type="disc">\n<$$F1Star ted=1><$_endif>\
\

[FootBullStart2]
<$_if not ($$F2Started)><ul type="circle">\n<$$F2St arted=1><$_endif>\
\

[FootEnd]
<$_if ($$F2Started)>\n<$$F2Started=0><$_endif> \
<$_if ($$F1Started)>\n<$$F1Started=0><$_endif> \

[MacroVariables]
; Put any macro definition sections before this sec tion.
F1Started = 0
F2Started = 0

This macro code provides the proper and coding for the bulleted paragraphs.

CONVERTING LIST FORMATS TO HTML MIF2GO USER’S GUIDE

674 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Note: In HTML the convention is not to use , because this closing tag can create
extra unwanted spacing in some browsers. However, is required in
XHTML and XML.

If you code numbered footnotes as items, they should be in an block, which
provides the numbering. Numbering restarts at 1 for each HTML page. See §21.12.2
Converting list formats to HTML list styles on page 675.

21.12 Converting list formats to HTML
Lists, especially nested lists, are a challenge to format correctly for HTML output.

In this section:
§21.12.1 Understanding the problem with HTML lists on page 674
§21.12.2 Converting list formats to HTML list styles on page 675
§21.12.3 Indenting list items on page 678
§21.12.4 Converting list formats to HTML/XML paragraphs on page 679

See also:
§21.3.3 Converting paragraph formats with autonumbers on page 648
§34.7 Converting autonumbers for database systems on page 944

21.12.1 Understanding the problem with HTML lists

You might have already discovered that no matter how you map your numbered lists, they
do not render correctly in one browser or another. This problem is the result of a difference
in how browsers indent list items. The situation is described in Eric Meyer's CSS book for
O'Reilly, 3rd Ed., pp. 377-378. Basically, you can indent with either margin or padding. So
Internet Explorer and Opera use this:

ul, ol {margin-left: 40px; }

Firefox and other Gecko browsers use this:
ul, ol {padding-left: 40px; }

Both methods comply with standards, but they create a compatibility issue. The fix is to
override one or the other in your own CSS, depending on how you prefer to indent your
own list items. If you use padding, add (for example):

ul, ol { margin-left: 0; padding-left: 1em; }

If you use margins, add:
ul, ol {margin-left: 1em; padding-left: 0; }

Mif2Go sets both margin and padding:
ul.Bulleted1 {
 margin-left: 18pt;
 padding-left: 12pt;
 list-style: disc;
 }

ol.Numbered1 {
 margin-left: 18pt;
 padding-left: 12pt;
 list-style: decimal;
 }

Mif2Go uses separate rules for ol and ul because some viewers (notably the JavaHelp
viewer) do not follow CSS cascading rules correctly.

21 MAPPING TEXT FORMATS TO HTML/XML CONVERTING LIST FORMATS TO HTML

ALL RIGHTS RESERVED. MAY 18, 2013 675

21.12.2 Converting list formats to HTML list style s

HTML list tags are far more restrictive than straight CSS. However, if the following are
true, you should be able to successfully convert FrameMaker list formats to HTML list
styles:

 • Either the list formats in your document do not have complex autonumbers, or you can
allow those that do to become <p> items in the output instead.

 • The list formats in your FrameMaker document indicate when a new list or sublist
begins. Mif2Go tries to emulate FrameMaker numbering using HTML list tags, but
needs guidance from the FrameMaker formats you use to know where nested lists
begin, continue, and end.

In most cases browsers will reformat the list styles unaided, and they will come out as you
expect. However, see §21.12.3 Indenting list items on page 678 for ways you might have
to modify CSS properties to line up indents.

Note: Unless you specify XHTML as the output type, Mif2Go does not generate
closing tags, because browsers tend to space poorly when is present.

In this section:
§21.12.2.1 Specifying HTML list styles (deprecated) on page 675
§21.12.2.2 Converting lists with multiple paragraph formats on page 676
§21.12.2.3 Converting nested lists on page 676
§21.12.2.4 Converting dictionary lists on page 677
§21.12.2.5 Including FrameMaker autonumbers in lists on page 677
§21.12.2.6 Omitting CSS class attributes from list entries on page 678
§21.12.2.7 Including or excluding the type list attribute on page 678

21.12.2.1 Specifying HTML list styles (deprecated)

To specify HTML list styles explicitly:
[HTMLParaStyles]
; doc format (para or char) = keywords for function s and properties
; List1 - List12 specify different list styles:
; 1-5 = OL, ordered list types 1, i, I, a, and A
; 6-8 = UL, unordered list types disc, circle, a nd square
; The rest vary from one browser to another; Ope ra shows as:
; 9 = DIR, nonindented list, no bullets or num bers
; 10 = MENU, bulleted and indented like 6
; 11 = DL, dictionary list, indented, no bullet s
; 12 = DL COMPACT, like 11 but with less spacin g
; LFirst specifies a style that starts a list
; LEnd specifies a non-list style that ends any pr ior lists
; LNest specifies a style that nests in an enclosi ng list
; LLevel specifies the nesting level to use, 1-30
; DListDD specifies use of dd instead of dt for it ems in dl lists

Note: Mif2Go overrides these settings with properties you specify in a format
configuration file for the same formats; see §5.7.4 Configuring list formats on
page 86.

For all List n styles:

 • Assign LFirst to each paragraph format that starts a list, regardless of level or
nesting, to restart numbering; see §21.12.2.2 Converting lists with multiple paragraph
formats on page 676.

 • Assign LEnd to each non-list paragraph format that immediately follows a list; see
§21.12.2.2 Converting lists with multiple paragraph formats on page 676.

CONVERTING LIST FORMATS TO HTML MIF2GO USER’S GUIDE

676 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • Assign LNest and LLevel n to each paragraph format in a list that is nested inside
another list; see §21.12.2.3 Converting nested lists on page 676.

You can assign more than one list keyword to a format. For example:
[HTMLParaStyles]
Numbered1 = List1 LFirst
Numbered = List1
Bulleted = List6
Body = LEnd
Heading* = LEnd

When you assign List n, FrameMaker autonumbers are removed automatically; if the
style you choose includes an HTML autonumber, that symbol is used instead, depending
on browser interpretation. List styles 1 through 8 generally are reliable. List styles 9
through 12 are browser dependent; the same style in different browsers might show up
with or without indents or bullets.

Note: Any format that can end a list must be assigned LEnd; otherwise the paragraphs
that follow will be treated as part of the last list item, and will be indented.

If you are using CSS, Mif2Go applies the same class name used in the first item in a
list to the or that precedes it. This permits convenient CSS adjustment of
margins before and after lists, obviating the need to use distinct paragraph formats for the
first and last list items.

You will need additional settings for the following:

 • Lists that include more than one paragraph format; see §21.12.2.2 Converting lists
with multiple paragraph formats on page 676.

 • Nested lists; see §21.12.2.3 Converting nested lists on page 676.
 • Dictionary-style lists; see §21.12.2.4 Converting dictionary lists on page 677.

21.12.2.2 Converting lists with multiple paragraph formats

If you use a different FrameMaker paragraph format for the first item in a list, and perhaps
also for the last item, specify the appropriate List n style for all of the paragraph formats;
and also specify the following properties:

[HTMLParaStyles]
; LFirst specifies a style that starts a list
; LEnd specifies a non-list style that ends any pr ior lists

LFirst starts a list Assign LFirst to the format that starts a list. If you do not assign LFirst to a format that
can start a list, Mif2Go thinks an item in that format is being continued after a non-list
item; if that is not the case, Mif2Go might be using a value that was never set.

LEnd comes after
a list

Do not assign LEnd to the format that ends a list; instead, assign LEnd to each paragraph
format that can occur immediately after the end of a numbered list in your FrameMaker
document. This means that you must assign LEnd to several non-list paragraph formats;
this is the only way to get the indents right, without using CSS. The LEnd property can be
annoying, because you must assign it to every format that could ever end a list, as opposed
to being included in a list. To avoid unwanted left indents you must assign LEnd to Body,
to all the headings, to figure titles and table anchors, and so forth.

21.12.2.3 Converting nested lists

If you used nested lists in your FrameMaker document, you must assign the following
properties to inner list formats:

21 MAPPING TEXT FORMATS TO HTML/XML CONVERTING LIST FORMATS TO HTML

ALL RIGHTS RESERVED. MAY 18, 2013 677

[HTMLParaStyles]
; LNest specifies a style that nests in an enclosi ng list
; LLevel specifies the nesting level to use, 1-30

Make each level a
different list type

HTML does not let you nest a list inside another of the same type. If you have a bulleted
list with a bulleted sublist, change the bulleted style for the sublist; for example, if the top-
level list is List6 , make the sublist style List7 . Also make the top-level list LLevel1 ,
and make the sublist both LNest and LLevel2 . You can nest quite deeply and still retain
the structure, if you apply these properties correctly.

Suppose your FrameMaker document has one numbered list nested inside another. You
would assign LLevel1 to the outer list format, and LLevel2 to the inner (nested) list
format. You would also assign the LNest property to the nested format, and, if you use a
different format for the first item, assign LFirst to the first-item format in both lists. For
example:

[HTMLParaStyles]
Numbered1 = List1 LLevel1 LFirst
Numbered = List1 LLevel1
AlphaSub1 = List4 LLevel2 LFirst LNest
AlphaSub = List4 LLevel2 LNest

If you are using CSS, you might want to add, in the CSS file:
ol ol {list-style-position: outside}

This is how to specify properties for nested lists in CSS.

If you are not using CSS, and your document has nested lists, you might need this setting:
[CSS]
; AlwaysNestLists = No (default, no nesting when CS S used) or Yes
AlwaysNestLists = Yes

However, if you use CSS at all for list items, you will get a mess if the lists really do nest.
Mif2Go prevents that by default (with AlwaysNestLists=No), when you use class
attributes. Setting AlwaysNestLists=Yes turns off this safety net, so you will have to
adjust the CSS for the nested items to prevent overindenting. And also wave goodbye to
cross-browser consistency.

21.12.2.4 Converting dictionary lists

For List11 or List12 (dictionary-style) lists, a <dt> tag is used for each term, normally
flush left; and a <dd> tag for the definition, normally slightly indented. By default,
Mif2Go puts out only <dt> item tags for <dl> lists. To specify <dd> tags also, assign
property DListDD to the paragraph format you use for dictionary-style terms:

[HTMLParaStyles]
; DListDD specifies use of dd instead of dt for it ems in dl lists
GlosTerm = List12 DListDD

21.12.2.5 Including FrameMaker autonumbers in list s

When you use the HTML list styles, the browser itself supplies the bullet or autonumber;
the one provided by FrameMaker is automatically dropped. To keep a FrameMaker bullet
or autonumber, perhaps because you have chosen an unbulleted style (such as List11 in
some browsers):

[HTMLParaStyles]
; Anum includes Frame autonumber in list, default omits it
MyBulletStyle = Anum

CONVERTING LIST FORMATS TO HTML MIF2GO USER’S GUIDE

678 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

21.12.2.6 Omitting CSS class attributes from list entries

To omit the CSS class attribute from list items:
[CSS]
; NoClassLists = Yes (default, no class in tag s), or No
; Default is reversed to No if UseCSS=Yes.
NoClassLists = Yes

If you use CSS, the default value of NoClassLists is reversed to No; see §22.5
Understanding how CSS affects other options on page 687.

21.12.2.7 Including or excluding the type list att ribute

Three attributes apply to list wrappers (ol , ul) and list items (li): type , start , and
value ; the first two apply only to list wrappers:

 • The type attribute specifies the kind of numbering, such as 1 or a.
 • The start attribute specifies the starting value for the list; Mif2Go applies this

attribute if lists are not nested, and a list is interrupted by another list. In that case,
start tells the second (resumed) part of the first list where to restart numbering.

 • The value attribute applies also to list items, and specifies the number for the current
item.

Before CSS, this was how you controlled lists.

By default, Mif2Go includes the type attribute in list wrappers ol and ul . To omit the
type attribute from list wrappers:

[CSS]
; NoAttribLists = No (default, use type, start, and value attributes
; in list tags), or Yes (omit type attribute from l ist tags)
NoAttribLists = Yes
; UseListTypeAttribute = Yes (default for JavaHelp, to fix CSS bug)
; or No (default for other formats, go by NoAttrib Lists value)
UseListTypeAttribute = Yes

Note: If you use both Mif2Go and DITA2Go , be aware that the default for
NoAttribLists is Yes for DITA2Go .

When NoAttribLists=No , all three attributes are allowed on list tags.

When NoAttribLists=Yes , the value and start attributes are allowed, and use of the
type attribute is left up to the value of UseListTypeAttribute , which defaults to No
(meaning leave it up to NoAttribLists) except for JavaHelp and Oracle help, both of
which need the type attribute.

21.12.3 Indenting list items

To consistently indent the second and subsequent lines of a bulleted or numbered item so
the text more or less lines up with the start of the first-line text, you have two choices.
Neither method is precise:

§21.12.3.1 Adjusting the second-line list indent in CSS on page 678
§21.12.3.2 Inserting spaces between first-line list autonumber and text on page 679

21.12.3.1 Adjusting the second-line list indent in CSS

You can use CSS to adjust the second-line indent of a list format to match the first line.
Using CSS is tricky, because CSS1 provides no equivalent of the FrameMaker
autonumber-tab-hang construct; the tab concept is missing from CSS. Therefore, spacing
between the bullet or autonumber and the text is browser dependent.

21 MAPPING TEXT FORMATS TO HTML/XML CONVERTING LIST FORMATS TO HTML

ALL RIGHTS RESERVED. MAY 18, 2013 679

To use CSS with or tags, you must deduct from your CSS indent the amount of
indent applied automatically by the browser, or you will see your items sliding away
to the right like elections in Florida. How much you deduct is browser dependent, so you
cannot have one CSS for all browsers. Instead you must play the JavaScript detection
game to select among multiple CSS files at run time. Although Mif2Go supports this
method and provides rudimentary JavaScript (see §22.6.1 Selecting a CSS file at run time
on page 688), this is not a standards-friendly approach.

21.12.3.2 Inserting spaces between first-line list autonumber and text

You can use macros to insert fixed spaces after the autonumber or bullet to get the first text
line to align with subsequent lines. This is not a precise method, because you can adjust
space only in nbsp -width increments.

To add fixed spaces after an autonumber or bullet:
[HTMLParaStyles]
; Paragraph format = keywords for functions and pro perties
ListFormat = CodeAfterAnum

[AnumCodeAfter]
; doc style = HTML code to use after end of autonum ber sequence
ListFormat =

You have to determine the proper number of spaces by trial and error. And sadly, it will be
different when you get to double digits in numbered lists: then you must reduce the
number of nbsp s by one. You could maintain a macro-variable counter (see §28.3 Using
macro variables on page 795), but synchronizing the count with the FrameMaker
numbering would be challenging.

21.12.4 Converting list formats to HTML/XML paragr aphs

Mif2Go can map list formats to <p> items. CSS preserves the numbering used in your
FrameMaker document, no matter how complex. If you allow Mif2Go to create a CSS file
for your document (see §22 Setting up CSS for HTML on page 681), Mif2Go uses CSS to
reproduce the original indents.

Some things to consider about converting lists:

 • You must use this method for list formats with complex autonumbers that have no
counterpart in HTML; for example, the multi-level section numbers in the Mif2Go
User’s Guide (this document).

 • Because autonumbers are converted to text with this method, you cannot insert new
items in a numbered list in the HTML output (something you should not be doing
anyway) without manually renumbering the rest of the list.

 • When you convert lists from FrameMaker to regular paragraphs, rather than use
HTML list styles, by default Mif2Go retains the FrameMaker autonumbers (including
bullets). To remove them, see §21.3.3 Converting paragraph formats with
autonumbers on page 648.

(No illustrations)

CONVERTING LIST FORMATS TO HTML MIF2GO USER’S GUIDE

680 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 681

22 Setting up CSS for HTML

Much of what used to be set by attributes in HTML is now better handled in CSS
(Cascading Style Sheets). This section shows how to use and customize CSS for HTML
output. Topics include:

§22.1 Deciding whether to use CSS on page 681
§22.2 Understanding how to use CSS on page 681
§22.3 Understanding how Mif2Go generates CSS on page 682
§22.4 Specifying CSS file and link options on page 683
§22.5 Understanding how CSS affects other options on page 687
§22.6 Linking to alternate CSS files on page 688
§22.7 Assigning CSS classes on page 691
§22.8 Customizing CSS properties on page 698

22.1 Deciding whether to use CSS
With respect to CSS style sheets for your project, you can do any of the following:

 • Specify an existing style sheet for Mif2Go to use.
 • Have Mif2Go create a new style sheet based on formats and configuration settings.
 • Select a style sheet at run time, according to the browser in use.
 • Choose not to use CSS at all.

If the HTML output you produce will be viewed with a browser that offers CSS support
(which most Web browsers do these days), CSS is the better way to manage presentation,
compared to tags and such. On the other hand, CSS is implemented somewhat
inconsistently among different browsers. You might have to provide several cascading
style sheets, to be automatically selected from at run time; and you can spend an amazing
amount of time tuning style sheets and adding JavaScript macros.

Note: Formatting that is directly created by an HTML tag overrides CSS. Using HTML
presentational tags and attributes cripples your ability to use CSS, and therefore to
adjust formatting easily without having to alter content.

If you are creating in-house HTML documents, use whatever works with local browsers.

Note: If you are creating XHTML output for the Web, Netscape Navigator 7 and
Mozilla ignore your CSS files.

The default is for Mif2Go to use CSS for standard HTML and for HTML-based Help, and
to create a style sheet for you, based on the formats in your FrameMaker document; see
§22.4 Specifying CSS file and link options on page 683.

To look at your page in different browsers, using a Web-based method:
http://www.anybrowser.com/

See also:
§22.5 Understanding how CSS affects other options on page 687

22.2 Understanding how to use CSS
If you are not familiar with CSS, here are some good starting points, tutorials, and
reference sites:

http://www.anybrowser.com/

UNDERSTANDING HOW MIF2GO GENERATES CSS MIF2GO USER’S GUIDE

682 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

http://websitetips.com/css/index.shtml
http://www.mako4css.com/Tutorial.htm
http://www.w3schools.com/css/
http://www.thenoodleincident.com/tutorials/index.html
http://www.alistapart.com/

Also the spectacular and inspiring:
http://www.csszengarden.com/

And a few books:
Cascading Style Sheets: The Definitive Guide, by Eric A. Meyer
The basics of creating, saving, formatting, and linking to CSS: HTML for the World
Wide Web with XHTML and CSS, by Elizabeth Castro
Cascading Style Sheets: Designing for the Web, by Hakon Lie and Bert Bos
(Note: Hakon Lie is the W3C designer of CSS)

22.3 Understanding how Mif2Go generates CSS
Mif2Go generates CSS based on the formats in your FrameMaker document. To get the
precise display you want, you might find that you need to edit the resulting style sheet in a
text editor or a CSS editor. Mif2Go excludes most font tags, and optionally excludes
typographic tags, because those can override CSS. What you get is very clean HTML,
with @class attributes.

Although the default is to create a new CSS each time you run a conversion, there is a
setting you can specify to retain the CSS as is; see §22.4 Specifying CSS file and link
options on page 683. That is what we usually advise people to do if they customize the
CSS. The downside is that if you define new formats (classes, in HTML) for your
document, Mif2Go cannot add them to the CSS; you have to do that yourself.

By default, the first time you convert a document to HTML or XML, or generate HTML-
based Help, Mif2Go creates a style sheet for the output. After importing any conversion
template (see §2.4 Importing formats from a conversion template on page 67), Mif2Go
creates a new CSS file that contains all the catalogued paragraph and character format
names from your FrameMaker document, based on the following:

 • whatever CSS classes you assign to those formats in [ParaClasses] or
[CharClasses] ; see:

§22.7.2 Mapping paragraph formats to CSS classes on page 692
§22.7.3 Mapping character formats to tags or span classes on page 693

 • whatever tags you set for those formats in [ParaTags] and [CharTags] ; see:
§21.3.1 Assigning HTML tags and attributes to paragraph formats on page 646
§21.4 Mapping character formats on page 653.

Absent explicit CSS settings in [ParaClasses] , [CharClasses] , [ParaTags] , or
[CharTags] , Mif2Go bases CSS class names on your FrameMaker format names,
possibly reduced to fit CSS naming rules for class names; see §22.7.1 Understanding CSS
class name restrictions on page 691.

CSS rendition is affected by mappings in the following sections:
[Fonts] (see §21.7.2 Remapping fonts on page 664)
[Colors] (see §21.9 Specifying text colors for HTML on page 669)

However, all other CSS properties come directly from FrameMaker paragraph and
character catalogs. FrameMaker markers do not affect CSS entries.

http://websitetips.com/css/index.shtml
http://www.mako4css.com/Tutorial.htm
http://www.w3schools.com/css/
http://www.thenoodleincident.com/tutorials/index.html
http://www.alistapart.com/
http://www.csszengarden.com/

22 SETTING UP CSS FOR HTML SPECIFYING CSS FILE AND LINK OPTIONS

ALL RIGHTS RESERVED. MAY 18, 2013 683

See §22.7 Assigning CSS classes on page 691.

22.4 Specifying CSS file and link options
In this section:

§22.4.1 Specifying CSS options at project set-up time on page 683
§22.4.2 Specifying CSS options in a Mif2Go configuration file on page 684
§22.4.3 Designating and locating a CSS file on page 686
§22.4.4 Directing Mif2Go to generate a CSS file on page 686
§22.4.5 Understanding effects of the older Stylesheet setting on page 687

22.4.1 Specifying CSS options at project set-up ti me

When you start a new HTML or XML project, you can specify some CSS file options at
set-up time; see §13.2.2 Choosing set-up options for an HTML or XHTML project on
page 425. (For HTML-based Help, you must specify these options in a configuration file.)

Figure 22-1 shows the CSS portion of the Set Up HTML/XML Project dialog. However,
once you have set up your project, to change any of these CSS options you must edit the
[CSS] section of the configuration file; see §22.4.2 Specifying CSS options in a Mif2Go
configuration file on page 684.

Figure 22-1 CSS set-up options

Use CSS To use CSS for your output, check Use Cascading Style Sheets . By default, Mif2Go
looks in the project directory for a CSS file named local.css . You can specify a
different file name, or browse for a different file and location. To change this option in the
configuration file, see §22.4.3 Designating and locating a CSS file on page 686.

Create CSS To have Mif2Go generate a CSS file for you based on the formats in your document,
check both Use Cascading Style Sheets and Create CSS from FM styles . By default,
Mif2Go names the new CSS file local.css and places it in the project directory. You
can specify a different file name and location. To change this option in the configuration
file, see §22.4.4 Directing Mif2Go to generate a CSS file on page 686.

Select CSS at run
time

To defer CSS file selection until run time, uncheck Create CSS from FM styles , and
check only Use Cascading Style Sheets . However, you must also edit settings in the
configuration file; see §22.4.2 Specifying CSS options in a Mif2Go configuration file on
page 684. You cannot fully specify this option in the Set Up dialog. When you defer CSS
file selection, Mif2Go ignores whatever was specified in the Set Up dialog for CSS file
name and location. See §22.6.1 Selecting a CSS file at run time on page 688.

Skip CSS To avoid using CSS at all, uncheck both checkboxes.

Accept defaults By default, when you set up a new HTML or XML project, Mif2Go does the following:

 • Specifies that CSS will be used for the output.
 • Names the CSS file local.css .

SPECIFYING CSS FILE AND LINK OPTIONS MIF2GO USER’S GUIDE

684 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • Creates local.css in the project directory, if a file of that name is not already
present.

 • Bases the content of local.css on the formats in your FrameMaker document.

If you make no changes in the Set Up HTML/XML Project dialog to the options shown in
Figure 22-1, your configuration file will contain the following values:

[CSS]
UseCSS=Yes
WriteCssStylesheet=Once
CssFileName=local.css

22.4.2 Specifying CSS options in a Mif2Go configur ation file

To specify CSS options in a Mif2Go configuration file:
[CSS]
; UseCSS = Yes (default) or No
UseCSS=Yes
; WriteClassAttributes = Yes (default)
; or No (when ClassIsTag=Yes or when not using CSS)
WriteClassAttributes=Yes
; WriteCssStylesheet = Once (default), Always, or N ever
WriteCssStylesheet=Once
; WriteCssLink = Yes (default) or No
WriteCssLink=Yes
; CssBrowserDetect= Macro reference to JavaScript c ode that determines
; browser type and writes link from HTML to approp riate CSS file
;CssBrowserDetect=<$BrowserCSS>
; CssFileName = name of style sheet to reference (f ile name, no path)
CssFileName=local.css

Use these options to do the following:
Direct Mif2Go to use CSS
Include class attributes
Designate a CSS file
Create a CSS file
Link to a CSS file
Select a CSS file at run time

See also §Table 22-2 CSS-dependent default values of options on page 688.

Note: If you have been using [HtmlOptions]Stylesheet to specify CSS file
options, see §22.4.5 Understanding effects of the older Stylesheet setting on
page 687. The Stylesheet setting is deprecated in favor of the [CSS] settings
listed in this section.

Direct Mif2Go to
use CSS

To direct Mif2Go to use CSS for your output:
[CSS]
; UseCSS = Yes (default) or No
UseCSS=Yes

When UseCSS=Yes, by default Mif2Go does the following:

 • includes class attributes in paragraph tags
 • creates the CSS file designated by CssFileName , if this file is not already present
 • includes a link from the <head> element of each output file to the CSS file designated

by CssFileName .

When UseCSS=No, paragraph tags do not include class attributes, no CSS file is
referenced in the output, and the remaining [CSS] options are ignored.

22 SETTING UP CSS FOR HTML SPECIFYING CSS FILE AND LINK OPTIONS

ALL RIGHTS RESERVED. MAY 18, 2013 685

See also §22.5 Understanding how CSS affects other options on page 687.

Include class
attributes

WriteClassAttributes values have the following effects:

Designate a CSS
file

CssFileName designates the CSS file Mif2Go optionally creates and references. The
default is local.css , located in the project directory. You can specify a different name
and location for this file; see §22.4.3 Designating and locating a CSS file on page 686.

Create a CSS file WriteCssStylesheet values have the following effects:

Link to a CSS file WriteCssLink values have the following effects:

Yes Mif2Go includes CSS class attributes in the paragraph tags in your output; see
§22.3 Understanding how Mif2Go generates CSS on page 682.

No Class attributes are not included in paragraph tags. Use this setting for XML
output when [CSS]ClassIsTag=Yes , the default for XML; see §14.4.2
Deriving XML tags from format and class names on page 462.

Once Mif2Go creates a new CSS file based on your FrameMaker formats, but only
if no CSS file of the name designated by CssFileName is already present in
the project directory. This is the default Mif2Go puts in place at set-up.
Specify Once to get a starting CSS file that you can tweak manually. See
§22.4.4 Directing Mif2Go to generate a CSS file on page 686.

Always Mif2Go creates a new CSS file based on your FrameMaker formats,
overwriting in the project directory any existing CSS file of the name
designated by CssFileName . Specify Always if you do not need to tweak the
CSS file, or if you can make any needed changes in macros, either in the
configuration file or in a macro library. See §22.4.4 Directing Mif2Go to
generate a CSS file on page 686. You can specify additional settings to govern
what Mif2Go includes in a CSS file; see §22.8.4 Overriding styles in Mif2Go-
generated CSS files on page 700.

Never Mif2Go does not create a new CSS file, nor overwrite an existing file. When
UseCSS=Yes, Mif2Go assumes you wish to use an existing CSS file: either
the file designated by CssFileName , or a file to be selected at run time,
depending on the values of WriteCssLink and CssBrowserDetect .
Specify Never if you want to use an existing CSS file. See §22.4.3
Designating and locating a CSS file on page 686.

Yes If CssBrowserDetect is not present, Mif2Go includes in the <head>
element a simple link to the CSS file designated by CssFileName , in the
relative directory designated by CssPath . The link is one of the following
types:

For HTML:
<link rel="stylesheet" href="local.css" type="text/ css">

For XML:
<?xml:stylesheet href="local.css" type="text/css"
charset="UTF-8"?>

If CssBrowserDetect is present, instead of the simple link Mif2Go includes
the macro assigned to CssBrowserDetect in the <head> element. See
§22.6.1 Selecting a CSS file at run time on page 688.

No Mif2Go does not create a link to a CSS file. Use this setting when you are not
using CSS, or when you provide your own macro in [Inserts]Head to
select a CSS file dynamically, independently of CssBrowserDetect . See
§22.6.1 Selecting a CSS file at run time on page 688.

SPECIFYING CSS FILE AND LINK OPTIONS MIF2GO USER’S GUIDE

686 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Select a CSS file
at run time

When a macro is assigned to CssBrowserDetect , if WriteCssLink=Yes , the macro is
included in the <head> element. If WriteCssLink=No , the macro is ignored. See
§22.6.1 Selecting a CSS file at run time on page 688.

22.4.3 Designating and locating a CSS file

To specify CSS file name and location in the configuration file:
[CSS]
UseCSS=Yes
; CssFileName = name of style sheet to reference in link when
; WriteCssLink=Yes and CssBrowserDetect is absent.
CssFileName= MyStyles.css
; CssPath = directory in which .css (or .xsl) files are to be placed
CssPath=./css

CssFileName designates the CSS file to be referenced when WriteCssLink=Yes . Do
not include a path; the value of CssFileName should be just a file name with extension.
The default value is local.css , and the default location is the directory designated by
CssPath .

CssPath designates the directory to be referenced in CSS links when
WriteCssLink=Yes . If you use backslashes in the path name, Mif2Go changes them to
forward slashes before writing the path to your HTML output files. The default value of
CssPath is the directory designated by WrapPath ; see §35.8 Placing CSS or XSL files
for assembly on page 969. You can have Mif2Go copy CSS files to the CssPath directory
from another location at run time.

Path to CSS file
should be relative

If you specify a value for CssPath , the path should be relative to the directory containing
your HTML files. If you specify an absolute path, the CSS file is likely to be accessible
only on your own machine.

Default CSS file
name and

location

If all of the following are true, Mif2Go creates a CSS file named local.css and places it
in the project directory:

 • You have indicated that you want Mif2Go to use CSS (that is, UseCSS=Yes).
 • The value of WriteCssStylesheet is either Once or Always .
 • The configuration file has no entries at all for either CssFileName or CssPath .
 • The project directory does not already contain a file named local.css .

22.4.4 Directing Mif2Go to generate a CSS file

The first time you convert files for a project, if you intend to use CSS, probably you will
want Mif2Go to generate a new CSS file, so you can use a style sheet that contains the
equivalents of your FrameMaker format settings. You should also specify a name for the
CSS file (see §22.4.3 Designating and locating a CSS file on page 686); for example:

[CSS]
UseCSS=Yes
WriteCssStylesheet=Once
CssFileName=MyStyles.css

When WriteCssStylesheet=Once , Mif2Go generates a new CSS file, but only if no
CSS file of the same name (in this example, MyStyles.css) already exists in the project
directory. This is probably the best setting to use in most circumstances; you can leave this
setting in place, and any changes you make directly to the CSS file will be preserved the
next time you run the conversion. On the other hand, changes you make to FrameMaker
formats will not be reflected in the CSS file.

22 SETTING UP CSS FOR HTML UNDERSTANDING HOW CSS AFFECTS OTHER OPTIONS

ALL RIGHTS RESERVED. MAY 18, 2013 687

Force a new
CSS, update CSS

from formats

To force Mif2Go to generate a new CSS file, overwriting any existing CSS file of the
same name in the project directory:

[CSS]
WriteCssStylesheet=Always

If you never make changes directly to the CSS file, you can let Mif2Go generate a CSS
file each time; then any changes you make to your FrameMaker formats are updated
automatically in the CSS file.

Update CSS
directly

If you make changes directly to the CSS file, to prevent your changes from being
overwritten, for subsequent conversion runs you must change this setting to Once or to
Never :

[CSS]
WriteCssStylesheet=Never

Styles based on
configuration

settings

You can have it both ways, by specifying CSS settings in your configuration file for
particular formats; see §22.8.4 Overriding styles in Mif2Go-generated CSS files on
page 700

Styles based on
import template

If you direct Mif2Go to import a conversion template (see §30.7 Applying FrameMaker
conversion templates on page 863), the properties in the generated CSS file will be those
in effect after the import.

22.4.5 Understanding effects of the older Styleshe et setting

Prior versions of Mif2Go used a single setting to manage CSS file options:
[HtmlOptions]
; Stylesheet = None (default if no setting),
; Init (default set by Setup, write .css if not exis ting),
; Generate (overwrite .css),
; Class (no link, no write), or
; Use (link, no write).
;Stylesheet=None

Stylesheet is
deprecated

The Stylesheet setting is deprecated, and is replaced by the [CSS] options described in
§22.4.2 Specifying CSS options in a Mif2Go configuration file on page 684. However,
Stylesheet is still supported for backward compatibility.

If a Stylesheet setting is present in your configuration file and the newer [CSS] file
options are not present, defaults for the newer options are set according to the value of
Stylesheet , as shown in Table 22-1. If both are present, the [CSS] options prevail.

22.5 Understanding how CSS affects other options
The choice to use CSS changes the behavior of certain other options. Be aware of the
following:

Using CSS turns off tags by default

Table 22-1 Default CSS file options when [HtmlOptions]Stylesheet is used

[CSS] option

[HtmlOptions] Stylesheet setting

None Init Generate Class Use

UseCSS No Yes Yes Yes Yes

WriteClassAttributes No Yes Yes Yes Yes

WriteCssStylesheet Never Once Always Never Never

WriteCssLink No Yes Yes No Yes

LINKING TO ALTERNATE CSS FILES MIF2GO USER’S GUIDE

688 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Using CSS changes some default values
Not using CSS changes other default values.

Using CSS turns
off tags by

default

When UseCSS=Yes, the default value for [HTMLOptions]NoFonts results in removal
of tags; these tags are deprecated, and are not needed with CSS.

However, if you specify UseCSS=Yes and then do not supply or create a CSS file, text
appearance in your HTML output still depends on tags, which are no longer
present unless you explicitly set [HTMLOptions]NoFonts=No in the configuration file.
Therefore, the text in your document might not come out the way you expect.

See §21.7.4 Including or excluding font tags on page 665.

Using CSS
changes some
default values

When UseCSS=Yes, default values are reversed for the [Graphics] and
[HtmlOptions] settings listed in Table 22-2. This removes most HTML that can
interfere with CSS settings. (One exception is [HTMLOptions]AllowOverrides , which
defaults to Yes for HTML (but not for XML or DITA) to retain any incidental use of bold
and italic in text.)

Not using CSS
changes other
default values

When UseCSS=No, default values are reversed for the [CSS] settings listed in Table 22-2.

22.6 Linking to alternate CSS files
In this section:

§22.6.1 Selecting a CSS file at run time on page 688
§22.6.2 Changing CSS files in the middle of a document on page 689
§22.6.3 Customizing the CSS link tag on page 690
§22.6.4 Using an alternate CSS link tag for Netscape 4 on page 690

22.6.1 Selecting a CSS file at run time

CSS support is a mixed bag; a lot depends on exactly which browsers, and which versions
of them, you need to support. You might need to autodetect the browser and choose from
different CSS files at run time, using a macro instead of a fixed link, to reference
JavaScript code that detects the type of browser in use and selects an appropriate CSS file.
For example:

Table 22-2 CSS-dependent default values of options

Section Option

Default value of option when:

Ref.UseCSS=Yes UseCSS=No

[CSS] LinkClassIsParaClass Yes No 19.2.2.2

NoClassLists No Yes 21.12.2.6

WriteClassAttributes Yes No 22.4.2

WriteCssStylesheet Once Never 22.4.2

WriteCssLink Yes No 22.4.2

XrefFormatIsXrefClass Yes No 22.7.8

[Graphics] GraphAlignAttributes No Yes 23.6.2

[HtmlOptions] AlignAttributes No Yes 21.5

Basefont No Yes 21.7.1

NoFonts Yes No 21.7.4

22 SETTING UP CSS FOR HTML LINKING TO ALTERNATE CSS FILES

ALL RIGHTS RESERVED. MAY 18, 2013 689

[CSS]
WriteCssLink=Yes
CssBrowserDetect=<$SelectCSS1>

As an alternative:
[CSS]
WriteCssLink=No

[Inserts]
Head=<$SelectCSS1>

Provide the referenced macro:
[SelectCSS1]
; Include here the JavaScript from m2hmacro.ini

Sample macro [$SelectCSS1] contains JavaScript to detect several popular browsers.
This macro, and an alternate, [$SelectCSS2] , are included in file m2hmacro.ini , in
your Mif2Go distribution directory. You can copy m2hmacro.ini file to the project
directory, or just copy the macro definition into the configuration file for your project; see
§28.1.1.2 Understanding where you can define named macros on page 788. You can
modify the macro definition as needed; consult a JavaScript reference for syntax.

22.6.2 Changing CSS files in the middle of a docum ent

To have Mif2Go reference different style sheets for output from different parts of your
FrameMaker document, you can use a macro to provide the CSS link, then insert markers
in your document to signal a change of CSS file. To prevent Mif2Go from automatically
generating a CSS file reference, you must also specify:

[CSS]
WriteCssLink=No

To generate a CSS file reference from your document, assign a macro to be placed in the
<head> element of each HTML output file; for example:

[Inserts]
Head=<$CSSmacro>

Include in the macro definition a macro variable (for example, $$myAltCSS) in place of
the base name of the CSS file:

[CSSmacro]
; You must type the following all on one line:
<link rel='stylesheet' href='<$$myAltCSS>.css' char set=ISO-8859-1
type='text/css' />

Give the macro variable an initial value: the base name of the first CSS file you want
referenced:

[MacroVariables]
myAltCSS= UsualCSS

Mif2Go uses the value of macro variable $$myAltCSS to select a CSS file at the start of
each file split.

To change $$myAltCSS to a different value for a subsequent split, you must place a
marker in a paragraph before the split. You can use a FrameMaker HTML Macro marker,
with content as follows:

<$$myAltCSS= OtherCSS>

Or, you could create a new marker type (for example, CSSname ; see §29.2 Adding
custom marker types on page 832), and provide as content only the base name of the CSS
file:

LINKING TO ALTERNATE CSS FILES MIF2GO USER’S GUIDE

690 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

OtherCSS

To assemble the macro around the CSS file value, also specify the following:
[MarkerTypes]
CSSname=Code

[MarkerTypeCodeBefore]
CSSname=<$$myAltCSS=

[MarkerTypeCodeAfter]
CSSname= >

To change the value of $$myAltCSS for a particular FrameMaker file in your document,
place in the project directory a file-specific configuration file that contains (only) the
following setting:

[MacroVariables]
myAltCSS= SpecialCSS

See §33.1 Using a different configuration for selected files on page 919.

22.6.3 Customizing the CSS link tag

The generic CSS link tag Mif2Go inserts in your HTML output looks like this:
<link rel="stylesheet" href=" MyStyles.css" type="text/css">

Suppose you want to specify additional properties for the CSS file, such as media type.
First, you must prevent Mif2Go from writing the generic link tag:

[CSS]
WriteCssLink=No

To specify the link yourself, assign it to the <head> element:
[Inserts]
; You must type the following all on one line:
Head=<link rel="stylesheet" href=" MyStyles.css" type="text/css"
media="screen">

As an alternative, you could reference the link as a macro (see §28.1 Defining and
invoking macros on page 787):

[Inserts]
Head=<$MyCSSLink>

[MyCSSLink]
<link rel="stylesheet" href=" MyStyles.css" type="text/css"
media="screen">

You could even go a step further, and provide a macro variable (see §28.3 Using macro
variables on page 795) for the value of the attribute, so you can change the value in just
one place:

[MyCSSLink]
<link rel="stylesheet" href=" MyStyles.css" type="text/css"
media="<$$MediaType>">

[MacroVariables]
MediaType=screen

22.6.4 Using an alternate CSS link tag for Netscap e 4

Netscape Navigator 4.x plays better with CSS if the link to the style sheet specifies
type="text/css1" instead of type="text/css" :

<link rel="stylesheet" href=" MyStyles.css" type="text/css1">

22 SETTING UP CSS FOR HTML ASSIGNING CSS CLASSES

ALL RIGHTS RESERVED. MAY 18, 2013 691

For example, tags ... are ignored if the CSS entry for the class does not specify
bold . If your HTML output will be viewed with Netscape Navigator 4.x, you can include
the alternate link with this option:

[CSS]
; CSSLinkNS4 = No (default, required for CSS valida tion)
; or Yes (NS 4.x)
CSSLinkNS4=Yes

Unfortunately, this breaks the W3C CSS Validator, which claims there is no style sheet.

22.7 Assigning CSS classes
In this section:

§22.7.1 Understanding CSS class name restrictions on page 691
§22.7.2 Mapping paragraph formats to CSS classes on page 692
§22.7.3 Mapping character formats to tags or span classes on page 693
§22.7.4 Assigning CSS classes to table formats on page 694
§22.7.5 Assigning CSS classes to text and table footnotes on page 694
§22.7.6 Assigning CSS classes based on Unicode character ranges on page 694
§22.7.7 Assigning CSS classes to FrameMaker conditions on page 695
§22.7.8 Using link format names as CSS class names on page 696
§22.7.9 Using CSS class names as tags for XML on page 696
§22.7.10 Omitting tags from CSS selectors on page 696
§22.7.11 Overriding CSS class for selected paragraphs on page 697

See also:
§21.12.2.7 Including or excluding the type list attribute on page 678

22.7.1 Understanding CSS class name restrictions
Use only letters
and numbers in

class names

Class names used with CSS may contain alphanumeric characters only. You cannot use
spaces or symbols; not even underscores. Class names in HTML output must match in
case the same names in the CSS file. Mif2Go imposes an internal limit of 128 characters
on CSS class names.

To create class names from format names, Mif2Go does the following:

 • removes or replaces spaces
 • removes all non-alphanumeric characters
 • replaces accented characters with their non-accented equivalents; see §21.6.4

Converting Western European accented characters on page 660
 • for output types that require lowercase CSS, changes all characters to lowercase,

regardless of whether format names are uppercase, lowercase, or mixed case.

These transformations might lead to conflicts if your format names differ only in spacing,
in case, or by any removed characters. See §2.2 Naming FrameMaker formats on page 66.

Replace spaces
with a character

You can specify a letter, a number, an underscore, or a hyphen to substitute for spaces in
class names. For example:

[HtmlOptions]
; These alphanumeric chars are used as space replac ements in IDs;
; if non-alphanumeric (other than hyphen or undersc ore), spaces are
; stripped instead (default)
; ClassSpaceChar = char to use as space replacement
ClassSpaceChar = _

ASSIGNING CSS CLASSES MIF2GO USER’S GUIDE

692 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Remove spaces By default, Mif2Go removes spaces without replacing them. The same thing happens if
you set ClassSpaceChar to any non-alphanumeric character other than a hyphen or an
underscore: Mif2Go removes all spaces without replacing them.

Case of class
names

CSS does not distinguish between names that differ only in case; if you use both heading1
and Heading1, and they are defined differently, you are sure to see some unexpected
results. Class names in HTML files must match in case the corresponding names in the
CSS file. Class names can be mixed case for some output types, but must be lowercase for
other output types:

 • For XML, XHTML, JavaHelp, and Oracle Help, Mif2Go changes all generated class
names in output in lowercase.

 • For standard HTML, HTML Help, and OmniHelp, class names generated from
FrameMaker formats retain their original case.

You can force lowercase class names for any HTML output type. To make generated class
names all lowercase:

[CSS]
; LowerCaseCSS = No (default mixed case)
; or Yes (lower case only, JH, OHJ, XML, and XHTML)
LowerCaseCSS = Yes

22.7.2 Mapping paragraph formats to CSS classes

When you use CSS, by default Mif2Go maps each FrameMaker paragraph format name to
a CSS class of the same name, applying to the name any needed transformations (see
§22.7.1 Understanding CSS class name restrictions on page 691).

For a paragraph format, by default the class name in the Mif2Go -generated CSS file is
preceded by the tag name and a dot:

tagname. classname

The tag name comes from whatever is specified for that format in [ParaTags] (see §21.3
Mapping paragraph formats on page 646), or else <p>. Unless you assign classes
explicitly, the class name is based on the FrameMaker paragraph format name.

For example, suppose your FrameMaker document includes catalogued paragraph formats
Chap_Title, Heading, and Body, with the first two assigned HTML tags in [ParaTags] .
Mif2Go would treat these formats as follows, provided ClassIsTag=No (see §22.7.9
Using CSS class names as tags for XML on page 696):

Mif2Go includes as many of the following properties as apply, based on the format
properties in your document (as modified by any imported conversion template), for each
paragraph format (class) in the CSS file:

font: [italic | small-caps | bold]
margin: top right bottom left
text-align: [center | right]
text-indent: [for first line, negative for hang]
text-decoration: [underline | line-through]
text-transform: [uppercase | lowercase | capitaliz e]
color: # RRGGBB

To explicitly map individual FrameMaker paragraph format names to CSS class names:

FM format
name [ParaTags] Mif2Go HTML output Mif2Go CSS entry

Chap_Title Chap_Title=H1 <h1 class="chaptitle"> h1.chaptitle {.. .}

SubHead SubHead=H2 <h2 class="subhead"> h2.subhead {...}

Body (no setting) <p class="body"> p.body {...}

22 SETTING UP CSS FOR HTML ASSIGNING CSS CLASSES

ALL RIGHTS RESERVED. MAY 18, 2013 693

[ParaClasses]
; Document style name = class to use (default is ba sed on name)
; For XML, the class is used as the tag name by def ault.
FormatName=classname

Or:
[ParaTags]
FormatName= class=" classname"

If you assign class names to the same format in both [ParaClasses] and [ParaTags] ,
and the class names are different, Mif2Go uses the [ParaTags] setting for backward
compatibility. See §21.3.1 Assigning HTML tags and attributes to paragraph formats on
page 646.

Anchor paragraph
class

If your document uses a special paragraph format to anchor graphics, you can specify a
class name for the anchor format:

[Graphics]
; GraphClass = class name to use for paras created to hold tags
GraphClass=graphic

XML For XML output, see §14.4.2 Deriving XML tags from format and class names on
page 462.

22.7.3 Mapping character formats to tags or span c lasses

When you use CSS, Mif2Go generates any tags assigned to a character format in
[CharTags] ; see §21.4 Mapping character formats on page 653. By default, Mif2Go
maps each FrameMaker character format that is not assigned a tag in [CharTags] to a
CSS span class of the same name as the format, applying to the name any needed
transformations (see §22.7.1 Understanding CSS class name restrictions on page 691).

For example, suppose your FrameMaker document uses catalogued character format
names Emphasis, Prog Term, and Link, with the first two assigned HTML tags in
[CharTags] . Mif2Go would treat these formats as follows, provided ClassIsTag=No
(see §22.7.9 Using CSS class names as tags for XML on page 696):

If no tags are specified in [CharTags] for a particular character format, by default that
format gets a span class.

To avoid creating CSS span classes for any character formats that are neither explicitly
assigned an HTML tag nor explicitly assigned to a span class:

[CSS]
; UseSpanAsDefault = Yes (default, use span as elem ent name
; for all char formats that do not specify one in [C harTags]
; or No
UseSpanAsDefault=No

When UseSpanAsDefault=Yes , any catalogued character format name not listed in
[CharTags] is assigned to a span class of the same name as the format.

When UseSpanAsDefault=No , any catalogued character format name not listed in
[CharTags] is skipped, and becomes just an override in HTML output.

FM format
name [CharTags] Mif2Go HTML output Mif2Go CSS entry

Emphasis Emphasis=em em.emphasis {...}

Prog Term Prog Term=code <code> code.progterm {...}

Link (no setting) span.link {...}

ASSIGNING CSS CLASSES MIF2GO USER’S GUIDE

694 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Untagged Bold and Italic applied with FrameMaker toolbar buttons get mapped to and
<i> respectively.

To explicitly map an individual character format to a CSS span class:
[CharTags]
CharFormat=span

[CharClasses]
CharFormat=classname

Or:
[CharTags]
CharFormat=span class=" classname"

You can use either method to assign tags, to define
character formats globally in CSS. For example, if you map character format CodeBold to
 , Mif2Go inserts corresponding generic selector
.codebold in the CSS file.

If you assign a class name to the same format in both [CharClasses] and [CharTags] ,
and the class names are different, Mif2Go uses the [CharTags] setting for backward
compatibility. See §21.4 Mapping character formats on page 653.

Generic XML For generic XML output, see §14.4.2 Deriving XML tags from format and class names on
page 462.

22.7.4 Assigning CSS classes to table formats

To explicitly map individual FrameMaker table format names to CSS class names:
[TableClasses]
; Table format name = class to use (default is base d on name)
; For XML, the class is used as the tag name by def ault.
TableFormatName = classname

See also:
§24.4.3 Assigning a CSS class to a table on page 737

22.7.5 Assigning CSS classes to text and table foo tnotes

To assign CSS classes to text footnotes and to table footnotes:
[CSS]
; FootClass = name for CSS class for footnotes, def ault "footnote"
FootClass = footnote
; TbFootClass = name to use for CSS class for table footnotes
TbFootClass = tablefootnote

See also:
§21.11 Converting footnotes to HTML or XML on page 671
§24.5.2 Configuring and positioning table titles on page 747

22.7.6 Assigning CSS classes based on Unicode char acter ranges

Suppose your document is translated to a non-Western language: Japanese, for example.
After translation, a certain number of words might remain in Latin characters: product
names, feature names, and acronyms, for example. The glyphs for Latin characters in
common Unicode fonts (such as Mincho) that include Japanese characters might be
unacceptably ugly. What you need is an automatic way to specify a different font to use for
those glyphs.

22 SETTING UP CSS FOR HTML ASSIGNING CSS CLASSES

ALL RIGHTS RESERVED. MAY 18, 2013 695

Mif2Go provides settings that allow you to assign a CSS class to a range of Unicode
characters. You can specify more than one class for a given element; the values are
additive, and in case of conflict the latest value in the CSS file overrides earlier values.
The order of values in the class attribute itself does not matter. The net effect is that you
can use this feature without messing up the display of elements for which you already
have other CSS rules. This is essential for the safe use of the feature.

To activate assignment of classes to Unicode character ranges:
[CSS]
; UseCharRangeClasses = No (default); or Yes (to ac tivate settings in
; [CharacterRangeClasses] for marking spans by Unic ode char range)
UseCharRangeClasses = Yes

To specify a class to use for spans of characters:
[CharacterRangeClasses]
; starting U+ code point (four or five hex digits) = class name,
; - (exclude from all classes), or * (allow in any class).
xxxx = classname optional comment here
yyyy = * allow in all classes
zzzz = - exclude from all classes

The named class applies to the character code specified, plus all following character codes
up to the next setting. Any text after the first term (class name or symbol) is a comment.
The initial state is * (for allow in any class); the last setting should specify - (exclude from
all classes).

For example, to flag English and European-language text remaining in a Japanese
translation:

[CharacterRangeClasses]
0021 = latin common symbols
0030 = * digits
003A = latin alpha, some symbols
00A5 = * Yen sign
00A6 = latin Latin-1, diacritics
0342 = greek Greek diacritics
0346 = latin Latin diacritics
0374 = greek Greek letters
03E2 = - Ethiopic and many more
1E00 = latin Latin extended
1F00 = greek Greek extended
2000 = * lots of punctuation
2E80 = - rest of the world

To flag Cyrillic in an English document:
[CharacterRangeClasses]
0021 = -
0400 = Russian
0514 = -
2000 = *
3000 = -

22.7.7 Assigning CSS classes to FrameMaker conditi ons

You can use CSS to display FrameMaker conditions that you have transferred to HTML
attributes, by assigning classes to display the original condition indicators such as color,
underline, and strikethrough. See §13.10.3 Displaying condition indicators in HTML with
CSS on page 447.

ASSIGNING CSS CLASSES MIF2GO USER’S GUIDE

696 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

22.7.8 Using link format names as CSS class names

To automatically use FrameMaker cross-reference format names and hypertext-link
character format names as CSS class names in HTML:

[CSS]
; XrefFormatIsXrefClass = No (default) or Yes (for xrefs, use the
; Frame xref format name as the xref class name; fo r hyperlinks, use
; the char format name instead. Mainly for DITA @o utputclass use.)
; Default is reversed to Yes if UseCSS=Yes, and fo r DITA output.
XrefFormatIsXrefClass = Yes

When UseCSS=Yes, the default value of XrefFormatIsXrefClass is reversed to Yes;
see §22.5 Understanding how CSS affects other options on page 687.

For DITA XML, the default value of XrefFormatIsXrefClass is Yes; see §15.3
Specifying general options for DITA on page 483.

22.7.9 Using CSS class names as tags for XML

By default, CSS class names become XML tags in XML output:
[CSS]
; ClassIsTag = No (default for HTML/XHTML)
; or Yes (default for Generic XML)

When ClassIsTag=Yes , class names, including those you assign to formats in the
[ParaTags] and [CharTags] sections, become XML tags. If ClassIsTag=Yes , also
specify [CSS]WriteClassAttributes=No ; see §22.4.2 Specifying CSS options in a
Mif2Go configuration file on page 684.

When ClassIsTag=No , HTML tags and class names are assigned as described in §22.7.2
Mapping paragraph formats to CSS classes on page 692 and §22.7.3 Mapping character
formats to tags or span classes on page 693.

For example, suppose your FrameMaker document includes catalogued paragraph formats
Chap_Title, SubHead, Fig, and Body, with the first two assigned HTML tags and the third
assigned a class in [ParaTags] . Mif2Go would treat these formats as follows:

22.7.10 Omitting tags from CSS selectors

By default, for HTML output Mif2Go writes CSS selectors as class names prefixed with
the element tag.

To have Mif2Go write CSS selectors as just class names with no tag prefix:
[CSS]
SelectorIncludesTag = Yes (default for HTML output) or No
; (omit element tag prefix, default for DITA and Do cBook output)
SelectorIncludesTag = No

When SelectorIncludesTag=Yes , CSS selectors consist of the element tag name
followed by a period followed by the class name; for example, h1.heading1 . This is the
default for HTML and XHTML output.

FM
format [ParaTags] ClassIsTag = No ClassIsTag = Yes

Chap_Title Chap_Title=H1 <h1 class="chaptitle"> <chaptitle>

SubHead SubHead=H2 <h2 class="subhead"> <subhead>

Fig Fig= class="caption" <p class="caption" <caption>

Body (no setting) <p class="body"> <body>

22 SETTING UP CSS FOR HTML ASSIGNING CSS CLASSES

ALL RIGHTS RESERVED. MAY 18, 2013 697

When SelectorIncludesTag=No , CSS selectors do not have an element tag as a
prefix; for example, heading1 . This is the default for DITA and DocBook output.

22.7.11 Overriding CSS class for selected paragrap hs

Paragraphs that have distinct purposes in your document should have distinct FrameMaker
format names, even if they share the same print format. However, if your document does
contain paragraphs with the same format name that need different CSS classes, you can
use Code markers to flag those paragraphs, and assign a different class with a macro.

For example, suppose most of your Heading 2 paragraphs are assigned CSS class
Heading2 , but a few Heading 2 paragraphs need one of three other classes: About ,
Configuration , or Procedure . You can surround all Heading 2 paragraphs with code
to hold the HTML tags and class assignments:

[HTMLParaStyles]
Heading 2=NoPara CodeBefore CodeAfter

The starting H2 tag assigns a class whose value is computed by macro $UseH2Class :
[ParaStyleCodeBefore]
Heading 2=<H2 class="<$UseH2Class>">

The closing H2 tag follows the paragraph:
[ParaStyleCodeAfter]
Heading 2=</H2>

Macro $UseH2Class checks the value of macro variable $$h2class to determine which
class to assign:

[UseH2Class]
<$_if ($$h2class is "A")>About\

<$_elseif ($$h2class is "C")>Configuration\
<$_elseif ($$h2class is "P")>Procedure\
<$_else>Heading2\
<$_endif>

<$$h2class="H">\

Macro variable $$h2class is initialized (and always reset) to a value that results in
assigning the default class, Heading2 (via the $_else clause in macro $UseH2Class):

[MacroVariables]
h2class=H

To set $$h2class for a paragraph that needs a non-default class, you would insert a Code
marker in the paragraph that precedes each such paragraph. The content of the marker
would look like this:

<$$h2class="A">

To assign a non-default class to the very first paragraph in a FrameMaker file, you would
have to create a chapter-specific configuration file, filename.ini , for that FrameMaker
file, with content (for example):

[MacroVariables]
h2class=A

See §33.1.1 Providing configuration files for individual chapters on page 919.

See also:
§28 Working with macros on page 787
§29 Working with FrameMaker markers on page 831
§33 Overriding configuration settings on page 919

CUSTOMIZING CSS PROPERTIES MIF2GO USER’S GUIDE

698 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

22.8 Customizing CSS properties
In this section:

§22.8.1 Assigning a CSS generic font family on page 698
§22.8.2 Specifying CSS <body> tag properties on page 698
§22.8.3 Specifying CSS size values and units of measurement on page 699
§22.8.4 Overriding styles in Mif2Go-generated CSS files on page 700
§22.8.5 Adjusting leading (line spacing) in CSS on page 700
§22.8.6 Preventing tags from overriding CSS properties on page 701

22.8.1 Assigning a CSS generic font family

Mif2Go cannot automatically assign the CSS generic-family property to every font
used in your document, because there are five possible font families and a huge number of
possible fonts. However, you can assign a generic font family to each of the fonts used in
your FrameMaker formats. For example:

[Fonts]
; Document font name = HTML font name (comma-delimi ted list allowed)
Arial = arial, helvetica, sans-serif
Century = "new century schoolbook", serif
Courier New = "courier new", courier, monospace
Symbol = symbol, fantasy

If an assigned font name contains spaces, surround the name with double quotes.

The generic-family values are serif , sans-serif , monospace , cursive , and
fantasy . Specify fantasy for Symbol and WingDing fonts.

22.8.2 Specifying CSS <body> tag properties

You can specify a size value and the unit of measurement for the font-size property of
the <body> tag in a Mif2Go -generated CSS file. Or, you can direct Mif2Go not to include
a <body> tag entry in the CSS file; then you can substitute your own entry, in the project
configuration file. Use one or the other method to specify a font size other than the default:

Custom font size and units
Custom <body> tag entry.

Custom font size
and units

To specify font size and unit of measurement for the <body> tag:
[CSS]
; CssBodyFontSize = value for body {font-size: }, u sed as base for all
; em and ex sizes, and for font-size and line-heig ht %, default 10.
CssBodyFontSize=10
; CssBodyFontUnit = units for body {font-size: }, d efault 0:
; 0=pt, 1=pc, 2=in, 3=cm, 4=mm, 7=px (pixels).
CssBodyFontUnit=0

CssBodyFontSize determines how values of relative measures em, ex , and % are
computed for other CSS style properties. For example, 1.5em in a style property equals
1.5 times the value in pt (or in another non-relative unit) of the <body> tag font-size
property.

CssBodyFontUnit should be an absolute unit of measurement rather than a relative unit.

Custom <body>
tag entry

To prevent Mif2Go from automatically including a style entry for the <body> tag in a
Mif2Go -generated CSS file:

22 SETTING UP CSS FOR HTML CUSTOMIZING CSS PROPERTIES

ALL RIGHTS RESERVED. MAY 18, 2013 699

[CSS]
; CssBodyFontTag = Yes (default, writes body { font -size:) or No
CssBodyFontTag=No

To specify the default font size yourself, provide a custom entry in macro section
[CSSStartMacro] . For example:

[CSSStartMacro]
body { font-size: 11pt; margin: 0 0 0 0 }

See also:
§22.8.3 Specifying CSS size values and units of measurement on page 699
§22.8.4 Overriding styles in Mif2Go-generated CSS files on page 700

22.8.3 Specifying CSS size values and units of mea surement

By default, measurements for properties such as font size and line height are expressed in
pt units in Mif2Go -generated CSS entries. You can direct Mif2Go to use other units
instead. For example, if you are generating HTML Help and you want to enable the Font
button on the toolbar, font sizes are best expressed in em units. Relative units (em, ex , and
%) are based on whatever absolute unit (pt , pc , in , cm, mm, or px) is used for the font-
size property of the <body> tag entry; see §22.8.2 Specifying CSS <body> tag
properties on page 698.

You can specify how many decimal places Mif2Go should use for CSS property values;
the default is two decimal places. Trailing zeros in property values are eliminated. For
example, if a value is computed to be 1.00em , in the CSS file the value appears as 1em.
Fractional values are rounded rather than truncated.

To specify units of measurement for font size and line height in CSS entries:
[CSS]
; CssFontUnits = units for font size and line heigh t, default 0:
; 0=pt, 1=pc, 2=in, 3=cm, 4=mm, 5=em, 6=ex (0.5em), 7=px (pixels), 8=%
CssFontUnits=0
; CssFontUnitDec = count of digits to right of deci mal in CSS font
; values: 0, 1, or 2, default 2. Trailing zeros a re trimmed.
CssFontUnitDec=0

To specify units of measurement for paragraph spacing, indentation, and margins:
[CSS]
; CssIndentUnits = units for para space and indents , default 0:
; 0=pt, 1=pc, 2=in, 3=cm, 4=mm, 5=em, 6=ex (0.5em), 7=px (pixels), 8=%
CssIndentUnits=0
; CssIndentUnitDec = count of digits to right of de cimal in CSS indent
; values: 0, 1, or 2, default 2. Trailing zeros a re trimmed.
CssIndentUnitDec=0
; CssIndentBaseSize = value used for computing perc ents for margin
; settings (para space above and below, and indent s) in .css file
CssIndentBaseSize=6
; CssIndentBaseUnit = units for CssIndentBaseSize, default 2 (in)
; 0=pt, 1=pc, 2=in, 3=cm, 4=mm, 7=px (pixels).
CssIndentBaseUnit=2

The base unit of measurement for computing margin settings should be an absolute unit,
not a relative unit.

See also:
§22.8.2 Specifying CSS <body> tag properties on page 698
§22.8.4 Overriding styles in Mif2Go-generated CSS files on page 700

CUSTOMIZING CSS PROPERTIES MIF2GO USER’S GUIDE

700 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

22.8.4 Overriding styles in Mif2Go-generated CSS f iles

When you direct Mif2Go to generate a CSS file anew each time (that is, when
[CSS]WriteCssStylesheet=Always), styles are updated from the formats in your
FrameMaker document, and anything you added directly to the CSS file is lost. However,
you can include settings in the configuration file to modify the generated CSS file. With
these settings you can do any or all of the following:

See also:
§22.8.2 Specifying CSS <body> tag properties on page 698
§22.8.3 Specifying CSS size values and units of measurement on page 699

Override CSS
code

To override the style specification in a Mif2Go -generated CSS file for a particular
FrameMaker format, assign a property to the format, and optionally provide replacement
code for the style. For example:

[HTMLParaStyles] or [HTMLCharStyles]
; CSSReplace uses [ParaStyleCSS] or [CharStyleCSS] to specify
; on a single line the code to be written to the .c ss for the
; format when [HtmlOptions]WriteCssStylesheet = Alw ays or Once
; NoCSS suppresses writing info to the .css file fo r its format.
SomeFmt = CSSReplace
OtherFmt = NoCSS

When you assign property CSSReplace to a format, you must also specify replacement
CSS code for that format in section [ParaStyleCSS] for a paragraph format or
[CharStyleCSS] for a character format. The code assignment must be all on one line.
For example:

[ParaStyleCSS]
SomeFmt = p.somefmt {font: bold 12pt/14pt sans-serif}

Omit CSS code When you assign property NoCSS to a format, Mif2Go still generates the class attributes
in the HTML, but does not include them in the CSS file.

Add CSS code To add starting and ending code to a generated CSS file:
[CSSStartMacro]
; CSS code to be inserted at the start of the .css file if generated

[CSSEndMacro]
; CSS code to be inserted at the end of the .css fi le if generated

You can use these macro configuration sections to add more CSS entries, perhaps with
selectors Mif2Go does not use; or add CSS code for positioning, or to set anchor
properties, or <body> properties, or special properties for nested items.

22.8.5 Adjusting leading (line spacing) in CSS

By default, Mif2Go includes line leading (spacing) information in the CSS file. In some
cases, this is not desirable; for example, it messes up printing in Netscape 4.x. You can
turn off line leading:

Override CSS code Replace generated CSS code with fixed CSS code for selected
formats.

Omit CSS code Prevent CSS code from being written to the CSS file for
selected formats.

Add CSS code Add code to the beginning or the end of the generated CSS
file.

22 SETTING UP CSS FOR HTML CUSTOMIZING CSS PROPERTIES

ALL RIGHTS RESERVED. MAY 18, 2013 701

[HTMLOptions]
; UseCSSLeading = Yes (default) or No (omit linespa cing in CSS files)
UseCSSLeading=No

You might have to make some changes to your FrameMaker paragraph formats to get CSS
to yield good results, especially if you are trying to get those CSS results out of Netscape.
For example, Netscape does a poor job with margin bottom , which is equivalent to
FrameMaker Space Below, but renders margin top , equivalent to Space Above,
reasonably well. So you might need to add Space Above to your formats to match the
Space Below of the formats they follow, in order to get any inter-paragraph space at all.
This might not be as bad as it sounds; if you use consistent spacing between elements, the
change might not affect the appearance of your FrameMaker document.

22.8.6 Preventing tags from overriding CSS properties

To keep tags from overriding CSS properties, use the following settings to
eliminate the tags entirely; these are the default values when UseCSS=Yes:

[HtmlOptions]
NoFonts=Yes
Basefont=No

See §22.4.2 Specifying CSS options in a Mif2Go configuration file on page 684.

CUSTOMIZING CSS PROPERTIES MIF2GO USER’S GUIDE

702 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 703

23 Including graphics in HTML

This section shows which graphic formats to use, and which configuration options to
specify, for appropriate image and equation display in HTML, XML, and HTML-based
Help. Topics include:

§23.1 Starting with default graphics options on page 703
§23.2 Understanding graphics processing for HTML on page 703
§23.3 Locating graphics files for HTML on page 704
§23.4 Specifying options for HTML graphics on page 705
§23.5 Selecting and modifying graphics on page 708
§23.6 Positioning graphics in HTML output on page 714
§23.7 Specifying HTML image attributes on page 718
§23.8 Providing (or omitting) alternate text for images on page 718
§23.9 Scaling images for HTML on page 719
§23.10 Creating image maps for HTML on page 722
§23.11 Supplying a background image or watermark on page 725
§23.12 Converting equations for HTML on page 725

See also:
§31 Working with graphics on page 869

23.1 Starting with default graphics options
Try an initial conversion without specifying any graphics options. If you just click one
button in the Export dialog, Write for anchored frames , automatically you get settings
that should convert every graphic referenced in your HTML output; see §3.6 Converting
documents on page 82.

The resulting graphic quality (from using FrameMaker graphic export filters) is not
always the best possible, but it is good enough for screen-based Help systems. The worst
case is for EPS graphics, where you get a conversion of the low-resolution preview image
rather than the PostScript image; see §31.2.2.3 Converting EPS graphics on page 875.

If the results are not satisfactory for one or more graphics, read §23.2 Understanding
graphics processing for HTML on page 703, then decide on additional or alternate
graphics options.

Note: Graphics on master pages are not included in HTML output.

23.2 Understanding graphics processing for HTML
When you use Mif2Go “out of the box” to generate HTML, without setting graphics
options, the graphics from your document might look quite different from the way they
look when you “Save as” HTML directly from FrameMaker. Differences can appear in
any of the following:

Image size
Image alignment
Image format

LOCATING GRAPHICS FILES FOR HTML MIF2GO USER’S GUIDE

704 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Image size Screen captures might be unreadable with “out-of-the-box” options. By default, Mif2Go
retains the image size specified in your FrameMaker document. However, when you
“Save as” HTML, FrameMaker produces the graphics unscaled. To do the same with
Mif2Go , set the following option:

[Graphics]
GraphScale = No

This setting determines whether Mif2Go writes width and height attributes; when
GraphScale=No those attributes are omitted from HTML output.

See §23.9.2 Adjusting image size for selected graphics on page 720.

Note: When you shrink a screen shot at all, you immediately lose text readability.
Shrinking a bitmap means using fewer pixels. Most text has parts that are one
pixel wide. When you shrink text, some of those parts disappear entirely. If you do
not shrink the image, you get the effect of a “huge” graphic. Your choice. This is a
very well known publications problem. It is not a Mif2Go problem.

Image alignment By default, Mif2Go retains the alignment used in your FrameMaker document. However,
when you “Save as” HTML, FrameMaker produces HTML with images all left aligned.
To mimic FrameMaker HTML image alignment behavior with Mif2Go , set the following
option:

[GraphAlign]
* = left

See §23.6.2 Aligning anchored graphics on page 714.

Image format Graphics formats that work best in FrameMaker for printed documents generally are not
those that work well on the Web. If some of the graphics in your FrameMaker document
are not in an appropriate format, or are not alone in their frames, you will have to convert
them.

If a graphics file imported into or exported from your document is in a format other than
JPEG, GIF, or PNG, and you do not specify how it should be converted or mapped,
Mif2Go plunks the name of the graphics file into the HTML output file and lets the
browser sort it out later. In some cases, this might work. For example, Microsoft Internet
Explorer can display BMP and WMF graphics with no problem.

23.3 Locating graphics files for HTML
For standard HTML output to be viewed with a browser, you can place graphics files in
the same directory as the HTML files, or in any other directory relative to that directory.
For other HTML output types, graphics placement is restricted:

 • For HTML Help and OmniHelp, graphics must be located either in the same directory
as the HTML files, or in a subdirectory at any level below the directory containing the
HTML files.

 • For JavaHelp and Oracle Help, graphics must be located in a subdirectory of the
helpset directory, at the same level as the directory containing the HTML files.

Graphics in
directory with

HTML files

If graphics are in the same directory as the HTML files, references to those graphics via
 tags do not need a path component, and whatever path information is already
present in FrameMaker must be removed.

To remove path information from graphics file names:
[Graphics]
; StripGraphPath = No (default)
; or Yes (remove path from referenced graphics)
StripGraphPath = Yes

23 INCLUDING GRAPHICS IN HTML SPECIFYING OPTIONS FOR HTML GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 705

When StripGraphPath=Yes , Mif2Go omits any path information from references in
generated tags.

Graphics in a
different directory

If graphics will be in a directory different from the directory for HTML files, you must
specify the path from the HTML files to the graphics directory, so Mif2Go can include the
path in the generated tags.

To specify where a browser (or Help viewer) should look for graphics:
[Graphics]
; GraphPath = path to use (replacing any previous) for all graphics
GraphPath = path/to/graphics/files

GraphPath specifies the location of graphics files relative to the location of HTML files.
For Web-hosted systems, GraphPath must be the path to the graphics on the Web server,
which might be different from the file path on the conversion system. Although you can
specify an absolute path, relative is almost always what you want.

Note: Absolute paths do not work if the graphics are on a UNIX server.

Default path The default value of GraphPath is the directory designated by
[Automation]WrapPath (see §35.6 Assembling files for distribution on page 961); if
WrapPath is not specified, the default is the project directory. For JavaHelp and Oracle
Help only, the default value of GraphPath is the directory designated by
[JavaHelpOptions]GraphSubdir , prefixed with “../ ”. See §11.3.7.2 Letting
Mif2Go set up the directory structure and copy files on page 379.

If you do not specify a value for GraphPath , the value of StripGraphPath determines
whether Mif2Go includes the original path from your FrameMaker document, or no path
at all, in generated tags.

GraphPath does
not move files!

In HTML references to images, the GraphPath setting prefixes the path specified by
GraphPath to the name of each graphics file, in place of whatever other path was there in
your FrameMaker document. This option sets the src attribute of the tags; it does
not change the location of the graphics files themselves. You must either copy the graphics
files to their specified location, or have Mif2Go copy them for you. See §35.7.1 Copying
referenced graphics to a distribution directory on page 965.

See also:
§35.7 Placing graphics files for distribution on page 965
§9.3.10 Locating graphics files for HTML Help on page 302
§10.3.9 Getting OmniHelp supporting files in the right place on page 349
§11.3.7.3 Locating graphics files for JavaHelp and Oracle Help on page 380
§31.3.1.1 Specifying graphics location for HTML on page 887

23.4 Specifying options for HTML graphics
In this section:

§23.4.1 Using referenced graphics without converting on page 706
§23.4.2 Specifying formats of replacement graphics on page 706
§23.4.3 Choosing a graphics conversion method on page 707
§23.4.4 Using referenced, embedded, and compound graphics on page 707
§23.4.5 Omitting graphics from HTML or XML output on page 708

SPECIFYING OPTIONS FOR HTML GRAPHICS MIF2GO USER’S GUIDE

706 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

23.4.1 Using referenced graphics without convertin g

If some referenced graphics are already in a format appropriate for Web use, such as JPEG,
GIF, or PNG (see §31.1.4 Graphics formats for HTML on page 871); and if they are alone
in their anchored frames (no callouts or in-frame titles, for example); you do not have to
convert them. Either check Use original graphic names in the Mif2Go Export dialog, or
set the following option in the configuration file:

[Graphics]
UseOriginalGraphicNames=Yes

For details, see §31.3.1.4 Using original files and image sizes for referenced graphics on
page 889.

The naming is preserved like any other in the tags.

Copy the graphics files into the project directory with the generated .htm files, or allow
Mif2Go to copy them for you to the wrap directory; see §23.3 Locating graphics files for
HTML on page 704. Unless you explicitly remap a name in the [GraphFiles] section
(see §23.4.2 Specifying formats of replacement graphics on page 706), or specify a
GraphSuffix in the [Graphics] section, the graphic name is always passed through
unchanged.

If the original graphics are not in the same directory as the FrameMaker files that
reference them, but they will be in the same directory as the generated HTML files, set the
following option also (see §23.3 Locating graphics files for HTML on page 704):

[Graphics]
StripGraphPath=Yes

If you have supplied replacements for referenced graphics that are in a different format,
and if the replacements have the same base names as the originals, you can specify just the
new file extension (see §31.3.1.2 Substituting graphics files for HTML on page 888):

[Graphics]
GraphSuffix=jpg

Use this setting when you convert referenced graphics with a third-party program; see
§5.7 Processing graphics on page 126.

A problem arises if you add any FrameMaker elements, such as arrows or callouts, to a
referenced graphic. You can direct Mif2Go to use the FrameMaker export filters to
convert the whole graphic to JPEG or GIF; see §5.7.2.2 Using FrameMaker graphic export
filters on page 129. Or you can reproduce the elements in the external graphic with a third-
party program.

23.4.2 Specifying formats of replacement graphics

If you have replaced some referenced graphics with others, and your graphics are in
several formats, such as mostly GIF plus some JPEG and some PNG, you can do the
following:

1. Identify the “main” format by specifying its file extension; for example:
[Graphics]
GraphSuffix=gif

2. Specify file extensions for the other formats as exceptions:
[GraphSuffix]
; old suffix = new suffix, overrides [Graphics]Grap hSuffix
; jpg=jpg leaves all .jpgs alone even if GraphSuf fix=gif
; wmf=png .wmfs are made into .pngs using a third-p arty tool

23 INCLUDING GRAPHICS IN HTML SPECIFYING OPTIONS FOR HTML GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 707

jpg=jpg
png=png

3. Specify file names with extensions for any individual exceptions (see §31.3.1.2
Substituting graphics files for HTML on page 888):

[GraphFiles]
newlogo.jpg=newlogo.gif

23.4.3 Choosing a graphics conversion method

If some graphics in your FrameMaker document are not already JPEG, GIF, or PNG, use
one of the following methods to convert them:

 • Let Mif2Go use FrameMaker export filters; this method is automatic. By default,
Mif2Go makes a .jpg file for each graphic, and references them in the <img src=
.../> tags in HTML. For more information, and to fine-tune this process, see the
following:

§5.7.2.2 Using FrameMaker graphic export filters on page 129.
§31.2.5 Converting graphics with FrameMaker export filters on page 883.

 • Use a graphics program; see §5.7.2.3 Using third-party graphics converters on
page 130. If the graphics are embedded in your FrameMaker document, first you will
have to export them; see the following:

§31.2.3 Exporting and converting embedded graphics on page 877.
§31.3.1.2 Substituting graphics files for HTML on page 888.

23.4.4 Using referenced, embedded, and compound gr aphics

Suppose your FrameMaker document includes all of the following:

 • Original referenced graphics (GIFs, for example) that do not need to be converted
 • Embedded graphics that must be exported
 • Compound graphics: images in anchored frames that include callouts or other drawing

elements created in FrameMaker.

Original
referenced

graphics

Mif2Go undertakes two distinct operations:

1. Mif2Go generates graphics files for all anchored frames. This is an all-or-nothing
operation, which is required if a document contains any graphics with callouts.

2. Mif2Go writes the HTML files. This operation does not have to use the graphics
produced in Step 1.

To have Mif2Go use the original referenced graphics—except for those with callouts—
you would set the following option:

[Graphics]
UseOriginalGraphicNames=Yes

Whenever you have a referenced graphic, and it is alone in its frame (no callouts, title,
second image, and so on, in the frame), the resulting HTML uses that graphic. For all other
cases the resulting HTML uses the graphics Mif2Go generates from your document.

Embedded
graphics

To have Mif2Go export embedded graphics (those without callouts) to files of their own,
you would set the following option:

[GraphExport]
ImportGraphics=Export

The exported files are referenced in the resulting HTML just as though they had been
referenced in FrameMaker in the first place. See §31.2.3 Exporting and converting

SELECTING AND MODIFYING GRAPHICS MIF2GO USER’S GUIDE

708 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

embedded graphics on page 877 for information about the appropriate export settings to
use.

Compound
graphics

Graphics that include callouts or other elements created in FrameMaker must be processed
with FrameMaker export filters; see §5.7.2.2 Using FrameMaker graphic export filters on
page 129. The only other option would be to use a third-party graphics program to add the
callouts to the original graphic. If any compound graphics include images imported into
FrameMaker at a resolution other than 96 DPI, you would need to scale the graphics on
export; see §23.9 Scaling images for HTML on page 719.

23.4.5 Omitting graphics from HTML or XML output

To strip all graphics from your document so no tags or references to graphics are included
in HTML or XML code, substitute for the graphics a macro that does nothing:

[GraphReplaceMacros]
* = <$$nothing = 1>

The macro must have some content; a simple variable assignment produces no output. You
might also need the following settings to avoid having Mif2Go waste time generating
graphics in the first place, and to eliminate any anchor paragraphs for the graphics:

[Graphics]
UseGraphicPreviews = No
GraphWrapPara = No

See also:
§3.7.4.1 Omitting and restoring graphics production on page 86
§23.5.2 Replacing or surrounding a graphic with macro code on page 710
§23.5.6 Omitting paragraph tags around graphics on page 713

23.5 Selecting and modifying graphics
In this section:

§23.5.1 Assigning properties to sets of graphics on page 708
§23.5.2 Replacing or surrounding a graphic with macro code on page 710
§23.5.3 Converting only the visible portion of a graphic on page 712
§23.5.4 Converting reference-page graphics for HTML on page 712
§23.5.5 Eliminating graphics in unanchored frames on page 713
§23.5.6 Omitting paragraph tags around graphics on page 713
§23.5.7 Retaining run-in images in otherwise empty paragraphs on page 713

23.5.1 Assigning properties to sets of graphics

You can assign properties to, and override default configuration settings for, both
individual graphics and selected groups of graphics.

In this section:
§23.5.1.1 Using wildcards to assign properties to graphics on page 709
§23.5.1.2 Using markers to assign properties to graphics on page 709
§23.5.1.3 Specifying an image class for a graphic on page 710
§23.5.1.4 Creating named groups of graphics on page 710

See also:
§5.3.1 Understanding how Mif2Go creates identifiers on page 117.

23 INCLUDING GRAPHICS IN HTML SELECTING AND MODIFYING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 709

23.5.1.1 Using wildcards to assign properties to g raphics

To apply a setting to a subset of all the graphics in your document, you can use ? or *
wildcards in GraphicIDs. To exclude a graphic, assign nothing to its GraphicID. For
example, to selectively scale images:

[GraphScale]
; Do not scale the following images:
aa568433=
ab00b5d3=
; Scale the following image to 75% of its original size:
ab123456=75
; Scale all other images in the chapter to 50%:
ab*=50
; Scale all remaining images in the book to 25%:
*=25

See also:
§4.6 Using wildcards in configuration settings on page 106.
§5.3.1 Understanding how Mif2Go creates identifiers on page 117.

23.5.1.2 Using markers to assign properties to gra phics

You can use markers in your FrameMaker document to assign a property to a single
graphic or to only a few graphics, or to exclude a graphic from a general assignment. In
some cases this might be easier than determining the individual GraphicIDs required in
configuration settings. Use either of these marker types:

HTMConfig for
individual
graphics

Insert the HTMConfig marker in text before the graphic, and provide as marker content the
property assignment. For example, to scale a certain graphic to 75%, you could place an
HTMConfig marker just before the anchor for the graphic frame, and specify the scale
factor as the marker content:

[GraphScale]=75

See §33.2.9.4 Overriding graphic properties for HTML on page 929.

HTML Macro for a
series of graphics

You can use markers of type HTML Macro to change the value of a macro variable just
before a graphic or series of graphics, then change it back again after the graphics. For
example, you could use HTML Macro markers and a macro variable to scale a series of
graphics to 75%.

Include in the configuration file a scale-factor setting that references a macro variable:
[GraphScale]
*=<$$scalepct>

Initialize the value of the macro variable:
[MacroVariables]
scalepct=100

In text just before the graphics to be scaled, insert an HTML Macro marker with content:
<$$scalepct=75>

Just after the graphics to be scaled, insert another HTML Macro marker with content:
<$$scalepct=100>

See §28.3 Using macro variables on page 795.

HTMConfig Content is [GraphSection]= Value

HTML Macro Content is any HTML code

SELECTING AND MODIFYING GRAPHICS MIF2GO USER’S GUIDE

710 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

23.5.1.3 Specifying an image class for a graphic

Mif2Go provides two ways to assign a CSS class to the tag created for a graphic:
Attribute marker
Object property.

Attribute marker Insert a GraphClass marker in text preceding the graphic. Make the content of the marker
the name of the image class. See §29.2.4 Using attribute markers for HTML or XML on
page 835.

Object property Use the FrameMaker Object Attributes dialog to specify an image class. See §31.4.2
Overriding graphics settings with FrameMaker object attributes on page 896.

Mif2Go does not provide a way to assign an image class via paragraph format, because
generally authors use the same anchor paragraph for all types of graphics.

See also:

§23.7 Specifying HTML image attributes on page 718

23.5.1.4 Creating named groups of graphics

To apply the same settings to several graphics, you can create a graphics group by
assigning a common group name to the GraphicIDs of the graphics in question. For
example:

[GraphGroup]
; Graphic ID = graphic group name, any name you wan t
ab01f853=schematic
ab012c13=schematic
aa568433=screenshot
ab00b5d3=screenshot

Once you have assigned a group name to one or more graphics, in any of the other
[Graph*] sections you can assign properties to the group name instead of to a GraphicID.
The values you assign affect all graphics defined as belonging to the named group, except
any graphics to which you explicitly assign a different value.

For example, to avoid scaling screenshots, but reduce schematics in size:
[GraphScale]
; Do not scale images in the screenshot group:
screenshot=
; Scale schematics to 25% of their original size:
schematic=25

Another way to assign a graphic to a group is to insert an HTMConfig marker in text just
before the graphic in your FrameMaker document, with content as follows:

[GraphGroup]= graphicgroupname

This way you can avoid having to look up GraphicIDs and FileIDs. See §33.2.9.4
Overriding graphic properties for HTML on page 929.

23.5.2 Replacing or surrounding a graphic with mac ro code

You can specify code to be included before, after, or in place of any graphic, or group of
graphics, by assigning a macro or HTML code to one or more graphic IDs. For example:

[GraphStartMacros]
; Graphic ID = text of macro to put before graphic
ax78ec24=<hr />

23 INCLUDING GRAPHICS IN HTML SELECTING AND MODIFYING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 711

[GraphEndMacros]
; Graphic ID = text of macro to put after graphic
ax78ec24=<hr />

[GraphReplaceMacros]
; Graphic ID = text of macro to put instead of grap hic
aq*=<$Thumbnail>

When you specify a macro or other HTML code to replace a graphic, Mif2Go ignores any
preceding or following code or macro you assign to that same graphic in one of the other
[Graph*Macros] sections.

To avoid having graphics wrapped in paragraph tags when you use
[GraphReplaceMacros] , see §23.5.6 Omitting paragraph tags around graphics on
page 713.

List exceptions by
graphic ID

If the macro should apply to all but a few images, you can list the images to exclude by
assigning nothing to their IDs; list the exceptions first. For example:

[GraphReplaceMacros]
aa12345=
aa23456=
*=<$YourMacro>

See §23.5.1.1 Using wildcards to assign properties to graphics on page 709.

Use predefined
macro variables

The macro definition (or HTML code) can include the following predefined macro
variables, which reference the graphics to which the code or macro is assigned:

If you assign code instead of a macro name, the code must be all on the same line.

Replace graphics
with thumbnails

To show each graphic in a smaller size (a “thumbnail”), for example, you could specify
something like the following (see §4.6 Using wildcards in configuration settings on
page 106):

[GraphReplaceMacros]
*=<$Thumbnail>

[Thumbnail]
<a href="<$$_graphsrc>"><img src="<$$_graphsrc>" wi dth="25%" />

For a way to provide thumbnails in the form of links to the graphics they replace, see
§18.7.3.2 Using thumbnails for links to illustrations in HTML on page 604.

View full-size
graphics on

demand

If you import high-resolution bitmap images into your document by reference, and in
FrameMaker you scale them down to fit the page, the scaled-down images might not show
clearly in HTML. You can make these images clickable in HTML, so the graphic can be
viewed full size. For example:

[GraphReplaceMacros]
aa4de33f=<$FullView>

[FullView]
<a href="<$$_graphsrc>" target="_blank"><img src="< $$_graphsrc>"
width="<$$_graphorigwide>" height="<$$_graphorighig h>" />

<$$_graphbase> File name for attribute, without extension

<$$_graphsrc> File name for attribute, with extension

<$$_graphorighigh> Original image height in pixels, before any
[GraphScale] , [GraphHigh] , or [GraphWide]
setting is applied

<$$_graphorigwide> Original image width in pixels, before any
[GraphScale] , [GraphHigh] , or [GraphWide]
setting is applied

SELECTING AND MODIFYING GRAPHICS MIF2GO USER’S GUIDE

712 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

23.5.3 Converting only the visible portion of a gr aphic

If your FrameMaker document includes referenced graphics that do not require
conversion, you would most likely specify UseOriginalGraphicNames=Yes (see
§23.4.1 Using referenced graphics without converting on page 706). However, suppose
that for some of these graphics, the anchored frame purposely shows only a portion of the
image. To use only the portion of an image visible in FrameMaker, such a graphic must be
converted. You have two choices:

 • Add an empty Text Line to each graphic in FrameMaker. This element would be
invisible in FrameMaker and in all outputs, but would force Mif2Go to use
FrameMaker export filters to convert the graphic.

 • Include configuration macros to surround each graphic with macros that turn off
UseOriginalGraphicNames and then turn it back on again.

To use configuration macros, assign configuration variables to the Mif2Go graphic ID
(see §5.3.1 Understanding how Mif2Go creates identifiers on page 117) for each graphic:

[GraphStartMacros]
graphicframeID = <$$[Graphics]UseOriginalGraphicNames=0>

[GraphEndMacros]
graphicframeID = <$$[Graphics]UseOriginalGraphicNames=1>

These settings would cause Mif2Go to use FrameMaker export filters to convert just the
portion of graphicframeID that shows within its anchored frame.

See also:
§23.4.1 Using referenced graphics without converting on page 706
§23.5.2 Replacing or surrounding a graphic with macro code on page 710
§33.2.3 Overriding settings with macros on page 921
§33.2.9.4 Overriding graphic properties for HTML on page 929

23.5.4 Converting reference-page graphics for HTML

Mif2Go uses FrameMaker export filters to convert reference-page graphics created with
FrameMaker drawing tools; see §31.2.5.7 Converting graphics on reference pages on
page 885. You might or might not want to include the converted graphics in HTML
output; see §21.3.7 Keeping or removing reference frames on page 651.

In this section:
§23.5.4.1 Replacing reference-frame horizontal rules on page 712
§23.5.4.2 Suppressing indentation of reference-page graphics on page 713

23.5.4.1 Replacing reference-frame horizontal rule s

For graphics such as the FrameAbove and FrameBelow horizontal lines used around some
FrameMaker formats, you might get better results by replacing the reference-page
graphics with HTML horizontal rules. This approach avoids carrying an extra generated
.jpg around for every FrameMaker file you convert. For example:

[HTMLParaStyles]
Note = CodeBefore CodeAfter NoFrameAbove NoFrameBel ow

[ParaStyleCodeBefore]
Note =
<hr />

[ParaStyleCodeAfter]
Note = <hr />

23 INCLUDING GRAPHICS IN HTML SELECTING AND MODIFYING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 713

You can tune the <hr> rules by specifying width, height, or other attributes, and possibly
by using a class to apply CSS properties; see §22.7.2 Mapping paragraph formats to CSS
classes on page 692.

23.5.4.2 Suppressing indentation of reference-page graphics

By default, Mif2Go uses 1p.gif to indent graphics; see §23.6.3 Indenting images on
page 716. To prevent Mif2Go from indenting reference-page graphics:

[Graphics]
; RefPageGraphIndent = Yes (treat reference-page gr aphic indents
; normally) or No (do not indent)
RefPageGraphIndent=No

When RefPageGraphIndent=No , Mif2Go does not put any spacers before graphics
converted from FrameMaker reference pages.

See also:
§21.3.7 Keeping or removing reference frames on page 651
§23.6.3 Indenting images on page 716
§31.2.5.7 Converting graphics on reference pages on page 885

23.5.5 Eliminating graphics in unanchored frames

Unanchored frames do not often occur in properly constructed FrameMaker documents,
except on master pages. When Mif2Go encounters an unanchored frame on a body page,
by default Mif2Go anchors the frame to the first paragraph on that page. This might not
produce the effect you want. Also, an empty unanchored frame on a body page results in a
“missing” image for a mystery graphic that does not appear in the FrameMaker document.

To exclude unanchored frames on body pages from HTML output, specify the following
setting:

[HTMLOptions]
; ReAnchorFrames = Yes (default, anchor unanchored frames to first
; para on page) or No (skip unanchored frames)
ReAnchorFrames = No

23.5.6 Omitting paragraph tags around graphics

By default, Mif2Go wraps each non-inline graphic in paragraph tags. If you are replacing
graphics with macro code (see §23.5.2 Replacing or surrounding a graphic with macro
code on page 710) or repositioning graphics in HTML or XML output, you might need to
eliminate the enclosing paragraph tags.

To omit paragraph tags around graphics:
[Graphics]
; GraphWrapPara = Yes (default, wrap graphics that are not inline in
; paragraph tags) or No (eliminate wrapping tags)
GraphWrapPara = No

23.5.7 Retaining run-in images in otherwise empty paragraphs

If you specify that empty paragraphs should be omitted from output, either via
RemoveEmptyParagraphs or via RemoveEmptyTableParagraphs , you can retain any run-
in images in those paragraphs:

POSITIONING GRAPHICS IN HTML OUTPUT MIF2GO USER’S GUIDE

714 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[Graphics]
; RetainRuninImagesForEmptyParagraphs = No (default) or Yes
RetainRuninImagesForEmptyParagraphs=Yes

When RetainRuninImagesForEmptyParagraphs=Yes , for an otherwise-to-be-
omitted empty paragraph that includes an image set to Run into Paragraph, the image is
included in output even if the paragraph tags are omitted. Mif2Go writes run-in images
after any frames that come before the paragraph, and before any frames that come after the
paragraph. The run-in images precede any content you specify for the empty paragraph.

See also:
§21.3.10 Eliminating empty paragraphs in text on page 652
§24.4.10 Deciding what to do with empty paragraphs in table cells on page 744

23.6 Positioning graphics in HTML output
Mif2Go might not be able to reproduce in HTML the exact position of a graphic in
FrameMaker, because HTML does not support the same kind of positioning; it cannot,
because HTML has to adjust to variable page sizes. However, you can use Mif2Go
configuration settings to specify certain alignment options.

HTML positioning attributes are not compatible with CSS; therefore, by default, Mif2Go
omits these attributes for HTML output.

In this section:
§23.6.1 Positioning graphics anchored in empty paragraphs on page 714
§23.6.2 Aligning anchored graphics on page 714
§23.6.3 Indenting images on page 716
§23.6.4 Adding space above an image on page 717
§23.6.5 Eliminating space above or below graphics in table cells on page 717

See also:
§23.5.6 Omitting paragraph tags around graphics on page 713

23.6.1 Positioning graphics anchored in empty para graphs

In HTML, unlike in FrameMaker, a graphic need not be anchored in a paragraph. If your
FrameMaker document contains graphics anchored At Insertion Point in their own
otherwise empty paragraphs, to indent these graphics correctly Mif2Go might place them
before the paragraph that anchored them.

To prevent Mif2Go from moving such graphics out of their anchor paragraphs:
[Graphics]
; KeepGraphicsInPara = No (default)
; or Yes (keep graphics in para)
KeepGraphicsInPara = Yes

23.6.2 Aligning anchored graphics

To override the FrameMaker alignment of an individual graphic or a group of graphics
(for example):

[GraphAlign]
; Graphic ID = desired alignment to text, one of th ese: left, right,
; top, texttop, middle, absmiddle, baseline, bott om, or absbottom
ImgGroupA = left
ch01f853 = absmiddle

23 INCLUDING GRAPHICS IN HTML POSITIONING GRAPHICS IN HTML OUTPUT

ALL RIGHTS RESERVED. MAY 18, 2013 715

The [GraphAlign] section sets the HTML align attribute of the tag itself; this
attribute controls only vertical position and left/right floats in HTML.

Floating graphics
might hide text

If you set alignment to left or right , you are also telling the graphic to “float”. This
might result in the text that follows (such as a caption, if captions are below the image in
your FrameMaker document) disappearing behind the image. If this happens, for the
graphic involved you should also specify:

[GraphEndMacros]
* = <br clear="all" />

Or, you can specify "left" or "right" instead of "all" , depending on the effect you
want.

Realign graphics
independently of

anchors

To position graphics independently of the paragraphs in which their frames are anchored,
if you are using CSS you must also specify the following:

[Graphics]
; GraphAlignAttributes = Yes (default, allow when s et in [GraphAlign])
; or No (no align attribute in img tags even if set in [GraphAlign]).
; Default is reversed to No if UseCSS=Yes.
GraphAlignAttributes = Yes

When you use CSS, by default Mif2Go ignores any alignment attributes you specify in
[GraphAlign] ; see §22.5 Understanding how CSS affects other options on page 687. If
you are not using CSS, by default Mif2Go uses the alignment attributes in
[GraphAlign] .

Realign graphics
horizontally

For graphics in anchored frames that are neither inline nor run-in (float in HTML) you
can specify a horizontal position different from that used in FrameMaker:

[GraphParaAlign]
; Graphic ID = desired alignment for containing par a: left, right,
; or center, primary method of centering standalon e graphics
ch01f853 = left

The [GraphParaAlign] property sets the HTML align attribute for the paragraph in
which the graphic frame is anchored; this is how Mif2Go controls horizontal alignment of
graphics. For example, the following setting uses a wildcard (see §4.6 Using wildcards in
configuration settings on page 106) to center-align all anchored graphics in HTML:

[GraphParaAlign]
* = center

However, the align="center" attribute does not work as specified by the W3C in most
browsers.

Use CSS to
center graphics

When you use CSS, you can center graphics with Mif2Go macros. For example, to center
all images:

[GraphStartMacros]
* = <div class="img">

[GraphEndMacros]
* = </div>

See §23.5.2 Replacing or surrounding a graphic with macro code on page 710.

Include in CSS:
div.img {text-align: center; }

Or, if Mif2Go maintains CSS for your project (see §22.8.4 Overriding styles in Mif2Go-
generated CSS files on page 700):

[CSSEndMacro]
div.img {text-align: center; }

POSITIONING GRAPHICS IN HTML OUTPUT MIF2GO USER’S GUIDE

716 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You have to use <div> because CSS applies text-align only to block elements, and
 is not a block element.

23.6.3 Indenting images

Best practice is to use CSS to indent images in HTML. The technique described in this
section should be used only if you cannot use CSS.

Mif2Go can indent all non-inline graphics to match the indent used in your FrameMaker
document. Graphics (and also tables) are indented in HTML output using a technique
invented by Chuck Musciano

http://www.drdobbs.com/184411862

This technique consists of placing, at the start of the line that contains the graphic, a one-
pixel transparent GIF image, 1p.gif , with a width attribute that produces the required
indent in pixels. See §28.2.2 Modifying Mif2Go-supplied macro definitions on page 793.

To use the built-in Mif2Go spacer graphic:
[HTMLOptions]
; UseSpacers = No (default)
; or Yes, use to position tables and graphics
UseSpacers = Yes

To use your own graphic as a spacer instead of the built-in graphic:
[HTMLOptions]
; WriteSpacerFile = No (default) or Yes, write file after conversion
WriteSpacerFile = Yes

When WriteSpacerFile=Yes , the default name of the indent spacer image file is
1p.gif ; you can specify a different name, or specify a different path:

[HTMLOptions]
; PixelSpacerImage = name of 1-pixel transparent GI F for spacing
PixelSpacerImage = 1p.gif

By default, Mif2Go writes the spacer image file to the project directory, and includes
references of the following form in your HTML output:

If you supply a path for PixelSpacerImage (for example, ./graphics/1p.gif),
Mif2Go writes the spacer image file to the specified path. Then Mif2Go generates
references of the form:

This can be important if you place graphics anywhere but the project directory (see §23.3
Locating graphics files for HTML on page 704).

Spacer alt
attribute

The spacer graphic must have an alt attribute for W3C validation. The default value for
the spacer alt attribute is [spacer] ; you can change this default:

[HTMLOptions]
; SpacerAlt = text to use for alt attribute for spa cer,
; default [spacer]
SpacerAlt = [spacer]

Left indent You can specify a custom indent for a single graphic or a graphics group; for example:
[GraphIndents]
; Graphic ID = number of pixels to indent using Pix elSpacerImage
; zero prevents indent, -1 is autoindent (default ac tion)
schematic = 30

See §23.5.1 Assigning properties to sets of graphics on page 708.

http://www.drdobbs.com/184411862

23 INCLUDING GRAPHICS IN HTML POSITIONING GRAPHICS IN HTML OUTPUT

ALL RIGHTS RESERVED. MAY 18, 2013 717

Right indent A similar method creates a space to the right of the image, except that the height
attribute of the spacer is set to match the height attribute of the image. This is useful for
run-in graphics, and for other floating types. For example:

[GraphRightSpacers]
; Graphic ID = number of pixels space on right usin g PixelSpacerImage
ch00b5d3 = 45

No indent If you do not want any graphics indented, use a wildcard setting, as follows:
[GraphIndents]
* = 0

See §4.6 Using wildcards in configuration settings on page 106.

23.6.4 Adding space above an image

To add a space above an image, assign an HTML
 tag to one of the following:

 • the format of the anchor-containing paragraph (if it is specific to graphics)
 • the ID of the graphic, which consists of the Mif2Go FileID followed by the

FrameMaker ID; see §5.3 Identifying files and objects on page 117 for more
information.

If all the graphics in your document need the added space, dedicate a paragraph format to
anchoring graphics, and include the extra space in its definition. If you need to add space
to only one or a few graphics, use the Graphic ID; see §23.5.1 Assigning properties to sets
of graphics on page 708.

Use the anchor
paragraph

To add space using the paragraph containing the anchor (for example, GraphAnchor):
[HTMLParaStyles]
GraphAnchor = CodeBefore

[ParaStyleCodeBefore]
GraphAnchor =

This method adds space for every graphic whose frame is anchored in a GraphAnchor
paragraph.

Use the Graphic
ID

To add space using the Graphic ID:

1. Determine the FrameMaker object ID. Click the anchored frame; FrameMaker
displays the ID on the status bar at the bottom of the window; for example, 0f9fae .

2. Determine the FileID. Look in file mif2go.ini (located in the same directory as
your FrameMaker document) for the name of the file containing the graphic. Under
[FileID] you will see a list of two-letter codes, each assigned to one of the files in
your document; for example, aa=chap1 .

3. Add a setting for the graphic. For example:
[GraphStartMacros]
GraphicID =

This method produces a space just before the tag.

See also:

§23.9.1 Excluding image size attributes from HTML on page 720

23.6.5 Eliminating space above or below graphics i n table cells

When you place an image in an anchored frame inside a table cell, properties of the anchor
paragraph can cause unwanted space to appear above or below the image.

SPECIFYING HTML IMAGE ATTRIBUTES MIF2GO USER’S GUIDE

718 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

To eliminate spacing caused by the anchor paragraph, give that paragraph a special format;
for example, CellPic; and assign CellPic the following properties:

[HTMLParaStyles]
CellPic = NoPara NoTags

See §21.3.6 Stripping paragraph properties on page 650.

23.7 Specifying HTML image attributes
You can specify attributes for the tag in any of the following ways:

Configuration-file settings
Custom markers in FrameMaker
FrameMaker object attributes.

Configuration-file
settings

To specify tag attributes in the configuration file (for example):
[GraphAttr]
; Graphic file name (with or without extension) = d esired attributes
ch01f853.gif= usemap="#schematic" border="0"

To eliminate anchored-frame borders from all graphics:
[GraphAttr]
*= border="0"

Custom markers
in FrameMaker

You can define a custom marker that has a name beginning with Graph and ending with
the name of a valid tag attribute (see §29.2.4 Using attribute markers for HTML or
XML on page 835). The content of the marker becomes the value of the attribute for the
next image in your document. The marker overrides any configuration-file setting for the
same attribute for that image. See §33.2 Overriding settings with markers or macros on
page 920.

FrameMaker
object attributes

For images in anchored frames, in FrameMaker 7.0 and later versions you can assign
attributes via the Object Attributes dialog, shown in Figure 31-1 on page 898. Select an
anchored frame and choose Object Properties... from the right-click context menu or the
FrameMaker Graphics menu. In the Object Properties dialog, click Object Attributes...
to open the Object Attributes dialog. See §31.4.2 Overriding graphics settings with
FrameMaker object attributes on page 896.

See also:

§23.9 Scaling images for HTML on page 719
§25.2 Applying WAI markup to images on page 756
§29.2.4 Using attribute markers for HTML or XML on page 835

23.8 Providing (or omitting) alternate text for im ages
Most current browsers display the content of the alt attribute of an tag only when
the image itself is not displayed.

Note: To show a text value in a tooltip when you move the pointer over an image, use
the title attribute instead.

By default, if you do not provide alt text for an image, Mif2Go includes an empty alt
value, to satisfy validators. To omit empty alt attribute values:

[Graphics]
; AllowEmptyAlt = Yes (default) or No, omit empty a lt attributes.
AllowEmptyAlt = No

You can specify a value for the tag alt attribute in any of the following ways:

23 INCLUDING GRAPHICS IN HTML SCALING IMAGES FOR HTML

ALL RIGHTS RESERVED. MAY 18, 2013 719

Include the text in a paragraph
Insert the text with a marker
Add the text via Object Attributes
Assign the text to the graphic file.

Include the text in
a paragraph

To use a dedicated paragraph format for alternate text, place a paragraph containing the
text in your FrameMaker document, just before the image, and assign the following
properties to the paragraph format:

[HTMLParaStyles]
AltParaFmt = Alt Delete

The Delete property prevents the alternate text from appearing as part of the HTML
output. See §25.2.2 Assigning WAI image attributes with dedicated formats on page 757.

To use a character format instead of a paragraph format to provide a value for the alt
attribute, assign it in [HTMLCharStyles] instead of in [HTMLParaStyles] .

Insert the text
with a marker

To provide alternate text with a marker, insert a marker of type GraphAlt in your
FrameMaker document, just before the image. The content of the GraphAlt marker
becomes the value of the alt attribute for the next image. See §25.2.3 Assigning WAI
image attributes with custom markers on page 757 and §29.2.4 Using attribute markers for
HTML or XML on page 835.

Add the text via
Object Attributes

For images in anchored frames, in FrameMaker 7.0 and later versions you can provide a
value for the alt attribute via the Object Attributes dialog. See §23.7 Specifying HTML
image attributes on page 718 and §31.4.2 Overriding graphics settings with FrameMaker
object attributes on page 896.

Assign the text to
the graphic file

To assign alternate text to the graphic file (for example):
[GraphALT]
; Graphic file name (with or without extension) = d esired alt text
ch01f853.gif = Schematic of tuner

This method is not recommended if your document includes image maps, and you also use
the [GraphALT] section to assign alternate text to hotspot <area> tags. You could lose
the alt content you assign to the tags. See §23.10.2 Providing alternate text for a
hotspot in an image map on page 723.

23.9 Scaling images for HTML
Mif2Go calculates image width and height attributes based on the size of the anchored
frame, and on the resolution at which a referenced graphic was imported into
FrameMaker. You can override or eliminate the size attributes, and adjust the resolution of
exported images.

In this section:
§23.9.1 Excluding image size attributes from HTML on page 720
§23.9.2 Adjusting image size for selected graphics on page 720
§23.9.3 Adjusting image resolution for referenced graphics on page 721
§23.9.4 Specifying image resolution for exported graphics on page 721
§23.9.5 Specifying px units for graphics sized in pixels on page 722

SCALING IMAGES FOR HTML MIF2GO USER’S GUIDE

720 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

23.9.1 Excluding image size attributes from HTML

By default, Mif2Go includes image width and height attributes in HTML, XHTML, DITA
XML, and DocBook XML output, and excludes these attributes from generic XML
output.

To exclude image width and height attributes from HTML output:
[Graphics]
; GraphScale = Yes (default) to put out width and h eight attributes,
; or No to eliminate them all (mainly for Generic X ML)
GraphScale = No

If you do not include any setting at all for GraphScale , you get the default for the output
type you specify.

Note: You get faster display in browsers if you keep the image width and height
attributes, because a browser can proceed with page layout without waiting for the
graphic file to arrive.

See also:
§14.4.3 Eliminating HTML attributes and tags for generic XML on page 463
§15.7.3 Omitting size attributes from images for DITA output on page 518
§17.7.3 Omitting size attributes from images for DocBook on page 582

23.9.2 Adjusting image size for selected graphics

Mif2Go calculates pixel height and width based on the FrameMaker dimensions of each
image, at 96 DPI, which is the Windows standard. If necessary you can adjust the size of
an image to do any of the following:

Preserve aspect ratio
Suppress scaling
Specify width and height separately.

Preserve aspect
ratio

To override both width and height of selected graphics, preserving the aspect ratio of each
image; for example, to 75% of the original size:

[GraphScale]
; Graphic ID = percent of original size to scale (b oth dimensions)
GraphID = 75

This setting affects HTML attributes directly, whether or not you use FrameMaker export
filters to generate the graphics.

Suppress scaling To suppress scaling for selected graphics:
[GraphScale]
GraphID = 0

Setting the percent to zero suppresses scaling because Mif2Go does not write width and
height attributes that have zero values.

Specify width and
height separately

To override width and height separately for selected graphics, whether or not you use
[GraphScale] :

[GraphWide]
; Graphic ID = number of pixels wide, 0 to omit wid th attribute

[GraphHigh]
; Graphic ID = number of pixels high, 0 to omit hei ght attribute

23 INCLUDING GRAPHICS IN HTML SCALING IMAGES FOR HTML

ALL RIGHTS RESERVED. MAY 18, 2013 721

However, be aware of the following issue with hard-coding the sizes of the graphics you
reference in HTML files: localized graphics sometimes have a different size, and hard-
coded sizes cause distortion.

23.9.3 Adjusting image resolution for referenced g raphics

To adjust for images imported into FrameMaker at a DPI other than 96 (for example, 100):
[HTMLOptions]
; ConversionDPI = 96 (default), used when convertin g sizes to pixels
ConversionDPI = 100

This setting adjusts all graphic-related dimensions, including indents, after other scaling
factors are applied. It does not affect graphic generation.

For graphics imported by reference, Mif2Go graphics “processing” consists of leaving the
image alone, and using HTML size settings to achieve the DPI you specify. This means
that if you rescale from the original size, you are relying on browser scaling, which is
usually (but not always) better than what the FrameMaker export filters would give you.

Resolution will always be poor if you display at any size other than the original. For
example, the text in a screenshot has many lines that are just one pixel thick. If you reduce
the size, some of those pixels show up as a pixel in the output, and some do not. There is
no way around this, and the result is unreadable. For print, you get away with this because
a printer renders images at 300 DPI or better, often much better. That is, the printer uses
smaller pixels than the screen, so you can shrink the image just fine. But your screen is
always at 96 DPI in Windows. So when you display a screenshot, it must take up the same
size on screen that it did originally, or it will look awful. You cannot make the pixels any
smaller.

Two possible remedies for images that are too large:

 • Crop the images so that only the part of interest is shown.
 • Substitute thumbnails of the images; clicking a thumbnail opens the full image in a

separate window. See §23.5.2 Replacing or surrounding a graphic with macro code on
page 710.

23.9.4 Specifying image resolution for exported gr aphics

When you direct Mif2Go to use FrameMaker export filters to generate graphics files from
the illustrations in your document, you can specify the DPI of those graphics:

[Setup]
; GraphicExportDPI = number (from 50 to 1200, defau lt 96)

For compound graphics that include referenced images, specify the same DPI used to
import the referenced images into FrameMaker. For example, if images were imported
into FrameMaker at 144 DPI, set the export option accordingly:

[Setup]
GraphicExportDPI = 144

To override the GraphicExportDPI value for individual graphics (or groups of
graphics):

[GraphDPI]
; Graphic ID = DPI to use when generating,
; overrides [Setup]GraphicExportDPI

This is something you are not likely to want to do routinely. The default DPI value (96, or
whatever was used to import any images involved) usually is best. Changing the

CREATING IMAGE MAPS FOR HTML MIF2GO USER’S GUIDE

722 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

GraphicExportDPI setting (or changing an individual [GraphDPI] setting) affects a
displayed HTML page only if browser scaling is turned off for the images involved.

An alternative is to define a custom marker named GraphDpi (see §29.2 Adding custom
marker types on page 832). Insert a GraphDPI marker, whose content is the DPI value you
want, anywhere before the anchor of the anchored frame containing the graphic; the
marker applies to the next anchor in the flow. This marker overrides any configuration-file
DPI setting for that graphic.

See also:
§23.9.3 Adjusting image resolution for referenced graphics on page 721
§31.2.5.5 Specifying graphic output format and DPI on page 884.

23.9.5 Specifying px units for graphics sized in p ixels

By default, for all HTML and XML outputs except JavaHelp, Mif2Go adds a px suffix to
width and height attribute values for images sized in pixels. For example:

However, a px suffix causes the JavaHelp viewer to show an image as a thumbnail; so for
JavaHelp, the default is to omit the suffix. You can direct Mif2Go to omit the px suffix for
other output types.

To omit the px suffix from image width and height attribute values:
[Graphics]
; UsePxSuffix = Yes (default except for JavaHelp, i nclude "px" in the
; width and height attributes), or No (JavaHelp def ault)
UsePxSuffix = No

For DITA XML output, it is usually best to include the px suffix; however, see §15.7.7
Understanding why images might look incorrectly scaled on page 519.

23.10 Creating image maps for HTML
FrameMaker can place invisible hotspot areas over a graphic, so that clicking different
parts of the graphic causes hypertext jumps to different locations. Mif2Go automatically
converts such graphics into corresponding HTML client-side image maps.

In this section:
§23.10.1 Creating hotspots for image maps on page 722
§23.10.2 Providing alternate text for a hotspot in an image map on page 723
§23.10.3 Specifying jumps from image maps in framesets on page 725

23.10.1 Creating hotspots for image maps

You can provide a single hotspot or multiple hotspots per image map:
Multiple hotspots per image
Single hotspot per image.

Multiple hotspots
per image

To create an image map with multiple hotspots:

1. Prepare the graphic as you normally do, placing it in an anchored frame.

2. Place a text frame inside the anchored frame, wherever you want a hotspot; you can
expand the text frame to cover whatever part of the graphic you want included in the
hotspot.

23 INCLUDING GRAPHICS IN HTML CREATING IMAGE MAPS FOR HTML

ALL RIGHTS RESERVED. MAY 18, 2013 723

3. Click inside the text frame, and insert a hypertext gotolink marker. Or you can insert a
message URL hypertext link, to create a jump to a destination outside the
FrameMaker document. See §34.1.2 Using markers to add links and instructions on
page 935.

Single hotspot per
image

To create an image map with a single hotspot that includes the entire image:

1. Place an anchored frame At Insertion Point in an empty paragraph.

2. Place the graphic in the anchored frame, and shrink-wrap it.

3. Put the hypertext link marker in the same paragraph.

4. To avoid having the placeholder paragraph itself show in the output, include the
following setting in the configuration file:

[HTMLParaStyles]
Paraname=Raw

where Paraname is the name of the placeholder paragraph format.

5. (Optional) To eliminate blue borders from anchored frames, include the following
setting in the configuration file:

[GraphAttr]
*=border="0"

23.10.2 Providing alternate text for a hotspot in an image map

You specify alternate text for an image-map hotspot via an attribute of the hotspot <area>
tag. The alternate text relates to the hotspot link destination. Unlike alternate text for the
 tag, you cannot specify alternate text for the <area> tag with a marker or a
paragraph format. And you might want to use the title attribute of the <area> tag
instead of the alt attribute.

In this section:
§23.10.2.1 Assigning alternate text to an image-map hotspot on page 723
§23.10.2.2 Using the title attribute for alternate text for a hotspot on page 724

23.10.2.1 Assigning alternate text to an image-map hotspot

To provide alternate text for a hotspot in an image map, assign the text to the destination of
the hotspot link. For example:

[GraphALT]
; destination or GraphicID#dest or URL dest = desir ed alt text
; a URL destination is the last part of the URL wit hout extension
; ch01f853#RFstage = Tuner first stage
; IFstage = Intermediate Frequency stage

The text you assign becomes the content of the alt attribute of the hotspot <area> tag,
unless you tell Mif2Go to use the title attribute instead; see §23.10.2.2 Using the title
attribute for alternate text for a hotspot on page 724.

The destination ID must be one of the following, depending on the type of link:

Type of link Form of destination ID

Link via message URL: Base name of the destination HTML file, if the hotspot link is a
message URL hypertext marker

Link via gotolink: newlink marker content, if the hotspot link is a gotolink hypertext
marker

Multiple links: GraphicID followed by # followed by destination ID (one of the other
two), to distinguish among multiple links to the same destination

CREATING IMAGE MAPS FOR HTML MIF2GO USER’S GUIDE

724 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Link via message
URL

Suppose you use a hypertext message URL marker for an image-map link, with the
following marker content:

message URL http://www.chezmoi.com/mylife.htm

You would assign alternate text for the hotspot to destination identifier mylife , which is
the target file name (without path or extension):

[GraphALT
mylife = alternate text for hotspot

However, if the hypertext message URL marker content looks like this:
message URL http://www.chezmoi.com/mylife.htm#sibli ngs

You would assign alternate text as follows:
[GraphALT
mylife#siblings = alternate text for hotspot

Link via gotolink Suppose your image-map link is a gotolink hypertext marker, with a destination in the
same document (though not necessarily the same FrameMaker file); for example:

gotolink awards.fm:firstplace

You would assign alternate text for the hotspot to destination identifier firstplace ,
which is the target newlinkmarker content (without the FrameMaker file name):

[GraphALT
firstplace = alternate text for hotspot

Multiple links If you have several graphics with image-map links that all point to the same destination,
and you want different alternate text for one of them, prefix the destination identifier with
the file name of the graphic (no extension) and a #. For example:

[GraphALT
ab34e651#firstplace = different alternate text for hotspot

23.10.2.2 Using the title attribute for alternate text for a hotspot

When you provide alternate text for a hotspot in an image map, by default Mif2Go assigns
the text to the alt attribute of the hotspot <area> tag. Some browsers, notably Internet
Explorer, show the text in a tooltip when you mouse over the hotspot, whether the text is
assigned to the alt attribute or to the title attribute of the hotspot <area> tag. Other
browsers, notably Firefox, show the tooltip on mouse-over only if the text is assigned to
the title attribute of the hotspot <area> tag.

To have Mif2Go use the title attribute of the hotspot <area> tag instead of the alt
attribute for alternate text:

[Graphics]
; UseTitleForAlt = No (default) or Yes (use title a ttribute
; instead of alt for alternate text
UseTitleForAlt=Yes

When UseTitleForAlt=Yes , Mif2Go assigns any alt text you specify for hotspots in
image maps in the [GraphALT] section to the title attribute of the hotspot <area> tag,
and includes an empty alt attribute for W3C validation.

Note: If you use the [GraphALT] section to assign alternate text to tags (see
§23.8 Providing (or omitting) alternate text for images on page 718), that text gets
transferred to the tag title attribute, and you lose the content of the
 tag alt attribute.

UseTitleForAlt affects only alt content added for tags and hotspot <area>
tags in the [GraphALT] section, not alt content added for tags via markers or via
the [HTMLParaStyles] Alt property.

23 INCLUDING GRAPHICS IN HTML SUPPLYING A BACKGROUND IMAGE OR WATERMARK

ALL RIGHTS RESERVED. MAY 18, 2013 725

23.10.3 Specifying jumps from image maps in frames ets

If you are using the image map in a frameset, you can target jumps from the image map to
the frames you want in either of the following ways:

 • Associate the format in effect at the image map’s anchor (not the formats in the
individual hotspot text frames) with a particular frame in the [Targets] section (see
§13.14 Using framesets on page 450).

 • Associate the file to which the jumps are going with a frame name in the
[TargetFiles] section.

You can specify a default target for all jumps not otherwise associated with a frame:
[HTMLOptions]
; DefaultTarget = name of target to use
; for all jumps not otherwise set
;DefaultTarget=_top

23.11 Supplying a background image or watermark
To provide a background image or a watermark, you can assign values to <body>
attributes in the configuration file; for example:

[Attributes]
body= bgcolor="white" background=" yourimage.jpg"

If you are targeting only Internet Explorer (as for HTML Help), to keep the image from
scrolling with the text you could add:

... bgproperties="fixed"

All attributes and values must be on the same line, regardless of line length.

A better alternative would be to use CSS. There you could also specify that the image is to
be centered, not tiled, which is probably what you would want for a watermark:

body { background-color: white ;
 background-image: url(yourimage.jpg) ;
 background-repeat: no-repeat ;
 background-attachment: fixed ;
 background-position: center
}

or just:
body { background: white url(yourimage.jpg) no-repeat center fixed }

23.12 Converting equations for HTML
Mif2Go uses the FrameMaker graphics export filters to convert equations, even if your
project does not use those filters to convert other graphics for HTML. Mif2Go produces
equation files named the same way as other graphics files; see §5.7.4.1 Naming files
produced by FrameMaker export filters on page 133.

The same export format is used for all equations; the default format for HTML output is
JPEG:

[Setup]
; GraphicExportFormat = BMP,TIFF,WMF,JPEG,PNG,EPS,P ICT,CGM,GIF,IGES
GraphicExportFormat=JPEG

Mif2Go scales equations up 25%, making them easy to read, but not so big as to interfere
with the layout:

CONVERTING EQUATIONS FOR HTML MIF2GO USER’S GUIDE

726 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[Setup]
; EquationExportDPI = number (from 50 to 1200, defa ult 120)
EquationExportDPI=120
; EquationFrameExpand = percentage of original size (default 125)
EquationFrameExpand=125

To specify the file extension to use for exported graphic equation files:
[Options]
; EqSuffix = suffix used by Frame for equation file s (no period)
EqSuffix=bmp

You need to specify an extension only if you also set the following option:
[Setup]
UseGraphicFileID=Yes

See §5.9 Converting equations on page 136 for more information.
(No tables)
(No illustrations)

ALL RIGHTS RESERVED. MAY 18, 2013 727

24 Converting tables to HTML

HTML tables are rendered quite differently from FrameMaker tables. Mif2Go correctly
renders table cells that span rows or columns, and skips rows that are conditioned out.

Topics include:
§24.1 Assigning properties to tables on page 727
§24.2 Defining sets of tables on page 728
§24.3 Specifying table structure on page 730
§24.4 Specifying table attributes on page 735
§24.5 Positioning tables, table titles, and table footnotes on page 746
§24.6 Using macros to control table properties on page 748
§24.7 Converting tables to paragraphs on page 753

Mif2Go supports WAI (Web Accessibility Initiative) markup for HTML tables; see:
§25 Generating WAI markup for HTML on page 755
§26 Identifying HTML table structure for WAI on page 763
§27 Marking HTML table cells for WAI on page 775

24.1 Assigning properties to tables
Start by specifying default values for properties of all tables in your document; then, if
necessary, override these default values for selected tables. You can set most default table
properties in the [Tables] and [Attributes] sections of the configuration file, though
a few settings for tables have no document-wide defaults.

Note: Attribute settings for tables, table rows, and table cells may be browser dependent;
those settings override any values generated by Mif2Go .

In this section:
§24.1.1 Understanding which table features can be converted on page 727
§24.1.2 Understanding precedence of assignment methods on page 728
§24.1.3 Overriding default table and cell properties and attributes on page 728

24.1.1 Understanding which table features can be c onverted

Not every FrameMaker table feature has a corresponding HTML attribute. If the tables in
your FrameMaker document use a lot of custom ruling and shading, Mif2Go might not be
able to translate some of those properties to HTML, because HTML lacks attributes
needed to implement them. For example, ruling properties can be converted only at the
<table> level, using border , frame , and rules ; and the last two attributes are rendered
only by Internet Explorer. Even if you target only Internet Explorer, choices are limited.

Do it with CSS You can represent some custom table properties with CSS. The best way is to apply class
attributes to table cells. For a paragraph format used consistently within those cells, you
can specify a CellAttribute property for the format in [HTMLParaStyles] , and
specify the class name in [StyleCellAttribute] ; otherwise, use CellClass markers
that specify the class name. See §24.4.6 Specifying attributes for table cells on page 738.

You must hand-edit the CSS to specify ruling and background-color settings. Or, if you
have set [CSS]WriteCssStylesheet=Always , you can include the settings in

DEFINING SETS OF TABLES MIF2GO USER’S GUIDE

728 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

configuration section [CSSStartMacro] or [CSSEndMacro] ; see §22.8.4 Overriding
styles in Mif2Go-generated CSS files on page 700.

Be sure to verify that the settings you have in mind work as intended with all browsers you
find important. Not all browsers support CSS 2 the same way.

24.1.2 Understanding precedence of assignment meth ods

Many settings for selected tables (and for table rows and cells) can be specified several
ways. Table 24-1 lists the assignment methods, in order of precedence. When you specify
a value for the same property in more than one way for a given table or cell, the value
specified by the method with the highest precedence is the value that takes effect in
HTML output. In some cases, multiple assignments of the same value result in duplicate
HTML code. When this happens, the assignment with the higher precedence takes effect,
because that assignment appears first in the output.

24.1.3 Overriding default table and cell propertie s and attributes

To override table structure properties, use settings in the [TableAccess] section; see
§24.3.2.6 Overriding row and column group settings on page 733.

To override table display attributes, use settings in the [TableAttributes] section; see
§24.4.2 Overriding attributes for selected tables on page 736.

To fine-tune properties for selected tables or cells, use markers or macros; see §24.4.4
Using markers to assign attributes to tables, rows, or cells on page 737 and §24.6 Using
macros to control table properties on page 748.

24.2 Defining sets of tables
You can set table-specific properties, and specify overrides to table defaults, according to
TableID (not recommended), table format, or table group; or you can use wildcards to
make any table-specific setting apply to all or a subset of tables:

Table 24-1 Precedence of table and cell property assignment methods

Precedence Type Assignment method Ref.

Highest FrameMaker
custom marker

Content of Config or HTMConfig marker, or marker
whose name starts with Table, Row, or Cell and
ends with an attribute name

24.4.4

Mif2Go macro Code in [Table*Attributes] or
[Table*Macros]

24.6

FrameMaker table
or cell property

Properties assigned via Table Designer, or via
Custom Ruling and Shading (where corresponding
HTML attributes exist)

Frame-
Maker Help

Configuration
setting

Settings in [TableAccess] or
[TableAttributes]

24.3.2.6,
24.4.1

Configuration
setting

Settings in [Attributes] 24.4.1

Lowest Configuration
setting

Settings in [Tables] 24.3.2,
24.4.8

TableID: Mif2Go FileID combined with FrameMaker ObjectID for the table.
See §24.2.1 Determining the TableID on page 729.

24 CONVERTING TABLES TO HTML DEFINING SETS OF TABLES

ALL RIGHTS RESERVED. MAY 18, 2013 729

24.2.1 Determining the TableID

Use this method only for short-lived documents. FrameMaker TableIDs are not
necessarily preserved when a document is moved to a different version of FrameMaker,
and possibly not even when a new template is applied.

To determine the TableID for a particular table, in FrameMaker do the following:

1. Find the table’s FrameMaker TableID:
1.1. Click in the table heading.
1.2. Without moving the mouse, Shift-click.
1.3. Look at the FrameMaker status bar; it should show an entry of the form

TableID= nnnnnn.

2. Find the FileID for the file containing the table:
2.1. Look in file mif2go.ini , which is in the same directory as your document.
2.2. Find under [FileIDs] the entry for your FrameMaker file; these entries are of

the form: fmfile=aa.

3. Combine Mif2Go FileID and FrameMaker TableID to get the Mif2Go TableID:
aannnnnn.

For example, if the Mif2Go FileID is bb and the FrameMaker TableID is 123412 , the
Mif2Go TableID would be bb123412 . See §5.3.1 Understanding how Mif2Go creates
identifiers on page 117.

24.2.2 Creating table groups

You can assign group names to tables, and then apply properties to all tables in the group
with a single setting. Each table can belong to one table group. You can create table groups
two ways:

Create table groups in the configuration file
Create table groups with configuration markers.

Create table
groups in the

configuration file

To create table groups and assign tables to groups in the configuration file:
[TableGroup]
; TableID or format = group name used in other Tabl e sections for ID
; the filter first looks for TableID, then group, t hen table format
TableID = tablegroupname
FM table format = tablegroupname

For example, suppose your document contains table types you use for charts (FormatA and
FormatB), and others you use as containers for text frames (FormatC and Unruled). Suppose
you used one Format C table for a chart instead of a text frame. You could group the
renegade table with the other chart-type tables by specifying its TableID:

[TableGroup]
FormatA=charts

Table format: FrameMaker format name used for the table; make sure all your
table formats are in the FrameMaker table catalog. See §24.2.2
Creating table groups on page 729.

Table group: A group of tables you define, using configuration markers or
TableIDs and table formats to specify group membership. See
§24.2.2 Creating table groups on page 729.

Wildcard set: An informal set of tables identified with wildcards. See §24.2.3
Using wildcards to specify table sets on page 730.

SPECIFYING TABLE STRUCTURE MIF2GO USER’S GUIDE

730 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

FormatB=charts
aa654321=charts
FormatC=textframes
Unruled=textframes

Create table
groups with

configuration
markers

Another way to To create a table group, or assign tables to existing table groups, is to
insert configuration markers in the tables in your FrameMaker document, with content as
follows:

[TableGroup]= tablegroupname

This way you can avoid having to look up TableIDs and FileIDs. See §33.2.9.3 Overriding
table properties for HTML on page 928.

24.2.3 Using wildcards to specify table sets

You can specify an informal group of tables by using wildcards with partial TableID, table
format, or table-group names; see §4.6 Using wildcards in configuration settings on
page 106. Mif2Go uses the first entry in a section that matches for each table, so put the
exceptions before the general case. For example:

[TableAfterMacros]
af123456=
ac*=

*=

These settings would result in the following:

 • no spacing after table af123456

 • double spacing after all tables with FileID ac
 • single spacing after all other tables.

24.3 Specifying table structure
If the tables in your document are complex, or if you have not used FrameMaker-defined
Heading and Footing rows for your tables, you might need to specify which cells belong to
headers or footers. Also, you might want to specify whether Mif2Go should generate any
or all of the following HTML tags for your tables: <colgroup> , <th> , <thead> ,
<tfoot> , and <tbody> .

The settings described in this section apply to all tables in your document. You can
override them for selected tables with [TableAccess] settings; see §24.3.2.6 Overriding
row and column group settings on page 733 and §24.3.3.2 Specifying different header and
footer counts for selected tables on page 735.

In this section:
§24.3.1 Choosing the table structure model on page 730
§24.3.2 Identifying row and column groups and header cells on page 731
§24.3.3 Identifying table headers and footers on page 734

24.3.1 Choosing the table structure model

By default, Mif2Go converts tables to HTML using the HTML table model, and converts
tables to XML using the CALS table model. To specify the CALS table model for HTML
output:

[Tables]
; UseCALSModel = No (HTML default) or Yes (XML defa ult)
UseCALSModel = Yes

24 CONVERTING TABLES TO HTML SPECIFYING TABLE STRUCTURE

ALL RIGHTS RESERVED. MAY 18, 2013 731

When UseCALSModel=Yes , Mif2Go uses the CALS table model to convert tables. This
is the default for generic XML, DocBook XML, and DITA XML.

When UseCALSModel=No, Mif2Go uses the HTML table model to convert tables. This is
the default for HTML and XHTML.

24.3.2 Identifying row and column groups and heade r cells

In this section:
§24.3.2.1 Using browser-dependent HTML tags for tables on page 731
§24.3.2.2 Designating table header cells on page 731
§24.3.2.3 Enumerating table column groups on page 732
§24.3.2.4 Wrapping table row groups on page 732
§24.3.2.5 Positioning table footer rows (deprecated) on page 733
§24.3.2.6 Overriding row and column group settings on page 733

24.3.2.1 Using browser-dependent HTML tags for tab les

Some browsers might not support some HTML tags for tables, such as <colgroup> ,
<th> , <thead> , <tfoot> , and <tbody> . By default, Mif2Go does not use these tags
when converting tables, because browsers that do not support them might crash, or might
not show the tables.

You can specify settings in the [Tables] section to direct Mif2Go to use these HTML
table tags. Table 24-2 shows the settings available. These settings apply to all tables in
your document. To override a setting for one or more tables, see §24.3.2.6 Overriding row
and column group settings on page 733.

24.3.2.2 Designating table header cells

The default for HTML tables generated by Mif2Go is not to use the <th> tag to
distinguish header cells from body cells. However, you can direct Mif2Go to identify
header cells:

[Tables]
; UseTbHeaderCode = No (default, always use <td...>)
; or Yes (use <th...>)
UseTbHeaderCode=No

If you specify UseTbHeaderCode=Yes , Mif2Go generates <th> elements for all header
cells in your tables.

Table 24-2 Browser-dependent HTML tags for tables

[Tables] setting
Default
value Purpose

UseTbHeaderCode No Use <th> for header cells; default is to use <td> for all cells

ColGroupElements No List <colgroup> elements before first table row; enables scope=
"colgroup" , each ColGroup head starts a new <colgroup>

HeadFootBodyTags No Wrap table rows in <thead> , <tfoot> , and <tbody> groups;
enables scope="rowgroup" , each RowGroup head starts a
new <tbody>

SPECIFYING TABLE STRUCTURE MIF2GO USER’S GUIDE

732 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

24.3.2.3 Enumerating table column groups

To group table columns, table rows must be preceded by <colgroup> elements that
determine the extent of each group:

[Tables]
; ColGroupElements = No (default) or Yes (to put ou t <colgroup>
; elements before first table row; needed to enabl e scope="colgroup")
ColGroupElements=No

This setting is intended primarily to support WAI interpretation using the WAI scope
attribute; see §26 Identifying HTML table structure for WAI on page 763 for more
information. However, you can use this setting also to add CSS class attributes.

Mif2Go generates <colgroup> elements, but not <col> elements. The main use of
<col> is to give a column a class attribute, so you can apply column-specific formatting
(borders, shading) in CSS (see §22 Setting up CSS for HTML on page 681). To use
<col> elements, specify them in [TableStartMacros] (see §24.6.1 Invoking macros
around tables on page 748), and supply the needed attributes there. For example:

[TableStartMacros]
sometable=
<colgroup>
 <col span="2" class="LeftSide" />
</colgroup>
<colgroup>
 <col class="UnitPrice" />
 <col class="MinQty" />
</colgroup>

If you provide your own <colgroup> and <col> elements this way, either set
ColGroupElements=No (for all tables), or override ColGroupElements for those
tables where you supply these elements; see §24.3.2.6 Overriding row and column group
settings on page 733.

24.3.2.4 Wrapping table row groups

To group table rows, the rows must be wrapped in elements that distinguish header, footer,
and body rows, and that provide a way to group body rows. By default, Mif2Go wraps
table rows in groups.

To prevent Mif2Go from wrapping table row groups:
[Tables]
; HeadFootBodyTags = Yes (default, wrap table rows in <thead>,
; <tfoot>, and <tbody> groups, to enable scope="row group") or No
HeadFootBodyTags = No

Create header,
footer, and body

sections

When HeadFootBodyTags=Yes , Mif2Go wraps table rows with <thead> , <tbody> ,
and <tfoot> tags, as follows:

 • All rows that are FrameMaker-defined Heading rows, or that are included in the table
header by row count, are wrapped in <thead>...</thead >.

 • All rows that are FrameMaker-defined Footing rows, or that are included in the table
footer by row count, are wrapped in <tfoot>...</tfoot >.

 • All remaining rows are wrapped in <tbody>...</tbody >.

This is intended primarily to support WAI interpretation using the WAI scope attribute;
see §26 Identifying HTML table structure for WAI on page 763 for more information.
However, you can also use this setting also to add CSS class attributes.

24 CONVERTING TABLES TO HTML SPECIFYING TABLE STRUCTURE

ALL RIGHTS RESERVED. MAY 18, 2013 733

24.3.2.5 Positioning table footer rows (deprecated)

W3C specifies that a <tfoot> element, if present, must immediately follow the <thead>
element, before any <tbody> elements; for more information, see:

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.3

By default, that is where Mif2Go puts <tfoot> elements in your HTML output. Any
compliant HTML 4.x or XHTML 1.x browser should support this positioning; require it,
even, and fail to display the table otherwise.

When HeadFootBodyTags=Yes (the default; see §24.3.2.4 Wrapping table row groups
on page 732), but you want to guarantee that, for some legacy viewers, table footers will
appear in HTML output at the bottom of your tables (even though this apparently flies in
the face of the W3C specification), you can also specify FootTagLast=Yes :

[Tables]
; FootTagLast = No (default, put after thead) or Ye s
FootTagLast=Yes

However, this setting is deprecated, and should not be needed for current browsers and
HTML viewers.

24.3.2.6 Overriding row and column group settings

You can override the default value of HeadFootBodyTags or ColGroupElements for
table groups, for tables of a certain FrameMaker format, and for individual tables. You can
even use wildcards to specify tables that are not explicitly grouped:

[TableAccess]
; table ID = method list (overrides default in [Tab les])
; Can override HeadFootBodyTags with HFBTags, ColGr oupElements with
; CGElems.

You can prefix either setting with No to turn that setting off for selected tables. For
example:

[TableAccess]
aa123456=NoHFBTags
ac254360=HFBTags
Group5=HFBTags NoCGElems
FormatA=CGElems

You can turn these settings off if you are creating your own groups (especially for
ColGroupElements , essential if you want to add class attributes). If you turn off a
setting that is required by other settings, the presumption is that you are supplying the
attributes yourself another way, such as via macros or JavaScript.

For example, suppose you have specified ColGroupElements=Yes , but you want to
“roll your own” column groups for table aa123456 , and include CSS class attributes:

[TableStartMacros]
; table ID = text of macro to put after <table> tag before first <tr>
; This is where a set of custom <colgroup> elements would go.
aa123456=
<colgroup>
 <col class="FirstCol"></col>
 <col class="SecondCol"></col>
</colgroup>
<colgroup span="5" class="DataSet">
 <col class="DataFirstCol"></col>
 <col class="DataSecondCol"></col>
 <!-- three missing col tags get class DataSet -->
</colgroup>

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.3

SPECIFYING TABLE STRUCTURE MIF2GO USER’S GUIDE

734 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You would also specify the following:
[TableAccess]
aa123456=NoCGElems

24.3.3 Identifying table headers and footers

In this section:
§24.3.3.1 Specifying default header and footer counts for all tables on page 734
§24.3.3.2 Specifying different header and footer counts for selected tables on
page 735

24.3.3.1 Specifying default header and footer coun ts for all tables

You can specify how many column-header rows, row-header columns, and footer rows the
tables in your document typically have. These settings are intended primarily to support
WAI interpretation; see §26 Identifying HTML table structure for WAI on page 763 for
more information. Table 24-3 shows the settings.

Use these settings to establish document-wide defaults for the number of columns in row
headers, the number of rows in column headers, and the number of rows in table footers.

[Tables]
; TableHeaderCols = count of cols in which to make td -> th,
; counting from left at the start of each row in t he table
TableHeaderCols=0
; TableHeaderRows = count of rows in which to make td -> th,
; counting from the top of the table
TableHeaderRows=0
; TableFooterRows = count of footer rows from botto m of the table,
; significant only when RowGroupIDs = Yes.
TableFooterRows=0

For example, if your tables typically have two FrameMaker-defined header rows, and you
want the first body row in most of them to be considered a header row also, you would set
TableHeaderRows=3 . To designate cells in the first column as row headers, set
TableHeaderCols=1 .

Note: You need the TableHeaderRows and TableFooterRows settings only if some
header/footer rows are misclassified as body rows in FrameMaker. If you
consistently use FrameMaker-defined Header and Footer rows for the headers and
footers in your tables, you do not need either of these settings. For DITA output,
see §15.6.2 Marking table footer rows for future reference on page 511.

Table 24-3 Default counts of table header rows/columns and footer rows

[Tables] setting
Default
value

[TableAccess]
override Purpose

TableHeaderCols 0 HCols N Number of columns (counting from the left)
to use for row headers

TableHeaderRows 0 HRows N Number of rows (counting from the top) to
use for column headers, including rows
designated Header in FrameMaker

TableFooterRows 0 FRows N Number of rows (counting from the bottom)
to treat as footer rows for row-grouping
purposes, including rows designated
Footer in FrameMaker; significant only
when HeadFootBodyTags=Yes

24 CONVERTING TABLES TO HTML SPECIFYING TABLE ATTRIBUTES

ALL RIGHTS RESERVED. MAY 18, 2013 735

24.3.3.2 Specifying different header and footer co unts for selected tables

You can override the default number of header columns, header rows, or footer rows with
[TableAccess] settings; for example:

[TableAccess]
; table ID = method list (overrides default in [Tab les]); can
; include HColsN and HRowsN, where N is the number of cols or rows
; to make td -> th (overrides TableHeaderCols and T ableHeaderRows),
; and FRowsN to override TableFooterRows.
aa132446=HCols1
aa133564=HCols2 HRows3 FRows2
FormatA=FRows1

These [TableAccess] settings have the following effects:

You could use these settings to specify the structure of every table in your document.
However, if all or most of the tables in your document happen to need HCols1 (for
example), it is easier to specify [Tables]TableHeaderCols=1 , and use the
[TableAccess] settings only for exceptions.

If [Tables]UseTbHeaderCode=No (the default setting), even if you specify HCols N or
HRowsN, the affected cells are tagged <td> instead of <th> ; however, all Mif2Go settings
for header cells work just as though the cells were tagged <th> .

24.4 Specifying table attributes
When you set up an HTML or XML conversion project in FrameMaker, Mif2Go includes
default values in the configuration file for certain attributes of HTML table tags, based on
set-up options (see §13.2.2 Choosing set-up options for an HTML or XHTML project on
page 425) and on properties of the tables in your FrameMaker document. You can change
some of these values at set-up time via the Set Up HTML/XML Project dialog.

You can also exclude auto-generated attributes from HTML or XML output, and have
Mif2Go include only those for which you specify explicit values.

In this section:
§24.4.1 Specifying attributes for all tables on page 736
§24.4.2 Overriding attributes for selected tables on page 736
§24.4.3 Assigning a CSS class to a table on page 737
§24.4.4 Using markers to assign attributes to tables, rows, or cells on page 737
§24.4.5 Specifying attributes for table rows on page 737
§24.4.6 Specifying attributes for table cells on page 738
§24.4.7 Eliminating automatically generated attributes on page 739

HCols N Treats cells in the first N columns (counting from the left) as row
headers; tags the cells <th> if [Tables]UseTbHeaderCode=Yes .
See §24.3.2.2 Designating table header cells on page 731).

HRowsN Treats cells in the first N rows (counting from the top) as column
headers; tags the cells <th> if [Tables]UseTbHeaderCode=Yes .
See §24.3.2.3 Enumerating table column groups on page 732).

FRowsN Treats the last N rows (counting from the bottom) as footer rows;
wraps them in a <tfoot> ...</tfoot> element if
[Tables]HeadFootBodyTags=Yes .
See §24.3.2.4 Wrapping table row groups on page 732).

SPECIFYING TABLE ATTRIBUTES MIF2GO USER’S GUIDE

736 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§24.4.8 Adjusting borders, cell spacing, and cell padding on page 739
§24.4.9 Determining the width of table columns on page 741
§24.4.10 Deciding what to do with empty paragraphs in table cells on page 744
§24.4.11 Using shading and color in tables on page 745

See also:
§24.1.2 Understanding precedence of assignment methods on page 728
§24.6.5 Specifying row-group, row, and cell attributes with macros on page 750

24.4.1 Specifying attributes for all tables

You can specify default HTML attributes for most table-related tags, although values for
some attributes might not be recognized by some browsers.

To specify default attributes for all tables:
[Attributes]
; HTML element = attributes (macro) to set

You can specify attributes here for the following tags: body , table , tr , td , th , thead ,
tfoot , and tbody . For example:

[Attributes]
table= rules="rows"
th= align="left" bgcolor="yellow"
td= valign="top"

List all attributes for a given tag on one line, even if that line is very long. Also see §24.6.5
Specifying row-group, row, and cell attributes with macros on page 750.

No border,
cellspacing, or

cellpadding

If you list attributes for the <table> tag, do not include border , cellspacing , or
cellpadding ; if you do, Mif2Go writes duplicate assignments for any of these you
specify in [Attributes] . Use one of the following instead:

 • Settings in the [Tables] section; see §24.4.8 Adjusting borders, cell spacing, and
cell padding on page 739.

 • Attributes in the [TableAttributes] section; see §24.4.2 Overriding attributes for
selected tables on page 736.

Also see §24.4.8.2 Taming border, cellspacing, and cellpadding settings on page 740.

24.4.2 Overriding attributes for selected tables

To specify HTML <table> attributes for a single table or a group of tables:
[TableAttributes]
; Table ID = text (macro) to put inside table eleme nt, overrides
; settings in [Tables] for Border, Spacing, and Pad ding, and
; [Attributes] for table
SomeTable = attribute=" value"

On the left of the = sign you can specify a TableID, a table format name, or a table group
name, and you can use wildcards in the name. See §24.2.2 Creating table groups on
page 729.

On the right of the = sign you can include any arbitrary HTML, even macros (see §28
Working with macros on page 787) and JavaScript (perhaps something like
onmouseover="javascript: dosomething(now)"). Just keep it all on the same
line.

24 CONVERTING TABLES TO HTML SPECIFYING TABLE ATTRIBUTES

ALL RIGHTS RESERVED. MAY 18, 2013 737

For example, to maintain table cell borders more or less as they were in FrameMaker,
rather than use a global setting for all tables (as you would in the [Tables] section or in
the [Attributes] section), you can set the borders based on the table format name:

[TableAttributes]
FormatA= border="0" cellspacing="2" cellpadding="1"

Values you specify in the [TableAttributes] section override corresponding settings
in the [Tables] section, and also override any attributes you assign to the table
element in the [Attributes] section. However, see §24.4.8.2 Taming border,
cellspacing, and cellpadding settings on page 740 for special constraints on specifying
values for border , cellspacing , and cellpadding .

See also:
§24.1.2 Understanding precedence of assignment methods on page 728

24.4.3 Assigning a CSS class to a table

The default CSS class for a table is the FrameMaker table format name. To assign a
different class:

[TableClasses]
; Table format name = class to use (default is base d on name)
; For XML, the class is used as the tag name by def ault.
TableFormatName = classname

You could also use the [TableAttributes] section to assign a different class name to
one or more tables. However, that method is deprecated.

See also:
§22.7.4 Assigning CSS classes to table formats on page 694

24.4.4 Using markers to assign attributes to table s, rows, or cells

If you give a FrameMaker custom marker type a name that starts with Table , Row, or Cell ,
Mif2Go uses the content of the marker for the value of whatever HTML attribute is
designated by the rest of the marker-type name, and puts the attribute and its value in the
generated <table> , <th> , <tr> , or <td> tag. An attribute value assigned with a custom
marker takes precedence over values of the same attribute assigned any other way; see
Table 24-1 on page 728.

For example, to guarantee that a certain table cell is top-aligned in HTML regardless of its
properties in FrameMaker or any properties assigned in the configuration file, you could
insert a marker of type CellValign in the cell in FrameMaker, and make the content of that
marker top . In HTML, the resulting tag for that cell would be <td valign="top"> .

See also:
§25.1.3 Creating custom markers for WAI attributes on page 756
§29.2.4 Using attribute markers for HTML or XML on page 835

24.4.5 Specifying attributes for table rows

You can specify attributes for the <tr> element with any of the following:
Paragraph format
Table format
Attribute marker.

SPECIFYING TABLE ATTRIBUTES MIF2GO USER’S GUIDE

738 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See also:
§24.6.5 Specifying row-group, row, and cell attributes with macros on page 750.

Paragraph format To specify row attributes based on the paragraph format of the content of cells in the row,
you can use settings such as the following:

[HTMLParaStyles]
; RowAttribute inserts the contents of [StyleRowAtt ribute] into the
; start tag of the enclosing table row (ignored outs ide tables).
CellBody2 = RowAttribute

[StyleRowAttribute]
; doc style = attribute to insert in enclosing tabl e row start tag,
; used in addition to other row attributes given und er [Table...]
CellBody2 = bgcolor="yellow"

These settings would assign background color yellow to every row that contains a
CellBody2 paragraph, in every table. To apply the settings only to some tables, you can turn
these settings on and off around specific tables; see §33.2.9.1 Overriding paragraph and
character format properties on page 926.

Table format To base row attributes on the table format:
[TableRowAttributes]
FormatA = bgcolor="yellow"

This setting assigns background color yellow to every row in every FormatA table. See
§24.6.5 Specifying row-group, row, and cell attributes with macros on page 750.

You can use a macro for the assignment in [TableRowAttributes] .

Attribute marker To assign an attribute to an individual row, place a marker of type RowAttr inside the cell,
where Attr is the name of the attribute. The marker content is just the attribute value,
without quotes. For example, to assign a class to an individual row, place a marker of type
RowClass inside any cell in the row. See §29.2.4 Using attribute markers for HTML or
XML on page 835.

24.4.6 Specifying attributes for table cells

To specify attributes for the <td> and <th> elements, you can use any of the following:
Paragraph format
Table format
Attribute marker.

Also see §24.6.5 Specifying row-group, row, and cell attributes with macros on page 750.

Paragraph format If all the cells to which you want to assign a particular attribute or set of attributes contain
text in a particular paragraph format, for example CellBody, you can use settings such as
the following:

[HTMLParaStyles]
; CellAttribute inserts the contents of [StyleCellA ttribute] into
; the start tag of the enclosing table cell (ignored outside tables).
CellBody = CellAttribute

[StyleCellAttribute]
; doc style = attribute to insert in enclosing tabl e cell start tag,
; used in addition to other cell attributes given under [Table...]
CellBody = class="mycellstyle"

See §26.2.2.2 Assigning WAI attributes to paragraph formats on page 768. You can use a
macro for the assignment in [StyleCellAttribute] .

Table format To base cell attributes on the table format:

24 CONVERTING TABLES TO HTML SPECIFYING TABLE ATTRIBUTES

ALL RIGHTS RESERVED. MAY 18, 2013 739

[TableCellAttributes]
FormatA = class="mycellstyle"

See §24.6.5 Specifying row-group, row, and cell attributes with macros on page 750. You
can use a macro for the assignment in [TableCellAttributes] .

Attribute marker To specify attributes for an individual cell, place a marker of type CellAttr inside the cell,
where Attr is the name of the attribute. The marker content is just the attribute value,
without quotes. For example, to assign a CSS class to an individual row, place a marker of
type CellClass inside the cell, and make the marker content the name of the class. See
§29.2.4 Using attribute markers for HTML or XML on page 835.

24.4.7 Eliminating automatically generated attribu tes

Mif2Go automatically generates the following attributes for tables in HTML (but not
XML), based in part on properties of the tables in your FrameMaker document:

border , cellspacing , cellpadding

align , valign

bgcolor

You might not want these automatically generated attributes in HTML output, especially if
you are using CSS to control table appearance.

To exclude automatically generated attributes from HTML output, while preserving any of
the same attributes you specify explicitly in the configuration file or in markers:

[Tables]
; TableAttributes = Yes (default for HTML) or No (d efault for XML)
TableAttributes=No
; CellAlignAttributes = Yes (default for HTML) or N o (default for XML)
CellAlignAttributes=No
; CellColorAttributes = Yes (default for HTML) or N o (default for XML)
CellColorAttributes=No

border,
cellspacing,
cellpadding

When TableAttributes=No , automatically generated border , cellspacing , and
cellpadding attributes are excluded from HTML output; see §24.4.8.3 Excluding
border, cellspacing, and cellpadding attributes on page 741.

align, valign When CellAlignAttributes=No , automatically generated align and valign
attributes based on FrameMaker table properties are excluded from HTML output.

bgcolor When CellColorAttributes=No , automatically generated bgcolor attributes based
on FrameMaker table properties are excluded from HTML output.

Excluded from
XML output

If you are generating XML, by default Mif2Go excludes these automatically generated
attributes; however, Mif2Go still includes any of these attributes that you specify
explicitly in markers or in either of the following sections:

 • [Attributes] ; see §24.4.1 Specifying attributes for all tables on page 736)
 • [TableAttributes] ; see §24.4.2 Overriding attributes for selected tables on

page 736.

See §14.2 Setting up a generic XML project on page 459 and §14.4.3 Eliminating HTML
attributes and tags for generic XML on page 463.

24.4.8 Adjusting borders, cell spacing, and cell p adding

Mif2Go gets a little weird around table-cell borders, spacing, and padding. Unless you
change their values at set-up time via the Set Up HTML/XML Project dialog (see §13.2.2
Choosing set-up options for an HTML or XHTML project on page 425), or suppress their

SPECIFYING TABLE ATTRIBUTES MIF2GO USER’S GUIDE

740 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

appearance entirely (see §24.4.7 Eliminating automatically generated attributes on
page 739), the automatically generated default values for table borders, cell spacing, and
cell padding are as follows:

<table border="3" cellpadding="6" cellspacing="2">

These values are specified in pixels. In FrameMaker, table borders are additive to the cell
settings for the enclosed paragraph format; there is no real equivalent in HTML settings.

In this section:
§24.4.8.1 Specifying default border, cellspacing, and cellpadding values on page 740
§24.4.8.2 Taming border, cellspacing, and cellpadding settings on page 740
§24.4.8.3 Excluding border, cellspacing, and cellpadding attributes on page 741

24.4.8.1 Specifying default border, cellspacing, a nd cellpadding values

To change the default border , cellspacing , and cellpadding values for all tables:
[Tables]
; Border, Spacing and Padding defaults for full tab le
Border=3
Spacing=2
Padding=6

The values for Border , Spacing , and Padding specified here become the values for
HTML <table> attributes border , cellspacing , and cellpadding , respectively.

See also:
§24.4.8.2 Taming border, cellspacing, and cellpadding settings on page 740
§24.4.8.3 Excluding border, cellspacing, and cellpadding attributes on page 741

24.4.8.2 Taming border, cellspacing, and cellpaddi ng settings

You can specify values for border , cellspacing , and cellpadding in any of these
sections:

[Tables]
[Attributes]
[TableAttributes]

However, if you specify values in more than one section for the same attribute (that is,
values that apply to the same set of tables) you might get:

Duplicate attribute values
Missing attribute values.

Duplicate
attribute values

If you specify table border , cellspacing , or cellpadding values in the
[Attributes] section, Mif2Go also includes the Border , Spacing , and Padding
settings in the [Tables] section, resulting in duplicate assignments, which are not valid
HTML. For these attributes, use only the [Tables] section.

Missing attribute
values

If you specify border , cellspacing , or cellpadding values for a table or group of
tables in [TableAttributes] , even if what you list in [TableAttributes] does
not include any corresponding attributes, for that group of tables Mif2Go ignores all of
the following:

 • the Border , Spacing , and Padding settings (if any) in [Tables]

 • any border , cellspacing , or cellpadding values in [Attributes] .

This means that if you set any of border , cellspacing , or cellpadding in the
[TableAttributes] section, you must set them all; the entry in [TableAttributes]
replaces all three. If you set border="0" and you want any cell padding or cell spacing,

24 CONVERTING TABLES TO HTML SPECIFYING TABLE ATTRIBUTES

ALL RIGHTS RESERVED. MAY 18, 2013 741

in the same [TableAttributes] entry you must specify greater-than-zero values for
cellspacing and cellpadding . If you omit an attribute, Mif2Go writes no value at all
for that attribute, in which case the browser default would apply.

For example, if you specify:
[Tables]
Border=0
Spacing=3
Padding=6

[Attributes]
table= cellspacing="2"

For every table you would get a duplicate assignment for cellspacing :
<table border="0" cellspacing="3" cellpadding="6" c ellspacing="2">

Then if you also specify:
[TableAttributes]
FormatA= border="2"

For FormatA tables you would get only a border value:
<table border="2">

24.4.8.3 Excluding border, cellspacing, and cellpa dding attributes

To exclude from HTML or XML output the automatically generated border ,
cellspacing , and cellpadding attributes:

[Tables]
; TableAttributes = Yes (HTML default, to allow abo ve values), or
; No (XML default, to exclude those while keeping a ny attributes
; explicitly added in the .ini or in markers).
TableAttributes=No

When TableAttributes=No , automatically generated border , cellspacing , and
cellpadding attributes (in the [Tables] section) are excluded from HTML or XML
output. However, Mif2Go includes any values you specify for these attributes in markers
or in the following sections:

 • [Attributes] ; see §24.4.1 Specifying attributes for all tables on page 736
 • [TableAttributes] ; see §24.4.2 Overriding attributes for selected tables on

page 736.

See also:
§24.4.8.1 Specifying default border, cellspacing, and cellpadding values on page 740
§24.4.8.2 Taming border, cellspacing, and cellpadding settings on page 740

24.4.9 Determining the width of table columns

By default, table columns are adaptively sized in HTML output. You can change the
default sizing method at set-up time (see §13.2.2 Choosing set-up options for an HTML or
XHTML project on page 425), or specify a different sizing method in the configuration
file. You can also override the default sizing method for particular tables.

In this section:
§24.4.9.1 Specifying a method for determining table column widths on page 742
§24.4.9.2 Overriding the default table column sizing method on page 742
§24.4.9.3 Scaling the width of table columns via fixed sizing on page 742
§24.4.9.4 Maintaining the width of table columns via relative sizing on page 743

SPECIFYING TABLE ATTRIBUTES MIF2GO USER’S GUIDE

742 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§24.4.9.5 Controlling word breaks in table columns on page 744

24.4.9.1 Specifying a method for determining table column widths

To specify a default sizing method for columns in all tables:
[Tables]
; TableSizing = Adaptive, Fixed (pixels), or Percen t (of table)
TableSizing = Adaptive

Adaptive table sizing resizes columns individually to fit content; this is the default setting.
However, if your document includes a series of tables on related subjects, you might want
those tables to have a consistent look. Relative table sizingmaintains the same relative
column widths as in FrameMaker, and adjusts columns proportionally to fit the browser
window. Fixed table sizing also maintains relative column widths, but does not adjust
them to fit the browser window.

This setting affects the width attribute of table cells; it does not affect attributes of the
<table> element itself. To override the default sizing method for particular tables and
table groups, see §24.4.9.2 Overriding the default table column sizing method on
page 742.

Adaptive table
sizing

When TableSizing=Adaptive (the default), Mif2Go does not automatically generate
any width attribute for table cells, so columns are resized to fit content. This setting is
best, unless you have a compelling reason to specify Fixed or Percent .

Relative table
sizing

When TableSizing=Percent ,you get the same relative column widths in HTML that
you have in FrameMaker. Mif2Go computes the width of each column as a percent of the
table width in FrameMaker, and gives each table cell a width attribute with a value
expressed as a percent of the full table width. See §24.4.9.4 Maintaining the width of table
columns via relative sizing on page 743.

Fixed table sizing When TableSizing=Fixed , Mif2Go gives each table cell a width attribute with a
value expressed in pixels. This method might require users to scroll horizontally to see the
whole table.

To specify a DPI value as a basis for determining the number of pixels:
[Tables]
; TableDPI = 96 (for Fixed, gives 624 pixels for 6. 5" page)
TableDPI = 96

The default value of TableDPI is 96. See §24.4.9.3 Scaling the width of table columns
via fixed sizing on page 742.

24.4.9.2 Overriding the default table column sizin g method

To override the default table sizing method for selected tables or table groups:
[TableSizing]
; table ID = type of sizing: Adaptive (default), Fi xed (pixels),
; Percent (of table width in FrameMaker)
TableID = Adaptive

This setting overrides the default method specified by [Tables]TableSizing ; see
§24.4.9.1 Specifying a method for determining table column widths on page 742.

24.4.9.3 Scaling the width of table columns via fi xed sizing

To specify scaled widths for table columns, use the Fixed sizing method, and provide an
appropriate value for TableDPI . For example:

24 CONVERTING TABLES TO HTML SPECIFYING TABLE ATTRIBUTES

ALL RIGHTS RESERVED. MAY 18, 2013 743

[Tables]
TableSizing = Fixed
TableDPI = 96

This combination applies the same multiplier to each column width, for all the tables in
your document. For example, if a column is 1 inch wide in FrameMaker, that column
would be given width “96” in HTML; a 2-inch column would have width “192”, and so
forth. The default setting, TableDPI=96 , produces 624 pixels for a 6.5-inch-wide table,
so the setting approximates the number of pixels.

To scale all columns wider or narrower, specify a correspondingly larger or smaller value
of TableDPI . For example, TableDPI=144 would enlarge the table by 50%.

To scale each column a different amount, pick a value of TableDPI that fits most of the
columns, then adjust the actual column widths in FrameMaker to yield the correct column
width in pixels.

To apply a different column scaling factor to selected tables, see §24.4.2 Overriding
attributes for selected tables on page 736.

24.4.9.4 Maintaining the width of table columns vi a relative sizing

You can specify relative column widths for a table to override the widths specified in your
FrameMaker document. Otherwise, use one of the settings described in §24.4.9.1
Specifying a method for determining table column widths on page 742, such as:

[Tables]
TableSizing = Percent

Suppose you have specified the following settings as defaults for all tables in your
document:

[Tables]
TableSizing = Adaptive
Border = 1
Spacing = 0
Padding = 4

And suppose for one particular table format, TwoCol, you want relative column widths:
[TableSizing]
TwoCol = Percent

This setting would make the width of each column in each TwoCol table a percent of the
width of that particular table; but the setting would not specify the percentage.

If what you really want is for each TwoCol table to have columns of equal width, instead
you would specify:

[TableCellAttributes]
TwoCol = width="50%"

Naturally, this setting works only if all TwoCol tables have exactly two columns.

To set the width of the table itself, you could add:
[TableAttributes]
TwoCol = width="100%"

This setting would eliminate your [Tables] settings for border , cellpadding , and
cellspacing ; so you would have to add them to the attribute list for TwoCol tables:

[TableAttributes]
TwoCol = width="100%" border="1" cellpadding="4" ce llspacing="0"

See §24.4.2 Overriding attributes for selected tables on page 736.

SPECIFYING TABLE ATTRIBUTES MIF2GO USER’S GUIDE

744 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

24.4.9.5 Controlling word breaks in table columns

Sometimes you might have a long word that FrameMaker broke to fit in a table column,
but that the browser did not break, causing problems.

To force the same line breaks in HTML as in FrameMaker:
[Tables]
; TableWordBreak = No (default) or Yes (force line breaks in tables
; when the break happens after a word-break hyphen)
TableWordBreak = Yes

This works best with Fixed columns; see §24.4.9.3 Scaling the width of table columns
via fixed sizing on page 742.

24.4.10 Deciding what to do with empty paragraphs in table cells

Browsers neither shade nor apply borders to table cells that are empty, or that contain only
tags but no content. By default, Mif2Go adds a single nonbreaking space between the
opening and closing tags of each otherwise empty table-cell paragraph. This is appropriate
for HTML and generic XML, but not for DITA XML or DocBook XML.

You can have Mif2Go do any of the following:
Omit empty paragraph tags
Retain images in otherwise empty paragraphs
Provide content for empty paragraphs
Retain empty paragraph tags.

Omit empty
paragraph tags

To omit empty paragraphs from table cells:
[Tables]
; RemoveEmptyTableParagraphs = No (default)
; or Yes (DITA/DocBook default)
RemoveEmptyTableParagraphs = Yes

When RemoveEmptyTableParagraphs=Yes , paragraph tags are omitted for empty
paragraphs in table cells (except for preformatted text, where tags are always preserved).
If a table cell is blank in FrameMaker (contains only empty paragraphs), in HTML output
that cell would consist of only <td></td> .

When RemoveEmptyTableParagraphs=No , the tags for empty paragraphs are retained
in table cells.

Retain images in
otherwise empty

paragraphs

If a table-cell paragraph that contains no text includes an image set to Run into Paragraph,
you can specify that the image should be retained even when you have set
RemoveEmptyTableParagraphs=Yes :

[Graphics]
; RetainRuninImagesForEmptyParagraphs = No (default) or Yes
RetainRuninImagesForEmptyParagraphs=Yes

See §23.5.7 Retaining run-in images in otherwise empty paragraphs on page 713.

Provide content
for empty

paragraphs

To specify text content for otherwise empty paragraphs in table cells:
[Tables]
; EmptyTbCellContent = string to put in otherwise e mpty paragraphs
; in table cells
EmptyTbCellContent =

The default value for EmptyTbCellContent is a single nonbreaking space: .

Retain empty
paragraph tags

To retain paragraph tags but omit text content for empty paragraphs in table cells:

24 CONVERTING TABLES TO HTML SPECIFYING TABLE ATTRIBUTES

ALL RIGHTS RESERVED. MAY 18, 2013 745

[Tables]
RemoveEmptyTableParagraphs = No
EmptyTbCellContent =

When RemoveEmptyTableParagraphs=Yes , EmptyTbCellContent has no effect.

See also:
§21.3.10 Eliminating empty paragraphs in text on page 652

24.4.11 Using shading and color in tables

The row color (or column color) in a FrameMaker table is always one of the following:

 • the main table background color
 • if you specify colors other than As Is on the Shading tab in Table Designer, and set

both First and Next counts to non-zero values:
 – the alternate-row color, if you select Shade By Body Row(s)

 – the alternate-column color, if you select Shade By Column(s)

 • any cell color(s) you have specified via Custom Ruling and Shading.

Mif2Go automatically generates bgcolor attributes for HTML tables based on table
colors in FrameMaker. You can exclude these automatically generated attributes, while
including any bgcolor attributes you specify in the configuration file or in a marker; see
§24.4.7 Eliminating automatically generated attributes on page 739.

You can have Mif2Go apply to HTML tables the same alternate-row or alternate-column
shading you defined in FrameMaker Table Designer:

[Tables]
; UseAltShading = No (default)
; or Yes (alternate row/col shading as in Frame)
UseAltShading=Yes

Mif2Go uses the FrameMaker definition of row type to determine the extent of the table
body, and not the configuration-file settings for heading/footing row counts you can
specify with the [Tables] and [TableAccess] keywords described in §24.3.3
Identifying table headers and footers on page 734.

Mif2Go applies alternate-column colors at the cell level, because <colgroup> is not
widely supported by browsers.

Where you have specified other colors for cells via Custom Ruling and Shading, those
colors take precedence. Otherwise, if UseAltShading=No , and you defined alternate-
row or alternate-column shading in a FrameMaker table, all body rows or columns of that
table receive the color you specified for First on the Shading tab in Table Designer.

Background color With the default setting, UseAltShading=No , if you specify the HTML bgcolor
attribute for the <table> element, that background color applies to all cells. You can have
Mif2Go apply whichever color is appropriate (which might be the alternate color if
UseAltShading=Yes) in <tr> tags, as well as in cell tags:

[Tables]
; UseRowColor = No (default) or Yes (set bgcolor fo r <tr> tag)
; overridden on table ID basis by [TableUseRowColor] settings
UseRowColor=Yes

UseRowColor specifies whether to use <tr> color attributes. When UseRowColor=Yes ,
Mif2Go applies cell <td> color attributes only when the cell color is different from the
row color; this is a size optimization. Setting UseRowColor=Yes might affect the color of
the spaces between cells. If UseAltShading=No , probably that color is determined by

POSITIONING TABLES, TABLE TITLES, AND TABLE FOOTNOTES MIF2GO USER’S GUIDE

746 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

the page or table bgcolor value. However, Mif2Go ignores any value of bgcolor
specified as a table attribute in the configuration file.

If you set UseRowColor=Yes , Mif2Go writes each table row using the color specified in
your FrameMaker document (as modified by settings in [Colors]), provided that color is
not “invisible”, and has a tint greater than 1%. Then, Mif2Go puts out a background color
for each cell, if the cell color or tint is different from the row color or tint. If you specify
UseRowColor=Yes it does not really make sense to specify a table background color; it
will always be overridden.

If UseRowColor=No , all rows are considered to be 100% white; Mif2Go writes out any
cell-level colors or tints that are different from white. If UseRowColor=No , and you
specify a table background color in HTML via bgcolor , you are likely to have trouble
unless the table background color is white (#ffffff), in which case specifying it is
redundant. If you have a cell where you want white, and you have a different table
background color, you get the table background color in the cell instead, because in effect
there is no cell background color.

The setting for UseRowColor applies to all tables in your document. To override this
setting for selected tables:

[TableUseRowColor]
; table ID = Yes or No, overrides UseRowColor

See §24.2 Defining sets of tables on page 728 for ways to specify a subset of tables.

Shading Mif2Go follows all override settings for shading made via the FrameMaker Custom
Ruling and Shading dialog; these settings overrule both the Table Designer settings and
your UseAltShading setting.

Fill color Table fill colors are treated the same as text colors (see §13.7 Defining and mapping colors
for HTML on page 438); the [Colors] mapping works the same way. Mif2Go specifies
an HTML table background color and individual cell overrides as required, including
using the correct heading/footing color for the cells in the table heading/footing rows.
Choose colors and tints such that all the resulting colors are Web-safe. See §13.7.4 Using
Web-safe colors on page 440 for more information.

You can use a table fill color that is just a tint. However, doing so might not give you Web-
safe colors; a 100% tint of a distinct color is often a better idea. But not always; in one test
case, a “highlight” color is applied (via Custom Ruling and Shading) to a set of columns,
and shading is applied (via Table Designer) to alternate rows. What happens to cells that
fall in both a shaded row and a highlighted column? If the alternate-row shading is a tint
(for example, 50%) of the same color used for highlighting, the cells are tinted in the
highlight color. But if the alternate-row shading is a different color, with 100% tint, these
cells are not tinted; they are just highlighted, which looks a bit odd.

Border color The effect on border colors varies by browser; some use cell attributes, some use table
attributes.

24.5 Positioning tables, table titles, and table f ootnotes
In this section:

§24.5.1 Indenting tables on page 747
§24.5.2 Configuring and positioning table titles on page 747
§24.5.3 Eliminating FrameMaker table title variables on page 748
§24.5.4 Positioning table footnotes on page 748

24 CONVERTING TABLES TO HTML POSITIONING TABLES, TABLE TITLES, AND TABLE FOOTNOTES

ALL RIGHTS RESERVED. MAY 18, 2013 747

24.5.1 Indenting tables

Best practice is to use CSS to indent tables in HTML. The technique described in this
section should be used only if you cannot use CSS.

Mif2Go can indent tables to match the indent used in your FrameMaker document.
Because there is no indent attribute for tables in HTML, Mif2Go places a spacer graphic
just before the table; see §23.6.3 Indenting images on page 716.

To use the spacer graphic:
[HTMLOptions]
; UseSpacers = No (default)
; or Yes, use to position tables and graphics
UseSpacers = Yes

See §23.6.3 Indenting images on page 716.

To specify the width of the spacer graphic:
[Tables]
; TableIndents=-1 (based on indent in FM), 0 (none) , or count of
; pixels; overridden for particular tables and group s in
; [TableIndents] section
TableIndents = -1

When TableIndents=-1 (the default), tables are indented the same as in your
FrameMaker document.

When TableIndents=0 , tables are not indented.

When TableIndents= n, where n is a positive integer, tables are indented n pixels.

To override this setting for a particular table or table group:
[TableIndents]
; TableID = number of pixels to indent using PixelS pacerImage
; zero prevents indent, -1 is autoindent (default a ction)
; overrides default set in [Tables]TableIndents for its table or group

For example, to indent table af123456 by 60 pixels, and prevent any tables in file ag (see
§5.3 Identifying files and objects on page 117) from being indented:

[TableIndents]
af123456=60
ag*=0

24.5.2 Configuring and positioning table titles

To specify use and placement of FrameMaker table titles in HTML or XML output:
[Tables]
; TableTitles = 0 to leave alone, 1 to put at top, 2 to put at bottom
TableTitles = 0
; UseInformaltableTag = No (default) or Yes (use wh en there is no
; table caption, as in DocBook)
UseInformaltableTag = No
; InternalTableCaption = Yes (default) or No (put o utside table)
InternalTableCaption = Yes
; TableCaptionTag = tag for internal table captions , default "caption"
TableCaptionTag = caption

Some browsers do not like the <caption> tag inside the <table> tags. To satisfy those
browsers, specify InternalTableCaption=No .

USING MACROS TO CONTROL TABLE PROPERTIES MIF2GO USER’S GUIDE

748 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

24.5.3 Eliminating FrameMaker table title variable s

Generally you will want to eliminate FrameMaker table variables from HTML table titles,
because HTML tables do not break the same way. If your table variables do not have the
usual names, you can identify them here:

[Tables]
; TableContinued = No (default) to remove variable from table titles
TableContinued = No
; TableContVar = name of the variable used for tabl e (continued)
TableContVar = Table Continuation
; TableSheet = No (default) to remove this variable from table titles
TableSheet=No
; TableSheetVar = name of the variable used for tab le (Sheet m of n)
TableSheetVar = Table Sheet

24.5.4 Positioning table footnotes

Table footnotes are handled in the same stream as text footnotes, instead of appearing at
the end of the table. If you must keep table footnotes with the table, either make the table a
file of its own (by splitting before and after it), or use cross references to simulate table
footnotes.

To specify placement of footnotes:
[Tables]
; TableFootnotesWithTable = No (default) or Yes (pu t after separator)
TableFootnotesWithTable=No
; TableFootnoteSeparator = macro between table end tag and footnotes
;TableFootnoteSeparator=

See also:
§21.11.1 Configuring and placing footnotes on page 671
§22.7.5 Assigning CSS classes to text and table footnotes on page 694.

24.6 Using macros to control table properties
You can fine-tune table appearance with settings that insert HTML code in precise
locations in and around tables. This is a good place to use Mif2Go macros (see §28.9.5
Assigning macros to graphics or tables for HTML on page 827). You can even use macros
to wrap a table in another table, to get special effects.

In this section
§24.6.1 Invoking macros around tables on page 748
§24.6.2 Adding space before tables on page 749
§24.6.3 Adjusting space after tables on page 749
§24.6.4 Turning processing on and off around selected tables on page 750
§24.6.5 Specifying row-group, row, and cell attributes with macros on page 750
§24.6.6 Capturing table row and column counts with variables on page 751
§24.6.7 Selectively modifying table text with macros: an example on page 752

24.6.1 Invoking macros around tables

You can specify macros to be invoked before, after, or in place of any table or group of
tables, by assigning macros to a TableID in one of the [Table*Macros] sections:

24 CONVERTING TABLES TO HTML USING MACROS TO CONTROL TABLE PROPERTIES

ALL RIGHTS RESERVED. MAY 18, 2013 749

[TableBeforeMacros]
; TableID = macro to put before table start, top ti tle or indent

[TableStartMacros]
; TableID = macro to put after <table> tag before f irst <tr>
; This is where a set of custom <colgroup> elements would go.

[TableReplaceMacros]
; TableID = macro to use in place of table (and tit le and indent)

[TableEndMacros]
; TableID = macro to put just before </table>

[TableAfterMacros]
; TableID = macro to put after table end or bottom title

When you specify a macro or other HTML code to replace a table, any Before, Start, End,
or After code or macro you assigned to that table in one of the other [Table...Macros]
sections is not used.

24.6.2 Adding space before tables

To add space before all tables:
[TableBeforeMacros]
*=

To add space before a specific table, use its TableID (see §24.2.1 Determining the TableID
on page 729); for example:

[TableBeforeMacros]
ae1001207=

To add space based on the table format, specify the format name (which is shown in the
Table Designer):

[TableBeforeMacros]
FormatA=

Mif2Go checks section [TableBeforeMacros] and uses the first rule that applies to the
current table. This allows you to make exceptions. For example:

[TableBeforeMacros]
ae123456=

InLine=
*=

These settings would result in the following:

 • double spacing before the table with TableID ae123456

 • no spacing before any table with format InLine

 • single spacing before all other tables.

See §24.6.1 Invoking macros around tables on page 748.

24.6.3 Adjusting space after tables

You can use this setting to add space after all tables:
[TableAfterMacros]
*=

Or, you can use more specific wildcards or full TableIDs to adjust space in individual
cases. Mif2Go uses the first entry in the section that matches, so put the exceptions before
the general case:

[TableAfterMacros]
af123456=

USING MACROS TO CONTROL TABLE PROPERTIES MIF2GO USER’S GUIDE

750 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ac*=

*=

These settings result in the following:

 • no spacing after table af123456

 • double spacing after all tables with FileID ac

 • single spacing after all other tables.

See §24.6.1 Invoking macros around tables on page 748.

24.6.4 Turning processing on and off around select ed tables

Suppose you use two-cell tables in FrameMaker to hold notes and warnings, with an icon
in the first cell and text in the second cell. And suppose for HTML output you want to strip
the table structure, discard the icon, and keep just the text from the second cell.

You can use Before and After macros for the table format to turn on and off the
StripTables setting (see §24.7.2 Removing table-specific tags from selected tables on
page 754) for the table format in question; in this example, NoteTable:

[TableBeforeMacros]
NoteTable = <$$[Tables]StripTables=1>

[TableAfterMacros]
NoteTable = <$$[Tables]StripTables=0>

Stripping a table removes only the table code; the content remains unaltered, so you still
have both icon and text.

To exclude the icon(s) from HTML output, suppose you have established a graphics group
for such icons (see §23.5.1.4 Creating named groups of graphics on page 710), with group
name NoteIcons:

[GraphReplaceMacros]
NoteIcons = <$$nothing=1>

See §23.4.5 Omitting graphics from HTML or XML output on page 708.

24.6.5 Specifying row-group, row, and cell attribu tes with macros

You can specify HTML code to add attributes at precisely defined locations inside table
row groups, rows, and cells. These attributes override the same attributes specified in the
[Attributes] section:

Row-group attributes
Row attributes
Cell attributes.

Row-group
attributes

The following sections let you control attributes of table row groups, and allow you to use
macros in a row-group element: <thead> , <tfoot> , or <tbody> .

[TableHeaderAttributes]
; table ID = text (macro) to put inside <thead>,
; overrides [Attributes] for <thead>

[TableFooterAttributes]
; table ID = = text (macro) to put inside <tfoot>,
; overrides [Attributes] for <tfoot>

[TableBodyAttributes]
; table ID = = text (macro) to put inside <tbody>,
; overrides [Attributes] for <tbody>

For these overrides to take effect, you must also specify either of the following:

24 CONVERTING TABLES TO HTML USING MACROS TO CONTROL TABLE PROPERTIES

ALL RIGHTS RESERVED. MAY 18, 2013 751

 • for all tables, any one of:
[Tables]
HeadFootBodyTags = Yes
AccessMethod = Scope
ScopeRowGroup = Yes

 • for individual tables or table groups, any one of:
[TableAccess]
TableID = HFBTags
TableID = Scope
TableID = ScopeRowGroup

See also:
§24.3.2.4 Wrapping table row groups on page 732
§24.3.2.6 Overriding row and column group settings on page 733.

Row attributes The following sections let you control row attributes for all the rows in a table (or group of
tables), and use macros in a row before and after other content. See also §26.1 Identifying
table rows and columns on page 763 for ways to identify table rows for WAI (Web
Accessibility Initiative) markup.

[TableRowAttributes]
; table ID = text (macro) to put inside <tr>, overr ides [Attributes]

[TableRowStartMacros]
; table ID = text of macro to put on line after <tr >

[TableRowEndMacros]
; table ID = text of macro to put before </tr>

See also:
§24.4.5 Specifying attributes for table rows on page 737

Cell attributes The following sections let you control cell attributes for all the cells in a table (or group of
tables), and use macros in a cell before and after other content.

[TableCellAttributes]
; table ID = text (macro) to put inside <td>, overr ides [Attributes]

[TableCellStartMacros]
; table ID = text of macro to put after <td>

[TableCellEndMacros]
; table ID = text of macro to put before </td>

24.6.6 Capturing table row and column counts with variables

Two predefined macro variables allow you to access the numbers of columns and rows in
the current table:

<$$_tblcols> Count of columns in the current table
<$$_tblrows> Count of rows in the current table

You can use these variables in macro expressions that manipulate or make use of table
properties. For example, to add a rule above and below each table by placing the rule in an
extra row that spans all columns:

[TableStartMacros]
*=<tr><td colspan="<$$_tblcols>"><hr></td></tr>

[TableEndMacros]
*=<tr><td colspan="<$$_tblcols>"><hr></td></tr>

See also:
§24.6.1 Invoking macros around tables on page 748

USING MACROS TO CONTROL TABLE PROPERTIES MIF2GO USER’S GUIDE

752 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§28.3.4 Using predefined macro variables on page 800

24.6.7 Selectively modifying table text with macro s: an example

Suppose the following:

 • Some columns in your tables have text that you want bold in HTML, even though in
FrameMaker the text is not differentiated with a character format or an override.

 • The columns in question all have column headings that include the word “Fields”.
 • The paragraph format for table body cells is CellBody, and the format for column

headings is CellHeading.

To achieve selective bolding, you can use macros to assign different class attributes to
paragraph format CellBody, based on the content of each column heading.

Use macro
variables to

identify table
columns

Create two macro variables to hold column numbers; for example, $$ColNum and
$$FieldColNum . $$ColNum counts the columns in a table, and $$FieldColNum holds
the column number of any column whose heading contains the word “Fields”.

If you are not using table macros for any other purpose, you can use a wildcard to specify
the following macros for all tables:

[TableStartMacros]
; Reset $$FieldColNum for each table:
*=<$$FieldColNum = 0>

[TableRowStartMacros]
; Reset $$ColNum for each table row:
*=<$$ColNum = 0>

[TableCellStartMacros]
; Increment $$ColNum for each table column:
*=<$$ColNum++>

See also:
§24.2.3 Using wildcards to specify table sets on page 730
§24.6.1 Invoking macros around tables on page 748
§28.3 Using macro variables on page 795

Assign coding
options to table-

cell formats

Turn off the HTML paragraph tag that Mif2Go would otherwise automatically assign to
CellBody, and specify macro code for both CellBody and CellHeading:

[HTMLParaStyles]
; CellBody formatting will be replaced by macro cod e:
CellBody=NoPara CodeStart CodeEnd
; CellHeading will hold column-heading content to b e checked,
; and also provide the code for checking:
CellHeading=CodeStore CodeAfter

[ParaStyleCodeStart]
; Assign a macro to CellBody, so the code can excee d one line:
CellBody=<$SelectClass>

[ParaStyleCodeEnd]
; Provide a closing tag for the class attribute:
CellBody=</p>

[ParaStyleCodeAfter]
; Use the CodeStore property assigned to CellHeadin g to
; capture the content of the current CellHeading pa ragraph,
; and also assign a macro, so the code can exceed o ne line:
CellHeading=<$$CellHeading><$CheckColHead>

24 CONVERTING TABLES TO HTML CONVERTING TABLES TO PARAGRAPHS

ALL RIGHTS RESERVED. MAY 18, 2013 753

See also:
§21.3.6 Stripping paragraph properties on page 650
§28.3.2 Assigning values to macro variables on page 797
§28.9.3 Surrounding or replacing text with code or macros on page 822
§28.3.7.2 Inserting code with the CodeStore property on page 804

Check for
columns that
need bolding

Use a conditional expression to check the content of each CellHeading paragraph:
[CheckColHead]
; Use string operator "contains" to check the conte nt;
; if the text sought is present, flag the column:
<$_if ($$CellHeading contains "Fields")>

<$$FieldColNum = $$ColNum>
<$_endif>

Select a class
attribute based on

the column flag

To select a class attribute for CellBody, compare $$ColNum and $$FieldColNum in a
conditional expression:

[SelectClass]
<p class="<$_if ($$FieldColNum == $$ColNum)>CellBod yBold

<$_else>CellBody
<$_endif>">

See also:
§28.6.4 Using control structures in expressions on page 815
§28.6.5 Specifying substrings in expressions on page 817

24.7 Converting tables to paragraphs
To use content stored in tables as ordinary non-table content, you can direct Mif2Go to
remove table-specific tagging from tables in your document, leaving just cell content. You
might need to do this if you have a long table and you want to split it across several HTML
files, but not as a table; or if you are preparing output to be displayed in a browser that
does not support HTML table tags.

In this section:
§24.7.1 Removing table-specific tags from all tables on page 753
§24.7.2 Removing table-specific tags from selected tables on page 754
§24.7.3 Removing table-specific tags from complex tables on page 754

See also:
§24.6.4 Turning processing on and off around selected tables on page 750

24.7.1 Removing table-specific tags from all table s

To strip all tables of table-specific elements:
[Tables]
; StripTable = No (default) or Yes to remove all ta ble tagging while
; retaining cell content.
StripTable = Yes

This setting applies to all tables in your document.

When StripTable=Yes , Mif2Go writes out the content of each table cell in row order
(top to bottom) then column order (left to right), preserving paragraph and character
formats.

By default, Mif2Go also sets the following file-splitting options:

CONVERTING TABLES TO PARAGRAPHS MIF2GO USER’S GUIDE

754 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[Tables]
; AllowTbSplit = No (default)
; or Yes (allow file split for head in table)
AllowTbSplit = Yes
; AllowTbTitle = No (default) or Yes (allow title f rom head in table)
AllowTbTitle = Yes

You can override these settings; see §18.2.1 Designating split points on page 586 and
§18.4.2.2 Assigning a title with a paragraph format on page 595.

24.7.2 Removing table-specific tags from selected tables

To strip tags only from selected tables, you can use either of the following methods:
Strip table tags with configuration macros
Strip table tags with Config markers.

Strip table tags
with configuration

macros

To remove table tags by assigning table macros to a table ID:
[TableBeforeMacros]
TableID = <$$[Tables]StripTable=1>

[TableAfterMacros]
TableID = <$$[Tables]StripTable=0>

See §24.6.1 Invoking macros around tables on page 748 and §24.6.4 Turning processing
on and off around selected tables on page 750.

Strip table tags
with Config

markers

To remove table tags from individual tables, you can surround each table with Config
markers:

See §33.2.8 Overriding fixed-key configuration settings on page 924.

24.7.3 Removing table-specific tags from complex t ables

For complex tables, if the raw result of [Table]StripTable=Yes is not satisfactory,
you might need to use macros to control placement and appearance of content. You can
use table macros for this purpose, even though the content is not displayed with table tags
in the output; see §24.6 Using macros to control table properties on page 748. You can
also use format-related macros; see §28.9.3 Surrounding or replacing text with code or
macros on page 822.

(No illustrations)

Config marker content Marker placement
[Tables]StripTable=1 Before the table anchor
[Tables]StripTable=0 After the table

ALL RIGHTS RESERVED. MAY 18, 2013 755

25 Generating WAI markup for HTML

Mif2Go supports WAI (Web Accessibility Initiative) guidelines for authoring HTML
content intended to be accessible to people with disabilities. Topics include:

§25.1 Comparing Mif2Go markup methods for WAI on page 755
§25.2 Applying WAI markup to images on page 756
§25.3 Applying WAI markup to links on page 758
§25.4 Applying WAI markup to tables on page 759

See also:
§29 Working with FrameMaker markers on page 831

For more information about WAI, see:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/

To test the effectiveness of the WAI attributes you specify using Mif2Go , see:
http://www.w3.org/WAI/eval/Overview.html

25.1 Comparing Mif2Go markup methods for WAI
In this section:

§25.1.1 Choosing a markup method for WAI attributes on page 755
§25.1.2 Using paragraph formats for WAI attributes on page 755
§25.1.3 Creating custom markers for WAI attributes on page 756

25.1.1 Choosing a markup method for WAI attributes

Mif2Go provides the following ways to specify WAI attributes for HTML:

 • Assign a Mif2Go property that represents a WAI attribute to a FrameMaker paragraph
format, and assign a value to the property, in the configuration file. This method is
supported primarily for table markup.

 • Assign a WAI attribute to a FrameMaker paragraph format in the configuration file,
and make the paragraph content the attribute value. This method is supported for a
limited number of WAI attributes.

 • Use a custom FrameMaker marker named after a WAI attribute, and make the marker
text the attribute value.

 • In FrameMaker 7.0 and later versions, for graphics in anchored frames, use the
FrameMaker Object Attributes dialog to specify attributes.

Macros and macro variables can be referenced in the attributes, both from markers and
from text identified as attribute content.

25.1.2 Using paragraph formats for WAI attributes

To use a paragraph-format method, you must dedicate a different paragraph format to each
WAI attribute or combination of attributes that you need in your document. You can use a
paragraph format for either of the following:

 • a single attribute, and use multiple paragraphs (each with a different format) to apply
more than one attribute to the same item in your document;

 • a combination of attributes, and use a single paragraph to apply the combination.

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www.w3.org/WAI/eval/Overview.html

APPLYING WAI MARKUP TO IMAGES MIF2GO USER’S GUIDE

756 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You must include in the FrameMaker paragraph catalog all the paragraph formats you use
for this purpose.

To hide WAI
markup, use

conditions

Using a different paragraph format for material that does not actually call for a different
format in printed versions can unduly complicate document maintenance. To get around
this drawback, you can use the following variation:

1. Apply the WAI paragraph format to an extra paragraph you insert just before the item
that requires the markup (or in the same cell, if in a table).

2. Apply a condition, so you can hide the content of that extra paragraph in printed
versions of the document.

3. In the configuration file specify the Delete property for the paragraph format, to
exclude the extra paragraph from HTML output.

Assign WAI
attributes with

properties

You assign Mif2Go properties to paragraph formats in the [HTMLParaStyles] section,
and you assign values to the attributes represented by those properties in [StyleCell*]
sections. WAI table-cell attributes can be assigned this way; see §26.2.2 Using paragraph
formats for table-cell attributes on page 767.

Use special
paragraphs for

WAI attribute
values

In the [HTMLParaStyles] section you assign properties that represent WAI attributes
(and usually also the Delete property) to a paragraph format; Mif2Go uses the content of
the paragraph as the value of the attribute.

You can use an existing paragraph format for this purpose, and omit the Delete property,
if the format conforms to all of the following:

 • The paragraph format is not used for unrelated purposes elsewhere in the document.
 • Each paragraph with that format already contains text suitable for the attribute value.
 • Each paragraph with that format appears just before an item that needs the attribute

(with no intervening items of the same type), or in a table cell that needs the attribute.

25.1.3 Creating custom markers for WAI attributes

You can create custom FrameMaker markers to insert in (or just before) items that require
WAI markup.

Marker name is
significant

If you give a custom marker type a name that starts with Table , Cell , Graph , or Link ,
Mif2Go automatically makes the marker text the value of whatever HTML attribute is
named by the rest of the marker-type name, and puts the attribute and its value in the
generated <table> , <th> , <td> , , or <a> tag. This method has two advantages:

 • Markers do not require entries in the configuration file.
 • Markers do not clutter your paragraph catalog.

Series of markers The text of a FrameMaker marker is limited to 256 characters. Mif2Go gets around that
restriction by concatenating all markers for the same attribute that are inserted before the
next item to which they apply. You can just add more markers of the same type, and
continue the content. However, if the text of the attribute is long (such as a summary for a
large and complex table), you might not want to chop it up into three or four markers; in
that case, use one of the other markup methods to apply the attribute, or use macros.

25.2 Applying WAI markup to images
In this section:

§25.2.1 Following WAI guidelines for images on page 757
§25.2.2 Assigning WAI image attributes with dedicated formats on page 757
§25.2.3 Assigning WAI image attributes with custom markers on page 757

25 GENERATING WAI MARKUP FOR HTML APPLYING WAI MARKUP TO IMAGES

ALL RIGHTS RESERVED. MAY 18, 2013 757

§25.2.4 Assigning WAI image attributes via the Object Attributes dialog on page 758

25.2.1 Following WAI guidelines for images

The WAI guidelines for images are intended to provide a text equivalent for every non-text
element. For more information, see:

http://www.w3.org/TR/WCAG10-HTML-TECHS/#image-text-equivalent

Mif2Go provides settings for the following attributes:

You can provide alt and title attributes for an image either with a paragraph format or
with a custom marker.

25.2.2 Assigning WAI image attributes with dedicat ed formats

You can designate a paragraph format whose content will be the text alternative for the
next anchored frame in a flow. For example, suppose you use paragraph format Figname
for this purpose:

[HTMLParaStyles]
; Alt makes current para content into alt attribute for next img
Figname=Alt Delete

Somewhere just before the image you would insert a Figname paragraph containing the
name you want displayed as an alternate for the graphic image. Probably you would make
the Figname paragraph conditional so it would not appear in print. The Delete property
would exclude the paragraph (as such) from HTML output; HTML source would show the
text of the Figname paragraph as the value for the alt attribute of the element.

For example, if you were to place a Figname paragraph with the content “Cat in basket”
just before the image, in some browsers moving the pointer over the image would display
this content in a tooltip. However, in most current browsers, the tooltip shows the content
of the title attribute rather than the alt attribute; and the alt text is displayed only
when the image is not displayed or is missing.

You can use a similar strategy to provide content for the longdesc attribute of the
element; for example, using paragraph format Figdesc for this purpose:.

[HTMLParaStyles]
; Longdesc makes current para content into longdesc attribute
Figdesc = Longdesc Delete

The Delete property would exclude the paragraph from normal HTML text output.

25.2.3 Assigning WAI image attributes with custom markers

You can use markers to provide text equivalents of graphic images. The attribute value in
the text of a marker applies to the next anchored frame in a flow after the marker. Each
marker name must start with Graph and end with the name of the attribute. Valid marker
names are as follows

alt Short text equivalent of an image.

longdesc Path to an HTML file containing text that describes the image.

title Image description, for user agents that do not support longdesc .

GraphAlt Short text equivalent of image; adds alt attribute.

GraphLongdesc Path to file with image description; adds longdesc attribute.

GraphTitle Long text description of image; adds title attribute.

http://www.w3.org/TR/WCAG10-HTML-TECHS/#image-text-equivalent

APPLYING WAI MARKUP TO LINKS MIF2GO USER’S GUIDE

758 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For example, to provide an alt attribute for each graphic:marker

1. Create a FrameMaker marker type named GraphAlt .

2. For each graphic image:
2.1. Place a GraphAlt marker just before the image.
2.2. Type the text equivalent in the Marker dialog.
2.3. Click New Marker .

25.2.4 Assigning WAI image attributes via the Object Attributes dialog

FrameMaker 7.0 and later versions provide a way to assign attributes to anchored frames.
Select an anchored frame and choose Object Properties... from the right-click context
menu or the FrameMaker Graphics menu. In the Object Properties dialog, click
Object Attributes... to open the Object Attributes dialog. Mif2Go includes in HTML
output any image attributes you specify in this dialog. See:

§23.7 Specifying HTML image attributes on page 718.
§31.4.2 Overriding graphics settings with FrameMaker object attributes on page 896

25.3 Applying WAI markup to links
In this section:

§25.3.1 Following WAI guidelines for links on page 758
§25.3.2 Assigning WAI link attribute values with dedicated formats on page 758
§25.3.3 Assigning WAI link attribute values with custom markers on page 759

25.3.1 Following WAI guidelines for links

The HTML title attribute is commonly used in links, where it “hides” the value of the
href attribute that is otherwise shown, replacing it with a text description of the link
destination. For more information about WAI guidelines for links, see:

http://www.w3.org/TR/WCAG10-HTML-TECHS/#links

You can provide a title attribute for a link either with a paragraph format or with a
custom marker; and either may reference macro variable <$$_linksrc> .

25.3.2 Assigning WAI link attribute values with de dicated formats

You can designate a paragraph format whose content will be the text for the following
link. For example, suppose you use paragraph format Linkname for this purpose:

[HTMLParaStyles]
; LinkTitle makes current para content into title a ttr for next link
Linkname = LinkTitle Delete

In your FrameMaker document, just before the link you would insert a Linkname
paragraph containing the name you want displayed for the link destination.Probably you
would make the Linkname paragraph conditional so it would not appear in print. The
Delete property would exclude the paragraph (as such) from HTML output; HTML
source would show the text of the Linkname paragraph as the value for the title=
attribute of the <a> tag.

You can use a similar strategy to assign a CSS class to the next link. For example, to use
paragraph format LinkCSS for this purpose:

http://www.w3.org/TR/WCAG10-HTML-TECHS/#links

25 GENERATING WAI MARKUP FOR HTML APPLYING WAI MARKUP TO TABLES

ALL RIGHTS RESERVED. MAY 18, 2013 759

[HTMLParaStyles]
; LinkClass makes current para content into class attribute
; used to set the link display properties in CSS.
LinkCSS = LinkClass Delete

The Delete property would exclude the paragraph from normal HTML text output.

25.3.3 Assigning WAI link attribute values with cu stom markers

You can use markers to provide text alternatives (and other attributes) for links. The
attribute applies to the next link after the marker. The marker name must start with Link
and end with the name of the attribute:

For example, to provide a title attribute for each link:

1. Create a FrameMaker marker type named LinkTitle (see §29.2 Adding custom marker
types on page 832).

2. For each link:
2.1. Place a LinkTitle marker just before the link.
2.2. Make the content of the marker the text you want for the title.

To assign a CSS class to a link, see §19.2.2.1 Assigning a link class with a marker on
page 610.

25.4 Applying WAI markup to tables
In this section:

§25.4.1 Following WAI guidelines for tables on page 759
§25.4.2 Choosing a WAI markup method for tables on page 760
§25.4.3 Providing table summary and title information on page 760
§25.4.4 Identifying table row and column information on page 762

See also:
§26 Identifying HTML table structure for WAI on page 763
§27 Marking HTML table cells for WAI on page 775

25.4.1 Following WAI guidelines for tables

You can assign WAI attributes to tables, and within tables to rows, columns, and header
cells. Mif2Go supports WAI guidelines for the following kinds of table markup:

 • Providing summary information (WAI guidelines 5.1 and 5.2).
 • Identifying row and column information (WAI guidelines 5.5 and 5.6).

Mif2Go provides settings for the following attributes:

LinkClass CSS class for the next link.

LinkTitle Descriptive title for the link destination.

abbr Abbreviation for the contents of a cell.

axis Conceptual category of cell content, provided for queries.

headers References to header-cell IDs.

id ID (name) of a header cell.

scope Rows or columns covered by a header cell.

APPLYING WAI MARKUP TO TABLES MIF2GO USER’S GUIDE

760 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Mif2Go automatically generates markup for the following (non-WAI) attributes, based on
row and column straddling in your FrameMaker tables:

For information about WAI table guidelines, see:
http://www.w3.org/TR/WCAG10-HTML-TECHS/#data-tables

For information about using WAI table attributes, see:
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4

25.4.2 Choosing a WAI markup method for tables

For WAI markup that affects the table as whole, probably it does not matter which markup
method you choose (see §25.1 Comparing Mif2Go markup methods for WAI on
page 755). However, for markup that affects individual rows, columns, or cells, the “best”
(most practical) method depends on the following characteristics of the tables in your
FrameMaker document:

 • Number (are you converting a single table, 10 tables, or 1,000 tables?)
 • Size (are most tables on the order of two rows by three columns, or 2,000 rows by 15

columns?)
 • Diversity (do most tables have the same structure, or do they vary widely?)
 • Complexity (do some tables have more than two dimensions of data, or multiple row

or column headers, and do some tables have header or body cells that span more than
one row or column?)

For large, complex tables you will have a lot of work to do no matter which method(s) you
choose. Here are some of the considerations:

 • Markers have the advantage that displaying them in FrameMaker does not cause a
table to balloon into something monstrous and unwieldy. On the other hand, markers
can be difficult to work with because of the tiny dialog FrameMaker provides, and
because each marker is limited to 256 characters.

 • Applying conditional text to special paragraphs containing attribute values, or to extra
paragraphs in formats to which attributes are assigned, might seem easier than using
markers. However, applying conditions to text in individual cells in FrameMaker
tables can be problematic. And when you Show All , many of your tables might
become unreadable.

 • A different paragraph format for the text in each group of cells that needs a particular
combination of WAI attributes can work well if your document contains just one large
table; but might become a major annoyance if your document contains a lot of tables.
Each of those paragraph formats must be unique in your document, and all of them
have to be in the catalog.

25.4.3 Providing table summary and title informati on

In this section:
§25.4.3.1 Using a table attribute for summary or title on page 761
§25.4.3.2 Using a dedicated format for table summary or title on page 761
§25.4.3.3 Using a custom marker for table summary or title on page 762

summary Description of a table’s purpose and structure.

title Brief description of table.

colspan Number of columns spanned (straddled) by a cell.

rowspan Number of rows spanned (straddled) by a cell.

http://www.w3.org/TR/WCAG10-HTML-TECHS/#data-tables
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4

25 GENERATING WAI MARKUP FOR HTML APPLYING WAI MARKUP TO TABLES

ALL RIGHTS RESERVED. MAY 18, 2013 761

25.4.3.1 Using a table attribute for summary or ti tle

Under [TableAttributes] specify the summary or title attribute for the table’s
TableID, and give the attribute a value:

[TableAttributes]
TableID= summary=" Text of summary for this table"
TableID= title=" Text of title for this table"

For example, for the summary attribute you would specify something like this:
[TableAttributes]
aa123456= summary="This is the text of my summary f or this table"

where aa123456 consists of the FileID from mif2go.ini (see §5.3.4 Working with
Mif2Go FileIDs on page 119) followed by the TableID from FrameMaker (see §24.2.1
Determining the TableID on page 729).

You could also specify the following:
[TableAttributes]
aa123456= title="My Title Attribute" summary="My su mmary info"

The attributes and values must fit all on one line (of any length) in the configuration file.
You could specify a macro instead, and use any number of lines:

[TableAttributes]
aa123456= <$attr4aa123456>

[Attr4aa123456]
title="I can put as long a title attribute here as I want"
summary="This is my lengthy and informative table s ummary"

The line breaks in the macro are preserved in the HTML output. See §28 Working with
macros on page 787 for more information.

25.4.3.2 Using a dedicated format for table summar y or title

You can designate a paragraph format whose content will be the value of the summary
attribute for the next table in your document. For example, suppose you use paragraph
format TblSum for this purpose:

[HTMLParaStyles]
; Summary makes current para content into summary for table tag
TblSum=Summary Delete

Somewhere in each table (or just before the table) you would insert a TblSum paragraph
containing the summary for that table. Probably you would make that paragraph
conditional so it would not appear in print. The Delete property would exclude the
paragraph (as such) from HTML output; HTML source would show the text of the TblSum
paragraph as the value for the summary attribute of the <table> element.

If some tables in your document have no captions (FrameMaker table titles), you might
want to use the HTML title attribute also, to provide a title. Designate a paragraph
format whose content will be the title for any table in which (or just before which) you
place an instance of the paragraph. For example, suppose you use paragraph format TblTtl
for this purpose:

[HTMLParaStyles]
; TableTitle makes current para content into title attr for table
TblTtl=TableTitle Delete

The content of the TblTtl paragraph would become the text of the title attribute of the
HTML <table> tag.

APPLYING WAI MARKUP TO TABLES MIF2GO USER’S GUIDE

762 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

25.4.3.3 Using a custom marker for table summary o r title

You can use a custom marker to provide a summary for a table, and another custom
marker to provide a title. Each marker name must start with Table and end with the name
of the attribute:

For example, to add a summary attribute:

1. Create a FrameMaker marker named TableSummary .

2. Place a TableSummary marker somewhere in the table, or just before the table.

3. Type the content of the summary in the Marker dialog, as shown in Figure 25-1.

4. Click New Marker .

A TableSummary marker placed in the “Server configuration” table shown in Figure 25-1
might have the content shown in the Marker Text box.

Figure 25-1 TableSummary marker

The HTML source would show the <table> tag as follows (omitting display attributes):
<table summary="The Server Configuration table show s the
identification number and description for each para meter for each
server module.">

Note: If the content of a TableSummary or TableTitle marker includes characters < or >,
these characters must be escaped, thus: \< or \> ; otherwise the table might not be
rendered correctly in HTML.

25.4.4 Identifying table row and column informatio n

Grouping cells logically for non-visual interpretation, and associating each cell in a table
with the actual or virtual header information that informs the content of that cell, can
require a lot of markup. Methods for using Mif2Go to generate WAI table-cell attributes
are described in the following sections:

§26 Identifying HTML table structure for WAI on page 763
§27 Marking HTML table cells for WAI on page 775
(No tables)

TableSummary Summary attribute for table (maximum 256 characters).

TableTitle Title attribute for a table that has no <caption> .

ALL RIGHTS RESERVED. MAY 18, 2013 763

26 Identifying HTML table structure for WAI

This section describes how to use Mif2Go configuration settings to identify table structure
for WAI support. Topics include:

§26.1 Identifying table rows and columns on page 763
§26.2 Associating table cells with header cells on page 766

See also:
§25 Generating WAI markup for HTML on page 755
§27 Marking HTML table cells for WAI on page 775

26.1 Identifying table rows and columns
In this section:

§26.1.1 Developing a strategy for row and column markup on page 763
§26.1.2 Comparing scope and id/headers accessibility methods on page 763
§26.1.3 Specifying a default accessibility method on page 764
§26.1.4 Overriding the default accessibility method on page 765

26.1.1 Developing a strategy for row and column ma rkup

Mif2Go supports two markup methods for associating table-cell content with row and
column header information; you can mix the two approaches:

Strategy for WAI
table markup

To keep WAI table markup as simple as possible, consider using this strategy:

1. Decide on a basic policy with respect to accessibility method for all tables in your
document, and set [Tables]AccessMethod accordingly; see §26.1.3 Specifying a
default accessibility method on page 764.

2. If there are repeating sets of columns or rows in some tables, make the appropriate
top/left cells in those tables ColGroup or RowGroup cells; see §26.2.1 Specifying
group properties for header cells on page 766.

3. Test the result, and if necessary use fine-control settings to correct any problems that
might result from complex or unusual table structures; see §26.2 Associating table
cells with header cells on page 766.

4. Add abbr and axis attributes as needed; see §26.2.2.2 Assigning WAI attributes to
paragraph formats on page 768 and §26.2.4 Assigning table-cell attribute values with
custom markers on page 772.

26.1.2 Comparing scope and id/headers accessibilit y methods
scope method The scope method works well for simple tables. Mif2Go places a single attribute in each

column-header or row-header cell, to apply that header to the rest of the cells in the same
column or row.

scope Indicates the set of body cells to which a header cell applies.

id /headers Gives each header cell an id= uniqueID attribute.
Gives each cell to which that header cell applies a headers=
uniqueID attribute.

IDENTIFYING TABLE ROWS AND COLUMNS MIF2GO USER’S GUIDE

764 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

id / headers
method

The id /headers method is better for complex tables. Mif2Go names each header cell
(gives it an id= name attribute) and also indicates that cell’s applicability by specifying the
headers= name attribute in every affected cell.

Both methods For some table structures it can also make sense to mix methods, such as using the
id /headers method for columns and the scope method for rows.

26.1.3 Specifying a default accessibility method

In this section:
§26.1.3.1 Establishing a basic policy for table accessibility on page 764
§26.1.3.2 Applying the scope method to all tables on page 764
§26.1.3.3 Applying the id/headers method to all tables on page 765

26.1.3.1 Establishing a basic policy for table acc essibility

You can set a basic policy for adding accessibility to tables, by specifying a default
method for associating table-cell content with row and column header information:

[Tables]
 ; AccessMethod = None (default), Scope, or IDheade rs
 AccessMethod=None

If you specify a default method, Mif2Go applies that method to all tables in your
document. To specify a different method for selected tables, table formats, or table groups,
you can indicate overrides in the [TableAccess] section; see §26.1.4 Overriding the
default accessibility method on page 765.

If you specify group properties for some or all header cells (see §26.2.1 Specifying group
properties for header cells on page 766), AccessMethod works in concert with these
properties.

If you do not specify a default method, or if you specify AccessMethod=None , you can
still apply one or both methods to all tables by specifying settings for columns, rows,
column groups, and row groups; see §27 Marking HTML table cells for WAI on page 775.
This is a good way to mix the two methods, because you can treat columns and rows
differently.

Note: If you specify a default method for all tables, do not also use a different setting, or
a marker, to apply the same method to an individual table; the result is duplicate
attribute assignments. See §13.16.5 Avoiding redundant attribute assignments in
tables on page 456.

26.1.3.2 Applying the scope method to all tables

When AccessMethod=Scope , Mif2Go supplies the following WAI attributes for every
table:

 • scope="colgroup" for any header cells marked ColGroup ; automatically sets
ColGroupElements=Yes (see §24.3.2.3 Enumerating table column groups on
page 732) if any column-header cells are so specified.

 • scope="rowgroup" for any left-side cells marked RowGroup; automatically sets
HeadFootBodyTags=Yes (see §24.3.2.4 Wrapping table row groups on page 732) if
any row-header cells are so specified.

 • scope="row" or scope="col" for the remaining header cells.
 • If a header cell spans more than one column or row (and is not marked ColGroup or

RowGroup), it must have an ID even though the method is scope , because there is no

26 IDENTIFYING HTML TABLE STRUCTURE FOR WAI IDENTIFYING TABLE ROWS AND COLUMNS

ALL RIGHTS RESERVED. MAY 18, 2013 765

WAI attribute for scope="colspan" (or "rowspan"); such header cells get id=
"spanN" and the cells affected by them get headers="spanN" .

In addition, AccessMethod=Scope sets [Tables] properties ScopeColGroup ,
ScopeRowGroup , ScopeCol , and ScopeRow; and sets ColSpanIDs and RowSpanIDs
for other straddling header cells. See §27.2 Using the scope method to identify table cells
on page 775 for more information.

Note: If any of your tables have footer rows, when you use the scope method the
resulting HTML might contain some surprises; see §24.3.2.4 Wrapping table row
groups on page 732.

26.1.3.3 Applying the id/headers method to all tab les

When AccessMethod=IDheaders , Mif2Go supplies the following WAI attributes for
every table:

 • id="groupN" for any cells marked ColGroup or RowGroup.
 • id="spanN" for any spanning cells (and cells marked Span).
 • id="rowN" or id="colN" for the remaining cells.
 • A headers attribute that names all applicable IDs for each affected cell.

In addition, AccessMethod=IDheaders sets [Tables] properties ColGroupIDs ,
RowGroupIDs , ColSpanIDs , RowSpanIDs , ColIDs , and RowIDs , so that most header
cells have IDs and the corresponding body cells have matching headers. See §27.3 Using
the id/headers method to identify table cells on page 777 for more information.

26.1.4 Overriding the default accessibility method

You can use settings in the [TableAccess] section to override, for selected tables, the
corresponding [Tables] default settings; everything you can set in [TableAccess] has
a document-wide default in the [Tables] section.

You can specify overrides that apply to table groups, to tables of a certain FrameMaker
format, and to individual tables. You can even use wildcards to specify tables that are not
explicitly grouped.

Use these settings to specify accessibility-method overrides:
[TableAccess]
; table ID = method list (overrides default in [Tab les]); Can
; override [Tables]AccessMethod policy with NoAcce ss, Scope, or IDs.

For example:
[TableAccess]
ac254360=NoAccess
Group5=IDs
Format A=HCols1 HRows2 Scope

To override the default method for all tables for rows, columns, row groups, or column
groups, use one of the row or column markup methods instead; see:

§27.2 Using the scope method to identify table cells on page 775
§27.3 Using the id/headers method to identify table cells on page 777

To override attributes at the cell level, use one of the table-cell markup methods instead;
see:

 §26.2.2 Using paragraph formats for table-cell attributes on page 767
 §26.2.3 Assigning table-cell attribute values with dedicated formats on page 772
 §26.2.4 Assigning table-cell attribute values with custom markers on page 772

ASSOCIATING TABLE CELLS WITH HEADER CELLS MIF2GO USER’S GUIDE

766 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Note: If you specify a default method for all tables (see §26.1.3 Specifying a default
accessibility method on page 764), do not also use an override to apply the same
method to an individual table; the result is duplicate attribute assignments. See
§13.16.5 Avoiding redundant attribute assignments in tables on page 456.

26.2 Associating table cells with header cells
If specifying an accessibility method does not prove adequate for some or all tables in
your document, Mif2Go provides two additional ways to indicate, for WAI purposes,
which header cells apply to which other table cells:

 • [Tables] settings for rows and columns; these apply by default to all tables, but you
can override them with [TableAccess] settings. See §27 Marking HTML table
cells for WAI on page 775 for information about these settings.

 • Attributes you specify for rows, columns, or individual cells via paragraph formats or
markers; these apply to the tables in which you use them.

In this section:
§26.2.1 Specifying group properties for header cells on page 766
§26.2.2 Using paragraph formats for table-cell attributes on page 767
§26.2.3 Assigning table-cell attribute values with dedicated formats on page 772
§26.2.4 Assigning table-cell attribute values with custom markers on page 772

26.2.1 Specifying group properties for header cell s

In this section:
§26.2.1.1 Defining blocks of header cells on page 766
§26.2.1.2 Using header cells to define column groups on page 766
§26.2.1.3 Using header cells to define row groups on page 767

26.2.1.1 Defining blocks of header cells

You can specify that a row- or column-header cell should apply not just to the cells in its
immediate row or column, but to a larger group: a block of cells, possibly including other
row- or column-header cells. How the group property works depends on whether you are
using the scope method or the id /headers method to associate body cells with header
cells.

For example, if you use scope="colgroup" in a column-header cell along with
ColGroupElements=Yes , the table columns to which the header cell applies are all
those in its own <colgroup> element. If you use id /headers instead, the setting for
ColGroupElements does not matter; Mif2Go does the work of making matching id and
headers identifiers. They do the very same job as scope+ColGroupElements ; the
same associations are made from header cells to body cells.

See §27.5 Using ColGroup and RowGroup cells on page 784 for more information.

26.2.1.2 Using header cells to define column group s

Mif2Go refers to a column-header cell with a group attribute as a ColGroup cell. To make
a header cell a ColGroup cell, include in it one of the following:

 • a paragraph that is in a format you have designated [HTMLParaStyles] ColGroup
(see §26.2.2 Using paragraph formats for table-cell attributes on page 767)

26 IDENTIFYING HTML TABLE STRUCTURE FOR WAI ASSOCIATING TABLE CELLS WITH HEADER CELLS

ALL RIGHTS RESERVED. MAY 18, 2013 767

 • a CellGroup marker that you have given content col
(see §26.2.4 Assigning table-cell attribute values with custom markers on page 772).

When you designate a header cell as a ColGroup cell, the effect of that property depends
on which method you specify for table columns:

 • scope automatically specifies the following:
 – [Tables]ColGroupElements=Yes

(ColGroup cell starts a new <colgroup> element)
 – scope="colgroup" in the ColGroup cell

(ColGroup cell affects all other cells subsumed by its <colgroup>)
 • id /headers automatically specifies the following:

 – [Tables]ColGroupIDs=Yes
(ColGroup cell gets id="groupN" , dependent cells get headers="groupN")

See §27.5.1 Understanding how the ColGroup property works on page 784 for more
information.

26.2.1.3 Using header cells to define row groups

Mif2Go refers to a row-header cell that has a group attribute as a RowGroup cell. To make
a header cell a RowGroup cell, include in it one of the following:

 • a paragraph that is in a format you have designated [HTMLParaStyles] RowGroup
(see §26.2.2 Using paragraph formats for table-cell attributes on page 767)

 • a CellGroup marker that you have given content row
(see §26.2.4 Assigning table-cell attribute values with custom markers on page 772).

When you designate a header cell as a RowGroup cell, the effect of that property depends
on which method you specify for table rows:

 • scope automatically specifies the following:
 – HeadFootBodyTags=Yes

(RowGroup cell starts a new <tbody> element)
 – scope="rowgroup" in the RowGroup cell

(RowGroup cell affects all other cells in its <tbody>)
 • id /headers automatically specifies the following:

 – RowGroupIDs=Yes
(RowGroup cell gets id="groupN" , dependent cells get headers="groupN")

See §27.5.2 Understanding how the RowGroup property works on page 785 for more
information.

26.2.2 Using paragraph formats for table-cell attr ibutes

In this section:
§26.2.2.1 Choosing how to use paragraph formats for WAI markup on page 767
§26.2.2.2 Assigning WAI attributes to paragraph formats on page 768
§26.2.2.3 Assigning values to WAI attributes on page 769
§26.2.2.4 Specifying a different HTML table-cell tag on page 770
§26.2.2.5 Identifying table cells with formats: an example on page 770

26.2.2.1 Choosing how to use paragraph formats for WAI markup

To add WAI markup using paragraph formats, you must apply a different paragraph format
to the content of each cell that needs a particular combination of WAI markup, in each
table. You can apply the unique format to the visible content of the cell; or you can apply it

ASSOCIATING TABLE CELLS WITH HEADER CELLS MIF2GO USER’S GUIDE

768 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

to extra text in the cell, use property Delete to prevent the additional text from appearing
in the HTML output, and apply a condition to hide the extra text in print versions. See
§25.1.2 Using paragraph formats for WAI attributes on page 755 for more information.

A paragraph format to which you assign a WAI attribute can be anywhere in the cell, and
does not have to be the only paragraph format used in that cell.

26.2.2.2 Assigning WAI attributes to paragraph for mats

You can combine format-specific settings in [HTMLParaStyles] with attributes you
define in other [HtmlStyle*] sections to control WAI behavior at the cell level. You
must use a different paragraph format for the content of each cell that needs a different set
of attributes.

Use these settings to specify WAI attributes for table cells.
[HTMLParaStyles]
; format name = properties
; These provide support for Web Accessibility Initi ative table markup.
; CellAttribute inserts the contents of [StyleCellA ttribute] into
; the start tag of the enclosing table cell (ignor ed outside tables).
; Span causes assignment of ColSpanID or RowSpanID, as enabled in
; the [Tables] section.
; NoColID prevents assignment of id for ColIDs (ena bled in [Tables])
; for any cell that contains an instance of its pa ra format.
; ColGroup is used for para formats in cells in the header row.
; RowGroup is used for para formats in cells at the left of their
; rows.
; Scope looks up value for scope= attribute in [Sty leCellScope]
; Abbr looks up value for abbr= attribute in [Sty leCellAbbr]
; Axis looks up value for axis= attribute in [Sty leCellAxis]

Table 26-1 describes each of these properties.

Table 26-1 Format properties for WAI table-cell attributes

Property Description

Abbr An abbreviation for the cell’s content is assigned to the paragraph format under
[StyleCellAbbr] .

Axis The cell belongs to a category that is not necessarily indicated by the row and
column headers with which it is associated; the category (axis) is specified for the
paragraph format under [StyleCellAxis] .

CellAttribute Attributes listed under [StyleCellAttribute] for the paragraph format are
applied to the cell. You can list values for other WAI attributes (Scope , Abbr , and
Axis) under [StyleCellAttribute] if you want to, instead of listing them in
the attribute-specific sections.

ColGroup The cell is a header cell that starts a column group. See §26.2.1.2 Using header
cells to define column groups on page 766.

NoColID The column to which the cell belongs does not need to be identified for WAI
purposes, even though you have specified in the [Tables] section that you want
columns identified. This setting is intended to allow skipping columns that are
used only for spacing.

26 IDENTIFYING HTML TABLE STRUCTURE FOR WAI ASSOCIATING TABLE CELLS WITH HEADER CELLS

ALL RIGHTS RESERVED. MAY 18, 2013 769

26.2.2.3 Assigning values to WAI attributes

The following configuration-file sections can include settings for WAI attributes that are
assigned to paragraph formats in the [HTMLParaStyles] section:

[StyleCellAbbr]
; format name = abbr attribute value to insert in e nclosing cell

[StyleCellAxis]
; format name = axis attribute value to insert in e nclosing cell

[StyleCellScope]
; format name = scope attribute value to insert in enclosing cell,
; required by WAI to be one of col, colgroup, row, or rowgroup.

[StyleCellAttribute]
; doc style = attribute to insert in enclosing tabl e cell start tag,
; used in addition to other cell attributes given under [Table...]

You can use the format or an abbreviation of the cell content to specify the scope:
Format example
Abbreviation example

Format example For example, if you are using column groups and a table has a column header that applies
to (has a scope of) more than one column, you might give the text of the header a unique
paragraph format (such as WideHdr), and specify the following settings:

[HTMLParaStyles]
WideHdr=Scope

[StyleCellScope]
WideHdr=colgroup

Instead of using [StyleCellScope] , you could specify the colgroup attribute like
this:

[HTMLParaStyles]
WideHdr=CellAttribute

[StyleCellAttribute]
WideHdr= scope="colgroup"

Abbreviation
example

Suppose the header-cell content with paragraph format WideHdr is “Type of convention”.
To abbreviate this text to “Type”, you could specify both attributes like this:

[HTMLParaStyles]
WideHdr=Scope CellAttribute

[StyleCellAttribute]
WideHdr= abbr="Type" scope="colgroup"

or like this:
[HTMLParaStyles]
WideHdr=Scope Abbr

RowGroup The cell is a header cell that starts a row group. See §26.2.1.3 Using header cells
to define row groups on page 767.

Scope The cell is a header cell that applies to a column, a group of columns, a row, or a
group of rows, whichever is indicated for the format under [StyleCellScope] .

Span The cell is a header cell that applies to more than one column or row; id=
"span N" is assigned to the cell, regardless of ColSpanIDs or RowSpanIDs
settings. Often such a header cell actually consists of two or more cells that have
been straddled in FrameMaker.

Table 26-1 Format properties for WAI table-cell attributes (continued)

Property Description

ASSOCIATING TABLE CELLS WITH HEADER CELLS MIF2GO USER’S GUIDE

770 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[StyleCellScope]
WideHdr=colgroup

[StyleCellAbbr]
WideHdr="Type"

26.2.2.4 Specifying a different HTML table-cell ta g

You can use the following settings to alter the HTML tag for table cells containing the
designated paragraph formats:

[HTMLParaStyles]
; doc style (para or char) = keywords for functions and properties
; These alter properties or attributes of their tab le cell:
; TableHead forces containing cell tag to th inste ad of td
; TableBody forces containing cell tag to td inste ad of th
CellHeadParaFormat=TableHead
CellBodyParaFormat=TableBody

You might want to do this if some tables in your document have a structure different from
that described by document-wide [Tables] settings. A more straightforward method is
to use [TableAccess] settings to override the [Tables] settings for selected tables,
and thus avoid dedicating a paragraph format to this purpose. See §24.3.3 Identifying table
headers and footers on page 734.

26.2.2.5 Identifying table cells with formats: an example

Suppose your FrameMaker document contains a table with the following structure;
Table 26-2 has these characteristics:

 • multiple header rows
 • a column-header cell that spans more than one column
 • a row-header column whose cells span more than one row
 • a column that has no header.

To use paragraph formats to identify body cells according to their row headers and column
headers, those header cells that span more than one row or column must contain a
paragraph format different from (or perhaps in addition to) the paragraph format used in
ordinary row and column headers:

 • Because it spans more than one column, the topmost column-header cell in Table 26-2
needs special identification, so a different paragraph format is used for that cell.

 • All row-header cells span more than one row, so no individual row-header cell needs a
format different from any other. However, collectively the row-header contents need a
paragraph format different from the format for column headers.

 • The rightmost column in Table 26-2 has no header; a different paragraph format is
used to identify the cells in this column, in order to give them the NoColID attribute.

Table 26-2 Using paragraph formats to identify table cells (example)

Configuration parameters << Column-header rows have paragraph
format CellHead except top row, which has
CellHeadM.Module PID Parameter description

Security 001 Administrator PIN y << Body cells have paragraph format
CellBody, except cells in rightmost column,
which have CellBodyN.

012 Private key y

Certificate 002 Authority certificate n

011 Manager certificate n

009 Server certificate y

 ̂ ̂ Paragraph format is CategoryM for body cells in the first column = row headers.

26 IDENTIFYING HTML TABLE STRUCTURE FOR WAI ASSOCIATING TABLE CELLS WITH HEADER CELLS

ALL RIGHTS RESERVED. MAY 18, 2013 771

You could specify the following attributes for Table 26-2:
[Tables]
UseTbHeaderCode=Yes
TableHeaderCols=1
ColIDs=Yes
ColHead=col
ColSpanIDs=Yes
ColSpanHead=span
RowIDs=Yes
RowHead=row
RowSpanIDs=Yes
RowSpanHead=span

Because these settings specify enough information to associate every cell in the table with
all applicable row and column headers, there is no need for the Scope attribute. However,
using it does no harm, so Scope is included for purposes of illustration:

[HTMLParaStyles]
CellHead=Scope
CellHeadM=Scope Span
CategoryM=Scope Span
CellBodyN=NoColID

[StyleCellScope]
CellHead=column
CellHeadM=colgroup
CategoryM=rowgroup

Because ColIDs take precedence over RowIDs , the top left cell gets id="col1" . The
cell to its right is in column 2; the cell below it is in row 2. Table 26-2 on page 770 looks
something like this (omitting display attributes) in Mif2Go -generated HTML:

<table>
<caption><p>Table 26-2: Server configuration</p></c aption>
<tr><th id="col1" scope="column" rowspan="2"><p>Mod ule</p></th>

<th id="span1" scope="colgroup" colspan="3">
<p>Configuration parameters</p></th></tr>

<tr><th id="col2" scope="column" headers="span1">
<p>PID</p></th>

<th id="span2" scope="column" colspan="2">
<p>Parameter description</p></th></tr>

<tr><th id="span3" scope="rowgroup" headers="col1" rowspan="2">
<p>Security</p></th>

<td id="row3" headers="col2 span1 span3"><p>001</p> </td>
<td headers="col2 row3 span1 span2 span3">

<p>Administrator PIN</p></td>
<td headers="row3 span1 span2 span3"><p>y</p></td>< /tr>

<tr><td id="row4" headers="col2 span1 span3"><p>012 </p></td>
<td headers="col2 row4 span1 span2 span3"><p>Privat e key</p></td>
<td headers="row4 span1 span2 span3"><p>y</p></td>< /tr>

<tr><th id="span4" scope="rowgroup" headers="col1" rowspan="3">
<p>Certificate</p></th>

<td id="row5" headers="col2 span1 span4"><p>002</p> </td>
<td headers="col2 row5 span1 span2 span4">

<p>Authority certificate</p></td>
<td headers="row5 span1 span2 span4"><p>n</p></td>< /tr>

<tr><td id="row6" headers="col2 span1 span4"><p>011 </p></td>
<td headers="col2 row6 span1 span2 span4">

<p>Manager certificate</p></td>
<td headers="row6 span1 span2 span4"><p>n</p></td>< /tr>

<tr><td id="row7" headers="col2 span1 span4"><p>009 </p></td>
<td headers="col2 row7 span1 span2 span4">

<p>Server certificate</p></td>

ASSOCIATING TABLE CELLS WITH HEADER CELLS MIF2GO USER’S GUIDE

772 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

<td headers="row7 span1 span2 span4"><p>y</p></td>< /tr>
</table>

26.2.3 Assigning table-cell attribute values with dedicated formats

Instead of inventing another paragraph format every time you need to assign a different
combination of WAI attributes, you can dedicate a small set of paragraph formats to this
purpose: one for each WAI attribute. The text of each instance of such a paragraph format
becomes the value of the attribute:

[HTMLParaStyles]
; These para format properties all make their conte nt into attributes.
; If you do not want the content in the text also, use with Delete.
; AbbrVal makes current para content into abbr for table cell
; AxisVal makes current para content into axis for table cell

Probably you would not want the text of these special paragraphs to appear either in
printed output or in HTML output; therefore you would assign property Delete to each
such paragraph format in section [HTMLParaStyles] , and in FrameMaker make the
paragraphs conditional, so you can hide them.

For example, suppose you add paragraph format WAIabbr to the paragraph catalog, and
assign a WAI attribute to this format:

[HTMLParaStyles]
WAIabbr = AbbrVal Delete

If a header cell in a table reads Type of Widget and you want to provide the abbreviation
Type, somewhere in that cell you would place a WAIabbr paragraph and give it content
Type.You would make the WAIabbr paragraph conditional so it would not appear in print.
The Delete property would exclude the paragraph (as such) from HTML output, and the
HTML source would show <abbr= " Type " > for the cell in question; see §21.3.12
Eliminating unwanted paragraphs on page 652.

26.2.4 Assigning table-cell attribute values with custom markers

You can use special FrameMaker markers to apply WAI cell attributes. Each marker name
must start with Cell and end with the name of an attribute. The markers for table cells are
as follows:

For example, to add the abbr attribute to a table cell:

1. Create a FrameMaker marker type named CellAbbr .

2. For each cell whose content needs an abbreviation:
2.1. Place a CellAbbr marker in the cell.
2.2. Type the abbreviation in the Marker dialog.
2.3. Click New Marker .

CellAbbr Abbreviation for content of a cell; adds abbr attribute.

CellAxis Conceptual category for the content of a cell; adds axis attribute.

CellID Cell identifier; replaces the value of any generated id attribute.

CellScope Number of rows or columns covered by a header cell; adds scope
attribute.

26 IDENTIFYING HTML TABLE STRUCTURE FOR WAI ASSOCIATING TABLE CELLS WITH HEADER CELLS

ALL RIGHTS RESERVED. MAY 18, 2013 773

Two additional marker types do not conform to the naming convention described above.
Instead, they provide the same effects as certain properties assigned to paragraph formats
in the [HTMLParaStyles] section:

For information about assigning properties ColGroup , RowGroup, and Span, see
§26.2.2.2 Assigning WAI attributes to paragraph formats on page 768.

Note: If you specify a default access method for all tables (see §26.1.3 Specifying a
default accessibility method on page 764), do not also use a marker to apply the
same method to individual tables; the result is duplicate attribute assignments. See
§13.16.5 Avoiding redundant attribute assignments in tables on page 456.

(No illustrations)

CellGroup The marker text must contain either col or row ; the effect is as though
ColGroup or RowGroup was assigned to a paragraph format in the
cell. See §26.2.1 Specifying group properties for header cells on
page 766.

CellSpan The marker text can contain anything, but must not be empty; the
effect is as though Span was assigned to a paragraph format in the
cell.

ASSOCIATING TABLE CELLS WITH HEADER CELLS MIF2GO USER’S GUIDE

774 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 775

27 Marking HTML table cells for WAI

This section describes how to use Mif2Go configuration settings to fine-tune the
association of table-cell content with row- and column-header information. Topics
include:

§27.1 Understanding table cell settings on page 775
§27.2 Using the scope method to identify table cells on page 775
§27.3 Using the id/headers method to identify table cells on page 777
§27.4 Overriding default table-cell settings on page 784
§27.5 Using ColGroup and RowGroup cells on page 784

See also:
§25 Generating WAI markup for HTML on page 755
§26 Identifying HTML table structure for WAI on page 763

27.1 Understanding table cell settings
You use [Tables] settings to specify WAI attributes that associate table cells with rows,
row groups, columns, and column groups. These settings apply to all tables in your
document. You can use corresponding [TableAccess] settings to override many of them
for selected tables. To specify different [Tables] settings for all the tables in a single
FrameMaker chapter file, you can include those settings in a configuration file named
after the chapter file; for example, Chap2.ini . See §33.1 Using a different configuration
for selected files on page 919.

Mif2Go generates identifiers for each cell from the [Tables] settings, to associate the
cell with the specified parts of the table. To avoid duplicate cell identifiers when an output
file includes more than one table, Mif2Go adds to each identifier a string that is unique to
each table in the file. For example, all identifiers in the first table in the file end with t1 ,
those in the next table end with t2 , and so forth.

27.2 Using the scope method to identify table cell s
Table 27-1 lists the scope settings you can specify in the [Tables] section of the
configuration file.

Table 27-1 WAI scope attributes for table cells

[Tables] setting
Default
value

[TableAccess]
override Purpose

Column ScopeCol No ScopeCol Apply scope="col" (the default)
to column-header cells

ScopeColGroup No ScopeColGroup Apply scope="colgroup" to
ColGroup header cells*

Row ScopeRow No ScopeRow Apply scope="row" (the default)
to row-header cells

ScopeRowGroup No ScopeRowGroup Apply scope="rowgroup" to
RowGroup header cells*

* Cells marked as ColGroup or RowGroup via [HTMLParaStyles] parafmt=*Group or CellGroup
marker

USING THE SCOPE METHOD TO IDENTIFY TABLE CELLS MIF2GO USER’S GUIDE

776 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Use these settings to identify column and row header cells that apply to more than one
body column or row, either explicitly (via straddles in FrameMaker) or implicitly:

[Tables]
; ScopeCol = No (to not use) or Yes (to apply defau lt scope="col"
; to non-empty cells in table header)
ScopeCol=No
; ScopeColGroup = No (to not use) or Yes (to apply scope="colgroup"
; instead of "col" to column head cells identified as ColGroup via
; [HTMLParaStyles] or CellGroup marker col; sets C olGroupElements).
ScopeColGroup=No
; ScopeRow = No (to not use) or Yes (to apply defau lt scope="row"
; to first non-empty cell in each row in the table)
ScopeRow=No
; ScopeRowGroup = No (to not use) or Yes (to apply scope="rowgroup"
; instead of "row" to non-empty row-spanning cells at left in table;
; applies "row" to non-spanning cells, so ScopeRow is not needed).
ScopeRowGroup=No

You can override each of these settings in the [TableAccess] section for selected tables
by specifying the same setting, prefixed with No, as a property; see §27.4 Overriding
default table-cell settings on page 784.

Note: If you set AccessMethod=Scope , Mif2Go automatically sets ScopeCol ,
ScopeRow, ScopeColGroup , and ScopeRowGroup to Yes.

Columns and
rows

ScopeCol applies to non-empty cells in rows that are tagged <th> or that are designated
as header rows via [Tables]TableHeaderRows or [TableAccess]HRows N.

ScopeRow applies to non-empty cells in the first (leftmost) column in the table, even if the
cells in that column are tagged <td> instead of <th> ; or to columns that are designated as
row headers via [Tables]TableHeaderCols or [TableAccess]HCols N.

Groups of
columns or rows

You can use scope=colgroup or scope=rowgroup to apply a header to all cells in a
group. If you use column groups and row groups, you can specify a group scope even
though none of the header cells spans more than one column or row.

For the group scope settings to be meaningful and effective, a table has to have the
structure they imply. For example, scope="colgroup" works only if the table has
column groups (<colgroup> elements), and scope="rowgroup" works only if the
table has row groups (<tbody> elements). Therefore:

 • Specifying column groups automatically sets [Tables]ColGroupElements=Yes ;
for more information, see §24.3.2.3 Enumerating table column groups on page 732.

 • Specifying row groups automatically sets [Tables]HeadFootBodyTags=Yes ; for
more information, see §24.3.2.4 Wrapping table row groups on page 732.

The group scope attributes work in concert with ColGroup and RowGroup cells: header
cells that are assigned [HTMLParaStyles] property ColGroup or RowGroup, described
in §26.2.2 Using paragraph formats for table-cell attributes on page 767; or that contain
marker type CellGroup , described in §26.2.4 Assigning table-cell attribute values with
custom markers on page 772.

Note: If any of your tables have footer rows, when you use scope="rowgroup" the
resulting HTML might contain some surprises; see §24.3.2.5 Positioning table
footer rows (deprecated) on page 733 in §24.3.2.4 Wrapping table row groups on
page 732.

27 MARKING HTML TABLE CELLS FOR WAI USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS

ALL RIGHTS RESERVED. MAY 18, 2013 777

27.3 Using the id/headers method to identify table cells
In this section:

§27.3.1 Choosing an id/headers level on page 777
§27.3.2 Specifying id/headers attributes for table cells on page 777
§27.3.3 Grouping header cells for identification on page 778
§27.3.4 Column-group and row-group extent on page 779
§27.3.5 Choosing a different row-group method on page 780
§27.3.6 Using span attributes to identify rows and columns on page 780
§27.3.7 Column-span and row-span extent on page 781
§27.3.8 Identifying individual table cells by row and column on page 782
§27.3.9 Column and row extent on page 783
§27.3.10 Using span IDs with row or column IDs on page 783

27.3.1 Choosing an id/headers level

If you decide to use the id /headers method, you can choose from three levels:

First see if you can use groups to adequately identify cells; if grouping header cells does
not give you enough resolution, consider span attributes; if span attributes do not suffice,
use row and column IDs to provide the maximum amount of identification for each cell.

If you need to identify cells by virtual or conceptual properties, or by disjoint groupings of
header cells, you might want to apply the axis attribute also, using one of the table
markup methods described in §26.2.3 Assigning table-cell attribute values with dedicated
formats on page 772 or §26.2.4 Assigning table-cell attribute values with custom markers
on page 772.

27.3.2 Specifying id/headers attributes for table cells

Table 27-2 shows the id/headers attributes you can specify in the [Tables] section.
For selected tables you can override each of the *IDs settings in the [TableAccess]
section, by specifying the same setting, prefixed with No, as a property; see §27.4
Overriding default table-cell settings on page 784.

Groups: Identify column-header cells or row-header cells that apply to a block of
cells, including other header cells; add headers attributes to all affected
cells, identifying each by the header cell of its block.

Spans: Identify column-header or row-header cells that explicitly or implicitly
apply to multiple columns or rows of body cells; add headers attributes
to all affected body cells, identifying each by the header cells that apply.

Cells: Identify each column-header cell and row-header cell; add headers
attributes to all body cells, identifying each by row and column.

USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS MIF2GO USER’S GUIDE

778 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

27.3.3 Grouping header cells for identification

Use the following settings to specify whether header cells should be grouped. These
settings work in concert with ColGroup and RowGroup cells: header cells that are
assigned [HTMLParaStyles] property ColGroup or RowGroup, described in §26.2.2
Using paragraph formats for table-cell attributes on page 767; or that contain marker type
CellGroup , described in §26.2.4 Assigning table-cell attribute values with custom markers
on page 772.

[Tables]
; ColGroupHead is "group" by default; it is used in the id attrs of
; header cells containing a para format with [HTMLP araStyles]ColGroup.
ColGroupHead=group
; RowGroupHead is "group" by default; it is used in the id attrs of
; left cells containing a para format with [HTMLPar aStyles]RowGroup.
; If ColGroup is used, first ID numerically follow s last ColGroup ID.
RowGroupHead=group
; ColGroupIDs = No (default)
; or Yes (to use id="groupN" in col head cells ide ntified
; as ColGroup via [HTMLParaStyles] or the CellGrou p marker col.)
ColGroupIDs=No

Table 27-2 WAI id/header table cell attributes

[Tables] setting
Default
value Purpose Ref.

Column ColGroupHead group Name the id to use for column group
headers

27.3.3

ColGroupIDs No Add id="groupN" to ColGroup* header
cells, headers="groupN" to cells in the
column group

ColSpanHead span Name the id to use for column-spanning
headers

27.3.6

ColSpanIDs No Add id="spanN" to column-header cells
designated Span via [HTMLParaStyles] or
CellSpan marker, headers="spanN" to
cells in the column

ColHead col Name the id to use for columns 27.3.8
ColIDs No Add id="colN" to column headers,

headers="colN" to cells in the column

Row RowGroupHead group Name the id to use for row group headers 27.3.3
RowGroupIDs No Add id="groupN" to RowGroup* header

cells, headers="groupN" to cells in the row
group

RowSpanHead span Name the id to use for row-spanning
headers

27.3.6

RowSpanIDs No Add id="spanN" to row-header cells (first
cell in each row) designated Span via
[HTMLParaStyles] (or via a CellSpan
marker), headers="spanN" to cells in the
row

RowHead row Name the id to use for rows 27.3.8
RowIDs No Add id="rowN" to leftmost column,

headers="rowN" to cells in the row

* Cells marked ColGroup or RowGroup via [HTMLParaStyles] parafmt=xGroup or via CellGroup
marker

27 MARKING HTML TABLE CELLS FOR WAI USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS

ALL RIGHTS RESERVED. MAY 18, 2013 779

; RowGroupIDs = No (default)
; or Yes (to use id="groupN" in row head cells ide ntified
; as RowGroup via [HTMLParaStyles] or the CellGrou p marker row.)
RowGroupIDs=No

Column-group
and row-group

identifiers

The values you specify for ColGroupHead and RowGroupHead are the names Mif2Go
uses for column-group and row-group identifiers. For example, if you specify
ColGroupHead= gname, every ColGroup cell gets attribute id=" gnameN" . If you do not
specify values for ColGroupHead and RowGroupHead, Mif2Go uses the default name,
group , for both; and numbers the row groups starting where the column-group numbers
end.

Column groups When you specify ColGroupIDs=Yes , Mif2Go generates the following identifiers:

id="group N"

 • for each ColGroup cell (header cell that contains either a paragraph designated
[HTMLParaStyles] ColGroup , or a CellGroup marker with content col).

headers="group N"

 • for each cell to the right of the id="group N" cell until the next ColGroup cell;
 • for each cell below the id="group N" cell;
 • for each cell below the headers="group N" cells that are in the id=group n

row.

Specifying ColGroupIDs=Yes prevents assignment of a single-column ID to the id=
"group N" cell, but does not prevent this assignment to the headers=group N cells to the
right of the id="group N" cell. See §27.3.8 Identifying individual table cells by row and
column on page 782 for information about specifying IDs for individual columns. See also
§27.5.1 Understanding how the ColGroup property works on page 784.

Row groups When you specify RowGroupIDs=Yes , Mif2Go generates the following identifiers:

id="group N"

 • for each RowGroup cell (header cell that contains either a paragraph designated
[HTMLParaStyles] RowGroup, or a CellGroup marker with content row) and
that does not have a column ID.

headers="group N"

 • for each cell below the id="group N" cell until the next RowGroup cell;
 • for each cell to the right of the id="group N" cell;
 • for each cell to the right of the headers="group N" cells that are in the id=

"group N" column.

Specifying RowGroupIDs=Yes prevents assignment of a row ID to the RowGroup cell,
but does not prevent this assignment to the headers="group N" cells below the id=
"group N" cell. See §27.3.8 Identifying individual table cells by row and column on
page 782 for information about specifying IDs for individual rows. See also §27.5.2
Understanding how the RowGroup property works on page 785.

27.3.4 Column-group and row-group extent

Figure 27-1 shows the range of cells that are given headers="colgrp1" or headers=
"rowgrp2" , or both, when ColGroupIDs=Yes , RowGroupIDs=Yes , ColGroupHead=
colgrp , and RowGroupHead=rowgrp .

USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS MIF2GO USER’S GUIDE

780 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Figure 27-1 Extent of row and column groups

27.3.5 Choosing a different row-group method

If you set HeadFootBodyTags=Yes , probably you will not want to use RowGroupIDs ;
use the scope method instead. For example, if you use paragraph format
RowGroupHeading for row-group header text, you could specify:

[HTMLParaStyles]
RowGroupHeading=RowGroup Scope TableHead

[StyleCellScope]
RowGroupHeading=rowgroup

or, if the RowGroupHeading cells actually span the rows in the group:
[Tables]
ScopeRowGroup=Yes

either of which produces:
<tbody>
<tr><th scope=rowgroup>My Group Head</th><td></td> ... </tr>
<tr><td></td>... </tr>
...
</tbody>

This provides the association between “My Group Head” and all the cells in the <tbody>
section at minimum cost in HTML coding and file size. Only if you cannot use
HeadFootBodyTags , perhaps because your target browser does not support it, would you
want to use RowGroupIDs for this purpose.

27.3.6 Using span attributes to identify rows and columns

If complex tables contain header cells that span more than one column or row, you can use
the following settings to have Mif2Go generate span-numbered id attributes for the
dependent cells. These settings work in concert with Span cells: header cells that are
assigned [HTMLParaStyles] property Span, described in §26.2.2 Using paragraph
formats for table-cell attributes on page 767; or that contain marker type CellSpan ,
described in §26.2.4 Assigning table-cell attribute values with custom markers on
page 772.

[Tables]
; ColSpanIDs = No (to use only per markers or forma ts), or Yes
; adds id=spanN to each cell in header rows that s pans columns,
; or that has a CellSpan marker, or contains any para formats
; with [HTMLParaStyles] Span, increments for each one used.
; adds headers=spanN to all cells below the spanni ng cell.
ColSpanIDs=No
; ColSpanHead is usually "span".
ColSpanHead=span
; RowSpanIDs = No (to use only per markers or forma ts), or Yes
; adds id=spanN to first cell in each row if it sp ans rows, or

id=colgrp1 id=colgrp2

id=rowgrp1

id=rowgrp2

id=rowgrp3

headers=colgrp1

headers=rowgrp2

headers=colgrp1 rowgrp2

27 MARKING HTML TABLE CELLS FOR WAI USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS

ALL RIGHTS RESERVED. MAY 18, 2013 781

; if it has a CellSpan marker, or if it has any p ara formats
; with [HTMLParaStyles] Span, increments for each one used.
; adds headers=spanN to all cells right of the spa nning cell.
; if ColSpan used, first ID numerically follows la st ColSpanID.
RowSpanIDs=No
; RowSpanHead is usually also "span"; that's why th e ID numbers
; used for ColSpan are skipped for RowSpan
RowSpanHead=span

Mif2Go implements cell spans so that you can have several span values that all apply to
the same cell. If you specify the [HTMLParaStyles] Span property for paragraph
formats (or insert CellSpan markers) in multiple header columns or rows, and the higher-
level headers really do span the columns or rows they affect, their span values appear in
each dependent cell’s attributes.

You can override each of the *IDs settings in the [TableAccess] section for selected
tables by specifying the same setting, prefixed with No, as a property; see §27.4
Overriding default table-cell settings on page 784.

Column-span and
row-span
identifiers

The values you specify for ColSpanHead and RowSpanHead are the names Mif2Go uses
for column-spanning and row-spanning header-cell identifiers. For example, if you
specify ColSpanHead= sname, every column-header Span cell gets attribute id=
" snameN" . If you do not specify values for ColSpanHead and RowSpanHead, Mif2Go
uses the default, span , for both; and numbers the row-spanning header cells starting
where the column-spanning numbers end.

Column spans When you specify ColSpanIDs=Yes , Mif2Go generates the following identifiers:

Row spans When you specify RowSpanIDs=Yes , Mif2Go generates the following identifiers:

27.3.7 Column-span and row-span extent

Figure 27-2 shows the range of cells that are given headers="cspan1" or headers=
"rspan2" , or both, when ColSpanIDs=Yes , RowSpanIDs=Yes , ColSpanHead=
cspan , and RowSpanHead=rspan .

id="span N" for each column-header Span cell (cell containing a
paragraph designated [HTMLParaStyles] Span, or a
CellSpan marker).

headers="span N" for each cell in each column below (spanned by) the id=
"span n" cell.

id="span N" for each row-header Span cell (cell containing a paragraph
designated [HTMLParaStyles] Span, or a CellSpan
marker), and that does not have a column ID.

headers="span N" for each cell in each row to the right of the id="span n"
cell.

USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS MIF2GO USER’S GUIDE

782 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Figure 27-2 Extent of column and row spans

27.3.8 Identifying individual table cells by row a nd column

When you use the following settings, Mif2Go automatically generates the WAI id
attribute for all row and column headers, and the headers attribute for all individual
cells:

[Tables]
;RowIDs and ColIDs set row and col IDs in table hea der cells
; and the matching headers attribute in table body cells.
; ColIDs = No (to not use), or Yes
; adds id=colN to first cell in header row of each column,
; adds headers=colN to each cell below in the same column(s).
ColIDs=No
; ColHead is often seen in examples as "header", bu t this is
; not essential; it can be any useful identifier:
ColHead=col
; RowIDs = No (to not use), or Yes
; if ColIDs are used, does not affect all the head er rows.
; adds id=rowN attribute to the first cell of each body row,
; adds headers=rowN to each following cell in that row.
RowIDs=No
; RowHead is usually row, but again could be anythi ng:
RowHead=row

You can override each of the *IDs settings in the [TableAccess] section for selected
tables by specifying the same setting, prefixed with No, as a property; see §27.4
Overriding default table-cell settings on page 784.

Column and row
identifiers

The values you specify for ColHead and RowHead are the names Mif2Go uses for
column and row identifiers. For example, if you specify ColHead= name, every cell in
column N gets attribute id=" nameN" . If you do not specify values for ColHead and
RowHead, Mif2Go uses the defaults: col and row , respectively.

Columns When you specify ColIDs=Yes , Mif2Go generates the following identifiers for each
column:

Mif2Go interprets straddled column-header cells as applying to all the body cells under
them. For example, if the header cell for column 3 also straddles columns 4 and 5,
Mif2Go generates headers="col3" for the body cells in columns 3, 4, and 5.

id=cspan1

id=rspan1

id=rspan2

headers=cspan1

headers=rspan2

headers=cspan1 rspan2

id="col N" for the first (top left) header cell in column n

headers="col N" for each body cell in column n

27 MARKING HTML TABLE CELLS FOR WAI USING THE ID/HEADERS METHOD TO IDENTIFY TABLE CELLS

ALL RIGHTS RESERVED. MAY 18, 2013 783

Rows When you specify RowIDs=Yes , Mif2Go generates the following identifiers for each
row:

27.3.9 Column and row extent

Figure 27-3 shows the range of cells that are given a headers="col2" attribute, a
headers="row3" attribute, or both, when ColIDs=Yes , RowIDs=Yes , ColHead=col ,
and RowHead=row.

Figure 27-3 Extent of column and row IDs

27.3.10 Using span IDs with row or column IDs

When ColIDs=Yes:

 • If ColSpanIDs=No , Mif2Go interprets horizontally straddled cells in a column-
header row as applying to all the body cells below them. For example, if the first cell
in column 2 also straddles the cell next to it in column 3, Mif2Go generates
headers="col2" for the body cells in columns 2 and 3.

 • If ColSpanIDs=Yes , the cells are identified as follows:
 – The straddling cell gets id="span n" instead of id="col2" .
 – The two non-straddling cells in the first row below the straddling cell get id=

"col2" (left cell) and id="col3" (right cell).
 – The rest of the non-straddling cells below get headers="col2" (left column)

and headers="col3" (right column).
 – All cells below the straddling cell get headers="span n" .

When RowIDs=Yes:

 • If RowSpanIDs=No , Mif2Go interprets vertically straddled cells in a row-header
column as applying to all the body cells to the right of them. For example, if the first
cell in row 2 also straddles the cell below it in row 3, Mif2Go generates headers=
"row2" for the body cells in rows 2 and 3.

 • If RowSpanIDs=Yes , the cells are identified as follows:
 – The straddling cell gets id="span n" instead of id="row2" .
 – The two non-straddling cells in the first column to the right of the straddling cell

get id="row2" (top cell) and id="row3" (bottom cell).
 – The rest of the non-straddling cells to the right get headers="row2" (top row)

and headers="row3" (bottom row).
 – All cells to the right of the straddling cell get headers="span n" .

id="row N" for the first (top left) cell in row n that does not already
contain an id attribute (such as id="col1" in the first
header row)

headers="row N" for each body cell in row n to the right of the id=row n cell

id=row2

id=row4

id=row3

id=row5

id=row6

id=col2 id=col4id=col3

headers=col2

headers=row3

headers=col2 row3

OVERRIDING DEFAULT TABLE-CELL SETTINGS MIF2GO USER’S GUIDE

784 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See §27.3.6 Using span attributes to identify rows and columns on page 780 for more
information about RowSpanIDs .

27.4 Overriding default table-cell settings
You can use settings in the [TableAccess] section to override, for selected tables, the
corresponding [Tables] default settings; everything you can set in [TableAccess] has
a document-wide default in the [Tables] section.

You can specify overrides that apply to table groups, to tables of a certain FrameMaker
format, and to individual tables. You can even use wildcards to specify tables that are not
explicitly grouped.

You can negate a default setting by prefixing any of the following keywords with No:
ColIDs
ColGroupIDs
ColSpanIDs
RowIDs
RowGroupIDs
RowSpanIDs
ScopeCol
ScopeColGroup
ScopeRow
ScopeRowGroup

For example:
[TableAccess]
; table ID = method list (overrides default in [Tab les]) of
; ColIDs, RowIDs, ColSpanIDs, RowSpanIDs, ScopeCol , ScopeColGroup,
; ScopeRow, ScopeRowGroup, ColGroupIDs, RowGroupID s,
; or any prefixed with No, such as NoColIDs.
aa123456=ColIDs NoRowIDs
group5=ScopeColGroup
Format A=RowSpanIDs NoColIDs

27.5 Using ColGroup and RowGroup cells
ColGroup and RowGroup designations describe a structural fact about a table: that the
contents of the column or row header cell applies beyond its own column or row.

In this section:
§27.5.1 Understanding how the ColGroup property works on page 784
§27.5.2 Understanding how the RowGroup property works on page 785

See §26.2.1 Specifying group properties for header cells on page 766 for information
about specifying ColGroup and RowGroup cells.

27.5.1 Understanding how the ColGroup property wor ks

When you designate a header cell as a ColGroup cell, the effect of that property on the
table depends on which accessibility method you have specified:

scope (via AccessMethod=Scope or via ScopeColGroup=Yes)

id /headers (via AccessMethod=IDheaders or via ColGroupIDs=Yes)

27 MARKING HTML TABLE CELLS FOR WAI USING COLGROUP AND ROWGROUP CELLS

ALL RIGHTS RESERVED. MAY 18, 2013 785

Using the scope method automatically specifies ColGroupElements=Yes ; the
ColGroup cell starts a new <colgroup> element; and the ColGroup cell’s information
applies to all cells subsumed by that element.

ColGroupElements=Yes is a necessary condition for scope="colgroup" , but not for
id/headers="groupN" ; for the latter, the ColGroupElements value does not affect
which cells are marked id/headers="groupN" .

ColGroupIDs=Yes is a necessary condition for id/headers="groupN" , but not for
scope="colgroup" ; for the latter, the ColGroupIDs value does not affect which cells
are subsumed under scope="colgroup" .

Table 27-3 summarizes the effects of the ColGroup property when combined with these
settings.

If ColGroupElements=Yes , each ColGroup cell starts a new <colgroup> element. If
the ColGroup cell contains a CellScope marker (or the
[HTMLParaStyles]/[StyleCellScope] equivalent) that sets the scope=
"colgroup" attribute, the ColGroup property works in concert with the scope attribute
to apply the ColGroup header to all cells subsumed by its <colgroup> . The scope
attribute is in effect only within the same <colgroup> section as the ColGroup cell. See
§27.2 Using the scope method to identify table cells on page 775.

If ColGroupIDs=Yes , each ColGroup cell gets an id="groupN" attribute; cells below
the header cell and to the right of the header-cell column, across to the next ColGroup
header cell or to the edge of the table (see Figure 27-1 on page 780), each get a matching
headers="groupN" attribute. If ColGroupElements=Yes , these are the cells
subsumed by the <colgroup> element. See §27.3.3 Grouping header cells for
identification on page 778.

27.5.2 Understanding how the RowGroup property wor ks

When you designate a header cell as a RowGroup cell, the effect of that property depends
on which of the following you specify also:

Using the scope method automatically specifies HeadFootBodyTags=Yes ; the
RowGroup cell starts a new <tbody> element; and the RowGroup cell’s information
applies to all cells in that element.

HeadFootBodyTags=Yes is a necessary condition for scope="rowgroup" , but not for
id/headers="groupN" ; for the latter, the HeadFootBodyTags value does not affect
which cells are marked id/headers="groupN" .

Table 27-3 ColGroup property effects

Setting ColGroupElements Yes No

ColGroupIDs Yes No Yes No

scope="colgroup" * Yes No Yes No Yes No Yes No

Effect starts new <colgroup> Yes Yes Yes Yes No No No No

id/headers="groupN" Yes Yes No No Yes Yes No No

scope attribute applied Yes No Yes No No No No No

* Set via CellScope marker or [HTMLParaStyles] fmt=Scope , [HtmlStyleCellScope] fmt=
colgroup

scope (via AccessMethod=Scope or via ScopeRowGroup=Yes)

id /headers (via AccessMethod=IDheaders or via RowGroupIDs=Yes)

USING COLGROUP AND ROWGROUP CELLS MIF2GO USER’S GUIDE

786 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

RowGroupIDs=Yes is a necessary condition for id/headers="groupN" , but not for
scope="rowgroup" ; for the latter, the RowGroupIDs value does not affect which cells
are subsumed under scope="rowgroup" .

Table 27-4 summarizes the effects of the RowGroup property when combined with these
settings.

If HeadFootBodyTags=Yes , each RowGroup cell starts a new <tbody> element. If the
RowGroup cell also contains a CellScope marker (or the
[HTMLParaStyles]/[StyleCellScope] equivalent) that sets the scope=
"rowgroup" attribute, the RowGroup property works in concert with the scope attribute
to apply the RowGroup header to all cells in its <tbody> section. The scope attribute is
in effect only within the same <tbody> section as the RowGroup cell. See §27.2 Using
the scope method to identify table cells on page 775.

If RowGroupIDs=Yes , each RowGroup cell is given an id consisting of the
RowGroupHead name followed by a sequential number. This id is used as a headers
attribute in all cells to the right of the RowGroup cell and all cells below that row (see
Figure 27-1 on page 780), until the next cell down that contains a RowGroup paragraph.
See §27.3.3 Grouping header cells for identification on page 778.

Table 27-4 RowGroup property effects

Setting HeadFootBodyTags Yes No

RowGroupIDs Yes No Yes No

scope="rowgroup" * Yes No Yes No Yes No Yes No

Effect starts new <tbody> Yes Yes Yes Yes No No No No

id/headers="groupN" Yes Yes No No Yes Yes No No

scope attribute applied Yes No Yes No No No No No

* Set via CellScope marker or [HTMLParaStyles] fmt=Scope , [StyleCellScope] fmt=rowgroup

ALL RIGHTS RESERVED. MAY 18, 2013 787

28 Working with macros

You can use macros to insert any content into the output stream. Because the Mif2Go
macro language is Turing-complete, the Mif2Go macro facility is powerful enough to let
you insert anything in RTF output, and do almost anything to HTML or XML output.
Topics include:

§28.1 Defining and invoking macros on page 787
§28.2 Accessing Mif2Go macro libraries on page 792
§28.3 Using macro variables on page 795
§28.4 Using multiple-value list variables on page 806
§28.5 Accessing settings with configuration macros on page 809
§28.6 Using expressions in macros on page 811
§28.7 Passing a parameter to a macro on page 820
§28.8 Debugging macros on page 820
§28.9 Deploying macros and macro variables on page 820
§28.10 Using macros to fine-tune HTML or XML output on page 828

See also:
§33.2.3 Overriding settings with macros on page 921

28.1 Defining and invoking macros
In this section:

§28.1.1 Defining macros on page 787
§28.1.2 Invoking a macro on page 791
§28.1.3 Nesting macros on page 791
§28.1.4 Using predefined macros on page 792

28.1.1 Defining macros

To define a macro, create a configuration-file section with the name of the macro as the
section name. This section can go in your project configuration file, or in a macro library
file; see §28.1.1.2 Understanding where you can define named macros on page 788.

For example, to define macro $OurLogo for HTML output:
[OurLogo]
<hr />

<hr /><b r />

The content of the macro begins on the next line after the section name, and ends at the
start of the next section, or at the end of the configuration file. The name must consist only
of letters and digits. Do not include punctuation or spaces in a macro name.

In this section:
§28.1.1.1 Understanding what a macro definition can include on page 788
§28.1.1.2 Understanding where you can define named macros on page 788
§28.1.1.3 Escaping special characters in macro definitions on page 789
§28.1.1.4 Managing line breaks in macro definitions on page 789
§28.1.1.5 Including comments in macro definitions on page 789
§28.1.1.6 Including cross references in macro definitions on page 790

DEFINING AND INVOKING MACROS MIF2GO USER’S GUIDE

788 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§28.1.1.7 Converting “smart quotes” in macro definitions on page 790
§28.1.1.8 Obtaining RTF code for macro definitions on page 790

28.1.1.1 Understanding what a macro definition can include

Macros can include more than simple code:

 • For HTML output a macro can contain HTML code, JavaScript, or anything else
printable that follows the rules of whatever language you are using.

 • For RTF output, a macro can insert Field content or Windows system commands.
 • For all types of output, a macro can specify Windows system commands, provided

double any backslashes and enclose paths that contain spaces in double quotes; see
§34.4.6 Supplying system commands in a macro on page 940.

A macro can be any length. You can define macros to use as “building blocks” for other
macros. There is no limit to the number of macros you can define for a project.

Note: You do not have to define every string of code as a macro. Any place in the
configuration file where you can use a macro, you can also use plain HTML or
RTF code, provided you include the entire code string on one line.

Whether you use a formal named macro definition or an informal string of code, for
HTML output Mif2Go always inserts an extra line break in the output immediately before
the expanded macro. This is so you can readily identify macro-supplied code, for ease in
correcting any errors in your macro settings. Browsers ignore the extra line break.

28.1.1.2 Understanding where you can define named macros

You can put Mif2Go macro definitions in any of the following places:

 • Best place: in a macro library file; see §28.2 Accessing Mif2Go macro libraries on
page 792.

 • If large or complex: individually in separate macro files; see §28.2.3 Storing a macro
definition in a separate file on page 793.

 • Otherwise: toward the end of your project configuration file, before any
[MacroVariables] section.

Order does not
matter

The relative order in which macro definitions appear in a file is not important; what
matters is the order in which they are invoked during conversion (see §28.1.2 Invoking a
macro on page 791).

Do not end a file
with a macro

Do not put a macro at the very end of a configuration file or library file. If you have no
macro variables to define, and no [MacroVariables] section, end the file with a
dummy section; for example:

[End]

No macros in
templates

Do not include macro definitions in a configuration template (see §30.6.2 Deciding what
to include in a general configuration template on page 862).

Put complex
macros in a
separate file

If you create lengthy macros (for example, with a lot of conditional expressions), and you
indent the code for readability, put the macros in a library file separate from the
configuration file; or put each macro in its own macroname.txt file. That way the
indentation is preserved. When Mif2Go updates your project configuration file as a
consequence of changes you make to Export options, Windows rewrites the file, and
deletes all leading spaces in the settings.

Note: Do not put Mif2Go macro definitions on the HTML reference page in your
FrameMaker document; Mif2Go does not look there.

28 WORKING WITH MACROS DEFINING AND INVOKING MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 789

28.1.1.3 Escaping special characters in macro defi nitions

Use a backslash in a macro to escape other characters, such as “\ ”, “ <”, “ >”, “ " ”, “ $”, “ ; ”
and “ ” (space). For example, if you need to start a macro content line with “[” or “ ; ”
(left bracket or semicolon), preface the line with a backslash, to keep the line from being
treated as a comment or section head:

[MyMacro]
\; This is not a configuration-file comment
; This is a configuration-file comment
\[NotTheNextSection]
[TheNextSection]

To specify a trailing space at the end of a macro, insert any of the following:
two spaces
\ (a backslash followed by a space)
\~ (a backslash followed by a tilde).

The \~ convention is especially helpful, because it allows you to show that a space is
unequivocally intended.

Make sure to escape the backslash itself if your macro includes path names. For example:
[MyGraphicFileCopy]
cd <$$_currpath>\\wrap
copy "c:\\my graphics*.jpg"
copy "c:\\more graphics*.jpg"

To include a comment in macro definitions, see §28.1.1.5 Including comments in macro
definitions on page 789.

28.1.1.4 Managing line breaks in macro definitions

A macro definition does not have to be all on one line; Mif2Go ignores line breaks when
processing macros. However, any implicit line breaks in the definition are retained in
output when a macro is expanded.

To remove an implicit line break so it does not appear in the output, end the line in
question with a backslash “\ ”.

To remove all implicit line breaks from macros upon expansion:
[Macros]
; OmitMacroReturns = No (default)
; or Yes (omit macro linebreaks in output)
OmitMacroReturns=Yes

Be aware that omitting all line breaks means that the code generated from each expanded
macro—even JavaScript code—ends up all on one line in the output. Few browsers can
handle the very long lines that might result.

If you specify OmitMacroReturns=Yes , but still need line breaks in some macros to
keep line lengths reasonable in output, you can insert a C-style line terminator “\n ” in the
definition, even in the middle of a line, wherever you want an explicit line break in the
output.

28.1.1.5 Including comments in macro definitions

Any line in a macro definition that starts with a semicolon (;) is treated as a
configuration-file comment, even lines that would otherwise execute system commands:

[SomeMacro]
; This entire line is a comment, and so is the next :

DEFINING AND INVOKING MACROS MIF2GO USER’S GUIDE

790 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; jhjar <$$currpath>\help ugmif2go
; But the following line will be executed:
jhindex <$$currpath>\help html

Normally, a line that starts with a semicolon in a macro definition does not appear at all in
the output. If you do want such a comment to appear in the output, as itself, escape the
semicolon with a backslash:

\; my macro comment

When you do this, you get the backslash character in the output, which appears to be
wrong based on the rule for escaping characters (see §28.1.1.3 Escaping special characters
in macro definitions on page 789). However, using two backslashes “\\; ” also results in
“ \; ” in the output, which is correct.

There is a reason for this odd behavior. Macros can be nested, and it is desirable to avoid
multiple escaping that depends on the nesting level. If the original backslash went away,
and the macro was nested inside another macro, the comment would disappear on the next
evaluation, unless you used “\\\; ”; and if the macro was nested two deep you would
need “\\\\\\; ”, which starts to become user unfriendly. Keeping the single backslash
avoids all that, but it can cause astonishment.

What you do not get in the output is an HTML comment:

<!-- my macro comment -->

If that is what you want, put the comment in your macro using HTML comment syntax,
exactly as you want it to appear in HTML output.

28.1.1.6 Including cross references in macro defin itions

When a macro definition includes or is part of a forward cross reference to a FrameMaker
file that Mif2Go will not yet have processed at the time the macro is expanded, Mif2Go
cannot resolve the reference for HTML or XML output, because at that point the
destination file does not exist. If your project employs macros of this type, you might have
to run a conversion twice to resolve all cross references. See §C.5.2 Resolving forward
references with a second pass on page 1028.

28.1.1.7 Converting “smart quotes” in macro defini tions

Mif2Go can convert FrameMaker “smart quotes” (curly quotes), baseline quotes, and
guillemets that are used within macros (typically in attribute values), into the straight
quotes preferred by HTML browsers and by language interpreters such as those used for
processing JavaScript code:

[Macros]
; FixMacroQuotes = No (default) or Yes (change curl y quotes)
FixMacroQuotes=Yes

28.1.1.8 Obtaining RTF code for macro definitions

RTF coding is arcane, especially for tables. Unless you are an RTF expert, your best bet
might be to copy existing RTF code. Here are some ways to obtain RTF code for your
macros:

Get code examples from Word
Get code examples from Mif2Go
Generate RTF code with Mif2Go.

28 WORKING WITH MACROS DEFINING AND INVOKING MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 791

Get code
examples from

Word

You can pretty-print RTF output from Word to mine for code (if you open a Word RTF file
directly in a text editor, you see only unbroken lines of unreadable code):

1. In Word, create an example of the output you want.

2. Save as RTF from Word.

3. At a Windows command prompt, run pretty-printer program pprtf.exe on the saved
RTF. The pprtf.exe program is included in your Mif2Go distribution directory.

The RTF pretty-printer, pprtf.exe , takes either one or two arguments:

 • the name of the RTF file, with extension
 • optionally, a different name for the output file, with extension

and creates a new file:
pprtf ExampleFile.rtf NewFile.txt

If you omit the second argument, the output is a file of the same name as the RTF file, but
with extension .txt .

Get code
examples from

Mif2Go

Another way to obtain RTF code is to create an example in FrameMaker, run Mif2Go , and
then copy/paste the resulting RTF code into your m2rtf.ini configuration file or into a
macro library file. Mif2Go produces RTF output that is even more readable than the
output from pprtf.exe .

Generate RTF
code with Mif2Go

For paragraphs, you can use CodeStore to generate RTF code; see §28.3.7.2 Inserting
code with the CodeStore property on page 804.

28.1.2 Invoking a macro

To invoke a macro, insert its name, enclosed in a <$ > tag:
<$Macroname>

The dollar sign at the start of the tag is not valid in HTML, so it will not interfere with any
real HTML (or XML) code. A space after the dollar sign is optional. When Mif2Go sees a
macro name, it replaces the tag with the macro content.

You can invoke a macro:

 • as all or part of the value in certain key=value configuration settings; see §28.9.1
Understanding where to use macros and macro variables on page 821.

 • in a FrameMaker HTML Macro marker; see §28.9.7 Using HTML Macro markers to
invoke macros on page 828.

Wherever you can invoke a macro, you can also supply plain HTML. You do not have to
name and define strings of HTML code that you expect to include in only one place.

Invoking an
undefined macro

Mif2Go ignores the invocation of any macro for which no definition can be found, unless
you specify a special debugging option; see §28.8 Debugging macros on page 820. You
can take advantage of this behavior to set up a series of alternatives, then selectively
enable only the ones you want for a given conversion project by renaming (or moving)
macro library files. See §28.2.4 Including macro definitions in your own macro library on
page 794.

28.1.3 Nesting macros

Within one macro you can invoke another macro, and that macro can invoke another, and
so on; you can nest macro invocations to any level. When a macro calls another macro,
Mif2Go notes the “nesting level” and compares it with the limit you set:

ACCESSING MIF2GO MACRO LIBRARIES MIF2GO USER’S GUIDE

792 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[Macros]
; MacroNestMax = maximum depth of macro calls in on e statement
; used to prevent runaways when macros call each o ther in circles
MacroNestMax=128

So if you define a macro as:
[Again]
<P>Play it again, Sam.</P><$Again>

you would get at most 128 lines, then Mif2Go would continue. You cannot crash it by
making it loop.

28.1.4 Using predefined macros

Mif2Go provides several predefined macros for HTML, listed in Table 28-1.

Predefined macro
names are

reserved

Avoid giving any of your own macros a name that starts with an underscore; the Mif2Go
definition takes precedence. The “$” says “this is a Mif2Go construct”; the “_” says “the
name is reserved, not one of yours”.

Note: For backward compatibility Mif2Go recognizes a predefined macro name without
the underscore (such as <$trail>), but only if you have not defined your own
macro with the same name. Your macro definition takes precedence if there is no
underscore.

You cannot use predefined macros in system commands. See §34.4.5 Supplying system
commands in a .bat file on page 940.

28.2 Accessing Mif2Go macro libraries
In this section:

§28.2.1 Understanding Mif2Go-supplied macro libraries on page 792
§28.2.2 Modifying Mif2Go-supplied macro definitions on page 793
§28.2.3 Storing a macro definition in a separate file on page 793
§28.2.4 Including macro definitions in your own macro library on page 794

28.2.1 Understanding Mif2Go-supplied macro librari es

Your Mif2Go distribution includes several macro library files in the form of macro
configuration templates, listed in Table 30-7. These macro libraries are located in
directory %OMSYSHOME%\m2g\macros. The templates are chained together by references.

Table 28-1 Predefined macros for HTML output

Macro Description Ref.

<$_localtoc> List of links to subordinate files (a local TOC) 20.3.3

<$_lastlocaltoc> Copy of last local TOC generated 20.3.3

<$_madewith> “Made with Mif2Go ” label or button 13.15

<$_next> Link to, and title of, following file 20.4

<$_prev> Link to, and title of, preceding file 20.4

<$_seqnext> Link to, and title of, following file in the book 20.4

<$_seqprev> Link to, and title of, preceding file in the book 20.4

<$_TopicStartCode> Macros from marker type TopicStartCode 29.2.1

<$_trail> Inserts a “breadcrumb trail” of links 20.2

28 WORKING WITH MACROS ACCESSING MIF2GO MACRO LIBRARIES

ALL RIGHTS RESERVED. MAY 18, 2013 793

To access a macro library (for example):
[Templates]
; Macros = path to macro library file
Macros = %OMSYSHOME%\m2g\m2htm_macro.ini

Mif2Go checks the referenced chain of macro libraries whenever a macro you invoke is
not defined in your project configuration file.

A macro library file can include another [Templates]Macros setting, to make a chain
of macro libraries to be searched; the chain can be any length. However, all files in the
chain must have distinct names; the chain stops if Mif2Go finds a repeat.

Your Mif2Go project configuration file should reference m2htm_macros.ini or
m2rtf_macros.ini , either directly or indirectly through your own macro library file.

See also:
§30.2 Referencing configuration files and templates on page 851
§28.2.4.3 Creating a chain of macro libraries on page 795

28.2.2 Modifying Mif2Go-supplied macro definitions

You can modify the macro definitions included in the macro libraries supplied with your
Mif2Go distribution, located in %OMSYSHOME%\m2g\macros. However, if you change
anything in those files, whenever you update Mif2Go you will need to run a file
comparison program to see if anything has been added or changed by Omni Systems
developers; see §1.3.8 Obtain a file comparison tool (optional) on page 60.

An alternative is to create your own macro library file and copy into it any macros you
want to alter; see §28.2.4 Including macro definitions in your own macro library on
page 794.

One sample macro is a proposed definition for a spacer for indenting graphics and tables.
A macro variable is suggested for use with this macro (see §28.3 Using macro variables on
page 795):

[Spacer]
<img src="1p.gif" height="10" width="<$$spacerwidth >" alt="[spacer]">

[MacroVariables]
spacerwidth=80

You can copy these definitions into your own macro library file, and modify them as you
wish.

28.2.3 Storing a macro definition in a separate fi le

You might want to use individual files for very large macros; or a separate file for a macro
that you want to include in different configurations, much like a text inset.

A macro file is a text file that contains a nameless macro, with content that comprises the
definition of the macro. A macro file can have any name and any extension; however, it
makes sense to give the file a base name that is the name you would have given the same
macro if included in a macro library file.

To invoke a macro in a macro file, specify a path to the macro file inside a $< ... >
wrapper. The path must include at least one path separator (forward slash or backslash);
this is what distinguishes a file macro invocation from a local or library macro invocation.
A relative path is relative to the project directory. For example:

ACCESSING MIF2GO MACRO LIBRARIES MIF2GO USER’S GUIDE

794 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[ParaStyleCodeReplace]
ParaFmt = <$./mymacro.ini>

would cause Mif2Go to replace each instance of ParaFmt in the output with the content of
mymacro.txt , located in the project directory.

A macro in a macro file can invoke other macros, including predefined macros, macros in
other macro files, macros in library files, and macros in configuration files. Macros in
macro files do not participate in the rules of precedence for chained macro libraries.

See also:
§28.2.4 Including macro definitions in your own macro library on page 794

28.2.4 Including macro definitions in your own mac ro library

You can construct a library of macros to use from anywhere in your project, or even across
multiple projects, by storing macro definitions in a configuration file of their own: a macro
library file. Macros in the library are defined the same way as in your project
configuration file, each macro in its own section. If a macro definition is not present in
your project configuration file, Mif2Go looks for the definition in a macro library file.

In this section:
§28.2.4.1 Creating a macro library on page 794
§28.2.4.2 Creating a file-specific macro library on page 795
§28.2.4.3 Creating a chain of macro libraries on page 795

28.2.4.1 Creating a macro library

To create your own macro library:

1. Create a new text file for your macro library. Give the file extension .ini , and either
place it in your project directory or specify an absolute path to its location. It is a good
idea to use the same location for macro library files for all your Mif2Go projects.

2. Add macro definitions to the file, each in its own section, as described in §28.1.1
Defining macros on page 787.

3. Put a non-macro dummy section at the end of the file; for example:
[End]

Otherwise, the last macro in the library might cause an extra character to be included
in output.

4. Make your library file reference m2rtf_macros.ini or m2htm_macros.ini , and
make your project configuration file reference your library file. For example, suppose
you create a text file called MyMacros.ini , and place it in D:\MacroLibs .

In MyMacros.ini :
[Templates]
Macros = %OMSYSHOME%\m2g\m2htm_macro.ini

In your project configuration file:
[Templates]
Macros = D:\MacroLibs\MyMacros.ini

If you omit a path, Mif2Go looks for MyMacros.ini in your project directory.

Because MyMacros.ini is closer to your project configuration file in the chain of macro
libraries, your macro definitions take precedence over any definitions of the same macros
further away from your project configuration file in the chain.

28 WORKING WITH MACROS USING MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 795

Default macro
library

If you do not specify a value for Macros , and you invoke a macro that is not defined in
your project configuration file, Mif2Go looks in %OMSYSHOME%\m2g\macros for a file
named m2htm_macros.ini or m2rtf_macros.ini .

28.2.4.2 Creating a file-specific macro library

If you store macro definitions in a file named the same as the FrameMaker file you are
converting, but with extension .ini instead of .fm , Mif2Go uses the macros in that file
in place of any with the same macro names in your project configuration file. This lets you
plug in file-specific code and data.

When you create a file-specific macro library, put a non-macro dummy section at the end
of the file; for example:

[End]

Otherwise, the last macro in the library might cause an extra character to be inserted in the
output.

28.2.4.3 Creating a chain of macro libraries

A macro library file can include a setting for [Templates]Macros , so the chain of
libraries for Mif2Go to search for macro definitions can be any length. However, all files
in the chain must have distinct names; the chain stops if Mif2Go finds a repeated macro
library name.

Precedence of
macro definitions

In a chain of macro libraries, if the same macro appears in more than one library file but
has a different definition in each file:

 • A definition in a library closer in the chain to the project configuration file overrides a
definition in any library farther away in the chain.

 • A definition in the project configuration file overrides the final library value.
 • A definition in an individual chapter configuration file (see §33.1 Using a different

configuration for selected files on page 919) overrides a definition in the project
configuration file, for that chapter only.

Mif2Go builds a set of macros for each FrameMaker file in your project by starting with
the most specific macro definitions: those in the chapter.ini configuration file, if there
is one. Next come macro definitions in your project configuration file.

Next, if chapter.ini includes a value for [Templates]Macros , definitions in the
referenced macro library (and any additional libraries chained to it) are applied. If
chapter.ini does not reference a macro library, next come definitions in any macro
library referenced by the project configuration file; then on up the chain from that library.

In other words, a chain of macro libraries is applied to chapter.fm either from
chapter.ini (preferentially) or from the project configuration file, but not from both. In
either case, definitions from a chain of macro libraries are applied after macro definitions
from the project configuration file, which are applied after definitions from the chapter
configuration file. For the same macro with different definitions in different configuration
files or macro libraries, the definition in the most specific file takes precedence.

28.3 Using macro variables
In this section:

§28.3.1 Creating and invoking macro variables on page 796
§28.3.2 Assigning values to macro variables on page 797
§28.3.3 Incrementing and decrementing macro variables on page 799

USING MACRO VARIABLES MIF2GO USER’S GUIDE

796 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§28.3.4 Using predefined macro variables on page 800
§28.3.5 Treating FrameMaker user variables as macro variables on page 801
§28.3.6 Using some FrameMaker system variables as macro variables on page 802
§28.3.7 Creating macro variables from paragraph content on page 802

28.3.1 Creating and invoking macro variables

In this section:
§28.3.1.1 Naming macro variables on page 796
§28.3.1.2 Creating a macro variable on page 796
§28.3.1.3 Invoking a macro variable on page 796

28.3.1.1 Naming macro variables

A Mif2Go macro variable name looks like a Mif2Go macro name, except that a macro
variable name starts with two dollar signs instead of one: $$varname. The rest of the
name must consist only of letters and digits. Do not include punctuation or spaces in a
macro variable name.

Reserved naming
for predefined

macro variables

Some macro variable names are predefined by Mif2Go , and cannot be used for other
purposes; see §28.3.4 Using predefined macro variables on page 800. The name of a
predefined Mif2Go macro variable starts with two dollar signs followed by an underscore:
$$_varname. Avoid giving a name that starts with an underscore to any of your own
macro variables; the Mif2Go definition takes precedence. The “$$” says “this is a
Mif2Go macro variable”; the “_” says “the name is reserved, not one of yours”.

Note: For backward compatibility Mif2Go recognizes a predefined variable name
without the underscore (such as $$basefile), but only if you have not defined
your own variable with the same name. Your variable definition takes precedence
if there is no underscore.

28.3.1.2 Creating a macro variable

You create a Mif2Go macro variable when you do any of the following:

 • Use the variable as the first term in a macro assignment or increment/decrement
statement; see §28.3.2 Assigning values to macro variables on page 797.

 • List the name of the variable in [MacroVariables] (for use in macros); see §28.3.2
Assigning values to macro variables on page 797.

 • List the name of the variable in one of the following configuration-file sections:
 – [MacroVariables] (for use in macros); see §28.3.2 Assigning values to macro

variables on page 797
 – [UserVars] (for use in system commands); see §34.5.1 Assigning an initial

value to a user variable on page 941
 • Define a FrameMaker user variable in your document; see §28.3.5 Treating

FrameMaker user variables as macro variables on page 801
 • Assign a TextStore or CodeStore property to a paragraph format; see §28.3.7

Creating macro variables from paragraph content on page 802.

28.3.1.3 Invoking a macro variable

You invoke a macro variable like this:
<$$varname>

Or like this:

28 WORKING WITH MACROS USING MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 797

<$$varname as display-format>

where display-format is a C-language style printf() format. See §28.6.3
Displaying expression results in output on page 813.

You do not need the enclosing angle brackets when you use a macro variable inside a
macro; for example, in an assignment such as <$$myvar = ($$othervar + 2)> .

An example Suppose you want to use a macro that includes the following:

 • an image, but with a different src attribute each time
 • a heading, but with different text each time.

Rather than have two almost identical macros, you can use a macro variable for the src
attribute and another for the heading, then set their values appropriately for each use.

You could define the macro like this:
[TopStory]
<img src="<$$Pic>" alt="Today’s top story" /><h2><$ $Head></h2>

Call it like this one day:
<$$Pic=lead000201.jpg><$$Head=No Survivors in Crash ><$TopStory>

and like this the next day:
<$$Pic=lead000202.jpg><$$Head=MS Embraces Linux><$T opStory>

28.3.2 Assigning values to macro variables

You can initialize the value of a macro variable in your configuration file, and you can
assign a value to a macro variable in the body of a macro definition:

Assign a starting value
Assign a value in a macro
Assign a character literal.

Assign a starting
value

Assign starting values to macro variables in configuration section [MacroVariables] .
Omit the leading $$ when you specify the name. For example:

[MacroVariables]
; varname = value to use as literal replacement, ca n be in Macro Ini
; can also be set in any macro with <$$name=value>, settings persist
; until the end of the file, but are not stored in the .ini file.
HdgCount = 000
HdgColor = blue

You can assign only literal values; you cannot assign a value that specifies a macro or
another macro variable.

Place section [MacroVariables] in one (or more) of the following files, after any
macro definitions:

 • your project configuration file
 • a configuration template
 • a separate macro file or macro library file.

Assign a value in
a macro

Use any of the following forms to assign values to variables inside Mif2Go macros:
<$$varname = $$ othername>

<$$varname = (expr)> (See §28.6 Using expressions in macros on page 811)

<$$varname = " quoted string even with \" double quotes\" in it">

<$$varname = ' quoted string using " single" quotes'>

<$$varname = string with no quotes>

USING MACRO VARIABLES MIF2GO USER’S GUIDE

798 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

<$$varname = ' x'> (Character literal)

Assign a
character literal

The value of a character literal assigned to a macro variable is the ASCII value of the
character. A character literal can be a character enclosed in single quotes, or any of the
special cases listed in Table 28-2.

Characters other than ' and \ that are preceded by a backslash are themselves. However,
' and \ , without a backslash, are not themselves:

When a string between single quotes contains more than two characters (or more than one
when the first character is not a backslash), you do not have to escape double quotes
within the string, a common JavaScript and HTML technique.

Display an
assignment

Assigning a value to a macro variable does not cause the value to appear in output. To
display the value of an assignment, use as and a printf() format. For example, if the
value of <$$myvar> is 0 (zero), the following expression displays the value 0001 :

<$$myvar = ($$myvar + 1) as %0.4d>

See §28.6.3 Displaying expression results in output on page 813.

Assign a value
indirectly

You can assign a value to a variable indirectly:
<$$myvar = "$$other">
<*$$myvar = 10>

This sequence results in assigning the value 10 to $$other rather than to $$myvar . See
§28.6.7 Using indirection in expressions on page 819.

Nest macro
variables

You can nest macro variables:
[Macros]
; MacroVarNesting = Yes (default, vars contain <>)
; or No (first > ends var)
MacroVarNesting=Yes

This setting is provided solely to support old syntax in assignments. You used to use:
<$$myvar=<$$othervar>>

to get what is now simply:
<$$myvar = $$othervar>

You need MacroVarNesting=Yes only if your macro variable assignments use the old
syntax; the new syntax is always valid. Either way, you get the contents of the referenced
right-hand variable, rather than its name.

Note: Macro variables cannot contain macros.

Table 28-2 Character literals for macro variables

Character literal Name Decimal ASCII value

'\r' return 13

'\n' newline 10

'' empty 0

\' single quote 39

\\ backslash 92

''' would be an empty string followed by an out-of-place ' , thus 0 (zero)

'\' is invalid, and would probably become a string with a single quote,
equivalent to "\'"

28 WORKING WITH MACROS USING MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 799

See also:
§28.4.2 Assigning a value to a list-variable item on page 806
§33.2.4 Assigning values to configuration variables on page 922

28.3.3 Incrementing and decrementing macro variabl es

You can increment the value of a macro variable by 1 (one) like this:
<$$myvar++> (or just <$$myvar+>)

or decrement the value by 1 like this:
<$$myvar--> (or just <$$myvar->)

For example, to count Body paragraphs in a FrameMaker file for HTML output,
incrementing the count before using it:

[HTMLParaStyles]
Body=CodeStart

[ParaStyleCodeStart]
Body=<!-- this is <$$bodynum++ as %0.3d> -->

[MacroVariables]
bodynum=bp000

These settings result in a comment like the following for each instance of a Body
paragraph in the HTML output:

<!-- this is bp003 -->

Reserve enough
digits

You must include enough placeholder digits in the starting value (in this example, bp000)
to accommodate the range of values you expect in the file. If you do not, the number will
roll over to zero after it reaches its maximum value: in this example bp999 would
increment to bp000 . If the value has no digits at all at the end, the last letter is
incremented instead; so a starting value of aaa increments to aab , aac , ..., aaz , aba , ...,
zzz , aaa . Case is retained for the incremented (or decremented) letter.

To increment the value after use, move the incrementing code after the reference:
[ParaStyleCodeStart]

Body=<!-- this is <$$bodynum> --><$$bodynum++>

Reset the starting
value

Numbers restart for each FrameMaker file. If you require the numbers to be unique in your
Mif2Go project, you must use an individual FMfilename.ini configuration file for each
FrameMaker file in your document, and include in it a [MacroVariables] section with
a starting value for that file.

Increment by
assignment

You can use an assignment (see §28.3.2 Assigning values to macro variables on page 797)
as another form of increment, as in the following:

<$$myvar = ($$myvar + 1)>

This form does not require reserving the maximum number of digits first.

Increment
hexadecimal

numbers

Incrementing and decrementing using ++ or -- notation does not work with values stored
as hexadecimal numbers; for those you must use an assignment to increment or decrement:

 <$$myhex = ($$myhex + 1)>

Display an
increment

You can also display the value of an increment or decrement by adding as and a
printf() format; for example:

<$$myvar++ as %d>

<$$myvar = ($$myvar + 1) as %0.4d>

USING MACRO VARIABLES MIF2GO USER’S GUIDE

800 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See §28.6.3 Displaying expression results in output on page 813 for information about
display formats.

Increment
indirectly

You can increment a variable indirectly:
<$$myvar = "$$other">
<*$$myvar++>

This sequence increments the value of $$other rather than the value of $$myvar . See
§28.6.7 Using indirection in expressions on page 819.

28.3.4 Using predefined macro variables

Mif2Go provides a collection of predefined macro variables and user variables, listed in
Table 28-3. Every predefined macro variable name begins with “$$_ ”. Predefined macro
variables are read-only; you cannot assign values to them, and you cannot increment or
decrement them. However, you can do the following:

 • Use predefined macro variables in expressions; see §28.6.1 Understanding macro
expressions on page 811).

 • Format output of a predefined macro variable; see §28.6.3 Displaying expression
results in output on page 813).

Note: Only <$$_basename> , <$$_currpath> , and <$$_prjpath> can be used in
system commands; other predefined macro variables do not work in system
commands. See §34.4.6 Supplying system commands in a macro on page 940.

 Table 28-3 Predefined macro variables

Macro variable Where used Description Ref

$$_basefile HTML split files Base name only of parent file, without extension 18.6

$$_basename System commands Base file name (without path or extension) of current
FrameMaker file or book

34.4.2

$$_basetitle HTML split files Original document title, unaffected by splits 18.6

$$_chapnum Macros FrameMaker system-variable building block 28.3.6

$$_class Elements (HTML) CSS class name of current paragraph 28.6.6

$$_count Loop constructs Current iteration count for <$_repeat> loops 28.6.4.3

$$_currbase Output files File name of current file, without extension 18.6

$$_currfile Output files File name of current file, with extension, 18.6

$$_currfilepath Output files Path and name of current file, with extension 18.6

$$_currpath System commands Path, without trailing slash, to project directory 34.4.2

$$_currtitle HTML split files Current file title, unaffected by extracts 18.6

$$_dcount Loop constructs Down-count for <$_repeat> loops 28.6.4.3

$$_ditastart DITA XML production Start tag of the current topic 15.4.3.6

$$_element Elements (HTML) Name of the current element 28.6.6

$$_extrfile HTML extract files File name of extracted file 18.7.3

$$_extrgraph HTML extract files File name of first extracted graphic 18.7.3

$$_extrtitle HTML extract files Title of extracted file 18.7.3

$$_fileid Output files FileID of FrameMaker file, from mif2go.ini 34.8.5

$$_firstfile HTML split files 1 if first split part after original file, otherwise 0 18.6

$$_graphbase HTML graphics File name for attribute, no extension 23.5.2

$$_graphorighigh HTML graphics Original height in pixels of the image 23.5.2

$$_graphorigwide HTML graphics Original width in pixels of the image 23.5.2

$$_graphsrc HTML graphics File name for attribute, with extension 23.5.2

28 WORKING WITH MACROS USING MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 801

28.3.5 Treating FrameMaker user variables as macro variables

You can employ a FrameMaker variable as a Mif2Go macro variable in configuration
settings, provided the name of the variable is compatible with Mif2Go macro variable
naming rules; that is, the name starts with a letter and contains no spaces or punctuation
except underscores. If necessary, you can modify the name of a FrameMaker variable to fit
the rules, as follows:

1. Remove all punctuation from the FrameMaker variable name except underscores.

2. Replace spaces in the name with underscores.

3. If the first character is a digit, prefix the name with “x”.

For example, if a FrameMaker user variable in your document is named 2nd-Best Choice,
you must specify it in configuration settings as x2ndBest_Choice for Mif2Go to

$$_lastfile HTML split files 1 if last part (regardless of splitting), or if unsplit; otherwise 0 18.6

$$_linksrc HTML link attributes href content of a link 19.2.4

$$_loctocfile HTML split files File name of subordinate file in local TOC entry 20.3

$$_loctoctitle HTML split files Title of subordinate file in local TOC entry 20.3

$$_macroparam Macros Value of parameter passed in parentheses 28.7

$$_nextfile HTML split files File name of split part that follows $$_currfile 18.6

$$_nexttitle HTML split files Title of $$_nextfile split part 18.6

$$_objectid Marker reference Object ID of current marker (HTML only) 29.8

$$_paratag Formats Name of current paragraph format; same as FrameMaker
<$paratag> building block

28.6.6

$$_parauid HTML link anchors “X” followed by FileID (if any) followed by ObjectID of current
paragraph

19.3.4

$$_prevfile HTML split files File name of split part that precedes $$_currfile 18.6

$$_prevtitle HTML split files Title of $$_prevfile split part 18.6

$$_prjname Macros Base name of Mif2Go .prj file

$$_prjpath System commands Path (without trailing slash) to the directory where the .prj
file resides

34.4

$$_sectionnum Macros FrameMaker 9+ system-variable building block 28.3.6

$$_seqcurrtitle HTML navigation links Title of current file 20.4

$$_seqnextfile HTML navigation links Name of following file, with extension .htm 20.4

$$_seqnexttitle HTML navigation links Title of following file 20.4

$$_seqprevfile HTML navigation links Name of preceding file, with extension .htm 20.4

$$_seqprevtitle HTML navigation links Title of preceding file 20.4

$$_splitid HTML split files Base name of split file, excluding FileID portion 34.8.5

$$_splitnum HTML split files Sequential number in file-name prefix or suffix 34.8.5

$$_subsectionnum Macros FrameMaker 9+ system-variable building block 28.3.6

$$_tblcols Tables Count of columns in current table 24.6.6

$$_volnum Macros FrameMaker system-variable building block 28.3.6

$$_tblrows Tables Count of rows in current table 24.6.6

$$_wcount Loop constructs Iteration count for <$_while> loops 28.6.4.3

$$_xrefid HTML link anchors “R” followed by FileID (if any) followed by ObjectID of first
cross-reference marker in current paragraph

19.3.4

Table 28-3 Predefined macro variables (continued)

Macro variable Where used Description Ref

USING MACRO VARIABLES MIF2GO USER’S GUIDE

802 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

recognize it as referring to that particular FrameMaker variable; and you would use the
variable in Mif2Go macros as <$$x2ndBest_Choice> .

When Mif2Go encounters in your configuration file a macro variable name that occurs in
none of the following places:

 • as the first term in an assignment
 • in [MacroVariables]
 • in [UserVars] (see §34.5.1 Assigning an initial value to a user variable on page 941)

Mif2Go looks in your document for a FrameMaker variable that fits that name, possibly
modified according to rules 1 through 3 above. If Mif2Go finds such a variable, Mif2Go
creates a macro variable of the same name (prefixed with $$) and with the same value, just
as though you listed the variable and a starting value for it in [MacroVariables] or in
[UserVars] . However, any formatting in the FrameMaker definition is lost.

For example, suppose you define a macro such as the following:
[DocTitle]
<p>Programmer’s Guide, Version <$$Vnum></p>

If your FrameMaker document contains a user variable named Vnum, and you do not
explicitly create a macro variable named $$Vnum in the configuration file, Mif2Go uses
the value of FrameMaker user variable Vnum for Mif2Go macro variable $$Vnum.

See also:
§28.3.6 Using some FrameMaker system variables as macro variables on page 802
§5.4 Applying FrameMaker conditions and variables on page 122

28.3.6 Using some FrameMaker system variables as m acro variables

Mif2Go provides predefined macro variables for the following FrameMaker system-
variable building blocks:

These four are the only FrameMaker system variables that can be used as Mif2Go macro
variables. Because references to these FrameMaker system-variable building blocks
follow the same naming rules as FrameMaker user variables, in a Mif2Go macro you
could refer to the value of (for example) the FrameMaker Chapter Number variable in
either form: <$$Chapter_Number> or <$$_chapnum> .

See also:
§28.3.5 Treating FrameMaker user variables as macro variables on page 801

28.3.7 Creating macro variables from paragraph con tent

Two [*Styles] properties, TextStore and CodeStore , allow you to assign text or
code to a paragraph format, and have the content of any paragraph in that format stored in
a macro variable for later insertion in the output.

In this section:
§28.3.7.1 Capturing paragraph content with the TextStore property on page 803
§28.3.7.2 Inserting code with the CodeStore property on page 804
§28.3.7.3 Understanding why TextStore and CodeStore work differently on page 805

<$$_volnum> Volume Number
<$$_chapnum> Chapter Number
<$$_sectionnum> Section Number (FrameMaker version 9+ only)
<$$_subsectionnum> Subsection Number (FrameMaker version 9+ only)

28 WORKING WITH MACROS USING MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 803

28.3.7.1 Capturing paragraph content with the Text Store property

To store the text content of a FrameMaker paragraph in a macro variable, assign the
TextStore property to the paragraph format:

[HTMLParaStyles]
; TextStore stores the paragraph content as plain t ext in the
; macro variable named in [StyleTextStore].
Parafmt = TextStore

Explicitly assigning the TextStore property to a paragraph format is optional when you
assign a macro variable to that format in the following section:

[StyleTextStore]
; doc para format = name of macro variable in which to store para text
; if omitted, default is a macro variable of the p ara format name
Parafmt = Varname

Format name is
default variable

name

If you assign the TextStore property to a paragraph format, but you do not supply a
macro variable name in section [StyleTextStore] , Mif2Go uses the paragraph format
name itself as the macro variable name.

Plain text TextStore macro variables contain just plain text; no HTML tags, RTF formatting code,
macros, frames, or tables. Although the original paragraph content is left in place, you can
suppress its appearance in output by also assigning the Delete property to the paragraph
format.

Only last instance
counts

If more than one instance of a TextStore paragraph format appears in a portion of your
document destined for a given split or extract file, the TextStore macro variable retains
the content of only the last instance, for that particular split or extracted file.

Location can
follow point of use

For HTML, you can place a TextStore paragraph anywhere with respect to where you
want the macro-variable content to be used, within the limits of material to be split or
extracted into a single HTML output file; this is different from CodeStore paragraphs,
which must precede the point of use (see §28.3.7.3 Understanding why TextStore and
CodeStore work differently on page 805).

Content is
persistent

The content of a TextStore macro variable persists unchanged in, and is available
throughout, each HTML output file. If there is no instance of the paragraph format in the
current split file, Mif2Go uses the content of the previous instance (or even a later
instance) rather than come up empty-handed. Therefore, to prevent its use in a given split
file, you must set the value to zero in that portion of the source document.

Use for HTML
navigation links

Suppose you want your HTML output to include Prev and Next links between
FrameMaker chapter files. You could create two special paragraph formats for this
purpose; for example, PrevChap and NextChap. In each FrameMaker file you would
include a single PrevChap paragraph containing the file name (base file name with
extension .htm instead of .fm) of the preceding chapter, and a single NextChap paragraph
containing the file name of the following chapter.

For example, suppose your book file contains the following files:
Title.fm
Preface.fm
ChapOne.fm
ChapTwo.fm
...

You might give ChapOne.fm a PrevChap paragraph with content Preface.htm , and a
NextChap paragraph with content ChapTwo.htm . Most likely you would apply a
condition to these paragraphs to prevent them from appearing in printed output.

USING MACRO VARIABLES MIF2GO USER’S GUIDE

804 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

In the configuration file you would assign the TextStore property to each of these
paragraph formats, and include macros for the between-chapter Prev and Next links:

[HTMLParaStyles]
PrevChap=TextStore Delete
NextChap=TextStore Delete

[AtStart]
<p>Prev</p>

[AtEnd]
<p>Next</p>

The Delete property ensures that PrevChap and NextChap paragraph content does not
also appear in the output as regular text.

28.3.7.2 Inserting code with the CodeStore propert y

To store the content of a FrameMaker paragraph in a macro variable, assign the
CodeStore property to the paragraph format:

[HTMLParaStyles] or [HelpStyles] or [WordStyles]
; CodeStore causes the paragraph content to be sto red in the macro
; variable named in [StyleCodeStore]; the para m ust *precede*
; the point of use of the macro variable in the output document.
; The original para is removed; it can be put ba ck by invoking the
; macro variable in a CodeAfter macro. Note tha t any CodeStart and
; CodeEnd macros are included in the macro varia ble content, but
; CodeBefore, CodeAfter, frames, and tables are not.
Parafmt=CodeStore

Explicitly assigning the CodeStore property to a paragraph format is optional when you
assign a macro variable to that format in the following section:

[StyleCodeStore]
; doc para format = name of macro variable in which to store para text
Parafmt=Varname

Any CodeStart and CodeEnd macros are included in the macro variable content;
however, CodeBefore macros, CodeAfter macros, frames, and tables are not included.

Format name =
variable name

If you assign the CodeStore property to a paragraph format, but you do not supply a
macro variable name in [StyleCodeStore] , Mif2Go uses the paragraph format name
itself as the macro variable name.

Must precede
point of use

A paragraph with the content you want to appear at a certain point in the output must be
the last instance in your FrameMaker document that precedes the point where you want
the content inserted. The macro variable holds the value of each instance of the paragraph
format in turn until the point of insertion, whereupon Mif2Go inserts the latest value in the
output. You can give the macro variable a starting value by defining its name in section
[MacroVariables] ; see §28.3.2 Assigning values to macro variables on page 797.

Content is
ignored

When you assign the CodeStore property to a paragraph format, Mif2Go removes all
instances of text in that format from the output. You can restore the text by invoking the
macro variable in a CodeAfter macro.

Observe the following caveats:

 • Do not assign property Delete to the CodeStore paragraph format; if you do, the
paragraph content will not be stored in the macro variable.

 • Avoid assigning CodeStore to a paragraph format that has any of the HTML List N
properties; the coding will be misplaced.

Insert HTML
navigation links

Suppose you have a paragraph format named Nextsect that you use for cross references to
other FrameMaker files in your book. And suppose you want to save the text of any

28 WORKING WITH MACROS USING MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 805

Nextsect paragraph in macro variable <$$Footnext> , so you can make the link appear in
a footer in the HTML output. You would specify these settings:

[HTMLParaStyles]
Nextsect=CodeStore

[StyleCodeStore]
Nextsect=Footnext

The content of each successive paragraph in format Nextsect would be stored in macro
variable <$$Footnext> , replacing the previous value for each instance of Nextsect.
Wherever you insert macro variable <$$Footnext> , its current content, taken from the
latest instance of Nextsect, appears in the output.

Generate RTF
code

You can use CodeStore to generate RTF code for use in later macros, so you do not have
to know arcane RTF syntax. For example, suppose you want a copyright notice at the
bottom of every WinHelp topic. Put the notice in a paragraph at the start of each chapter
file in your FrameMaker document, using a special paragraph format (for example,
Copyr). Make the Copyr paragraphs conditional for “Help only” to keep the notices out of
print versions of your document. Then specify the following configuration settings:

[HelpStyles]
Copyr=CodeStore

[Inserts]
TopicEnd=<$$Copyr>

This is much easier than trying to compose RTF code yourself to insert via macro:
[Copyr]
\pard \s12 \f3 \fs20 \b Copyright \'a9 2012 Softwor ks Inc. \par

Besides, code such as \s12 and \f3 could change from one run to the next.

28.3.7.3 Understanding why TextStore and CodeStore work differently

Mif2Go DCL “write” filters, such as dwhtm.dll , operate in two phases:

TextStore TextStore information is set during scan phase, and is available during write phase.

CodeStore CodeStore information is set during write phase, and is available only after the point in
the FrameMaker file where the CodeStore paragraph occurs.

Scan phase During scan phase, information needed to produce the final output is incomplete. For
example, links to other files (including links among split files) are not resolved until the
end of the scan phase. TextStore processing is able to save the text content of a
paragraph during scan phase, because the text content is known at that time. The
TextStore property excludes items that are not known, such as links. This is the same
mechanism used to generate Title content.

Write phase During write phase, Mif2Go makes numerous cross-list accesses to pick up bits of
information needed to build the final output. Links are completed, macros are executed,
tables are constructed, graphics names are determined, and coded text is generated.
CodeStore processing saves the coded text from a paragraph assigned the CodeStore
property; however, at that point previous paragraphs have already been written to final
output, and cannot be altered.

Scan phase: The results of converting MIF to DCL (see §1.5 How Mif2Go works
on page 62) are stored in linked lists in memory.

Write phase: The linked lists in memory are traversed, additional information is
collected, and output files are written.

USING MULTIPLE-VALUE LIST VARIABLES MIF2GO USER’S GUIDE

806 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

28.4 Using multiple-value list variables
In addition to single-value macro variables (see §28.3 Using macro variables on
page 795), you can use multiple-value list variables. A list variable is a macro variable
that contains an ordered, indexable collection of items, each of the form index=value,
much like an array in the C programming language. A list variable can hold up to 64K
items.

In this section:
§28.4.1 Understanding list-variable syntax on page 806
§28.4.2 Assigning a value to a list-variable item on page 806
§28.4.3 Initializing list variables on page 807
§28.4.4 Using macros to process lists on page 807
§28.4.5 Using pointers to process lists on page 808
§28.4.6 Using a list instead of a conditional expression on page 809

28.4.1 Understanding list-variable syntax

To create a list variable, all you have to do is use a Mif2Go macro variable name with an
index value in brackets, similar to C-language array notation:

$$listname[index]

For example:
$$mylist[$$_count] a variable as the index
$$mylist[2] a constant as the index
$$mylist[($$myindex + 1)] an expression as the index

List indexes can
be nested

The index is a string, not just a number, so it can be anything, even another nested list
reference:

<$$mylist[$$another[one]]>

You can access the number of items in the list with <$$mylist[]> .

28.4.2 Assigning a value to a list-variable item

To specify the value of an item in a list, use an assignment that includes the index position
of the item in brackets (see §28.3.2 Assigning values to macro variables on page 797):

<$$listname[index] = somevalue>

How the value is assigned depends on whether you include or omit a default value:
Set a default value
Omit a default value.

Set a default
value

If you provide a value for list item 0 (zero), that value is used for any item in the list for
which you have not specified another value. For example, suppose you specify:

<$$mylist[0] = Error!>

Then if you use <$$mylist[15]> , without ever having assigned a value to the 15th item
in the list, that value becomes “Error! ”.

Omit a default
value

If you do not provide a value for <$$mylist[0]> , and you use <$$mylist[15]> , the
value of <$$mylist[15]> is 0 (zero).

28 WORKING WITH MACROS USING MULTIPLE-VALUE LIST VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 807

28.4.3 Initializing list variables

To preset values for list-variable items, create a configuration-file section for the list
variable, and use the section to populate the list with indexes and corresponding values.
For example:

[MyList]
1 = First
abc = Alpha start
xyz = Alpha end
0 = Default
mno = middle

With these settings, the initial value of <$$MyList[1]> would be First and the initial
value of <$$MyList[mno]> would be middle . The initial value of <$$MyList[ghi]>
would be Default , because no value has been provided for an index named ghi (see
§28.4.2 Assigning a value to a list-variable item on page 806).

Suppose you set <$$MyList[1]=Second> in a macro. If this macro or another macro
subsequently refers to <$$MyList[1]> while Mif2Go is processing the same
FrameMaker file, the value is Second , not First . But the value in the configuration file
does not change, so when Mif2Go processes the next FrameMaker file, the initial value of
<$$MyList[1]> is First again. That is, the new value Second is in effect for the rest of
the current FrameMaker file, but is not stored for use in the next.

28.4.4 Using macros to process lists

Suppose you want to generate a different set of sidebar navigation links for each major
section of a Web site, where each section is in a single FrameMaker file that Mif2Go splits
into named pages (see §18 Splitting and extracting files on page 585). For each page, the
sidebar item that names that page should not be a link, because a live link to the current
page confuses people.

You need a slightly different list of sidebar items on every HTML page, to avoid a same-
page link. But the logic is always the same, as are the names of files and the titles to be
displayed. What is needed is a macro that takes into account which item should not be
linked.

Your configuration file could include a pair of lists, one with file names and the other with
matching sidebar titles, like this:

[FM_File]
1 = homepage
2 = descript
3 = operate
4 = testimonial
5 = demo
6 = order

[SideTitle]
1 = Widgets
2 = What a Widget Does
3 = How to Use a Widget
4 = What Users Say About Widgets
5 = Get a Demo Widget
6 = Order Widgets On Line

You could process the two lists with this macro:
[Sidebar]
<$$val=2><$$maxval=6>\
<$_while ($$val <= $$maxval)>\

USING MULTIPLE-VALUE LIST VARIABLES MIF2GO USER’S GUIDE

808 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

<$_if ($$_currbase is $$FM_File[$$val])>\
<p class="SidebarTxt"><$$SideTitle[$$val]></p>\
<$_else>\
<p class="SidebarTxt"><a class="SidebarLnk"\
href="<$$FM_File[$$val]>.htm"><$$SideTitle[$$val]>< /a></p>\
<$_endif>

<$$val++>
<$_endwhile>

28.4.5 Using pointers to process lists

The method described in §28.4.4 Using macros to process lists on page 807 is fine for a
single pair of lists. But what if you have many such pairs of lists? Using the actual names
of the lists in the macro means including as many copies of the [Sidebar] macro as there
are pairs of lists, even though the functionality is identical for all pairs. Instead, you can
construct a macro that works for every pair of lists, using pointers (indirect references) to
the lists instead of the literal names of the lists.

To create a pointer to a list, assign the list name, in quotes, to a macro variable:
<$$ptr="$$ list">

A set-up macro could initialize the pointers, starting index, and ending index for the lists,
then invoke the [Sidebar] macro, which is now generalized for any pair of lists:

[SetupMySidebar]
<$$fileptr="$$FM_File">
<$$textptr="$$SideTitle">\
<$$val=2><$$maxval=6>
<$Sidebar>

[Sidebar]
<$_while ($$val <= $$maxval)>\

<$_if ($$_currbase is *$$fileptr[$$val])>\
<p class="SidebarTxt"><*$$textptr[$$val]></p>\
<$_else>\
<p class="SidebarTxt"><a class="SidebarLnk"\
href="<*$$fileptr[$$val]>.htm"><*$$textptr[$$val]>< /a></p>\
<$_endif>

<$$val++>
<$_endwhile>

The asterisks in front of *fileptr[$$val] and *$$txtptr[$$val] indicate that these
list variables are actually being used indirectly, as pointers to other lists. When you use the
form *$$ ptr[$$ index] , Mif2Go converts the reference internally to
$$list[$$ index] before retrieving the value.

Process a list of
pointers

If you need to access a list of pointers, do it in two steps. Suppose you have a list that
contains pointers to the other two lists in the sidebar example:

[PtrList]
1=$$FM_File
2=$$SideTitles

To access an item in [FM_File] , first assign to a macro variable the pointer-list item that
points to [FM_File] :

<$$ptr=$$PtrList[1]>

Thereafter you can use the macro variable as a pointer to [FM_File] ; and so, referring to
the [FM_File] list in §28.4.4 Using macros to process lists on page 807, <*$$ptr[2]>
gets you the second item in the list, descript . You do not use quotes around the value in
this case, because you want the actual list item in $$ptr , not a reference to the list.

28 WORKING WITH MACROS ACCESSING SETTINGS WITH CONFIGURATION MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 809

28.4.6 Using a list instead of a conditional expre ssion

Suppose you want a different navigation bar for some of your HTML output files,
depending on the name of the chapter from which the files are generated. One way would
be to use a conditional expression (see §28.6.4.2 Using conditional expressions on
page 815) to check the current chapter file name and choose the code for the navigation
bar. For example:

[NavBar]
; Configure navigation bar for roadmap:
<$_if ($$_currbase is "user_roadmap")> <$rmap>
; Configure navigation bar for Programmer's Guide t opics:
<$_elseif ($$_currbase is "bgp_user")> <$pgnav>
<$_elseif ($$_currbase is "mld_user")> <$pgnav>

... (long list of similar clauses)
<$_elseif ($$_currbase is "pga_user")> <$pgnav>
; Configure navigation bar for function topics, by default:
<$_else>

<p>
Function Index
</p>

<$_endif>

Instead, you could use a list indexed by the value of $$_currbase , with each list value a
macro call (or HTML code):

[navmap]
0 = <p>Function Index</ p>
user_roadmap = <$rmap>
bgp_user = <$pgnav>
mld_user = <$pgnav>
 ...
pga_user = <$pgnav>

[NavBar]
<$navmap[$$_currbase]>

The 0 (zero) list item corresponds to the <$_else> clause in the original [NavBar]
macro, and is used if the specified index (the value of $$_currbase) is not found. Instead
of a macro call the value of this list item is straight HTML code, which works as long as
the code is all on one line. You could just as well use a macro call for the zero value, like
the rest of the list items.

28.5 Accessing settings with configuration macros
You can access or change the current value of a configuration setting with a configuration
macro that specifies a configuration variable.

§28.5.1 Understanding configuration macros and variables on page 809
§28.5.2 Determining the value of a configuration variable on page 810
§28.5.3 Deploying configuration macros on page 810

28.5.1 Understanding configuration macros and vari ables

A configuration variable is a macro variable that looks like this:
$$[Section] Key

where the components of the variable are as follows:

Section Name of a configuration-file section.

ACCESSING SETTINGS WITH CONFIGURATION MACROS MIF2GO USER’S GUIDE

810 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

A configuration macro is a Mif2Go macro that employs a configuration variable, either to
access or to change the value of a configuration setting.

This is all you need to access the current value of a configuration setting. To change the
value of a setting, see §33.2.4 Assigning values to configuration variables on page 922.

Note: Specifying a configuration value with $$_Section[Key] as a predefined list
variable is deprecated, though still supported for backward compatibility.

28.5.2 Determining the value of a configuration va riable

The value of a configuration variable depends on whether the referenced setting is present
and valid:

For present settings, value is the latest override (if any)
For missing settings, value is the default
For invalid settings, value is zero

For present
settings, value is

the latest override
(if any)

The value of a configuration variable is the value of the setting in question at the time a
macro is executed. If the original setting in your configuration file was overridden by a
configuration-variable assignment in a marker or another macro, the override, not the
original value, is the value returned for <$$[section] key>. See §33.2 Overriding
settings with markers or macros on page 920.

For missing
settings, value is

the default

If you use a configuration variable to retrieve the value of a setting when the key is not
present in your configuration file, or the section itself is missing from your configuration
file, the value of <$$[section] key> is the default value specified for that key.

In some cases the default value is an empty string, as for a missing [Style*Prefix] or
[Style*Suffix] setting.

For invalid
settings, value is

zero

If you use a configuration variable to retrieve a value when <$$[section] key> refers to
an invalid configuration-file section, or to an invalid key, Mif2Go returns 0 (zero), which
is interpreted as false in a conditional expression <$_if($$[section] key ...)> ; see
§28.6.4.2 Using conditional expressions on page 815.

28.5.3 Deploying configuration macros

To test the current value of a configuration setting (for example):
<$_if($$[HTMLOptions]ExtractEnable) ... >

To temporarily alter the value of a configuration setting (for example, to strip all table-
specific HTML tags from format Unruled tables, but not from other tables):

[TableBeforeMacros]
Unruled = <$$[Tables]StripTable=1>

[TableAfterMacros]
Unruled = <$$[Tables]StripTable=0>

To convert only an individual graphic, leaving the rest unconverted:
[GraphStartMacros]
graphicID = <$$[Graphics]UseOriginalGraphicNames=0>

[GraphEndMacros]
graphicID = <$$[Graphics]UseOriginalGraphicNames=1>

Key Keyword, format name, or other identifier that appears to the left
of the equals sign in a configuration setting under [Section] .

28 WORKING WITH MACROS USING EXPRESSIONS IN MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 811

To add a new setting with a configuration variable, see §33.2.5 Adding a new
configuration setting on the fly on page 923.

28.6 Using expressions in macros
In Mif2Go macros, an expression usually consists of two operands separated by an
operator:

<$(operand operator operand)>

As an exception, one type of conditional expression consists of three operands and two
operators:

<$(operand ? operand : operand)>

The result of a Mif2Go macro expression is a strong value.

In this section:
§28.6.1 Understanding macro expressions on page 811
§28.6.2 Understanding operands and operators on page 811
§28.6.3 Displaying expression results in output on page 813
§28.6.4 Using control structures in expressions on page 815
§28.6.5 Specifying substrings in expressions on page 817
§28.6.6 Using list variables in expressions on page 818
§28.6.7 Using indirection in expressions on page 819
§28.6.8 Removing spaces from strings: an example on page 820

28.6.1 Understanding macro expressions
Result is a string

value
An expression always generates a string value, which for some purposes can be treated as
a decimal integer number (or a hexadecimal number, depending on the operands); that is,
you can do arithmetic on the result.

Decimal vs.
hexadecimal

The numeric result of an expression is decimal by default, unless the left operand is in
hexadecimal format; then the result is in hexadecimal. You can coerce output to the other
base by adding zero as the first term, expressed in the desired base, to the left operand. For
example, you can coerce output to decimal with (0 + 0x30) , which yields 48; or to
hexadecimal with (0x0 + 31) , to get 0x1F .

Mif2Go does not support octal numbers or floating-point numbers.

Anonymous
expressions

Where you want to use the result of an expression, but you do not need to store the result
for later use, you can use “anonymous” expressions; for example:

<$($$_count + 2)>

28.6.2 Understanding operands and operators
Operands for

macro
expressions

An operand can be any of the following:

 • a macro variable: $$name (see §28.3 Using macro variables on page 795)
 • a number, including hexadecimal numbers starting with 0x or 0X

 • a double-quoted string: "..."

 • a single-quoted string: '...'

 • a single-quoted character, including '\r' and '\n'

 • an unquoted single word
 • a parenthesized expression.

USING EXPRESSIONS IN MACROS MIF2GO USER’S GUIDE

812 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Operators for
macro

expressions

Operators include essentially the whole C-language numeric and logical sets, as well as
some Mif2Go string operators; Table 28-4 shows the operators you can use in macro
expressions. Most operators participate in binary (two-operand) expressions. Exceptions
are the operators used in the ternary conditional expression described in §28.6.4.2 Using
conditional expressions on page 815, and the unary string operators described in §28.6.5
Specifying substrings in expressions on page 817.

Table 28-4 Operators for HTML macro expressions

Type Operator Meaning Comments

Relational =, == equal to The result is 0 (zero) or 1 (one).
Spaces are optional; you can use any number
of spaces around symbol operators.

!= , <> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Logical and , && both operands are true The result is 0 (zero) or 1 (one).
Two-word operators must have exactly one
space between the two words. You can use
any number of spaces elsewhere. Unlike in C,
both operands are always fully evaluated.

and not , &&! first is true, and second is false

or , || either is true, or both are true

or not , ||! first is true, or second is false

xor , ̂ one operand is true, the other is false

xor not , ^! both are true, or both are false

Bitwise & 1 where both operands have 1
0 everywhere else

These are numeric string operators.
The first six are like the logical operators.
The last two are bitwise shifts with the second
operand the count.
For example:
 (($$myvar >> 8) & 0xFF)
extracts the second-up byte from a number.

&~ 1 where first has 1 and second has 0
0 everywhere else

| 1 where either has or both have 1
0 where both operands have 0

|~ 1 where first has 1 or second has 0
0 where first has 0 and second has 1

^ 1 where operand bits differ
0 where operand bits are the same

^~ 1 where operand bits are the same
0 where operand bits differ

<< N shift first operand to the left N bits

>> N shift first operand to the right N bits

Arithmetic + plus These are the usual suspects.
The result of (n / 0) or (n % 0) is 0 (zero),
because infinity is hard to represent.

- minus

* times

/ divided by

% modulo

28 WORKING WITH MACROS USING EXPRESSIONS IN MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 813

28.6.3 Displaying expression results in output

In general, Mif2Go macro expressions produce output. The exceptions are as follows:

 • assignments, where much of the time you are going to use the assigned value later (see
§28.3.2 Assigning values to macro variables on page 797)

 • control statements, which have no obvious meaning of their own (see §28.6.4 Using
control structures in expressions on page 815).

To display (that is, to include in HTML output) the result of evaluating an expression,
enclose the expression in parentheses, as follows:

<$(... expr ...)>

You can also specify a display format to use, with as plus a C-language-style format
string:

<$(... expr ...) as format-string>

A format string starts with “%” (percent sign) and is composed as follows, where any
component enclosed in [] is optional:

%[flag(s)][width][. precision] format-code

The components of the format string can have any of the values listed in Table 28-5.

String is equal to is and is not are caseless compares using
stricmp()
plus is like strcat()
before and after use strstr() to find the
2nd operand in the 1st:
 (doggie before gi) is dog
You can get a strnicmp() effect using
“first N” or “last N”
with “is ” or “is not ”:
 (($$myvar first 3) is
 ($$yourvar last 3))

is not not equal to

plus concatenated with

before substring before the 1st (leftmost)
occurrence of 2nd string in 1st

after substring after the first (leftmost)
occurrence of 2nd string in 1st

first N leftmost N characters (default = 1)

last N rightmost N characters (default = 1)

length length in characters Integer result

starts $$ str true if $$str is at the start Boolean result

ends $$ str true if $$str is at the end Boolean result

contains $$ str true if $$str occurs anywhere in the string Boolean result

char N Nth character, counting from left First (leftmost) character is number 1
Default value of N is 1

trim first N all but first N characters Default value of N is 1

trim last N all but last N characters Default value of N is 1

$$str lower converts $$str to lowercase

$$str upper converts $$str to uppercase

$$str replace
$$str1 with
$$str2

converts each instance of $$str1 in $$str
to $$str2

Conditional ? “if” the 1st operand is true,
“then” the 2nd operand is the value of the
expression

<$($$myvar ? "yes" : "no")>
is equivalent to:

<$_if ($$myvar)> yes
 <$_else> no
 <$_endif>

: “else” the 3rd operand is the value of the
expression

Table 28-4 Operators for HTML macro expressions (continued)

Type Operator Meaning Comments

USING EXPRESSIONS IN MACROS MIF2GO USER’S GUIDE

814 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Integer precision Suppose you wish to display the integer value of user variable $$myint , which you have
set to internal value 5:

<$$myint = 5>

When you use a format string to display the value, the default integer precision is 1, as you
can determine by comparing the results of the following expressions:

<$$myint as %0d>
<$$myint as %0.1d>
<$$myint as %0.3d>

The first two yield identical results, 5, while the third yields 005 . However, when you do
not use the “as % ” construct, there is no precision; you get the internal string
representation, which has three digits, unless you initialized it otherwise.

Additional format
options

For more information about C-language format strings and for additional components and
format codes, see the following reference:

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.12.html#printf

You can use any C-language format codes except those for floating-point values (e, f , g)
or for pointers (p). It is best not to use the h or l (lowercase L) modifiers; however, if you
ignore this advice, l is at least harmless.

As an example, this macro generates an ASCII table:
[Charset]
<$$cval = ' '>
<$_while ($$cval < '~')>\
<p><$$cval = ($$cval + 1) as %0.3d> \
0x<$$cval as %02X> \
<$$cval as %c></p>

Table 28-5 Format components for displaying expression results

Component Value Effect on output

flag - The result is left justified in the display field (the default is right justified)

+ The sign of the result is displayed (the default is to display the sign only for
negative values)

(blank) A blank is displayed for positive values, a minus sign for negative values

Hexadecimal result: displayed with the prefix 0X or 0x , depending on the
format code

Fractional decimal result: the decimal point is displayed

Integer decimal result: no effect

width (integer) Minimum size of display field in characters

precision (integer) Integer result: minimum number of digits displayed (the default is 1)

Fractional result: number of digits displayed after the decimal point

String result: maximum number of characters displayed (the default is the
entire string)

format-code c The result is displayed as a character

d The result is displayed as a decimal number

s The result is displayed as a string of characters

x The result is displayed as a hexadecimal number, with lowercase a
through f

X The result is displayed as a hexadecimal number, with uppercase A
through F

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.12.html#printf

28 WORKING WITH MACROS USING EXPRESSIONS IN MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 815

Hexadecimal
output

In an expression, hexadecimal numbers beginning with 0x or 0X are understood as
numeric values. But if you have a hexadecimal number stored in a variable, and try to
display it like this:

<$$myvar as %d> (or “as %c ”, or even “as %x ”)

you get 0 (zero) as output—for any hexadecimal number. Use the default (“as %s ”), or
just plain <$$myvar> .

28.6.4 Using control structures in expressions

Mif2Go provides predefined loop and conditional control structures for use in macro
expressions. You cannot nest loop or conditional structures; instead, the outer macro must
invoke another macro for the inner loop or conditional test.

In this section:
§28.6.4.1 Understanding control-structure elements on page 815
§28.6.4.2 Using conditional expressions on page 815
§28.6.4.3 Using loop structures on page 816

28.6.4.1 Understanding control-structure elements

The names of control-structure elements look almost identical to macro names. Avoid
defining any macro of your own that has the same name as one of the control-structure
elements listed in Table 28-6; the Mif2Go control-structure definition takes precedence.

28.6.4.2 Using conditional expressions

A conditional expression starts with:
<$_if (expr)>

or:
<$_if not (expr)>

and continues with:
<$_elseif (expr)> (as many as you please)

<$_elseif not (expr)> (as many as you please)

<$_else> (evaluated when no expr is true)

Table 28-6 Predefined control-structure elements

Control element Where used Purpose Ref.

<$_break> Loop structure Skip to the end of a loop 28.6.4.3

<$_continue> Loop structure Jump back to the start of the next iteration 28.6.4.3

<$_else> Conditional expression Introduce a final alternate condition 28.6.4.2

<$_elseif> Conditional expression Introduce an intermediate alternate
condition

28.6.4.2

<$_endif> Conditional expression End a conditional expression 28.6.4.2

<$_endrepeat> Loop structure End a count-down loop 28.6.4.3

<$_endwhile> Loop structure End a logical loop 28.6.4.3

<$_if> ,
<$_if not>

Conditional expression Begin a conditional expression 28.6.4.2

<$_repeat> Loop structure Begin a count-down loop 28.6.4.3

<$_until> Loop structure Begin a logical loop 28.6.4.3

<$_while> Loop structure Begin a logical loop 28.6.4.3

USING EXPRESSIONS IN MACROS MIF2GO USER’S GUIDE

816 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

<$_endif> (optional if at the end of a macro)

(As an alternative to a long list of <$_elseif> clauses, you could use an indexed array
for the (expr) values; see §28.4.6 Using a list instead of a conditional expression on
page 809.)

Result of testing a
string value

If (expr) has a string value, that value is seen as a non-number, and (expr) would
evaluate to zero; that is, false. The relational operators always return “0” (false) or “1”
(true), so if you had a variable $$myword with yes/no values, you would have to test the
value like this:

<$_if ($$myword is yes)>

or like this
<$_if ($$myword is "yes")>

because, by itself:
<$_if ($$myword)>

would never be true.

How to nest
conditionals

You cannot nest <$_if> s (and <$_if not> s) in the same macro; instead, call a second
macro from within the first, and include the subordinate <$_if> (or <$_if not>) in the
second macro. You specify a limit to such macro nesting with the following setting (see
§28.1.3 Nesting macros on page 791):

[Macros]
MacroNestMax=128

Conditionals
within

expressions

You can also use C-style ternary operators “?” and “: ”, for a shorthand version of a
conditional expression. For example:

<$($$myvar ? "yes" : "no")>

instead of:
<$_if ($$myvar)>yes<$_else>no<$_endif>

The ternary operators give you a natural way to use conditionals within an expression,
which is otherwise impossible.

28.6.4.3 Using loop structures

Mif2Go supports “while” loops, “repeat” loops, and “until” loops:
<$_while (expr)>...<$_endwhile> loops while expr is not 0 (zero)

<$_repeat (expr)>...<$_endrepeat> loops for the count of expr

<$_until (expr)>...<$_enduntil> loops while expr is false

“While” loops For <$_while> , a runaway-prevention feature ends the loop after the maximum count
specified in the following setting:

[Macros]
; WhileMax = maximum count for <$_while>, to preven t runaways; the
; current count can be accessed using predefined m acro variable
; <$$_wcount>
WhileMax=128

Predefined variable <$$_wcount> contains the loop count, starting with 1 (one).

“Until” loops Because “until” is really the same as “while not”, the <$_while> runaway-prevention
limit also applies to <$_until> loops:

[HtmlOptions]
WhileMax=128

28 WORKING WITH MACROS USING EXPRESSIONS IN MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 817

For example, a loop controlled by <$_until (0)> goes to the WhileMax limit, unless
you include an effective <$_break> . Predefined variable <$$_wcount> contains the
loop count, starting with 1 (one).

“Repeat” loops For <$_repeat> , the runaway-prevention limit comes into play only if the count is set to
zero:

[Macros]
; RepeatMax = maximum count for <$_repeat> when val ue is not given, so
; that loop continues until a <$_break condition> is met
RepeatMax=128

The current loop count is held in predefined variable <$$_count> , and the down-count
starting with expr is in predefined variable <$$_dcount> .

Nest loops You cannot nest a <$_while> in a <$_while> , or a <$_repeat> in a <$_repeat> , in
the same macro. Nor can you nest a <$_while> in an <$_until> , or an <$_until> in a
<$_while> . Instead you can call another macro to run a sub-loop. However, you can nest
a <$_while> in a <$_repeat> , or a <$_repeat> in a <$_while> , and you can use one
layer of <$_if> in the mix:

<$_while (expr)>
 <$_if (expr)>
 <$_repeat (expr)>...<$_endrepeat>
 <$_else>
 <$_repeat (expr)>...<$_endrepeat>
 <$_endif>
<$_endwhile>

Move around
within loops

You can use <$_break> to skip to the end of the loop, and <$_continue> to jump back
to the start of the next iteration. Although you can invoke these control elements in
<$_if> s, it is simpler to use the following constructs:

<$_break if (expr)>

<$_continue if (expr)>

Use only a single space before each if , and a minimum of one space after each if . These
constructs work even in nested <$_while> or <$_repeat> loops, where they apply to
the innermost of the loops where they occur.

28.6.5 Specifying substrings in expressions

You can determine the number of characters in a macro variable, and use string operators
to extract substrings from the value of the variable. Table 28-7 lists several of the string
operators and shows how they are used in macro expressions.

See also:
§28.6.2 Understanding operands and operators on page 811
Table 28-4 Operators for HTML macro expressions on page 812

Table 28-7 String operators in macro expressions

Operator Macro expression

Result of expression

Type Value

length ($$ string length) Integer Number of characters in $$string

char ($$ string char N) String Nth character in $$string, counting
from the left; the leftmost character is
number 1

first ($$ string first N) String First N characters of $$string

last ($$ string last N) String Last N characters of $$string

USING EXPRESSIONS IN MACROS MIF2GO USER’S GUIDE

818 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For example, to trim off the first four characters of $$mystring :
<$$mystring = ($$yourstring trim first 4)>

If the value of $$yourstring is “makework ”, the value of $$mystring would be
“work ”.

Implied value of
second operand

If the second operand N is missing from an expression that uses one of the following
operators, a value of 1 (one) is assumed for N:

char
first
last
trim first
trim last

For example, to select only the last character, you can omit the second operand:
<$$yourstring = ($$mystring last)>

If the value of $$mystring is “groceries ”, the value of $$yourstring would be “s”.

28.6.6 Using list variables in expressions

You might want to generate lists, such as lists by level of elements above the current
element (its “ancestors”); see §28.4 Using multiple-value list variables on page 806.

In an expression, the following construct:
($$_paratag in $$mylist)

returns the value of the index for the current paragraph format in <$$mylist> , or 0 (zero)
if missing; and:

($$mylist[$$level] is $$_paratag)

You can set the list item with a normal assignment:
<$$mylist[$$level] = $$_paratag>

before ($$ string before $$ str) String Substring that precedes the first
(leftmost) occurrence of $$str in
$$string

after ($$ string after $$ str) String Substring that follows the first (leftmost)
occurrence of $$str in $$string

starts ($$ string starts $$ str) Boolean True if $$str is at the start of $$string

ends ($$ string ends $$ str) Boolean True if $$str is at the end of $$string

contains ($$ string contains $$ str) Boolean True if $$str occurs anywhere in
$$string

trim first ($$ string trim first N) String All but the first N characters of
$$string

trim last ($$ string trim last N) String All but the last N characters of
$$string

replace with ($$ string replace " " with
"_")

String Each instance of first operand is
replaced with second operand

upper ($$ string upper) String $$string is all uppercase

lower ($$ string lower) String $$string is all lowercase

Table 28-7 String operators in macro expressions (continued)

Operator Macro expression

Result of expression

Type Value

28 WORKING WITH MACROS USING EXPRESSIONS IN MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 819

28.6.7 Using indirection in expressions

Suppose you assign a variable to another variable, as follows:
<$$myvar = $$other>

Then, if you subsequently use:
<$$myvar>

you get whatever contents the variable named $$other had at the time you assigned it to
the variable named $$myvar . Suppose you specified the original assignment like this:

<$$myvar = "$$other">

Then, if you subsequently use:
<$$myvar>

all you get is the literal string “$$other ”. If instead you use:
<*$$myvar>

you get the current contents of the variable $$other (but if there were no variable named
$$other , you would get just the literal string “$$other ”).

The same thing works through multiple layers. If you use this series of assignments:
<$$myvar = "$$other">
<$$other = "$$whatever">
<$$whatever = "here">

then, subsequently, the contents of <*$$myvar> is “here ”, which is the same as the
contents of <*$$other> , or of <$$whatever> , or even of <*$$whatever> .

Now if you set:
<$$other = "something">

then:
<$$myvar> gives: $$other
<*$$myvar> gives: something

If next you set:
<*$$myvar = "something else">

then:
<$$other> gives: something else
<$$myvar> gives: $$other
<*$$myvar> gives: something else

If finally you set:
<$$other = "$$myvar">

then (oops!):
<$$other> gives: nothing

Runaway-
prevention limit

However, a built-in circular-reference counter saves you from the natural consequences of
this last foolish assignment. The counter prevents indirection through more than 128
levels.

The top-level variable is like an envelope that can contain more nested envelopes; you
continue opening them until you get to the letter (the contents). You can use indirection to
recurse, to process variables and expressions, and so forth, down to a simple value,
through whatever layers that takes.

PASSING A PARAMETER TO A MACRO MIF2GO USER’S GUIDE

820 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

28.6.8 Removing spaces from strings: an example

Suppose you need to remove spaces and apostrophes from a string value (such as a topic
title), and replace each space with an underscore, sending the result to output. The
following macro uses several macro expression features:

[NewString]
<$_repeat ($$OldString length)>\

<$$char = ($$OldString char $$_count)>\
<$_if ($$char is " ")>_\

<$_elseif ($$char is not "'"><$$char>\
<$_endif>\

<$_endrepeat>\

28.7 Passing a parameter to a macro
You can pass a single parameter to a macro by enclosing the value of the parameter in
parentheses. Mif2Go evaluates the parameter as an expression, and the result of the
expression is captured in predefined macro variable $$_macroparam . You can reference
$$_macroparam in the same macro, and if you need to keep it around, assign its value to
another macro variable.

For example, suppose you have a pair of before-and-after macros that surround the body
of content intended to be rendered as a note:

[NoteBefore]
<p class="notehead"><$$_macroparam></p>
<p class="notebody">

You could change the heading to reflect the severity level of the note by invoking the
macro like this:

<$NoteBefore("Warning")>

or like this:
<$NoteBefore("Note")>

28.8 Debugging macros
By default, Mif2Go ignores undefined or blank macros and macro variables; they do not
appear in the output. However, if you are debugging a macro process, you might want the
names of undefined (possibly misspelled) macros or macro variables to be flagged. To
make the name of any blank (or undefined) macro or macro variable appear in the output
where the value of the macro or variable would normally appear, specify one or both of the
following options:

[Macros]
; NameUndefinedMacros = No (default)
; or Yes (insert $macro name in output)
NameUndefinedMacros=Yes
; NameUndefinedMacroVars = No (default)
; or Yes (insert $$macrovar name in output)
NameUndefinedMacroVars=Yes

28.9 Deploying macros and macro variables
In this section:

§28.9.1 Understanding where to use macros and macro variables on page 821

28 WORKING WITH MACROS DEPLOYING MACROS AND MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 821

§28.9.2 Invoking macros at predetermined points in output on page 821
§28.9.3 Surrounding or replacing text with code or macros on page 822
§28.9.4 Converting a dictionary-style list to an HTML table on page 824
§28.9.5 Assigning macros to graphics or tables for HTML on page 827
§28.9.6 Redefining navigation macros in HTML on page 827
§28.9.7 Using HTML Macro markers to invoke macros on page 828
§28.9.8 Implementing drop-down text with macros on page 828

28.9.1 Understanding where to use macros and macro variables

You can use a macro to insert HTML or RTF code in any of the following places:

 • before, after, or in place of:
 – a paragraph or character format
 – a graphic or a group of graphics
 – a table or a group of tables

 • within table cells
 • at any point in the text, using an HTML Macro or Code marker
 • at fixed points in an HTML file, such as <head> , or at start and end of <body>

 • at fixed points in an RTF file, such as in the header or footer, or at top or bottom.

You can give a macro variable an initial value in [MacroVariables] (see §28.3.2
Assigning values to macro variables on page 797); however, you can use macro variables
only in the following two contexts:

 • within Mif2Go macros
 • within system commands (see §34.4 Executing operating-system commands on

page 937).

Configuration settings whose values are not themselves macros cannot include macro
variables.

28.9.2 Invoking macros at predetermined points in output

You can specify macros to be invoked at several predetermined points in HTML or RTF
output, by assigning the macros to keywords. Locations for macro insertion depend on the
type of output:

HTML macro insertion points
RTF macro insertion points for Word
RTF macro insertion points for WinHelp

HTML macro
insertion points

To insert macros in HTML output:
[Inserts]
; location = macro to insert, can call another macr o
; TopicBreak is placed between topics when files ar e not split
; Entities is placed before the head element
; Head is placed after the title element within the head element
; Frames is placed between the head and body (for F ramesets)
; Top is placed at the beginning of the body elemen t
; Bottom is placed just before the ending of the bo dy
; End is placed after the ending of the body (to cl ose noframes)

For split and extract files, you can use variants of the [Inserts] keywords to restrict the
types of files to which an inserted macro should apply; see §18.5.2 Assigning code to
[Inserts] keywords for splits and extracts on page 599.

DEPLOYING MACROS AND MACRO VARIABLES MIF2GO USER’S GUIDE

822 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For example:
[Inserts]
Top=<$EscapeFrameset>

[EscapeFrameset]
<SCRIPT LANGUAGE="JavaScript">
<!-- Begin
if (self.top.frames.length != 0)
 self.top.location=self.location;
// End -->
</SCRIPT>

RTF macro
insertion points

for Word

To insert macros (or other content) in RTF output for Word:
[Inserts]
; location = content to insert, which may be a Mif2Go macro
; Top, Bottom
; Header, Footer
; FirstHeader, FirstFooter
; LeftHeader, LeftFooter
; RightHeader, RightFooter

RTF macro
insertion points

for WinHelp

To insert macros (or other content) in RTF output for WinHelp:
[Inserts]
; location = content to insert, which may be a macr o
; TopicStart, TopicEnd
; SlideStart, SlideEnd

28.9.3 Surrounding or replacing text with code or macros

To specify code to be invoked before, after, or in place of a paragraph or character format:

1. List the format name in the configuration section appropriate for your output type:
[HTMLParaStyles] or
[HTMLCharStyles] for HTML, XML, or HTML-based Help
[WordStyles] for Word
[HelpStyles] for WinHelp.

2. Assign to the format one of the Code* properties listed in Table 28-8. For example:
[HTMLParaStyles]
PopHead=CodeBefore

3. List the same format name in the corresponding [ParaStyleCode*] or
[CharStyleCode*] or [AnumCode*] section, and assign to it whatever macros (or
code, or both) you want inserted at that point in the resulting output. For example:

[ParaStyleCodeBefore]
PopHead=<$$isPopup=1>

This assignment can include any macros of the form <$Macroname> or, for HTML
output, <$.\ macrofile.htm> .

Note: If the code you assign requires more than one line, you must specify a macro
for it, because a key=value entry cannot exceed one line; see §4.4
Understanding the rules for configuration settings on page 102.

You can also assign a macro to a format in section [StyleLinkSrc] , to provide code for
the href attribute of HTML links; see §19.2.4 Specifying link properties with macros on
page 612.

28 WORKING WITH MACROS DEPLOYING MACROS AND MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 823

For example, to precede each major heading in HTML with an image:
[HTMLParaStyles]
Heading1=CodeBefore

[ParaStyleCodeBefore]
Heading1=<p class="MyImageTag"><$Mona></p>

Later in the configuration file, or in a macro library file:
[Mona]

The effect in the resulting HTML would be to display the image smile.jpg just before
each element mapped from a Heading1 paragraph in your FrameMaker document.

A macro does not have to be well formed by itself; only the end result must be well
formed, after all macros are included. For example, suppose you use formats A, B, and C,
one after the other, and you want all of them centered in HTML output. You could use
these settings to achieve that effect:

[HTMLParaStyles]
A=CodeBefore
C=CodeAfter

[ParaStyleCodeBefore]
A=<div align="center">

[ParaStyleCodeAfter]
C=</div>

Text properties for
RTF

You can use [ParaStyleCodeBefore] and [ParaStyleCodeAfter] to place ruled
lines or images before and after a heading in RTF output. You can use
[ParaStyleCodeStart] to add properties to text in RTF output, such as borders or
background shading.

Table 28-8 Macro code placement properties

Property Configuration section* HTML code placement RT F code placement

CodeBefore [ParaStyleCodeBefore],
[CharStyleCodeBefore]

Before the starting element tag, such
as <p>

Before the paragraph starting \pard ,
or before the opening brace for
character formats

CodeAfter [ParaStyleCodeAfter],
[CharStyleCodeAfter]

Right after the closing element tag Right after the closing \par , or after
the closing brace for character
formats

CodeBeforeAnum [AnumCodeBefore] Before the paragraph autonumber
(does not apply to character formats)

Before the paragraph autonumber
(does not apply to character formats)

CodeAfterAnum [AnumCodeAfter] After the paragraph autonumber
(does not apply to character formats)

After the paragraph autonumber
(does not apply to character formats)

CodeStart [ParaStyleCodeStart],
[CharStyleCodeStart]

Right after the starting element tag At the start of the text, after properties;
if a starting character format also has
a CodeStart macro, both are used

CodeEnd [ParaStyleCodeEnd],
[CharStyleCodeEnd]

Before the closing element tag, such
as </p>

At the end of the text just before
\par , or before the closing brace for
character formats

CodeReplace [ParaStyleCodeReplace],
[CharStyleCodeReplace]

Instead of paragraph or character
content; any CodeBefore or
CodeAfter is ignored

Instead of paragraph or character
content; any CodeBefore or
CodeAfter is ignored

LinkSrc [ParaStyleLinkSrc],
[CharStyleLinkSrc]

In the href attribute of an HTML link Does not apply to RTF output

* For HTML conversions, Mif2Go recognizes section names prefixed with Html (as in [HtmlStyleCodeAfter]) for backward
compatibility.

DEPLOYING MACROS AND MACRO VARIABLES MIF2GO USER’S GUIDE

824 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Tables for HTML You can use [ParaStyleCodeBefore] and [ParaStyleCodeAfter] to construct a
table around a paragraph for HTML, possibly with an image in a cell; this works well for
notes or tips. You can also construct a table around a series of paragraphs; see §28.9.4
Converting a dictionary-style list to an HTML table on page 824.

Entire document
for HTML

You could have a FrameMaker file that contains only a single paragraph, specify
CodeReplace for that paragraph format, and assign to it a [ParaStyleCodeReplace]
macro; then build the whole HTML output from macros, using macro variables (see §28.3
Using macro variables on page 795) to include specific content based on user entries.

See also:
§28.9.4 Converting a dictionary-style list to an HTML table on page 824
§28.3.7 Creating macro variables from paragraph content on page 802

28.9.4 Converting a dictionary-style list to an HT ML table

Here is an example of combining configuration settings, macros, and macro variables to
convert a dictionary-style list to a table in HTML.

In this section:
§28.9.4.1 Stating the problem on page 824
§28.9.4.2 Assembling the pieces on page 825
§28.9.4.3 Putting it all together on page 826
§28.9.4.4 Making it work everywhere on page 826

28.9.4.1 Stating the problem

Suppose your FrameMaker document contains dictionary-style lists in which the two
columns of the list are implemented with a run-in paragraph format. For example:

Suppose the formats used in such a list are as follows:

Next, see §28.9.4.2 Assembling the pieces on page 825.

AL[14:0] = EEPROM word address
R0 = P/X buffer address

Note: Required if X or P used
R6 = Y buffer address
SFVAR = Memory bank selected:

• EELIB_BANK_SELECT_X
• EELIB_BANK_SELECT_Y
• EELIB_BANK_SELECT_P

D_AUX_REG4 = Word count
CHECK_SUM = Starting checksum

Type Format name Used for
Paragraph List_Term Dictionary terms (left column, run-in heading)

List_Defn Dictionary definitions (right column, run-in body)

Defn_note “Note” paragraph following a List_Defn* paragraph
Defn_Bullet Bullet items following a List_Defn* paragraph

Defn_Bullet_Last Last bullet item following a List_Defn* paragraph
Character Italics Autonumber for Defn_note paragraphs

CodeStyle Any code content in a List_Defn* or Defn* paragraph

28 WORKING WITH MACROS DEPLOYING MACROS AND MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 825

28.9.4.2 Assembling the pieces

To have Mif2Go convert a list that uses a run-in format in FrameMaker (as described in
§28.9.4.1 Stating the problem on page 824) to an HTML table, you must provide
configuration settings and HTML code to meet the following challenges:

Coping with a run-in format
Starting and ending the table
Starting and ending each row
Starting and ending each cell.

Coping with a
run-in format

By default, Mif2Go treats run-in paragraph formats more like character formats. This
means that macros you want inserted before the List_Term items would be embedded in the
start of the List_Defn paragraphs instead (which is what you would want if you were trying
to preserve the run-in effect in HTML instead of converting the list to a table). To get
macros in the right place around List_Term paragraphs, you would need to set the
following option:

[HTMLOptions]
RunInHeads=Normal

See §21.3.2 Converting sidehead and run-in paragraph formats on page 648.

A more involved alternative would be to use a conversion template to replace the run-in
formats with regular paragraph formats; see §3.4.1 Importing formats from a FrameMaker
template on page 79.

Starting and
ending the table

If your document has only one such dictionary-style list, you could insert Code markers
containing macros to provide the <table> and </table> tags; see §29.7 Inserting code
or text with markers on page 842. However, if your document contains many such lists,
instead you would want to use macros that employ the following:

 • macro variables (see §28.3.1 Creating and invoking macro variables on page 796)
 • <$_if> conditions (see §28.6.4.2 Using conditional expressions on page 815).

For example, you could define and initialize a macro variable to keep track of where to
start and end the table:

[MacroVariable]
InTable=0

You could start a CodeBefore macro for the run-in List_Term format with:
<$_if ($$InTable==0)><table attr=val ... ><$$InTable=1><$_endif>

This code guarantees that the first List_Term paragraph in the list is preceded by an
opening <table> tag, yet subsequent List_Term paragraphs are not, as long as the table is
still being generated.

To identify the end of the list, you could assign a CodeBefore macro to any paragraph
format that can follow the list (but never appear within the list):

<$_if ($$InTable==1)></table><$$InTable=0><$_endif>

Starting and
ending each row

Each row of the table starts with a List_Term paragraph, and ends just before the next
List_Term paragraph (or the end of the list); and the beginning and end of a row also mark
the beginning of the first cell and end of the second cell, respectively. This means the
CodeBefore macro for the List_Term format can provide row and cell tags to start and end
each row, as well as start the first cell in the row and end the second cell:

<$_if ($$InTable==0)>
<table attr=val ... ><$$InTable=1>

<$_else>
</td></tr>

DEPLOYING MACROS AND MACRO VARIABLES MIF2GO USER’S GUIDE

826 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

<$_endif>
<tr><td>

Starting and
ending each cell

Each List_Defn paragraph marks the end of a List_Term cell and the beginning of a
List_Defn cell (which might also include other paragraph formats following the List_Defn
paragraph; see §28.9.4.1 Stating the problem on page 824). Therefore, a CodeBefore
macro assigned to the List_Defn format can provide tags for the end of the first cell and
beginning of the second cell:

</td><td>

Next, see §28.9.4.3 Putting it all together on page 826.

28.9.4.3 Putting it all together

To construct a two-column HTML table around the dictionary list (after §28.9.4.2
Assembling the pieces on page 825), you can use the following settings:

[HTMLParaStyles]
*=CodeBefore

[ParaStyleCodeBefore]
List_Term=<$TableStart>
List_Defn=<$BetweenCells>
Defn*=
Italics=
CodeStyle=
*=<$TableEnd>

Only the two formats that form the dictionary list need the <$TableStart> and
<$BetweenCells> macros; other formats either do not need to be involved in
constructing the table, or are not part of the list. Empty settings for the other paragraph and
character formats used in the list prevent the table from ending prematurely. All other
formats are assigned <$TableEnd> , which acts only when a table is being generated from
a list.

The macros are defined as follows:
[TableStart]
<$_if ($$InTable==0)><table attr=val ... ><$$InTable=1>\
<$_else></td></tr><$_endif>\
<tr><td>

[BetweenCells]
</td><td>

[TableEnd]
<$_if ($$InTable==1)></td></tr></table><$$InTable=0 ><$_endif>

Next, see §28.9.4.4 Making it work everywhere on page 826.

28.9.4.4 Making it work everywhere

At this point (after §28.9.4.3 Putting it all together on page 826) you have most of the
configuration settings, HTML code, and macro logic you need to create an HTML table
from a dictionary-style list. Now you must make sure the table ends gracefully in all
contexts.

The <$TableEnd> macro is defined with a condition, so that it does nothing unless a
table is being generated from a dictionary list. This makes it safe to assign to any text
format that is not part of a dictionary list. But what if the list is inside a table in
FrameMaker, or is immediately followed by a table, or is at the very end of the file? You
must make sure the generated table is “tied off” before tags are required for an enclosing

28 WORKING WITH MACROS DEPLOYING MACROS AND MACRO VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 827

or following table, because those tags must precede any non-list paragraphs that would
otherwise end the generated table.

You must meet the following challenges:
End the table before starting another table
End the table before ending an enclosing cell
End the table if the file ends.

End the table
before starting

another table

To make sure the dictionary-list table ends before another table begins:
[TableBeforeMacros]
; TableID = macro to put before table start, top ti tle or indent
a_table_group=<$TableEnd><DIV class="twide">
*=<$TableEnd>

[TableAfterMacros]
; TableID = macro to put after table end or bottom title
a_table_group=</DIV>

The call to <$TableEnd> comes before any other code you assign to a particular table (or
table group); and before any other table. This ensures that the generated table ends before
another table starts. You can insert the <$TableEnd> macro in several other places, to
position it with respect to other tables; see §24.6.1 Invoking macros around tables on
page 748.

End the table
before ending an

enclosing cell

To handle the case where the generated table is inside a cell of another table (in
FrameMaker), you must invoke <$TableEnd> at the end of every FrameMaker table cell:

[TableCellEndMacros]
*=<$TableEnd>

This setting applies to the cells of an enclosing table in FrameMaker, not to HTML table
cells that are being generated.

End the table if
the file ends

What if a list is at the end of a file, so there is no text, table, or other construct immediately
following the generated table? You can invoke the same table-ending macro here:

[Inserts]
End=<$TableEnd>

See §18.5.2 Assigning code to [Inserts] keywords for splits and extracts on page 599.

28.9.5 Assigning macros to graphics or tables for HTML

You can specify macros to be invoked before, after, or in place of a graphic, or a group of
graphics, by assigning macros to a GraphicID in one of the [Graph*Macros] sections;
see §23.5.2 Replacing or surrounding a graphic with macro code on page 710.

You can specify macros to be invoked before, after, or in place of a table, or a group of
tables, by assigning macros to a TableID in one of the [Table*Macros] sections; see
§24.6 Using macros to control table properties on page 748 and §24.6.1 Invoking macros
around tables on page 748.

You can also specify macros to be invoked inside tables; see §24.6.5 Specifying row-
group, row, and cell attributes with macros on page 750.

28.9.6 Redefining navigation macros in HTML

You can assign macros to keywords in the [NavigationMacros] section to redefine the
behavior of Mif2Go -supplied browse macros <$_prev> and <$_next> . For example:

[NavigationMacros]
; PrevMacro = content to put out for <$_prev>

USING MACROS TO FINE-TUNE HTML OR XML OUTPUT MIF2GO USER’S GUIDE

828 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; NextMacro = content to put out for <$_next>
; PrevFSMacro = macro to use for <$_prev> at start of file
; NextFSMacro = macro to use for <$_next> at end of file
; StartingPrevFSMacro = <$_prev> to use at start of first file
; EndingNextFSMacro = <$_next> to use at end of las t file

See §20.4 Creating a browse sequence on page 635 for information about using these and
related settings.

28.9.7 Using HTML Macro markers to invoke macros

You can specify a macro to be invoked via the FrameMaker HTML Macro marker: the
same marker type used by FrameMaker HTML export. Insert a marker of type HTML
Macro where you want a macro to be invoked, and supply <$Macroname> or
<$.\ macrofile.htm> as the marker text.

For compatibility with existing FrameMaker HTML macro usage, you can also specify
just the macro name in a FrameMaker HTML Macro marker, without the angle brackets
and dollar sign; Mif2Go processes the marker text as though it were a Mif2Go macro.

28.9.8 Implementing drop-down text with macros

The following sections of the Mif2Go User’s Guide present examples of macros that
incorporate JavaScript to dynamically expand and collapse areas of text:

§7.9.7 Deploying JavaScript code for drop-down sections on page 234
§7.9.8 Emulating Web Works Publisher drop-down hotspots on page 237

You can modify these macros for your own purposes.

28.10 Using macros to fine-tune HTML or XML output
You can use macros and macro variables to solve special HTML or XML problems that
are not addressed by the usual Mif2Go configuration settings. This section describes the
best approach.

Start from the HTML end. Take one of the output .htm files Mif2Go generates from your
FrameMaker document and use a plain-text editor to modify the HTML code:

1. Look at the code Mif2Go produces, and decide what additional bits of code are
needed to achieve the effect you want; for example, <table> , <tr> , and <td> tags to
create a two-cell table around an in-line image and its adjacent text.

2. Add the bits of code to the HTML, on lines of their own where possible, and view the
result in a browser. You might have to experiment with variations until you get the
effect you want.

3. Include the successful HTML code in Mif2Go macro definitions. Make each separate
chunk of added code into one macro. For example (assuming the anchor for each in-
line image is at the very start of the adjacent text):

[GrInfoBefore]
; Start a table, row, and cell just before an in-li ne image:
<table class="GrInfo"><tr><td>\

[GrImgEnd]
; After an in-line image, start a new cell for the adjacent text:
</p></td><td><p class="Body">

28 WORKING WITH MACROS USING MACROS TO FINE-TUNE HTML OR XML OUTPUT

ALL RIGHTS RESERVED. MAY 18, 2013 829

[GrInfoAfter]
; After the adjacent text, end the cell, row, and t able:
</p></td></tr></table>

See §28.1.1 Defining macros on page 787.

4. Consider where your new HTML-code macros should go in the document flow. Do
they precede the opening of some type of paragraph? Follow the closing? Go at the
top or bottom of the page? Or just get plunked in at arbitrary points? You might have
to define some new paragraph formats in FrameMaker to identify places to invoke the
macros. For example, if sometimes you have multiple paragraphs of text adjacent to
an in-line image, you might need three different format names for those paragraphs:

GrInfoStart — First paragraph
GrInfoEnd — Last paragraph
GrInfo — Sole paragraph

If you do not want to change format names, you could put HTML Macro markers
before and after each instance of adjacent text. The starting marker would contain:

 <$GrInfoBefore>

and the ending marker would contain:
 <$GrInfoAfter>

You would keep the same macros defined in Step 3, and get the same result.

5. Tell Mif2Go where to invoke the macros in the output, so the code gets inserted in the
right places automatically, by adding settings to the configuration file to invoke your
new macros. For example, to invoke the macros defined in Step 3 whenever Mif2Go
encounters paragraphs in the formats defined in Step 4:

[HTMLParaStyles]
; Assign code placement to each GrInfo* paragraph f ormat:
GrInfoStart=CodeBefore
GrInfoEnd=CodeAfter
GrInfo=CodeBefore CodeAfter

[ParaStyleCodeBefore]
; Starting and sole paragraphs need code just befor e them:
GrInfo*=<$GrInfoBefore>

[ParaStyleCodeAfter]
; Ending and sole paragraphs need code to follow th em:
GrInfo*=<$GrInfoAfter>

[GraphEndMacros]
; The image itself needs code to close its cell:
*=<$GrImgEnd>

See §28.1.2 Invoking a macro on page 791 and §28.9.3 Surrounding or replacing text
with code or macros on page 822.

6. Convert the file again, and see if the new code shows up where it is needed. Does the
code also pop up where it is not wanted? If so, you can include a test to prevent the
code from appearing in other places. For example, to avoid creating a table around a
graphic that does not have adjacent text, you could modify the macros in Step 3 to use
a macro variable and a conditional expression (both shown in boldface):

[GrInfoBefore]
<$$GrInf = 1>
<table class="GrInfo"><tr><td>\

[GrImgEnd]
<$_if ($$GrInf)> </p></td><td><p class="Body"> <$_endif>

USING MACROS TO FINE-TUNE HTML OR XML OUTPUT MIF2GO USER’S GUIDE

830 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[GrInfoAfter]
</p></td></tr></table>
<$$GrInf = 0>

[MacroVariables]
; Put any macro definition sections before this sec tion.
GrInf=0

See §28.3 Using macro variables on page 795 and §28.6.4.2 Using conditional
expressions on page 815.
(No illustrations)

ALL RIGHTS RESERVED. MAY 18, 2013 831

29 Working with FrameMaker markers

FrameMaker markers provide a way to introduce HTML or RTF code and Mif2Go
configuration overrides into your document, without affecting the original content or
creating format dependencies. Topics include:

§29.1 Using custom FrameMaker markers on page 831
§29.2 Adding custom marker types on page 832
§29.3 Remapping marker types and hypertext commands on page 836
§29.4 Defining and redefining marker behavior on page 838
§29.5 Suppressing markers on page 841
§29.6 Using marker property names for marker types on page 842
§29.7 Inserting code or text with markers on page 842
§29.8 Identifying markers with variable <$$_objectid> on page 847

29.1 Using custom FrameMaker markers
You can add custom marker types in FrameMaker, and use configuration settings to define
the behavior of markers of those custom types in Mif2Go conversions. You can also
redefine the behavior of existing marker types and hypertext commands.

You can do the following with FrameMaker markers:

 • Add custom marker types. Mif2Go uses custom markers to produce predefined
effects; see §29.2 Adding custom marker types on page 832.

 • Invent new marker types, and assign properties to them; see §29.3 Remapping marker
types and hypertext commands on page 836.

 • Remap most marker types, and optionally give them new properties; see §29.3
Remapping marker types and hypertext commands on page 836 and §29.4 Defining
and redefining marker behavior on page 838.

 • Redefine the behavior of most marker types; see §29.4 Defining and redefining
marker behavior on page 838.

 • Map custom markers directly to Hypertext marker subtypes (hypertext commands);
see §29.3 Remapping marker types and hypertext commands on page 836.

For example, you can use custom markers to do any of the following:

 • Designate split points and extract extents for HTML (see §18.2.1 Designating split
points on page 586).

 • Insert WAI markup (see §25 Generating WAI markup for HTML on page 755).
 • Provide ALink entries for Help systems (see §7.6 Providing related-topic links for

Help systems on page 219).
 • Identify context-sensitive help targets (see §7.10 Setting up Context Sensitive Help

(CSH) on page 239).
 • Assign alternate configuration values to individual tables, graphics, paragraphs, or

character spans (see §33.2.2 Overriding settings with configuration markers on
page 921).

 • Add links and instructions (§34.1.2 Using markers to add links and instructions on
page 935).

See also:
§5.11 Repurposing FrameMaker markers on page 139

ADDING CUSTOM MARKER TYPES MIF2GO USER’S GUIDE

832 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

29.2 Adding custom marker types
To add a new marker type to your document, use the FrameMaker Edit Custom Marker
Type dialog, reached via Special > Marker > Marker Type: Edit... .

Note: Some custom marker types have dedicated purposes in Mif2Go conversions.

In this section:
§29.2.1 Identifying dedicated custom marker types on page 832
§29.2.2 Naming new custom marker types on page 834
§29.2.3 Understanding attribute markers on page 834
§29.2.4 Using attribute markers for HTML or XML on page 835

29.2.1 Identifying dedicated custom marker types

Each of the custom marker types listed in Table 29-1 produces a predefined effect when
Mif2Go encounters a marker of that type in your document.

Table 29-1 Custom marker types with predefined effects

Marker type Purpose Effect

ALink Help-system associative link Content is the text of an ALink identifier

ANSI Character -set mapping for HTML Select an alternate character-set table for mapping; see §13.4.3.2
Selecting a Windows code page for single-byte character sets on
page 431

CellAttr Table mark-up for HTML and XML Content is the value of the HTML <td> tag or <th> tag attribute
named by Attr , for the enclosing cell

CellClass Table mark-up for HTML Content names the CSS class for a table cell

CellGroup Table mark-up for HTML Content specifies the group of a header cell

CellID Table mark-up for HTML Overrides generated WAI ID attributes for a cell

CellScope Table mark-up for HTML Content specifies the scope of a header cell

CellSpan Table mark-up for HTML Assigns the span property to a header cell

Code Insert HTML or RTF code Content is used as code; macros are expanded

Config Change configuration setting for
HTML or RTF

Content is a [Section] Key=Value or [Section]= Value setting
for HTML or RTF output

Delete No standalone purpose Deletes itself

DITA* Provide DITA mark-up See Table 15-3 on page 536

DocBook* Provide DocBook mark-up See Table 17-2 on page 583

EclipseAnchor Merge Eclipse Help projects Marks where a secondary TOC should be inserted

EclipseContext Context-sensitive help Content is the context ID for an infopop

EclipseLink Merge Eclipse Help projects Content includes path to secondary TOC file

ExtCodeEndChar Include text from external files Last character of external file to include

ExtCodeEndLine Include text from external files Last line of external file to include

ExtCodeFileEnc Include text from external files Encoding of external file

ExtCodeFileLen Include text from external files Length of external file in characters

ExtCodeStartChar Include text from external files First character of external file to include

ExtCodeStartLine Include text from external files First line of external file to include

29 WORKING WITH FRAMEMAKER MARKERS ADDING CUSTOM MARKER TYPES

ALL RIGHTS RESERVED. MAY 18, 2013 833

ExtrBottom Extract files for HTML Content is the last item in the <body> of an extract

ExtrDisable Extract files for HTML Turns off extract processing

ExtrEnable Extract files for HTML Turns on extract processing

ExtrEnd Extract files for HTML Ends an extract

ExtrFinish Extract files for HTML Marks the last paragraph of an extract

ExtrHead Extract files for HTML Content is placed in the <head> of an extract

ExtrReplace Extract files for HTML Content replaces an extract in the original file

ExtrStart Extract files for HTML Marks the first paragraph of an extract

ExtrTop Extract files for HTML Content is the first item in the <body> of an extract

FileName Split or extract HTML files Content is the name of a split or extract file

GraphAttr Image mark-up for HTML and XML Content is the value of the HTML tag attribute named by Attr
for the next image

GraphDpi Image resolution Overrides any other DPI setting for the graphic

HelpMerge Merge Help files Marks where the named Help file should be inserted

HTMLComment Add comments to HTML Content is the text of an HTML comment

HTMConfig Change configuration setting for
HTML

Content is a [Section] Key=Value or [Section]= Value setting
for HTML

HVIndex Index entries Special index marker for Microsoft Help Viewer 1.x

JH2PopProp JavaHelp window property Content is a JavaHelp 2 pop-up window parameter

JH2SecProp JavaHelp window property Content is a JavaHelp 2 secondary window parameter

KeyrefBranch Map branch processing Names the map branch to use to resolve the next keyref

Link Attr Link mark-up for HTML and XML Content is the value of the HTML tag attribute
named by Attr , for the next link

LinkClass Link mark-up for HTML Content names the CSS class for the next link

LocalTOCTitle Split files for HTML Content is the text of a local-TOC link

MetaType <meta> tag for HTML Content is the content value for a new
<meta name= Type content=...> tag

RowAttr Table mark-up for HTML and XML Content is the value of the <tr> or <row> attribute named by Attr ,
for the row of the enclosing cell

RTFConfig Change configuration setting for RTF Content is a [Section] Key=Value or [Section]= Value setting
for RTF

Search Conditional output Content determines whether content is included in FTS

Split Split files for HTML Marks a split point in a FrameMaker file

TableAttr Table mark-up for HTML and XML Content is the value of the HTML <table> tag attribute named by
Attr , for the enclosing table

Title Split or extract files for HTML Content is the page title of a split or extract file

TopicAlias Context-sensitive help Inserts a named CSH target in output

TopicStartCode <head> code for HTML Code is executed before topic content is processed

Window HTML Help secondary window Content names a window for jumps from contents or index

Table 29-1 Custom marker types with predefined effects (continued)

Marker type Purpose Effect

ADDING CUSTOM MARKER TYPES MIF2GO USER’S GUIDE

834 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

29.2.2 Naming new custom marker types

When you invent a new custom marker type in FrameMaker, the name must not conflict
with your use of any of the predefined marker types listed in Table 29-1.

Avoid adding a custom marker type whose name has any of the following characteristics:

 • Duplicates the name of a marker type listed in Table 29-1, if you intend to use markers
of that type for the purpose shown; see §29.2.1 Identifying dedicated custom marker
types on page 832.

 • Duplicates the name of a property listed in Table 29-3, unless you intend to use such
markers for the stated purpose; the marker type takes on the named property. See
§29.6 Using marker property names for marker types on page 842.

 • Begins with Cell , Char, Graph , Link , Meta, Para, Row, or Table if you are generating
HTML or XML, unless you end the name with a valid attribute name. All such
markers are assumed by Mif2Go to be attribute markers; see §29.2.4 Using attribute
markers for HTML or XML on page 835.

 • Begins with JH2Pop or JH2Sec if you are generating JavaHelp 2, unless you end the
name with a valid JavaHelp 2 window-access object property; see §11.8.1.5
Overriding window-access properties with markers on page 397.

29.2.3 Understanding attribute markers

An attribute marker includes the name of the attribute as a suffix to the predefined custom
marker type name. The content of the marker becomes the value of the attribute for the
applicable element tag:

<elementname attributetype=" content">

For example, for HTML output, a Rowbgcolor marker with content yellow , placed in a
FrameMaker table cell, would add the attribute bgcolor with value yellow to the
HTML <tr> tag for the current table row:

<tr bgcolor="yellow">

Nonconforming
attribute markers

A few attribute markers do not conform exactly to this naming and usage convention; for
example, WAI support markers CellGroup and CellSpan . See §26.2.4 Assigning table-cell
attribute values with custom markers on page 772. Another nonconforming attribute
marker is MetaType . For HTML output, this marker causes a <meta> tag to be added to
the <head> element; Type becomes the value of the name attribute, and the content of the
marker becomes the value of the content attribute.

Concatenated
attribute markers

Although the text of a FrameMaker marker is limited to 256 characters, Mif2Go gets
around that restriction for attribute markers by concatenating all markers for the same
attribute that are inserted before the next item to which they apply. You can just add
more markers of the same type, and continue the content.

Also:

 • Inserting another marker of a different type between two markers for the same
attribute does not prevent concatenation, even if the middle marker is a different
attribute marker for the same element.

 • If you want the content of two concatenated attribute markers to be separated by a
space in the attribute value, you must provide the space, either at the end of content in
the first marker or at the beginning of content in the second marker.

Extra attributes Using markers to add attributes can result in extra attributes for a given tag. Browsers
ignore extra attributes, but validators would not be pleased; see §13.16 Passing W3C
validation tests on page 453. (Of course validators would not be pleased with most of what
is on the Web, so that might be of little consequence.)

29 WORKING WITH FRAMEMAKER MARKERS ADDING CUSTOM MARKER TYPES

ALL RIGHTS RESERVED. MAY 18, 2013 835

Duplicate
markers

If multiple attribute markers with identical names but different content apply to the same
element, Mif2Go uses the content of the last marker encountered as the value of the
attribute.

See also:
§25.1.3 Creating custom markers for WAI attributes on page 756
§29.2.4 Using attribute markers for HTML or XML on page 835
§29.7.2 Surrounding marker content with code on page 843

29.2.4 Using attribute markers for HTML or XML

For HTML or XML output, Mif2Go treats any FrameMaker marker that has a name that
begins with Cell , Char, Graph , Link , Meta, Para, Row, or Table as an attribute marker. For
HTML (for example), Mif2Go inserts the attribute=" value" pair specified by each
of the attribute marker types as follows:

Table 29-2 lists the elements to which each attribute marker can apply for each output
type.

CellAttr In the <td> or <th> tag for the enclosing table cell.

CharAttr In the tag for the current or next inline element.

Graph Attr In the next tag.

Link Attr In the next link () tag.

MetaType In a <meta> tag; produces a new element, <meta name=" Type"
content=" content"> , in the <head> element.

ParaAttr In the tag for the current block element.

RowAttr In the <tr> tag for the current table row; best practice is to place the
marker in the first cell in the row.

TableAttr In the <table> tag, in the enclosing table; if not positioned in a table,
applies to the next table in the same flow.

Table 29-2 Elements to which attribute markers apply, by output type

Marker

Output type

HTML/XHTML Generic XML DITA XML DocBook XML

CellAttr <td> , <th> <td> , <th> <entry> ,
<stentry> ,
<choption> ,
<chdesc> ,
<proptype> ,
<propvalue> ,
<propdesc>

<td> , <th>

CharAttr inline elements inline elements inline elements inline elements

GraphAttr <image> <imagedata>

Link Attr <a> ((does not apply
to Help pop-ups,
secondary window
jumps, or footnote
cross references)

<a> (applies to the
AtagElement
setting; do not use
for name; overridden
by XMLLinkAttrs)

<xref> (can add to
or replace standard
href , type ,
format , and scope
attributes)

<xref> , <ulink>

MetaType <meta> <meta>

REMAPPING MARKER TYPES AND HYPERTEXT COMMANDS MIF2GO USER’S GUIDE

836 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

29.3 Remapping marker types and hypertext commands
You can reuse the content of most FrameMaker markers, and also create new marker
types, by remapping an existing marker type to one or more other marker types. You can
also remap certain FrameMaker hypertext commands.

In this section:
§29.3.1 Remapping and cloning marker types on page 836
§29.3.2 Understanding when to remap marker types on page 837
§29.3.3 Remapping FrameMaker hypertext commands on page 837

29.3.1 Remapping and cloning marker types

To remap a marker type, and optionally clone the remapped type:
[Markers]
; marker type name = one or more marker type names
FM_Marker = FM_Marker ClonedMarker AnotherClonedMarker ...

Once you remap a marker type, the original marker type (to the left of the equals sign) is
no longer in effect, unless you also specify its name to the right of the equals sign. For
example:

[Markers]
Index = Index MySpecialIndex

This assignment retains use of the original FrameMaker Index markers, while also cloning
them as new MySpecialIndex markers, to which you can assign other properties; see
§29.4.1 Assigning properties to marker types on page 838.

You can remap the following FrameMaker marker types:
Author
Comment
Cross-Ref
Equation
Glossary
Header/Footer $1
Header/Footer $2
HTML Macro
Hypertext
Index
Subject

You must observe the following restrictions:

ParaAttr block elements block elements block elements block elements

RowAttr <tr> <tr> <row> , <strow> ,
<chrow> ,
<property>

<tr> , <row>

TableAttr <table> <table> <table> ,
<simpletable> ,
<choicetable> ,
<properties>

<table>

Table 29-2 Elements to which attribute markers apply, by output type

Marker

Output type

HTML/XHTML Generic XML DITA XML DocBook XML

29 WORKING WITH FRAMEMAKER MARKERS REMAPPING MARKER TYPES AND HYPERTEXT COMMANDS

ALL RIGHTS RESERVED. MAY 18, 2013 837

 • The Conditional Text marker type cannot be remapped.
 • Names of marker types you are remapping to (names to the right of the equals sign)

may not contain spaces or commas (those to the left of the equals sign may contain
spaces and commas).

You can remap any marker type (except Conditional Text) to:

 • one or more existing or predefined (see Table 29-1) marker types or hypertext
commands

 • any new marker type(s) you name to the right of the equals sign
 • itself, for the purpose of redefining the behavior of that marker type; see §29.4.1

Assigning properties to marker types on page 838.

29.3.2 Understanding when to remap marker types

Use [Markers] primarily to make new marker types from existing markers, and to clone
the new markers. You might need to do this if you are making extracurricular use of
FrameMaker Index markers, because you cannot redefine Index marker properties. See
§14.8 Converting index entries to generic XML on page 468.

For example, to add all FrameMaker Subject markers to the index, and also make clones
of the remapped markers as new marker type ALinkRef :

[Markers]
Subject = Index ALinkRef

For another example, to remap context-sensitive help targets identified with TopicAlias
markers to hypertext newlink markers:

[Markers]
TopicAlias = newlink

Note: This mapping is no longer required for context-sensitive help. Do not use it in
conversions to DITA XML, or the CSH targets will be omitted from output; see
§15.14 Including CSH targets in DITA XML on page 535.

Because many marker types have special purposes or require specific content, be careful
about remapping to custom marker types. For example, do not try to remap to attribute
markers used for WAI support; see §25.1.3 Creating custom markers for WAI attributes on
page 756 and §A WAI marker library for HTML on page 1013.

29.3.3 Remapping FrameMaker hypertext commands

To remap a FrameMaker hypertext command to a marker type, and optionally clone the
marker type:

[Markers]
; hypertext command name = one or more marker type names
command = FM_Marker ClonedMarker AnotherClonedMarker ...

You can remap the following FrameMaker Hypertext marker commands:

Hypertext command FrameMaker Hypertext dialog command
name

alert Alert
gotolink Jump to Named Destination

gotolinkfitwin Jump to Named Destination & Fit to Page
gotoObjectID (None)
gotoObjectIDfitwin (None)

gotopage Jump to Page Number

DEFINING AND REDEFINING MARKER BEHAVIOR MIF2GO USER’S GUIDE

838 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Hypertext marker command message specifically means message URL. A marker of this
subtype should have a URL as its content.

29.4 Defining and redefining marker behavior
In this section:

§29.4.1 Assigning properties to marker types on page 838
§29.4.2 Observing restrictions on redefining marker behavior on page 840
§29.4.3 Understanding examples of marker redefinition on page 840

29.4.1 Assigning properties to marker types

You can define the behavior of a new marker type, or redefine the behavior of an existing
marker type, by assigning one or more properties to the marker type:

[MarkerTypes]
; marker type name = properties
FM_Marker = Property1 Property2 ...

Most properties
are specific to

HTML or to RTF

Which properties you can assign depends on whether you are converting to HTML or to
RTF. A few properties are common to both output types: Delete , Code, ALink , and
Config . The rest are specific to either HTML or RTF output. Table 29-3 lists all the
[MarkerTypes] properties, shows which output types apply, and describes the effect of
each property.

Marker types lose
original properties

When you assign properties to a FrameMaker marker type in [MarkerTypes] , that
marker type loses its original FrameMaker functionality; instead, it takes on the properties
you assign to it.

Marker types
remapped in

[Markers] are
gone

If you remap a marker type to something else in [Markers] , unless you also remap that
type to itself, Mif2Go ignores [MarkerTypes] property assignments to the original
marker type. In fact, for conversion purposes, the original marker type is gone. However,
Mif2Go does honor [MarkerTypes] property assignments to any new marker types you
define in [Markers] . See §29.3 Remapping marker types and hypertext commands on
page 836.

message (for message URL) Go to URL
newlink Specify Named Destination

openlink Open Document
openlinkfitwin Open Document & Fit to Page
openObjectID (None)

openObjectIDfitwin (None)

Hypertext command FrameMaker Hypertext dialog command
name

29 WORKING WITH FRAMEMAKER MARKERS DEFINING AND REDEFINING MARKER BEHAVIOR

ALL RIGHTS RESERVED. MAY 18, 2013 839

 Table 29-3 Effects of [MarkerTypes] properties

Output Property Effect

RTF or
HTML

ALink Content is treated as a list of names of categories that apply to the current topic. Category
names should be single terms, separated by semicolons. Use spaces or other punctuation in the
names at your own risk. Available for WinHelp, MS HTML Help, OmniHelp, and Oracle Help for
Java.

Code Any macros in the marker are expanded, and the content is surrounded by any code specified
for the marker type in [MarkerTypeCodeBefore] and [MarkerTypeCodeAfter] ; see §29.7
Inserting code or text with markers on page 842 for more information. Cannot be combined with
HTMLComment. Compare with property Text for generic XML or HTML/XHTML output.

Config Content is a configuration setting of the form [Section] Key=Value or [Section]= Value;
see §33.2 Overriding settings with markers or macros on page 920.

Delete The marker is removed entirely; Mif2Go applies this property last, after any other properties you
specify. Must be specified last.

RTF only RTFConfig Content is a configuration setting of the form [Section] Key=Value or [Section]= Value;
see §33.2 Overriding settings with markers or macros on page 920.

HTML only ANSI Specifies the Windows code page to use for FrameMaker, default 1252; or 1250 for CE/EE,
1251 for Cyrillic, 1253 for Greek, 1254 for Turkish. See §13.4.3.2 Selecting a Windows code
page for single-byte character sets on page 431.

Extr* Each of these markers has the same effect as the corresponding
[HTMLParaStyles] parafmt=Extr* property; see §18.3.1 Enabling and disabling extract
processing on page 591. For ExtrDisable , ExtrEnable , ExtrEnd , and ExtrStart , any
content is ignored, unless you also specify other properties that use the content, such as Code.

ExtrBottom Content becomes the last item in the extract <body> .

ExtrDisable Turns extract processing off.

ExtrEnable Turns extract processing on.

ExtrEnd Ends a file extract, but is not part of the extract.

ExtrFinish Ends a file extract, and is the last part of the extract.

ExtrHead Content is placed in the <head> of the extract, after the <title> element.

ExtrReplace Content replaces an extract in the parent file.

ExtrStart Begins an extract. Must be specified before FileName or Title.

ExtrTop Content becomes the first item in the extract <body> .

FileName Marker content names the current split or extracted file; dangerous (see §34.8.3 Using custom
markers to name output files on page 947)

HelpMerge Marker content specifies another help file to be merged at the point of insertion

HTMConfig Content is a configuration setting of the form [Section] Key=Value or [Section]= Value;
see §33.2 Overriding settings with markers or macros on page 920.

HTMLComment Marker content is treated as an HTML comment, and enclosed within HTML comment
delimiters; or, if you specified XML as the output type, marker content is properly converted to an
XML comment. Cannot be combined with Code.

Split Marks a split point in a FrameMaker file; has the same effect as [HTMLParaStyles] parafmt=
Split ; see §18.2.1 Designating split points on page 586. Any content is ignored, unless you
also specify other properties that use the content, such as Code. Must be specified before
FileName or Title.

Text Marker content is processed as pure text per the current text encoding rules; non-alphanumeric
characters are treated as text and properly encoded for output. Applies to generic XML and
HTML/XHTML output only; see §29.7.3 Processing marker content as text for
XML/HTML/XHTML on page 844. Compare with property Code.

DEFINING AND REDEFINING MARKER BEHAVIOR MIF2GO USER’S GUIDE

840 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

29.4.2 Observing restrictions on redefining marker behavior
Marker types you

cannot redefine
You cannot use [MarkerTypes] to redefine the properties of any of the following
FrameMaker marker types:

Cross-Ref
HTML Macro
Hypertext
Index

However, you can remap any of these marker types to another marker type in [Markers]
(see §29.3 Remapping marker types and hypertext commands on page 836), and then list
the other type in [MarkerTypes] and redefine its properties.

Marker types you
can redefine

You can redefine the properties of any of the following:

 • any new marker type you add in FrameMaker
 • any new marker type you introduce in [Markers]

 • standard FrameMaker marker types other than Index , Hypertext , Cross-ref , or HTML
Macro .

Note: If you want to redefine the properties of a standard FrameMaker marker type that
you remap to another type in [Markers] , you must also remap the original
marker type to itself in [Markers] before you can redefine its properties in
[MarkerTypes] ; see §29.3.1 Remapping and cloning marker types on page 836.

Order of
properties is

important

Mif2Go processes marker-type properties from left to right, and in some cases the order in
which you list property names is important:

 • Split or ExtrStart should be specified before (to the left of) Cross-Ref , Title ,
or FileName ; otherwise the cross reference, page title, or file name is likely to be
applied to the prior file segment.

 • Cross-Ref should be specified before Delete but after all other property names.
 • Delete should be specified last.

29.4.3 Understanding examples of marker redefiniti on

Check the following examples for ways to use redefined markers:
Example: redefining Subject marker type
Example: extracting content from markers
Example: combining Split and FileName properties
Example: redefining HTML Macro marker type

Example:
redefining Subject

marker type

You could redefine the behavior of the original Subject marker type in the example in
§29.3 Remapping marker types and hypertext commands on page 836 so that after
remapping Subject markers, the original Subject markers could be used to mark split
points instead. You would specify:

Title Marker content becomes the page title attribute of the current split or extract file.

TopicStartCode Same as the Code property, except macros are expanded at the start of the topic. Any output the
macros create is available as predefined macro <$_TopicStartCode> , which can be used
anywhere in the current topic.

Window HTML Help only. Marker content names a secondary window as the target for jumps from the
paragraph containing the marker.

Table 29-3 Effects of [MarkerTypes] properties (continued)

Output Property Effect

29 WORKING WITH FRAMEMAKER MARKERS SUPPRESSING MARKERS

ALL RIGHTS RESERVED. MAY 18, 2013 841

[Markers]
Subject = Index ALinkRef Subject

[MarkerTypes]
Subject = Split

Or, you could simply specify Split as a marker type on the right in [Markers] :
[Markers]
Subject = Index ALinkRef Split

This works because when you give a marker type the same name as a property, Mif2Go
takes that as an implicit request to use that marker type to assign that property. In effect,
each [MarkerTypes] property name can also be used as the name of a predefined marker
type. See §29.6 Using marker property names for marker types on page 842 for more
information.

Example:
extracting content

from markers

To roll your own macros for related-topic buttons in HTML Help, you could capture
ALink keywords from Subject markers, remap Subject markers to a new marker type, and
also clone the resulting markers:

[Markers]
Subject = AKey ALink

See §9.7.5.2 Creating a list of ALink keywords from markers on page 314 for a
description of how these markers and their contents can be used to build button macros.

Example:
combining Split

and FileName
properties

As another example, you can combine Split and FileName properties in one marker
type, as follows:

1. Add a new custom marker type in FrameMaker, called (for example) SplitFile .

2. Make the content of each SplitFile marker the base file name (no extension).

3. Specify the following setting for the SplitFile marker type:
[MarkerTypes]
SplitFile = Split FileName

Example:
redefining HTML

Macro marker
type

You cannot specify both HTMLComment and Code properties for the same marker type.
However, you can specify both as marker types in [Markers] , and each will have its
usual effect. You might want to do this, to include as a comment the macro that will be
expanded in the HTML code. This can help when you are setting up a macro system where
macros call other macros; you can see what you asked for, and what you got.

To make each FrameMaker HTML Macro marker into a custom HTMLComment marker,
plus a custom Code marker, with macro expansion:

[Markers]
HTML Macro = HTMLComment Code

29.5 Suppressing markers
To prevent a marker type from being included in your output, you can map it out of
existence by assigning property Delete . For example, to eliminate FrameMaker index
entries from RTF output:

[Markers]
Index = Delete

See §29.4 Defining and redefining marker behavior on page 838.

USING MARKER PROPERTY NAMES FOR MARKER TYPES MIF2GO USER’S GUIDE

842 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

29.6 Using marker property names for marker types
To simplify marker use, you can specify any [MarkerTypes] property name as the name
of a marker type, and get the same effect as assigning that property to some other marker
type. If you add a custom FrameMaker marker type that has the same name as one of the
properties listed in Table 29-3 on page 839, the marker type takes on that property.

This is how it works: Mif2Go looks up, in [MarkerTypes] , the name of each marker
type that you have either:

 • used in your FrameMaker document, or
 • added to the right of the = in [Markers] .

If you listed the name of that marker in [MarkerTypes] , Mif2Go processes each
property you specified for it, and treats each property as though you had added a marker
that has:

 • the name of the property,
 • the effect of the property, and
 • the content of the marker.

For example, to mark split points for HTML output (see §18.2 Splitting files on page 586),
you could add a custom marker type named Split to your FrameMaker document (or list
Split to the right of the = in [Markers]), and insert a Split marker wherever you want the
file split. This would have the same effect as inserting some other marker to which you
assign the Split property in [MarkerTypes] .

29.7 Inserting code or text with markers
You can have Mif2Go include the content of a marker in the output, and optionally
surround it with any code you provide.

In this section:
§29.7.1 Inserting marker content in output on page 842
§29.7.2 Surrounding marker content with code on page 843
§29.7.3 Processing marker content as text for XML/HTML/XHTML on page 844
§29.7.4 Surrounding attribute markers with code on page 845
§29.7.5 Converting custom markers to attributes on page 845
§29.7.6 Including code to be executed before a topic on page 846

29.7.1 Inserting marker content in output

Mif2Go can insert the content of a marker directly in output, at the location where it
occurs in your FrameMaker document. This is what happens by default to the content of
any marker of type Code or Text , or of any marker that is remapped to Code or Text (see
§29.3 Remapping marker types and hypertext commands on page 836).

If Code marker content includes Mif2Go macros, the macros are expanded; however,
macros in Text markers are not expanded.

To place marker content at a location in HTML or XML that is outside of any paragraph,
dedicate a paragraph format in FrameMaker to this use (for example, MarkerOnly). Put the
marker in an otherwise empty MarkerOnly paragraph, and assign the following property:

[HTMLParaStyles]
MarkerOnly = Raw

29 WORKING WITH FRAMEMAKER MARKERS INSERTING CODE OR TEXT WITH MARKERS

ALL RIGHTS RESERVED. MAY 18, 2013 843

See §21.3.6 Stripping paragraph properties on page 650.

See also:
§14.8.1 Configuring index markers for conversion to XML on page 469
§29.7.2 Surrounding marker content with code on page 843.
§29.7.3 Processing marker content as text for XML/HTML/XHTML on page 844.

29.7.2 Surrounding marker content with code

If you assign the Code property or the Text property to a marker type (see §29.4.1
Assigning properties to marker types on page 838), you can have Mif2Go surround the
content with additional “before” and “after” code, or replace the content with code:

[MarkerTypeCodeBefore]
; marker type name = macro
; for markers assigned the Code or Text property in MarkerTypes.

[MarkerTypeCodeAfter]
; marker type name = macro
; for markers assigned the Code or Text property in MarkerTypes.

[MarkerTypeCodeReplace]
; marker type name = macro
; for markers assigned the Code or Text property in MarkerTypes.

Mif2Go expands macros assigned in these sections. If the marker type is assigned the
Code property and marker content includes macros, those macros are expanded, also. If
the marker type is assigned the Text property, marker content is treated as plain text.

ALink references Following the example in §29.3 Remapping marker types and hypertext commands on
page 836, to create an ALink reference to the link identified in the marker content:

[Markers]
Subject = Index ALinkRef

[MarkerTypes]
ALinkRef = Code

[MarkerTypeCodeBefore]
ALinkRef=<a href="alink:

[MarkerTypeCodeAfter]
ALinkRef=">Related Topics

In this example, if you are generating Oracle Help for Java, you specify one subject name
in the ALinkRef marker, and get both an ALink (which makes the current topic a member
of the group) and a hotspot that calls up that list of topics.

Macro variables You can capture marker content in a macro variable at the same time. For example:
[Markers]
ALink = ALink AName

[MarkerTypes]
AName = Code

[MarkerTypeCodeBefore]
AName = <$$ALinkText= "

[MarkerTypeCodeAfter]
AName =">

Mif2Go first makes a copy (AName) of the ALink marker, then uses that copy to create a
macro assignment statement:

 <$$ALinkText= " marker content">

INSERTING CODE OR TEXT WITH MARKERS MIF2GO USER’S GUIDE

844 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

This statement sets the value of the macro variable to the content of the marker, without
producing any output; and you can use the macro variable in other macros. Because the
same variable may be assigned multiple times in a document, Mif2Go processes each
assignment in document sequence. Therefore the assignment must precede the point of
use.

For a more extensive example for HTML Help, see §9.7.5.2 Creating a list of ALink
keywords from markers on page 314.

Content
replacement

You can replace marker content at the same time; for example, to substitute a numeric
entity for a special character:

[MarkerTypeCodeBefore]
HeaderFooter2=<ph outputclass="HeaderFooter2"><$$st ring="

[MarkerTypeCodeAfter]
HeaderFooter2="><$($$string replace "®" with "® ;")></ph>

For marker content “Vertigo®” the result would be:
<ph outputclass="HeaderFooter2">Vertigo®</ph>

See §28.6.5 Specifying substrings in expressions on page 817.

29.7.3 Processing marker content as text for XML/H TML/XHTML

For most output types, Mif2Go processes FrameMaker Index markers for their usual
purpose. However, for generic XML or HTML/XHTML output, Mif2Go makes no
assumptions about the meaning of Index markers. If you wish to have the content of
FrameMaker Index markers included in output as, for example, <indexterm> elements,
you must direct Mif2Go to surround the marker content with appropriate tags; see §29.7.2
Surrounding marker content with code on page 843.

For example:
[MarkerTypeCodeBefore]
Index = <indexterm>

[MarkerTypeCodeAfter]
Index = </indexterm>

Special
characters in

marker content

Suppose some of your FrameMaker Index markers happen to include text surrounded by
angle brackets, such as this example:

\ tags

For generic XML output, with the above code-before and code-after settings, Mif2Go
would render this marker content as:

<indexterm> tags</indexterm>

This is not valid XML; what you really want in generic XML output is this:
<indexterm> tags</indexterm>

To achieve the correct encoding of the angle brackets you must create a new marker type,
cloning (and replacing) existing markers of type Index , and assigning the Text property to
the new marker type. For example:

[Markers]
; Clone and replace markers of type Index:
Index = NewIndex

(When you specify Index=NewIndex , rather than Index=Index NewIndex , the
original Index markers are no longer in effect for conversion purposes.)

29 WORKING WITH FRAMEMAKER MARKERS INSERTING CODE OR TEXT WITH MARKERS

ALL RIGHTS RESERVED. MAY 18, 2013 845

[MarkerTypes]
; Assign the Text property to markers of type NewIn dex:
NewIndex = Text

[MarkerTypeCodeBefore]
; Precede the content of each NewIndex marker with an opening tag:
NewIndex = <indexterm>

[MarkerTypeCodeAfter]
; Follow the content of each NewIndex marker with a closing tag:
NewIndex = </indexterm>

Because you have assigned the Text property to markers of type NewIndex , Mif2Go
treats the marker content as plain text, and applies the appropriate encoding to non-
alphanumeric characters.

Note: You do not need this approach for DITA or DocBook XML output, nor for any of
the Help output types, nor for RTF output.

See also:
§14.8.1 Configuring index markers for conversion to XML on page 469

29.7.4 Surrounding attribute markers with code

You can specify [MarkerTypeCodeBefore] and [MarkerTypeCodeAfter] for
attribute markers such as LinkTitle . However, for attribute markers you do not assign the
Code property to the attribute marker type in [MarkerTypes] , because that would insert
marker code on the spot instead of in an attribute marker.

For example, you could use the same content for the link title and LinkonMouseOver
attributes, and provide wrapper code for the latter, with just a single LinkTitle marker in
FrameMaker:

[Markers]
LinkTitle=LinkTitle LinkonMouseOver

[MarkerTypeCodeBefore]
LinkonMouseOver=window.status='

[MarkerTypeCodeAfter]
LinkonMouseOver='; return true;

29.7.5 Converting custom markers to attributes

Suppose your FrameMaker document consists of a catalog with tables of items, including
descriptions and prices. Each price cell has a custom marker, Price ; the content of each
Price marker is the part number of the item. And suppose in DITA XML output you want
each price cell to include the text of the price, and also a conref attribute with the part
number as the attribute value. In other words, for each cell containing a price $xxx.xx
and a Price marker with content nnnnn, the corresponding DITA table cell should look
like the following:

<entry><p>
<ph conref=" nnnnnn"> $xxx.xx</ph>

</p></entry>

First you would assign the Code property to the Price markers (see Table 29-3):
[MarkerTypes]
Price = Code

Now you can surround the part number with the conref assignment:

INSERTING CODE OR TEXT WITH MARKERS MIF2GO USER’S GUIDE

846 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[MarkerTypeCodeBefore]
Price = <ph conref="

[MarkerTypeCodeAfter]
Price = ">

To wrap the price text in the same <ph> element, how you proceed depends on whether
the price values in the table have a unique paragraph format.

If the price text has a unique paragraph format (for example, CurrPrice):
[HTMLParaStyles]
CurrPrice = CodeEnd

[ParaStyleCodeEnd]
CurrPrice = </ph>

If the price text does not have a unique paragraph format, you would have to use a macro
and a macro variable to identify cells that contain price values. For example, if price
values use a general-purpose paragraph format named TableCell:

[HTMLParaStyles]
TableCell = CodeEnd

[ParaStyleCodeEnd]
TableCell = <$_if ($$isprice)></ph><$$isprice=0><$_ endif>

Instead of just closing the conref assignment, you would also set the value of the macro
variable to indicate this is a price cell:

[MarkerTypeCodeAfter]
Price = "><$$isprice=1>

You should initialize the macro variable:
[MacroVariables]
isprice=0

See §28 Working with macros on page 787.

29.7.6 Including code to be executed before a topi c

Suppose you need to provide code that must be processed at the start of a topic, before
anything has been written to the topic file; for example, variable content to be included in
the <head> element of each HTML topic.

Because the same variable can be assigned a different value multiple times in a document,
Mif2Go processes each assignment as it is encountered. Therefore, the assignment of a
particular value to a variable must ordinarily precede the point where the variable is used.
To get around this restriction, you can assign property TopicStartCode to a marker, to have
the code executed before the topic starts.

For example, to provide a Help keyword in an XML section of the <head> element, you
could assign property TopicStartCode to a custom marker:

[MarkerTypes]
F1Keyword = TopicStartCode

[MarkerTypeCodeBefore]
F1Keyword = <$$F1Key = "

[MarkerTypeCodeAfter]
F1Keyword = ">

[Inserts]
Head = <$KeyIndexF>

In macro <$KeyIndexF> , you would include code such as the following:

29 WORKING WITH FRAMEMAKER MARKERS IDENTIFYING MARKERS WITH VARIABLE <$$_OBJECTID>

ALL RIGHTS RESERVED. MAY 18, 2013 847

<Help:Keyword Index="F" Term="<$$F1Key>"/>

As another example, to include a variable number of keywords, each in its own <meta>
tag:

[MarkerTypes]
MetaKeys = TopicStartCode

[MarkerTypeCodeBefore]
MetaKeys = <$$KeyCount++><$$Keywords[$$KeyCount] = "

[MarkerTypeCodeAfter]
MetaKeys= ">

[Inserts]
Head = <$AddKeywords>

[AddKeywords]
<$_repeat ($$KeyCount)>
<meta name="Help.Keywords" content="<$$Keywords[$$_ count]>" />\n
<$_endrepeat><$$KeyCount=0>

[Macros]
OmitMacroReturns=Yes

[MacroVariables]
KeyCount=0

In this variation, you would use a counter ($$KeyCount) that starts at zero. As Mif2Go
processes the MetaKeys markers for the start of the topic, the counter is incremented
before each marker. The counter is used to index an array variable, into which the marker
content is stored. Each succeeding MetaKeys marker gets its own slot in the array.

When Mif2Go is ready to write the <head> of the topic, the <$_repeat> loop (see
§28.6.4.3 Using loop structures on page 816) writes as many <meta> tags as there were
MetaKeys markers, each with the content from one marker, and the counter is set back to
zero for the next file.

29.8 Identifying markers with variable <$$_objecti d>
Suppose your workflow requires distinguishing between two or more markers (index
entries, for example) that have the same content. Mif2Go assigns a unique ID to each
marker, of the form Xaa123456 , composed as follows:

Mif2Go makes this marker ID available as predefined macro variable <$$_objectid> .
So you could do something like this:

[Markers]
Index=MyIndex

[MarkerTypes]
MyIndex=Code

[MarkerTypeCodeBefore]
MyIndex= <a name="<$$_objectid>" class="Myindex" va lue="

[MarkerTypeCodeAfter]
MyIndex= ">

(No illustrations)

X Fixed character

aa Mif2Go FileID for the file containing the marker

123456 FrameMaker ObjectID for the marker

IDENTIFYING MARKERS WITH VARIABLE <$$_OBJECTID> MIF2GO USER’S GUIDE

848 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 849

30 Working with templates

This section explains how to use Mif2Go configuration templates and how to import
FrameMaker templates. Topics include:

§30.1 Working with configuration templates on page 849
§30.2 Referencing configuration files and templates on page 851
§30.3 Including document-specific configuration files on page 852
§30.4 Including chapter-specific configuration files on page 855
§30.5 Deciding which configuration file to edit on page 856
§30.6 Creating your own configuration templates on page 861
§30.7 Applying FrameMaker conversion templates on page 863

30.1 Working with configuration templates
A configuration template is a configuration file that contains settings that can be
referenced by (and thus be included in) another configuration file. Mif2Go relies heavily
on configuration templates to supply settings that seldom vary from project to project, or
from one output type to another. This approach helps eliminate duplication of settings, and
reduces the clutter in your project configuration file by limiting the latter to just those
settings specific to your current project.

In this section:
§30.1.1 Understanding how templates are organized on page 849
§30.1.2 Understanding how templates are named on page 850
§30.1.3 Understanding how templates are chained together on page 850
§30.1.4 Understanding how macro libraries are organized on page 851

30.1.1 Understanding how templates are organized

Your Mif2Go distribution includes the collections of configuration templates listed in
Table B-1 on page 1017. These templates are linked together by references that extend
through the chains, from your project configuration file through templates in
%OMSYSHOME%\m2g subdirectories, to the very end of the configuration chain at
%OMSYSHOME%\common\system\config\omsys.ini . See §30.1.3 Understanding
how templates are chained together on page 850

Configuration templates include the following groups:
General configuration settings, located in config directories
Macro definitions, located in macros directories

Each template in a system subdirectory is paired with an editable configuration file in the
corresponding local subdirectory. The system member of each pair contains default
settings. The local member of each pair starts out empty; you add settings to override the
default settings referenced in the system member. Your configuration files always
reference the local member. The local member references its system counterpart,
which in turn references the local member of the next template up the chain.

General
configuration

settings

The settings in general configuration templates establish default values for features that
are not likely to differ from one project to the next, or from one output type to the next.
General configuration templates are located in the following directories:

%OMSYSHOME%\m2g\system\config : default general configuration settings

WORKING WITH CONFIGURATION TEMPLATES MIF2GO USER’S GUIDE

850 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

%OMSYSHOME%\m2g\local\config : your overrides to the system settings

Macro definitions General-purpose macros are defined in macro library templates. Each configuration
section in these templates is the name of the macro being defined. Macro library templates
are located in the following directories:

%OMSYSHOME%\m2g\system\macros: definitions of general-purpose macros
%OMSYSHOME%\m2g\local\macros : definitions of your own macros

30.1.2 Understanding how templates are named

Template files in your Mif2Go distribution have names that follow a certain pattern. Each
name has a prefix that indicates the scope of the settings the template contains, followed
by the type of template (config or macro):

Most general configuration templates and macro libraries use this naming convention.

30.1.3 Understanding how templates are chained tog ether

Configuration templates are chained together in a series, each accessing all the settings in
the next, plus all the settings in all other templates farther up the chain. If a given setting
appears in more than one template in a chain, the instance of that setting closest to your
project configuration file takes precedence over any that are farther away.

Each project configuration file references an output-type-specific local configuration file.
This editable local configuration file in turn references its system counterpart, which
references the next editable local configuration file in the chain, and so forth.

For example, the MS Word starting project configuration file _m2rtf.ini references this
chain of general configuration templates and files:

_m2rtf.ini ->
local_m2rtf_config.ini-> m2rtf_config.ini ->

local_m2g_config.ini -> m2g_config.ini ->
local_omsys.ini -> omsys.ini

Template name Editable file name Scope of settings
omsys.ini local_omsys.ini All Omni Systems projects

m2g_type.ini local_m2g _type. ini All Mif2Go projects
m2htm_type.ini local_m2htm _type. ini Mif2Go HTML and XML projects
m2rtf _type.ini local_ m2rtf _type. ini Mif2Go RTF projects

Table 30-1 Output-type-specific general configuration files

Output type Project configuration file Editable local configuration file

DITA _m2dita.ini local_m2dita_config.ini

DocBook _m2docbook.ini local_m2docbook_config.ini

Eclipse Help _m2eclipse.ini local_m2eclipse_config.ini

HTML _m2html.ini local_m2html_config.ini

MS HTML Help _m2htmlhelp.ini local_m2htmlhelp_config.ini

JavaHelp _m2javahelp.ini local_m2javahelp_config.ini

OmniHelp _m2omnihelp.ini local_m2omnihelp_config.ini

Oracle Help _m2oraclehelp.ini local_m2oraclehelp_config.ini

WinHelp _m2winhelp.ini local_m2winhelp_config.ini

MS Word _m2rtf.ini local_m2rtf_config.ini

XHTML _m2xhtml.ini local_m2xhtml_config.ini

30 WORKING WITH TEMPLATES REFERENCING CONFIGURATION FILES AND TEMPLATES

ALL RIGHTS RESERVED. MAY 18, 2013 851

The HTML starting project configuration file references this chain:
_m2html.ini ->

local_m2htm_config.ini -> m2htm_config.ini ->
local_m2g_config.ini -> m2g_config.ini ->

local_omsys.ini -> omsys.ini

Some chains are longer. For example, for OmniHelp output, the chain looks like this:
_m2omnihelp.ini ->

local_m2omnihelp_config.ini -> m2omnihelp_config.in i ->
local_m2help_config.ini -> m2help_config.ini ->

local_m2htm_config.ini -> m2htm_config.ini ->
local_m2g_config.ini -> m2g_config.ini ->

local_omsys.ini -> omsys.ini

All general configuration chains go through either m2htm_config.ini (for HTML or
XML output) or m2rtf_config.ini (for Word or WinHelp output). These two
configuration templates reference the macro configuration files and templates, through
side chains. Therefore, as long as your project configuration file references one of the
output-specific configuration files, you do not have to include settings in your project
configuration file to reference those other files.

See also:
§30.1.4 Understanding how macro libraries are organized on page 851

30.1.4 Understanding how macro libraries are organ ized

Two Mif2Go general configuration templates, m2htm_config.ini and
m2rtf_config.ini , respectively reference local_m2htm_macros.ini and
local_m2rtf_macros.ini ; and these two editable macro library files in turn reference
m2htm_macros.ini and m2rtf_macros.ini , respectively.

For example, in m2htm_config.ini :
[Templates]
; Macros = path to macro library
Macros = %OMSYSHOME%\m2g\local\macros\local_m2htm_m acros.ini

Therefore you do not have to include a setting for Macros in your starting project
configuration file, unless you wish to include an additional macro library in the chain. See
§28.2.4 Including macro definitions in your own macro library on page 794.

30.2 Referencing configuration files and templates
To reference a Mif2Go -provided general configuration file or template:

[Templates]
Configs = %OMSYSHOME%\path\ to\ sometemplate.ini

This setting takes the place of the deprecated [FDK]ConfigTemplate setting. Replace
the old [FDK] setting with the new [Templates] setting in all your configuration files.
Your Mif2Go distribution includes configuration templates already chained together
through references like this; see §30.1.3 Understanding how templates are chained
together on page 850.

INCLUDING DOCUMENT-SPECIFIC CONFIGURATION FILES MIF2GO USER’S GUIDE

852 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When Mif2Go creates a starting configuration file for a new project, that file includes the
first link in the chain. For example, a starting project configuration file for Word output
includes this reference:

[Templates]
Configs = %OMSYSHOME%\m2g\local\config\local_m2rtf_ config.ini

If you want to insert another configuration file (for example, myspecial.ini) in the
chain between the project configuration file and local_m2rtf_config.ini , you would
copy this reference into myspecial.ini , and replace it with the following reference in
the project configuration file:

[Templates]
Configs = relative\path\to\myspecial.ini

Make paths to your own configuration files relative to the referencing configuration file.
You can chain configuration files together by including in each a [Templates]Configs
setting that references yet another template or configuration file. You can have as many
referenced files chained as you please; each overrides the one it references, and all others
that precede the referenced template in the chain. The most specific configuration rules.
See §30.6 Creating your own configuration templates on page 861.

Settings that specify paths to configuration templates, or to any other files in the Mif2Go
distribution directory structure, should use absolute paths that begin with environment
variable %OMSYSHOME%; for example:

Configs = %omsyshome%\m2g\local\config\local_m2htm_ config.ini

If you specify a relative path for any setting in configuration section [Templates] , that
path is considered to be relative to the configuration file in which the setting occurs.

Precedence of
settings

If the same setting has different values in a referenced template or configuration file and in
a file that references that template, the value in the referencing file takes precedence,
allowing you to override the template when necessary:

 • The last referenced file in the chain overrides Mif2Go internal default values.
 • A referenced configuration file overrides, in turn, any files it references.
 • A document-specific configuration file overrides any files it references, and also

overrides any other files the starting project configuration file references
 • The starting project configuration file overrides any files it references.
 • Any chapter-specific configuration file overrides the project configuration file, for its

FrameMaker chapter only.

See §33.1.2 Understanding precedence of configuration settings on page 919.

30.3 Including document-specific configuration fil es
In addition to a general chain of configuration files and templates, your project
configuration file references a chain of configuration files containing settings that apply
only to the current FrameMaker document (though possibly to multiple output types from
that document).

In this section:
§30.3.1 Understanding document-specific configuration files on page 853
§30.3.2 Referencing a document-specific configuration file on page 853
§30.3.3 Deciding where to keep document-specific configuration files on page 854
§30.3.4 Indicating the intended scope of a configuration file on page 855

30 WORKING WITH TEMPLATES INCLUDING DOCUMENT-SPECIFIC CONFIGURATION FILES

ALL RIGHTS RESERVED. MAY 18, 2013 853

30.3.1 Understanding document-specific configurati on files

When you set up a conversion project, Mif2Go creates a document-specific configuration
file for you, and places a reference to that file in your project configuration file; see §3.5
Understanding how Mif2Go sets up a project on page 82. To establish a document-specific
configuration, Mif2Go looks in this file:

%omsyshome%\m2g\local\config\local_m2g_config.ini

or, if the required settings are not there, in this file:
%omsyshome%\m2g\system\config\m2g_config.ini

for the following settings:
[Setup]
. . .
; used when creating document-specific configuratio n files
LocalConfigPath = .._config\
WinHelpDocName = winhelp_doc.ini
WordDocName = word_doc.ini
HTMLDocName = html_doc.ini

These are default values; see §1.3.6 Establish system-wide configuration settings on
page 58.

If the directory named by LocalConfigPath is not already present, Mif2Go creates this
directory.

If not already present in the directory named by LocalConfigPath , Mif2Go creates a
configuration file there with one of the following names (or other names if you have
changed the defaults), depending on the output type of the project:

This document-specific configuration file is intended for settings that are likely to apply
only to the current FrameMaker document, and that will be the same for most outputs.
Initially this file includes settings in the following sections:

Also included is a comment to show that this file is referenced from the project
configuration file. For example:

; Document-specific configuration for HTML outputs
; Referenced by _m2htm.ini

If a document-specific configuration file for the current output type is already present in
the directory named by LocalConfigPath , Mif2Go does not overwrite that file, nor add
a comment. For additional conversions from the same document you might want to add
“referenced by” comments yourself, so you can keep track of which of your project
configuration files reference the document-specific configuration file.

30.3.2 Referencing a document-specific configurati on file

To reference a document-specific configuration file:

html_doc.ini for HTML, HTML-based Help, or XML projects

word_doc.ini for Word or WordPerfect projects

winhelp_doc.ini for WinHelp projects

html_doc.ini [HTMLParaStyles] , [HelpContentsLevels]

word_doc.ini [WordSectionFiles] , [WordCntStyles]

winhelp_doc.ini [HelpStyles] , [HelpCntStyles] ,
[BrowseStart]

INCLUDING DOCUMENT-SPECIFIC CONFIGURATION FILES MIF2GO USER’S GUIDE

854 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[Templates]
; Document = path to document-specific configuratio n file
Document = %OMSYSHOME%\m2g\documents\ mydocname_doc.ini

Or:
[Templates]
; Document = path to local document-specific config uration file
Document = mydocsource_config\ outputtype_doc.ini

It is a matter of preference whether you keep document-specific configuration files for all
documents in one central location (for example, the %OMSYSHOME%\m2g\documents
directory included in your Mif2Go distribution for this purpose) or in a _config
subdirectory under your FrameMaker source directory; see §30.3.3 Deciding where to
keep document-specific configuration files on page 854.

Mif2Go processes the entire Document chain before continuing with the Configs chain.
The Document chain is interpolated between your starting project configuration file and
the Configs chain that your project configuration file references. Settings in the
Document chain override settings in the Configs chain.

Although it cannot reference general configuration files, a document-specific
configuration file can reference other types of configuration files via the following
[Templates] settings:

Settings in files referenced by a document-specific configuration file override settings in
other types of files referenced by your project configuration file. Settings in your project
configuration file override settings in the Document chain.

30.3.3 Deciding where to keep document-specific co nfiguration files

You can establish a default location for configuration files that contain settings that apply
to all conversion projects for a particular FrameMaker document; for example, settings
that name the document itself, or that reference values that occur only in that document.
You can use a different location for each source document, and you can change the
location for each project. Choose a default that applies to most of your projects, depending
on which of several possible scenarios is most likely:

Single output type per document
Multiple output types per document
Multiple documents per output type
Configurations shared on a network
Lone writer
Need for portability.

Single output type
per document

If you expect to produce only one output type from each FrameMaker document, and no
one else will be working on the same document, you really do not need a document-
specific configuration file at all; your project configuration file can include all the needed
settings.the best place is a location relative to your FrameMaker document files; the
default location is a directory named _config , parallel to your project directory.

Multiple output
types per

document

If you expect to produce more than one output type from each FrameMaker document,
choose a location relative to your FrameMaker document files; the default location is a
directory named _config , parallel to your project directory.

Document Other document-specific configurations

Macros Macro libraries

30 WORKING WITH TEMPLATES INCLUDING CHAPTER-SPECIFIC CONFIGURATION FILES

ALL RIGHTS RESERVED. MAY 18, 2013 855

Multiple
documents per

output type

If you expect to produce the same output type from multiple source documents, you might
want to keep source-specific configuration files for all documents in the same directory
tree, for easy comparison; this would be a reason to choose a location central to all your
Mif2Go projects such as the directory provided in your distribution,
%OMSYSHOME%\m2g\document.

Configurations
shared on a

network

If %OMSYSHOME% is located on a network drive (not advisable), and more than one person
will need to access document-specific settings for the same document, you might want to
choose a location central to all your Mif2Go projects.

Lone writer If you are the only person working on your projects, a location central to all your Mif2Go
projects is probably easier: you have all the document-specific configuration files in one
area, and if you want to see how you did something in another project, you can easily find
the configuration file for that project.

Need for
portability

If you need to be able to move entire projects from one machine to another, or if you might
have to pack up a project and send it to someone else, choose a location relative to your
FrameMaker document files.

30.3.4 Indicating the intended scope of a configur ation file

To show the intended scope of settings in a configuration file, you can include the
following setting:

[Templates]
; Scope = Intended scope, such as "All Word guides for Product A"
Scope = Statement of intended scope

The value of Scope is displayed by the Configuration Manager. If you add a Scope
setting to a configuration file included in your Mif2Go distribution, that value overrides
any internal Scope value maintained by the Configuration Manager.

30.4 Including chapter-specific configuration file s
A chapter-specific configuration file contains settings that apply only to a single chapter
file in your FrameMaker document. Each chapter-specific configuration file is named for
its FrameMaker chapter file, with extension .ini .

Chapter-specific configuration files do not include a [Templates]Configs setting;
Mif2Go inserts each at the very bottom of the configuration chain, below the project
configuration file, and processes the chapter configuration first. A chapter configuration
file can override anything in the project configuration file except the
[Templates]Configs setting.

Table 30-2 shows the chain of configuration files and templates for the title-page file of
the Mif2Go User’s Guide, for the HTML edition.

Table 30-2 Configuration chain for Mif2Go User’s Guide title page

Configuration file Contains settings for: References: Via:

ugmif2go.ini User’s Guide title-page chapter _m2html.ini (Internal
reference)

_m2html.ini User’s Guide Standard HTML output
project

m2gug_htm_document.ini Document

local_m2htm_config.ini Configs

m2gug_htm_document.ini All User’s Guide HTML/XML projects m2gug_document.ini Document

m2gug_document.ini All User’s Guide projects (None)

local_m2htm_config.ini All HTML/XML projects at this site m2htm_config.ini Configs

DECIDING WHICH CONFIGURATION FILE TO EDIT MIF2GO USER’S GUIDE

856 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

The title-page chapter has its own chapter configuration file (ugmif2go.ini) with
settings specific to that chapter alone; those settings override any values for the same
settings in the project configuration file (_m2html.ini).

The project configuration file (_m2html.ini) for the HTML edition of the Mif2Go
User’s Guide references (and overrides settings in) a configuration template named
m2gug_htm_document.ini that contains settings common to all HTML and XML
output types for the Mif2Go User’s Guide.

In turn, m2gug_htm_document.ini references (and overrides settings in)
m2gug_document.ini , which contains settings common to all Mif2Go User’s Guide
projects, including those for RTF output types.

The project configuration file also references the general chain of configuration files,
including all local and system configurations, from local_m2htm_config.ini through
omsys.ini .

See also:
§4.1 Working with Mif2Go configuration files on page 91
§33.1 Using a different configuration for selected files on page 919

30.5 Deciding which configuration file to edit
Each Mif2Go project includes one or more chains of configuration files and templates, all
ultimately referenced from the project configuration file in the project directory. Which
file you work with depends on the type and scope of settings you wish to add, delete, or
modify.

In this section:
§30.5.1 Understanding what configuration files are available on page 857
§30.5.2 Editing a project configuration file on page 858
§30.5.3 Editing a document-specific configuration file on page 859
§30.5.4 Editing an output-specific configuration file on page 860
§30.5.5 Editing a macro configuration file on page 861
§30.5.6 Indicating the intended scope of a configuration file on page 861

See also:
§1.3.6 Establish system-wide configuration settings on page 58
§30.4 Including chapter-specific configuration files on page 855
§33.1 Using a different configuration for selected files on page 919

m2htm_config.ini System defaults for all Mif2Go
HTML/XML projects

local_m2g_config.ini Configs

local_m2g_config.ini All Mif2Go projects at this site m2g_config.ini Configs

m2g_config.ini System defaults for all Mif2Go projects local_omsys.ini Configs

local_omsys.ini All Omni Systems projects at this site omsys.ini Configs

omsys.ini System defaults for all Omni Systems
projects

(None)

Table 30-2 Configuration chain for Mif2Go User’s Guide title page

Configuration file Contains settings for: References: Via:

30 WORKING WITH TEMPLATES DECIDING WHICH CONFIGURATION FILE TO EDIT

ALL RIGHTS RESERVED. MAY 18, 2013 857

30.5.1 Understanding what configuration files are available

Most of the supplied Mif2Go configuration files available for editing are located in
subdirectories of %OMSYSHOME%\m2g\local, with the following exceptions:

 • Starting project configuration file, copied by Mif2Go from
%OMSYSHOME%\m2g\local\starts (or from
%OMSYSHOME%\m2g\system\starts) to your project directory

 • Document-specific configuration files you have placed in the Mif2Go documents
subdirectory or in the document _config subdirectory; see §30.3.3 Deciding where
to keep document-specific configuration files on page 854

 • Site-specific configuration file local_omsys.ini , located in
%OMSYSHOME%\common\local\config .

Table 30-3 lists the types of configuration files, shows where the files are located, and
indicates the intended scope of settings for each type.

Each configuration file in a \m2g\local subdirectory references an eponymous
configuration template in a \m2g\system subdirectory that contains default settings. Do
not edit those referenced templates, because they will be overwritten whenever you update
Mif2Go . Instead, override settings in the corresponding \local configuration file.

Table 30-4 shows a sample hierarchy of configuration files for an HTML Help project,
with the most widely applicable configuration at the top of the chain, and the most
narrowly applicable (the project configuration file) at the bottom. With the exception of
the document-specific configuration file (shown in green), each file in Table 30-4
references the file above it. The project configuration file at the bottom references both the
document-specific file and the next configuration file above that.

Each configuration file in the chain can override settings in all those above it in
Table 30-4. This is true even for a document-specific configuration file that does not
reference any of the other configuration files, because it is treated as though it were right
above the project configuration file. If a document-specific configuration file does
reference other configuration files, Mif2Go treats all their settings as overruling any files
above the project configuration file in the main chain.

Note: Edit only the files shaded in blue or green; the others are system files.

Table 30-3 Intended scope of settings by configuration type

Type Orientation Location of file(s) Intended scope of settings

General Project-specific Project directory Current project only

Source-specific .._config (parallel to
project directory)

All or most outputs to be generated from a
given FrameMaker source document

Output-specific m2g\local\config All or most FrameMaker source
documents to be converted to a given
output type

Mif2Go -wide m2g\local\config All Mif2Go projects for all documents and
outputs

Site-wide common\local\config All Omni Systems projects

Macro Usually output-
specific

m2g\local\macros All or most outputs of a given output type
or set of output types

DECIDING WHICH CONFIGURATION FILE TO EDIT MIF2GO USER’S GUIDE

858 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

General
configuration

settings

If you have just one FrameMaker document to convert to a single output type, most
general configuration settings can go in the project configuration file; see §30.5.2 Editing
a project configuration file on page 858.

If you think you might want to produce other types of output from the same source
document, settings that are the same for all output types (but that would be different for
other source documents) can go in a document-specific configuration file; that way you
avoid duplicating the settings in every project configuration file. See §30.5.3 Editing a
document-specific configuration file on page 859.

If you have many FrameMaker documents to convert to a single output type, settings that
are specific to that output type and the same for every document (but that would be
different for other output types) can go in the appropriate output-specific configuration
file; see §30.5.4 Editing an output-specific configuration file on page 860.

Macro
configuration files

You can add macros to editable source-specific, output-specific, or project configuration
files, as needed. Or you can add them to a macro library configuration file in
m2g\local\macros . See §30.5.5 Editing a macro configuration file on page 861.

30.5.2 Editing a project configuration file

Mif2Go maintains a set of annotated templates for starting project configuration files, in
directory %OMSYSHOME%\m2g\system\starts , to accommodate settings intended to
apply only or primarily to individual conversion projects. Do not modify these templates;
they will be overwritten each time you update Mif2Go . Instead, if you want to customize
a starting project configuration file for your particular operating environment, copy the
appropriate file to %OMSYSHOME%\m2g\local\starts and edit it there.

To modify settings for an individual conversion project, edit the project configuration file
located in the project directory.

When you start a conversion project from within FrameMaker, Mif2Go copies the correct
starting project configuration file for you, if one is not already present in the project
directory. See §3 Converting a book or document on page 77. This new file is copied
from:

Table 30-4 Chain of general configuration files for HTML Help output

Scope of settings General configuration file

All Omni
Systems
projects

System: %OMSYSHOME%\common\system\config\omsys.ini

Local site: %OMSYSHOME%\common\local\config\local_omsys.ini

All Mif2Go
projects

System: %OMSYSHOME%\m2g\system\config\m2g_config.ini

Local site: %OMSYSHOME%\m2g\local\config\local_m2g_config.ini

All HTML/XML
projects

System: %OMSYSHOME%\m2g\system\config\m2htm_config.ini

Local site: %OMSYSHOME%\m2g\local\config\local_m2htm_config.ini

All Help
projects

System: %OMSYSHOME%\m2g\system\config\m2help_config.ini

Local site: %OMSYSHOME%\m2g\local\config\local_m2help_config.in i

All HTML Help
projects

System: %OMSYSHOME%\m2g\system\config\m2htmlhelp_config.ini

Local site: %OMSYSHOME%\m2g\local\config\local_m2htmlhelp_confi g.ini

All HTML output types from
this source document

.._config\html_doc.ini (parallel to project directory)

This project only _m2htmlhelp.ini (in project directory)

30 WORKING WITH TEMPLATES DECIDING WHICH CONFIGURATION FILE TO EDIT

ALL RIGHTS RESERVED. MAY 18, 2013 859

 • local\starts if a configuration file with the correct name is present; any files here
are starting project configuration files you have customized to suit your operating
environment.

 • system\starts if there is no file with the correct name in the local\starts
directory.

The output type you want to produce determines which starting project configuration file
the Mif2Go plug-in copies to the project directory. Table 30-5 lists the names of these
files.

Near the top of each starting project configuration file you will find a setting that links that
file to an output-specific configuration file. For example, for Word output:

[Templates]
; Where the rest of the configuration settings are:
Configs = %omsyshome%\m2g\local\config\local_m2rtf_ config.ini

Avoid disturbing this setting, or you might break the chain that leads to all the other
configuration settings that apply to your conversion project. If you are using a source-
specific configuration file, your starting project configuration file will also include a
setting that links to that file; for example:

[Templates]
Document = g:\omnisys\ug_config\m2gug_htm_document .ini

See §30.5.3 Editing a document-specific configuration file on page 859 and §30.5.4
Editing an output-specific configuration file on page 860.

30.5.3 Editing a document-specific configuration f ile

For settings that are specific to your FrameMaker source document and that apply to a
group of output types, Mif2Go maintains one or more document-specific configuration
files. By default, document-specific configuration files are located in a directory named
_config , parallel to your project directory. However, you can choose to keep such files
elsewhere; see §30.3.3 Deciding where to keep document-specific configuration files on
page 854.

Table 30-5 Output types and starting project configuration files

Category Output type Project configuration file Ref.

HTML-based
Help

Eclipse Help _m2eclipse.ini 12

Microsoft HTML Help _m2htmlhelp.ini 9

JavaHelp _m2javahelp.ini 11

OmniHelp _m2omnihelp.ini 10

Oracle Help for Java _m2oraclehelp.ini 11

HTML Standard HTML 4.0 _m2html.ini 13

XHTML 1.0 _m2xhtml.ini 13

XML DITA XML _m2dita.ini 15

Docbook XML _m2docbook.ini 17

Generic XML _m2xml.ini 14

RTF WinHelp _m2winhelp.ini 8

Print RTF _m2rtf.ini 6

Intermediate ASCII DCL _m2dcl.ini 38

FrameMaker MIF _m2mif.ini 38

DECIDING WHICH CONFIGURATION FILE TO EDIT MIF2GO USER’S GUIDE

860 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When you set up a new project, Mif2Go places in your project configuration file a
reference to the appropriate document-specific configuration file:

[Templates]
Document = Path\ to\ mysourcedir_config\ mydocname_htm_document.ini

The starting project configuration file for each project references the document-specific
configuration file for the document you are converting. The document-specific
configuration file typically does not reference any other configuration files. However, a
document-specific configuration file can reference other document-specific files (via
[Templates]Document) and macro libraries (via [Templates]Macros). But a
document-specific configuration file cannot reference general configuration files. See
§30.3 Including document-specific configuration files on page 852.

30.5.4 Editing an output-specific configuration fi le

For settings that are specific to an output type or a group of output types, but that apply to
all or most of your FrameMaker source documents, Mif2Go maintains user-modifiable
output-specific general configuration files in directory
%OMSYSHOME%\m2g\local\config . You can customize these files with settings that are
appropriate for your particular environment. Table 30-6 lists the output-specific general
configuration files you can edit.

Near the top of each configuration file you will find a setting that links that file to an
eponymous configuration template in \m2g\system\config that contains settings
commonly needed for the output type you selected. Do not edit the referenced templates;
they will be overwritten each time you update Mif2Go . Instead, override settings as
needed in the editable configuration files.

For example, in local_m2xhtml_config.ini :
[Templates]
; Where the rest of the configuration settings are:
Configs=%omsyshome%\m2g\system\config\m2xhtml_confi g.ini

Table 30-6 Editable local output-specific configuration files

Category Output type Editable configuration file Ref.

HTML-based Help All HTML-based Help outputs local_m2help_config.ini 7

Eclipse Help local_m2eclipse31_config.ini
local_m2eclipse33_config.ini

12

Microsoft HTML Help local_m2htmlhelp_config.ini 9

JavaHelp local_m2javahelp_config.ini 11

OmniHelp local_m2omnihelp_config.ini 10

Oracle Help for Java local_m2oraclehelp_config.ini 11

HTML All HTML-based outputs local_m2html_config.ini 13

XHTML 1.0 local_m2xhtml_config.ini 13

XML DITA XML local_m2dita_config.ini 15

Docbook XML local_m2docbook_config.ini 17

Generic XML local_m2xml_config.ini 14

RTF WinHelp local_m2winhelp_config.ini 8

All RTF-based outputs local_m2rtf_config.ini 6

Intermediate ASCII DCL local_m2dcl_config.ini 38

FrameMaker MIF local_m2mif_config.ini 38

30 WORKING WITH TEMPLATES CREATING YOUR OWN CONFIGURATION TEMPLATES

ALL RIGHTS RESERVED. MAY 18, 2013 861

Avoid disturbing this setting, or you might break the chain that leads to all the other
configuration settings for your conversion project.

30.5.5 Editing a macro configuration file

Mif2Go provides several macro libraries in the form of macro configuration files,
organized by output type. These files are located in %OMSYSHOME%\m2g\local\macros .
You can add your own macros, and override macros in the default macro libraries they
reference. Table 30-7 lists the macro configuration files you can edit.

Macro libraries are referenced from output-specific configuration files; they can also be
referenced from document-specific configuration files. Each editable macro library in turn
references an eponymous macro library that contains all the macros distributed with
Mif2Go . Do not edit those referenced libraries; they will be overwritten every time you
update Mif2Go . To change a distributed macro, override it with a new definition in the
appropriate \local\macros library.

30.5.6 Indicating the intended scope of a configur ation file

To show the intended scope of settings in a configuration file, you can include the
following setting:

[Templates]
; Scope = Intended scope, such as "All Word guides for Product A"
Scope = Statement of intended scope

The value of Scope is displayed by the Configuration Manager. If you add a Scope
setting to a configuration file included in your Mif2Go distribution, that value overrides
any internal Scope value maintained for that file by the Configuration Manager.

30.6 Creating your own configuration templates
Besides using the configuration templates supplied with your Mif2Go distribution, you
can create templates of your own to insert additional or alternate settings anywhere in the
chains of templates that such settings are valid.

In this section:
§30.6.1 Creating a template from a project configuration file on page 862
§30.6.2 Deciding what to include in a general configuration template on page 862
§30.6.3 Chaining configuration templates on page 863

See also:
§4.1 Working with Mif2Go configuration files on page 91
§30.2 Referencing configuration files and templates on page 851
§33.1 Using a different configuration for selected files on page 919

Table 30-7 Macro configuration files

Output type Editable macro configuration file

HTML local_m2g_m2htm_macros.ini

Print RTF local_m2g_m2rtf_macros.ini

WinHelp local_m2g_m2winhelp_macros.ini

CREATING YOUR OWN CONFIGURATION TEMPLATES MIF2GO USER’S GUIDE

862 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

30.6.1 Creating a template from a project configur ation file

To create a general configuration template:

1. Copy one of your configuration files (one that has the most commonly used settings)
to another directory, and give it a different name with extension .ini ; for example
MyTemplate.ini .

2. Delete from MyTemplate.ini any settings that apply only to the particular project
from which you copied the configuration file. Also delete all macro definitions.

3. Delete from all your project configuration files any unused sections that have settings
in MyTemplate.ini .

4. Delete from all your project configuration files any settings that occur in
MyTemplate.ini , unless a setting has a different value. Settings in a project
configuration file override those in a configuration template.

5. In your project configuration file, specify the following to reference the template:
[Templates]
; Configs = path to configuration template file
Configs= path\to\MyTemplate.ini

Because you originally copied MyTemplate.ini from your project configuration file,
MyTemplate.ini still has a setting referencing the next configuration template in the
chain supplied by Mif2Go ; so the template chain remains unbroken.

The idea is to have as little as possible in individual project configuration files, and keep
most common settings in the template. However, there are a few settings that can appear
only in the project configuration file; see §30.6.2 Deciding what to include in a general
configuration template on page 862.

30.6.2 Deciding what to include in a general confi guration template

A configuration template should include settings and values that you normally use in most
or all projects for a given type of output. The settings in the template file apply to any
configuration file that references that template, reducing the need to add the same settings
to every project configuration file.

Mif2Go supplies an extensive collection of templates already chained together. You can
insert other templates in this chain, between your starting project configuration file and the
the first Mif2Go -supplied file in the chain. However, you might prefer to add settings to
the appropriate editable configuration file supplied in the existing chain; see §30.5
Deciding which configuration file to edit on page 856.

Books that share a FrameMaker template probably can share the same Mif2Go
configuration template. You might want different configuration templates for TOC, IX,
and regular chapters. Configuration templates for different books might all reference a
company-wide configuration template that specifies logos and other boilerplate items.

Project overrides
template

If a setting has a value in a template file that is different from its value in the project
configuration file, the value in the project configuration file takes precedence, allowing
you to override the template when necessary; see §33.1.2 Understanding precedence of
configuration settings on page 919.

Define macros
elsewhere

Do not include macro definitions in a general configuration template; keep macro
definitions in a separate library file; see §28.2.4 Including macro definitions in your own
macro library on page 794 and §30.1.4 Understanding how macro libraries are organized
on page 851.

30 WORKING WITH TEMPLATES APPLYING FRAMEMAKER CONVERSION TEMPLATES

ALL RIGHTS RESERVED. MAY 18, 2013 863

Specify run-time
values elsewhere

Do not include [UserVars] or [UserVarPrompts] in a configuration template; these
two sections must be in your project configuration file. See §34.5 Supplying run-time
values for user variables on page 941.

Specify condition
settings

elsewhere

Do not include [ConditionsShown] in a configuration template; this section must be in
your project configuration file. See §5.4.1 Applying condition Show/Hide settings on
page 123.

Some settings are
duplicated

Although the settings in Table 30-8 can be included in a configuration template, some will
end up in the project configuration file anyway; either because Mif2Go originates them,
or because their values can be changed at run time via Choose Project dialog or Export
dialog (or by Mif2Go). If you remove one of these settings from the project configuration
file, Mif2Go will put it back in, at the end of the section where it belongs. If the section
itself is missing, Mif2Go places the section and the setting near the end of the project
configuration file.

30.6.3 Chaining configuration templates

A configuration template can include a setting for [Templates]Configs , specifying yet
another template file. This allows you to create a chain of templates for Mif2Go to search
for settings. The chain can be any length. All files in the chain must have distinct names;
the search stops if Mif2Go finds a repeated template name. The settings in all templates in
a chain are applied to your project configuration in a cascade, at run time.

Precedence of
templates

In a chain of templates, if the same setting appears in more than one template file but has a
different value in each file, the value for that setting in a template closer in the chain to the
project configuration file overrides the value in any template farther away in the chain
from the project configuration file; and a value for that same setting in the project
configuration file overrides the closest template value. See §33.1.2 Understanding
precedence of configuration settings on page 919.

30.7 Applying FrameMaker conversion templates
When you convert documents from within FrameMaker, Mif2Go can use the FrameMaker
Import Formats feature to temporarily apply a different template to your document for
conversion purposes. Even if you have chapter files open in a FrameMaker book you are

Table 30-8 Configuration options determined at run time

Configuration section Option Reference

Automation CompileHelp 35.10

WrapAndShip 35.2

Setup IDFileName 5.3.4.1

PluginVersion D.2.9

PrjFileName C.3

UseExistingDCL 5.1.4

UseExistingMIF 5.1.3

WriteAllGraphics 5.7.2.1

WriteEquations 5.7.2.1

Graphics UseGraphicPreviews 5.7.2.2

UseOriginalGraphicNames 5.7.2.3

HelpOptions MakeCombinedCnt 8.2.8

APPLYING FRAMEMAKER CONVERSION TEMPLATES MIF2GO USER’S GUIDE

864 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

converting, those files are not affected by Mif2Go importing formats for the conversion
(but see §30.7.4 Avoiding template-related disasters on page 866).

When you start a project, you can use a Mif2Go Set Up dialog to specify which template
to use, and which items to import. The Set Up dialogs present the same choices as the
FrameMaker Import Formats dialog; see §3.4.1 Importing formats from a FrameMaker
template on page 79. Mif2Go stores the results in the configuration file.

In this section:
§30.7.1 Specifying conversion-template settings on page 864
§30.7.2 Applying alternate conversion templates on page 865
§30.7.3 Changing template options on page 866
§30.7.4 Avoiding template-related disasters on page 866
§30.7.5 Troubleshooting template import problems on page 866

See also:
§2.4 Importing formats from a conversion template on page 67
§3.4.1 Importing formats from a FrameMaker template on page 79
§5.4 Applying FrameMaker conditions and variables on page 122
§34.1.4 Importing formats and conditional text settings on page 936

30.7.1 Specifying conversion-template settings

To have Mif2Go apply a FrameMaker template to your document, your configuration file
must include values for three template settings: ApplyTemplateFile ,
TemplateFileName , and AppliedTemplateFlags . For example:

[Templates]
; ApplyTemplateFile = No (default) or Yes (save and restore document)
ApplyTemplateFile=Yes
; TemplateFileName = filename.fm (FrameMaker template for export)
TemplateFileName="G:\Omnisys\UG\UGTplHlp.fm"
; AppliedTemplateFlags = 0 (default) or bitfield sp ec of properties
AppliedTemplateFlags=147

Unless the template to be applied is in the same directory as the document you are
converting, specify a full absolute path (not a relative path) for TemplateFileName .
Enclose the entire path in quotes if the path includes any spaces (and see §2.1 Naming
files, directories, and paths on page 65).

FrameMaker uses the value of AppliedTemplateFlags to determine which items to
import. This number is a representation of the choices you make via Import Formats : the
decimal sum of the values (listed in Table 30-9) of all the options you check. For example,
if you check paragraph formats, cross-reference settings, and conditional-text settings, the
value of AppliedTemplateFlags would be 1+128+16=145 .

Note: A value of zero (AppliedTemplateFlags=0) means import everything. To
import nothing, you must set ApplyTemplateFile=No .

Table 30-9 Template flag values for importing formats

Import Formats option

Import formats flag value

Decimal Hexadecimal

Paragraph formats 1 0x0001

Character formats 2 0x0002

Page layouts 4 0x0004

30 WORKING WITH TEMPLATES APPLYING FRAMEMAKER CONVERSION TEMPLATES

ALL RIGHTS RESERVED. MAY 18, 2013 865

If absolutely necessary, you can also specify the following template option:
[Templates]
; ImportDocProps = No (default) or Yes (include doc props in import)
ImportDocProps=Yes

By default, Mif2Go instructs FrameMaker not to import document properties, which
include the following:

 • custom marker types
 • footnote properties
 • volume, chapter, page, paragraph, footnote, and table footnote number styles
 • text options “allow line breaks” settings
 • line layout “feather” settings

Note: A defect in FrameMaker can cause numerous document settings to change
unexpectedly when you import document properties, even from the same file.
Unless you have a very good reason to import document properties, use only the
default setting: ImportDocProps=No .

30.7.2 Applying alternate conversion templates

If you are converting a FrameMaker book, and some files in the book use different
templates, you must create:

 • a separate configuration file for each of those FrameMaker files
 • an (optional) alternate conversion template for each different FrameMaker template.

In each of the separate configuration files, specify the conversion template for Mif2Go to
apply to the corresponding FrameMaker file.

For example, suppose you use a special template named TitleTpl.fm , located in the
input directory, for the first file of your book, which is named Titlepage.fm . In the
project directory you would create a configuration file named Titlepage.ini that
contains these two lines:

[Templates]
TemplateFileName = TitleTpl.fm

See §33.1 Using a different configuration for selected files on page 919 for information
about creating separate chapter-specific configuration files.

Table formats 8 0x0008

Conditional text settings 16 0x0010

Reference pages 32 0x0020

Variable definitions (both System and User) 64 0x0040

Cross-reference settings 128 0x0080

Color definitions 256 0x0100

Math definitions 512 0x0200

Document properties (at your own risk) 1024 0x0400

Remove manual page breaks 16384 0x4000

Remove overrides 32768 0x8000

Table 30-9 Template flag values for importing formats (continued)

Import Formats option

Import formats flag value

Decimal Hexadecimal

APPLYING FRAMEMAKER CONVERSION TEMPLATES MIF2GO USER’S GUIDE

866 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

30.7.3 Changing template options

If you are converting to HTML or XML, you can use the following roundabout method to
change the template choices in an existing project configuration file:

1. Rename the current project configuration file, or move it to another directory.

2. Choose Set Up Mif2Go Export... again from the FrameMaker File menu, and make
the template settings you want this time. When you click OK, a new project
configuration file pops up in Notepad, with an AppliedTemplateFlags value that
corresponds to your template settings.

3. Highlight the line that starts with AppliedTemplateFlags = and copy it.

4. Open your original (renamed or moved) configuration file in the same Notepad, and
paste the new AppliedTemplateFlags line over the existing line.

5. Save As _m2html.ini (or whatever name the original project configuration file
had), replacing the new copy.

Note: If you did not specify importing formats when you set up the project, you must
also supply values for ApplyTemplateFile and TemplateFileName ; see
§30.7.1 Specifying conversion-template settings on page 864.

30.7.4 Avoiding template-related disasters

Mif2Go automatically saves your document before importing a template. If Mif2Go
encounters a problem during template import, and you choose to stop the conversion and
investigate, do not assume that the import did not happen; some part of the import always
has already taken place. Therefore, do not fix up and save the problem file; instead, just
look at the file to determine the cause of the problem, then close the file without saving it.
After that you can open the original file, fix the problem, and rerun Mif2Go .

When you specify [Setup]GenerateBook=Yes , the same applies to all files in the book
that precede the problem file. It is not safe to just rerun Mif2Go , because all those
modified files would be re-saved over your originals! Close them all, without saving.

If you are importing a template into a book, it is a good idea to exit FrameMaker, without
saving files, immediately after Mif2Go finishes. That way your standard procedure can be
to close all files without saving, regardless of whether Mif2Go completes the conversion
successfully or stops in the middle upon encountering a problem.

30.7.5 Troubleshooting template import problems

If it looks as though your FrameMaker template is not being applied, the problem could be
one of the following:

Wrong path to the template file
Missing or incorrect option
Incorrect flag number
Template file problem.

Wrong path to the
template file

The path to the template file might be wrong, resulting in an incorrect value for
[Setup]TemplateFileName ; or the value might specify a relative path. Unless the
template file is in the same directory as the document you are converting, you must
specify an absolute path.

Missing or
incorrect option

Your configuration file might be missing a setting for [Setup]ApplyTemplateFile , or
this option might be set to No instead of Yes.

30 WORKING WITH TEMPLATES APPLYING FRAMEMAKER CONVERSION TEMPLATES

ALL RIGHTS RESERVED. MAY 18, 2013 867

Incorrect flag
number

The value of [Setup]AppliedTemplateFlags might be incorrect, resulting in Mif2Go
importing the wrong set of formats from the template file.

Template file
problem

The template file itself might contain errors that prevent Mif2Go from opening it, such as
a missing-font error.

See §30.7.1 Specifying conversion-template settings on page 864.
(No illustrations)

APPLYING FRAMEMAKER CONVERSION TEMPLATES MIF2GO USER’S GUIDE

868 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 869

31 Working with graphics

This section tells how to export and convert the graphics in your FrameMaker document,
and control their appearance in the output produced by Mif2Go . Topics include:

§31.1 Choosing an appropriate graphics format on page 869
§31.2 Converting and exporting graphics on page 871
§31.3 Replacing and relocating graphics files on page 887
§31.4 Specifying custom settings for individual graphics on page 895
§31.5 Controlling image appearance in RTF output on page 898
§31.6 Converting graphics with Microsoft Word filters on page 904

See also:
§5.7 Processing graphics on page 126
§6.14 Managing graphics for print RTF on page 186
§8.6 Managing graphics for WinHelp on page 263
§23 Including graphics in HTML on page 703
§35.7 Placing graphics files for distribution on page 965

31.1 Choosing an appropriate graphics format
Some graphics formats work better than others in each kind of output. For best
appearance, you might want to convert graphics in your FrameMaker document to a more
appropriate format. In some cases there is no choice: the graphics have to be converted.
You do not have to alter graphics in the FrameMaker file itself; however, you might have
to prepare an alternate set of graphics files, and set some configuration-file options.

In this section:
§31.1.1 Graphics formats for Word documents on page 869
§31.1.2 Graphics formats for WinHelp on page 869
§31.1.3 WMF format limitations on page 870
§31.1.4 Graphics formats for HTML on page 871

31.1.1 Graphics formats for Word documents
WMF or BMP Use WMF or BMP for bitmap graphics for Word. Although graphics destined for print

look best at a resolution of at least 300 DPI (for low-end laser printers) and up to 1,200
DPI, you gain nothing by trying to increase the DPI of an existing bitmap graphic in
FrameMaker; the upper limit of resolution is the DPI of the original graphic. If you choose
WMF, see §31.1.3 WMF format limitations on page 870.

256 colors Word graphics typically use 256 colors, sometimes more. It is best to stick with 256
colors, because the size increase for 24-bit color (“true color”, the only other real option)
is more than 10 times, which can make files too big for Word to load.

31.1.2 Graphics formats for WinHelp
WMF or BMP WinHelp graphics must be in WMF or BMP format. Graphics are viewed at screen

resolution, typically 96 DPI. Normally you want to use WMF, because WMF graphics
have a much sharper image than BMP graphics. However, the WMF format has some
drawbacks; see §31.1.3 WMF format limitations on page 870.

CHOOSING AN APPROPRIATE GRAPHICS FORMAT MIF2GO USER’S GUIDE

870 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For very large graphics, BMP can be a better choice; see §31.2.1.1.3 Specifying BMP
instead of WMF graphics on page 872.

256 colors for
WinHelp 4

WinHelp 4 allows 256-color bitmaps; the added space for 256 colors is relatively small,
and the graphics usually look better than with 16 colors. WinHelp 3 allows only 16-color
bitmaps (unless you use add-on DLLs). For any WinHelp use, 24-bit color (“true color”) is
a very bad idea; it often crashes the Help Compiler during processing.

31.1.3 WMF format limitations

WMF graphics are like scripts for the Windows GDI. A WMF graphic can include vector
elements (as in FrameMaker native graphics), text, and bitmaps (with up to 24-bit
resolution). You can import WMF graphics into FrameMaker, where they are seen as
Frame Vector facets. However, FrameMaker special-ungroup command Esc g U does
not make it possible to edit a WMF graphic.

In WinHelp, WMF graphics can cause system crashes on Windows 9x or Windows ME;
see §8.6.2 Avoiding the GDI resource leak on page 264 for more information.

The WMF graphic format has limitations:
Bezier curves become polylines
Dashed line width is ignored
Cropped images show all in WinHelp
Fonts are not embedded

Bezier curves
become polylines

WMF does not support Bezier curves (smoothed polylines in FrameMaker). WMF does
support ellipses and elliptic arcs, with radii or chords available for the arcs. Bezier curves
are represented by polyline segments. When Mif2Go converts FrameMaker vector
graphics to WMF, Mif2Go generates the polyline segments; but some segments might be
only one pixel long, if that is what it takes to emulate a Bezier display. The segmented
polylines are indistinguishable from the original Bezier curves when viewed on screen.
There is a difference in print, but you would have to use a magnifier to see it.

Dashed line width
is ignored

For dashed lines and other non-solid lines, MicroSoft code for WMF images sets line
thickness to 1 (one), which is nominally 1.0 twip (1/20 pt) or 0.01 mm. This value is
affected by scaling, so you always get the thinnest line drawable. If you try to use a
different thickness for a non-solid line, you get the thickness you specified, but the line
becomes solid. However, when you specify Mif2Go native graphics export to WMF,
Mif2Go preserves the line style rather than the line width. To preserve both line style and
line width, you would have to specify FrameMaker graphics export instead, and convert
the image to a BMP instead of to a WMF. See §31.2.5 Converting graphics with
FrameMaker export filters on page 883.

Cropped images
show all in

WinHelp

WMF does not support cropping. In FrameMaker, you can use the anchored frame to crop
a large graphic to the area of interest. This does not work at all in WinHelp. Although you
see the part you want in WinHelp, the rest of the image is also visible, running right over
any nearby text or other graphics. This is true of both bitmaps and vectors. We advise
cropping bitmaps to the actual displayed area before importing them into FrameMaker,
even if you are importing by reference.

Fonts are not
embedded

WMF cannot embed fonts, and so relies on the viewing application to have the fonts
available for rendering. If Windows substitutes another font with different metrics, the
result can be quite ugly. WMF has no concept of text frames with flowing content. Instead,
each line is an independent text line that cannot include any font-property changes, such as
bold or subscript. Such changes require starting a new text line; however, you do not know
where the last segment ended (one of the key differences between WMF and direct

31 WORKING WITH GRAPHICS CONVERTING AND EXPORTING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 871

Windows GDI calls), so you must compute the position based on your own estimate of the
font metrics. A miscalculation (or a different font) can result in big gaps, or in overlapping
text.

31.1.4 Graphics formats for HTML
JPEG, GIF, PNG Graphics formats that work well on the Web are JPEG, PNG, and GIF. We suggest JPEG

for Web use. JPEG is universally supported by browsers, and we have yet to see an
instance of a graphic where it behaved badly compared to other formats. Other formats
might be useful in particular situations, but they are not universally supported by Web
browsers.

See also:
§23 Including graphics in HTML on page 703

31.2 Converting and exporting graphics
A graphic image in your FrameMaker document might or might not be easy for Mif2Go to
include in the output with reasonable quality, depending on a number of factors, including
whether the image is:

 • a bitmap graphic or a vector graphic
 • embedded in your FrameMaker document or imported by reference
 • in a format Mif2Go can handle well.

In this section:
§31.2.1 Converting bitmap graphics on page 871
§31.2.2 Converting vector graphics on page 874
§31.2.3 Exporting and converting embedded graphics on page 877
§31.2.4 Exporting images and creating files from OLE objects on page 881
§31.2.5 Converting graphics with FrameMaker export filters on page 883
§31.2.6 Embedding bitmap graphics in WMF for WinHelp on page 886
§31.2.7 Exporting embedded graphics imported from Word on page 886

31.2.1 Converting bitmap graphics

The biggest issue for converting bitmap graphics has to do with resolution; this affects
how you scale graphics, and how you handle fine detail in them:

 • If you are converting to WinHelp or HTML, your graphics will be viewed at screen
resolution, typically 96 DPI.

 • If you are converting to print RTF, the graphics might be printed out at a much higher
resolution.

In this section:
§31.2.1.1 Converting bitmap graphics for WinHelp on page 871
§31.2.1.2 Converting bitmap graphics for print RTF on page 873
§31.2.1.3 Specifying external vs. internal metafiles for RTF output on page 873
§31.2.1.4 Converting bitmap graphics for Web use (HTML) on page 874

31.2.1.1 Converting bitmap graphics for WinHelp

In this section:
§31.2.1.1.1 Scaling (or avoiding scaling) screenshots on page 872

CONVERTING AND EXPORTING GRAPHICS MIF2GO USER’S GUIDE

872 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§31.2.1.1.2 Specifying WMF graphics as replacements on page 872
§31.2.1.1.3 Specifying BMP instead of WMF graphics on page 872

31.2.1.1.1 Scaling (or avoiding scaling) screensho ts

Screenshots do not scale well at all, not even a little. The text is messed up by even the
slightest rescale.

If you use a screenshot graphic at its original size, unless it is only a button or a small
dialog the graphic tends to overwhelm the accompanying text. If the graphic is a full-panel
screenshot, it looks huge. And if you scale it at all in FrameMaker, any screen-capture text
becomes illegible. You cannot reduce graphic size even by 5% and retain legibility.

These are your choices:

 • Crop big images to show just the part you need, in a graphics editor (such as Paint
Shop Pro, Photoshop, or Graphic Workshop; see §5.7.2.3 Using third-party graphics
converters on page 130).

 • Eliminate the screenshots entirely; if users are looking at Help, they also have the real
application right there; you can tell them how to get to the screen you are discussing.

 • Use thumbnails: little images that each link to a bigger version that is typically
displayed as a pop-up in its own window.

 • If you are preparing bitmaps for WinHelp use, resample them so that they are at screen
resolution, typically 96 DPI, at the size at which you wish to display them.

See also §31.5.1 Rescaling bitmap graphics on page 898.

31.2.1.1.2 Specifying WMF graphics as replacements

If you convert graphics outside of Mif2Go , you can direct Mif2Go to use the replacement
graphics files.

Suppose, for example, you use a third-party graphics tool to convert imported-by-
reference TIFF images in your document to WMF, and place the WMF files in the same
directory as the original TIFF files. You would specify the following options in your
project configuration file:

[Graphics]
FileNames=Map

[GraphFiles]
tif=wmf

When you choose File > Save Using Mif2Go... in FrameMaker, Mif2Go reads in the
WMF graphics, adds any FrameMaker elements (such as callouts) that are in the
illustrations, and rewrites the graphics as scaled .wmf files, which are referenced in the
.rtf files Mif2Go produces for WinHelp.

For more information about generating WMF graphics for WinHelp, see:
§8.6.2 Avoiding the GDI resource leak on page 264.
§31.2.6 Embedding bitmap graphics in WMF for WinHelp on page 886.
§31.3.2 Changing graphics files for RTF output on page 890.
§31.3.2.3 Using different bitmaps for print RTF and for WinHelp on page 894.

31.2.1.1.3 Specifying BMP instead of WMF graphics

Sometimes when you display and scroll a large bitmap graphic (around 300 KB) in a Help
file, Windows 9x resources drop to a point where processing halts. This is a Windows GDI
defect acknowledged by Microsoft. It happens with WMF graphics only, not with BMP
graphics; and only on Windows 9x systems, not on Windows NT or Windows 2000.

31 WORKING WITH GRAPHICS CONVERTING AND EXPORTING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 873

The solution is to use BMP graphics instead of WMF graphics in your Help file:

 • If you are using the FrameMaker export filters, specify BMP graphics instead of the
default WMF:

[Setup]
GraphicExportFormat=BMP

 • If you are using [Graphics]FileNames=Map , change the setting in
[GraphFiles] to match:

[GraphFiles]
wmf=bmp

 • If you are producing graphics some other way, make sure you are creating .bmp files.

To prevent Mif2Go from making your graphics into .wmf files anyway, also set:
[Graphics]
EmbedBMPsInWMFs=No

31.2.1.2 Converting bitmap graphics for print RTF

If your FrameMaker document includes imported-by-reference bitmap graphics destined
for print documents, in formats such as TIFF, Mif2Go can use the FrameMaker graphics
export filters (see §31.2.5 Converting graphics with FrameMaker export filters on
page 883) to create WMF graphics, then integrate the graphics into RTF files. The
disadvantage is that you get only screen resolution, which is not the best for print quality.
You can increase the DPI, but all that buys you is a larger image, not improved resolution.
This is true even if the original bitmap is at a higher resolution. See §6.14.2 Converting
referenced graphics on page 187.

Better print quality
via third-party

converters

For improved print quality, use a third-party tool such as Graphic Workshop to convert
bitmap graphics from other formats to WMF or BMP. You get significantly better image
quality with a pixel-to-pixel conversion via a third-party converter than you would with
the re-rendering process used by the FrameMaker export filter. See §5.7.2.3 Using third-
party graphics converters on page 130.

Callouts and
compound

graphics

Some of your graphics in formats other than WMF or BMP might include callouts and
other bits and pieces created with FrameMaker drawing tools. For these, your only choice
at conversion time is to use the FrameMaker export filters to make WMFs. Mif2Go
integrates the resulting WMF graphics into the Word RTF files.

If you do not
convert graphics

Only WMF and BMP graphics can be embedded in Word. If you provide only a GIF
image (for example), Mif2Go embeds an INCLUDEPICTURE field (Word 8) or IMPORT
field (Word 7) instead, with the name of the GIF file. Then, when you load the RTF file in
Word, Word reads the GIF file and uses its own filters to convert the image to BMP
internally.

See §6.14 Managing graphics for print RTF on page 186.

31.2.1.3 Specifying external vs. internal metafile s for RTF output

If you are converting to RTF, there are two ways to include a WMF file:

 • directly in RTF: an “internal” metafile
 • as a separate file referenced from RTF: an “external” metafile.

For WinHelp, metafiles must be external.

CONVERTING AND EXPORTING GRAPHICS MIF2GO USER’S GUIDE

874 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For Word, metafiles should be internal. Word loses track of external graphics that are
referenced using relative paths. These are the default metafile types:

You can override the default by specifying the metafile type yourself:
[Graphics]
; Metafiles = Internal (in place) or External (in A AAAAnnn.WMF)
; always use External for winhelp; Internal is bett er for Word
Metafiles=Internal

External metafiles are named using the first five characters of the RTF file name, then a
three-digit number, then the .wmf extension. See §5.7.4.3 Naming external graphic
metafiles on page 134 for more information.

31.2.1.4 Converting bitmap graphics for Web use (H TML)

Graphics formats that work best in FrameMaker for printed documents generally are not
those that work well on the Web. If your graphics are not already in a Web-ready format,
you have two basic choices:

 • Have Mif2Go use FrameMaker export filters to produce JPEG, PNG, or other Web-
usable formats (see §31.2.5 Converting graphics with FrameMaker export filters on
page 883). This is the easiest way, and the default way for HTML.

 • Handle conversion outside of Mif2Go with a third-party tool such as Graphic
Workshop (see §5.7.2.3 Using third-party graphics converters on page 130).

If the original graphics in your FrameMaker document are in a Web-ready format, and
each is alone in its frame, you can use them as is; see §31.3.1.5 Including referenced
graphics without converting on page 889.

See also:
§23 Including graphics in HTML on page 703

31.2.2 Converting vector graphics

Vector graphics can be rescaled without losing image quality; resolution is not a concern.
The illustrations you create using FrameMaker graphics tools are vector graphics.

In this section:
§31.2.2.1 Converting FrameMaker vector graphics to RTF on page 874
§31.2.2.2 Converting FrameMaker vector graphics to HTML on page 875
§31.2.2.3 Converting EPS graphics on page 875

31.2.2.1 Converting FrameMaker vector graphics to RTF

For RTF output, Mif2Go converts native FrameMaker vector graphics into Windows
Metafile (WMF) format, to produce metafiles. The metafiles are acceptable to MS Word,
to the WinHelp compiler, and to numerous other applications. These particular WMFs are
not bitmaps; they are scalable and editable vector graphics.

If the FrameMaker vector graphics in your document include imported bitmaps, those
bitmap files must be WMF or BMP. Otherwise you must create or convert them to WMF
or BMP equivalents, and map them using settings in configuration section
[GraphFiles] ; see §31.3.2 Changing graphics files for RTF output on page 890.

Output type Output
option

Metafile
type

Print RTF Standard Internal
WinHelp Help External

31 WORKING WITH GRAPHICS CONVERTING AND EXPORTING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 875

31.2.2.2 Converting FrameMaker vector graphics to HTML

Although you can use these WMFs for HTML, they will be viewable only with Internet
Explorer, and not with other browsers. To create the WMFs, you must use Mif2Go in a
preliminary graphics exporting step ostensibly directed to WinHelp RTF, then start over
and target HTML.

For HTML output viewable with browsers other than Internet Explorer, you must direct
Mif2Go to use the FrameMaker export filters to convert FrameMaker vector graphics, and
specify the output format you want; see §31.2.5 Converting graphics with FrameMaker
export filters on page 883 for the available options.

See also:
§23 Including graphics in HTML on page 703

31.2.2.3 Converting EPS graphics

EPS can be a difficult format to work with. An EPS graphic has two parts: a PostScript
image used only for printing, and a preview image (deliberately low resolution) intended
only for viewing on screen:

EPS graphics present problems for some programs; a lot depends on the format of the
preview image.

In this section:
§31.2.2.3.1 Deciding how to treat EPS graphics on page 875
§31.2.2.3.2 Including only the preview image on page 876
§31.2.2.3.3 Including both preview and EPS images on page 876
§31.2.2.3.4 Replacing EPS graphics on page 876
§31.2.2.3.5 Referencing EPS graphics in Word on page 877

31.2.2.3.1 Deciding how to treat EPS graphics

Export embedded
EPS

If EPS graphics are embedded in your FrameMaker document, by default Mif2Go exports
the graphics to create external .eps files. You can run the conversion once to export the
EPS graphics, convert the graphics to another format outside of Mif2Go , then run the
conversion again, this time directing Mif2Go to use the already converted external files.
In the final conversion output, Mif2Go can replace references to the EPS graphics with
references to the matching files; see §31.2.2.3.4 Replacing EPS graphics on page 876.

Export EPS
preview

Another alternative is to use the FrameMaker graphic export filters (see §31.2.5
Converting graphics with FrameMaker export filters on page 883). These filters do a
terrible job because they start off with the low-quality preview and go downhill from
there; the EPS preview is meant only for identification of the graphic, not for actual use.

Convert using
third-party tool

For higher quality, you can use a third-party graphics tool (see §5.7.2.3 Using third-party
graphics converters on page 130), and convert external EPS files (either referenced
graphics or embedded graphics exported by Mif2Go from your document) to matching
RTF- or HTML-compatible graphics:

 • BMP or WMF for RTF
 • GIF, JPEG, or PNG for HTML.

PostScript: This is what you print from FrameMaker, at least when you print to a
PostScript printer.

Preview: Usually TIFF, but could be in other formats such as PICT on the Mac, or
WMF in Windows. Sometimes there is a FrameImage facet also.

CONVERTING AND EXPORTING GRAPHICS MIF2GO USER’S GUIDE

876 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

However, most graphics tools convert only the preview image. To make a better rendering
from the PostScript part, you need a converter that can interpret PostScript. You could use
GhostScript, which is a free PostScript interpreter:

http://www.cs.wisc.edu/~ghost/

with the free converter ImageMagick:
http://www.imagemagick.org/

Use EPS files as
is for Word

For print RTF, as an alternative you could set [Graphics]EpsiUsage=Retain (see
§31.2.2.3.5 Referencing EPS graphics in Word on page 877), and keep the EPS files with
the RTF output until Word loads the RTF file; then Word will import the EPS image itself.
Unfortunately, this method does not preserve the FrameMaker scaling. Unless the original
EPS file was imported into Frame Maker at 100% scale, you will have to change the size
in Word after loading the RTF produced by Mif2Go . You will still see only the ugly
preview on screen, but the graphic will print nicely—at least on a PostScript printer. For
more information, see §31.6 Converting graphics with Microsoft Word filters on
page 904.

31.2.2.3.2 Including only the preview image

If the graphic includes a preview facet Mif2Go understands, such as FrameImage or
WMF, by default Mif2Go places that image in the converted file and discards the
PostScript. If you are creating WinHelp or HTML, that can be adequate.

If you are converting to RTF you can direct Mif2Go to use the FrameImage, if one is
present:

[Graphics]
; UseFrameImage = No (default)
; or Yes (in preference to other formats)
UseFrameImage=Yes

31.2.2.3.3 Including both preview and EPS images

If you want a better rendition than the screen-resolution preview image, set the following
option:

[Graphics]
; EpsiUsage =
; Preview (only, default),
; EPS (no preview), or
; Retain (both)
EpsiUsage=Retain

Options for EpsiUsage have the following effects on EPS graphics:

31.2.2.3.4 Replacing EPS graphics

For many kinds of output you will want to convert EPS graphics to another format. For
example, for WinHelp the graphics must be in WMF or BMP format; for HTML, graphics
should be JPEG, GIF, or PNG. For Word, you will have to convert EPS graphics if you
want to be able to scale the images.

Retain The preview image is converted along with the PostScript image.

EPS Only the PostScript is converted; if you are converting to Word RTF, Word
displays only a gray box, although the image will print correctly on a
PostScript printer.

Preview Only the preview image is converted; you lose the PostScript version.

http://www.cs.wisc.edu/~ghost/
http://www.imagemagick.org/

31 WORKING WITH GRAPHICS CONVERTING AND EXPORTING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 877

If the EPS graphics are embedded in your FrameMaker document, the default settings in
section [GraphExport] make external .eps files from them; see §31.2.3 Exporting and
converting embedded graphics on page 877.

You must do the following:

1. Convert the .eps files to an appropriate format, using a third-party tool; see
§31.2.2.3.1 Deciding how to treat EPS graphics on page 875.

2. Map the graphics to the new format.

 • For Word or WinHelp:
[Graphics]
FileNames=Map

[GraphFiles]
eps=wmf

 • For HTML:
[Graphics]
GraphSuffix = jpg

3. Specify the location of the replacement files.

 • For Word or WinHelp, set FilePaths=Retain if the new graphics are in the
same directory as the .eps files, or FilePaths=None if you put them in the
project directory:

[Graphics]
FilePaths = Retain

See §31.3.2 Changing graphics files for RTF output on page 890.

 • For HTML, if the new graphics are in the project directory:
[Graphics]
StripGraphPath = Yes

Or, you can tell Mif2Go exactly where you put the new graphics:
[Graphics]
GraphPath = relative/path/to/graphics/files

The path you specify for GraphPath should be relative to the wrap directory (see
§35.3 Understanding path values for deliverables on page 957). This path will be
used in HTML output, as the relative path from the HTML files to their referenced
graphics. This option sets the src attribute of the tags; it does not change
the location of the graphics files themselves. See §23.3 Locating graphics files for
HTML on page 704. To copy files to another location, see §35.7.1 Copying
referenced graphics to a distribution directory on page 965.

31.2.2.3.5 Referencing EPS graphics in Word

If the lack of scaling is not an issue, you can let Word import an EPS graphic. The default
[GraphExport] settings make the embedded file an external .eps , which is named in a
Word INCLUDEPICTURE field (Word 8) or IMPORT field (Word 7) when you run Mif2Go .
The result is that you see the TIFF preview in Word. If you print to a PostScript printer
you see the real EPS; however, if you print to any other printer, you see only the TIFF
preview.

31.2.3 Exporting and converting embedded graphics

When you import images into FrameMaker by copying (instead of by reference), the
images are embedded in your FrameMaker file. By default, Mif2Go exports most types of
embedded images to create external graphics files.

CONVERTING AND EXPORTING GRAPHICS MIF2GO USER’S GUIDE

878 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

In this section:
§31.2.3.1 Understanding how embedded graphics are exported on page 878
§31.2.3.2 Replacing embedded graphics on page 878
§31.2.3.3 Converting embedded graphics for Word without exporting on page 879
§31.2.3.4 Exporting embedded graphics before converting on page 879
§31.2.3.5 Setting export options for all embedded graphics on page 880
§31.2.3.6 Setting export options for each embedded graphic type on page 880

See also:
§5.7.3.2 Processing embedded graphics separately on page 132
§5.7.4.2 Naming files produced from embedded graphics on page 134
§31.2.7 Exporting embedded graphics imported from Word on page 886

31.2.3.1 Understanding how embedded graphics are e xported

Mif2Go uses an internal graphic export process to create external files from graphics
embedded in your FrameMaker document, provided those graphics do not include, in the
same anchored frame, other elements such as callouts, titles, or additional images. You get
the original format at its full original resolution. You do not get the original name, because
FrameMaker discards the original name when the image is embedded; there is no way to
recover that name. Therefore, Mif2Go assigns a computed name to each exported file; see
§5.7.4.2 Naming files produced from embedded graphics on page 134.

If an image to be exported is not alone in its anchored frame, Mif2Go must use
FrameMaker export filters instead; see §31.2.5 Converting graphics with FrameMaker
export filters on page 883. In that case, callouts, montages, and so forth, are retained, but
the resolution is generally much worse than the resolution of the original image.

31.2.3.2 Replacing embedded graphics

If you have access to the original image files, the best option is simply to replace the
images in FrameMaker. This process can be labor intensive, but you have to do it only
once. With each embedded graphic selected in FrameMaker, re-import the original graphic
file by reference; the referenced graphic replaces the embedded graphic. Make sure you
select the embedded image itself (not the anchored frame) before you import the
replacement. See §2.5.2 Planning for graphics processing on page 69.

If you do not have access to the original image files, you can still export embedded
graphics and bring them back in as referenced graphics, either with the file names
assigned by Mif2Go (see §5.7.4.2 Naming files produced from embedded graphics on
page 134), or after changing the assigned names to more suitable names. See §5.7.3.2
Processing embedded graphics separately on page 132.

If your document includes only a few graphics, you can match them visually with their
embedded counterparts. If your document includes a great many graphics, the challenge
will be to get them back into the correct anchored frames without scrutinizing each image
individually.

The ASCII DCL produced when you export the embedded graphics includes the
UniqueIDs of both the anchored frame and the image in each case, along with the assigned
file name. Also included are the rotation and DPI of each image.

For example, exporting a single embedded graphic from FrameMaker file FigsTbls.fm
produces a file named Figs001.gif , and this description in the ASCII DCL output:

31 WORKING WITH GRAPHICS CONVERTING AND EXPORTING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 879

((layout fr_def 1)
 (text hyper_tok loc = 999590)
 (layout anchored 20 15)
 (layout frame pos inline)
 (layout frame within col_hor)
 (layout fr_size page + 226233 257103 407900 27040 0)
 (layout fr_line pattern solid)
 (layout fr_line color black)
 (layout fr_line thick 100)
 (layout fr_pen pattern invisible)
 (layout fr_fill pattern invisible)
 (layout fr_fill color black)
 ((graph obj external)
 (text hyper_tok loc = 1042546)
 (graph line pattern solid)
 (graph line color black)
 (graph line thick 100)
 (graph pen pattern invisible)
 (graph fill pattern back)
 (graph fill color black)
 (layout fr_size frame + 28000 5000 347916 202083)
 (layout frame rotation = 0)
 (graph ras_dpi in = 96)
 (dcl include graphic 'Figs0001.gif')
)
)

You can identify the location in the FrameMaker file using the (text hyper_tok loc
= ...) controls. You see the UniqueIDs of both the anchored frame (999590) and the
image itself (1042546).

Unless the embedded graphics include callouts or other added elements, you have all the
information you need to re-import by reference without loss, using a third-party scripting
tool.

31.2.3.3 Converting embedded graphics for Word wit hout exporting

You can get embedded graphics out of FrameMaker and into the output without exporting
them as separate file only if both of the following are true:

 • The document output type is Word RTF.
 • The embedded graphics are in WMF, BMP, or FrameImage format.

Mif2Go converts these embedded graphics and includes them directly in the Word output.

31.2.3.4 Exporting embedded graphics before conver ting

By default, Mif2Go exports from your FrameMaker document all embedded graphics
(except WMF, BMP, or FrameImage), and saves them as separate external graphics files.
Mif2Go exports the graphics in their original format, whatever that was; there is no setting
to change the format.

If the graphics are not already in an appropriate format, you can inspect the exported files,
if necessary alter or replace them, and use configuration-file settings to map the old
embedded graphics to the newly exported graphics files. This can make your conversion
project a three-step process:

1. Run Mif2Go to export embedded graphics as separate files; see §31.2.3.5 Setting
export options for all embedded graphics on page 880.

2. Examine the exported files. If the graphics are not in an appropriate format, or you
want to rescale them, use a third-party graphics program to alter or replace the

CONVERTING AND EXPORTING GRAPHICS MIF2GO USER’S GUIDE

880 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

graphics; see §5.7.2.3 Using third-party graphics converters on page 130. Or, you can
try having Mif2Go use FrameMaker export filters to convert them; see §31.2.5
Converting graphics with FrameMaker export filters on page 883.

3. Run Mif2Go again, specifying a mapping from the embedded graphics to the alternate
graphics; see §31.3 Replacing and relocating graphics files on page 887.

Even if you are not going to use the graphics, exporting them first speeds up processing of
the rest of your document.

If you are going to use the graphics, name clashes are likely; see §5.7.4.2 Naming files
produced from embedded graphics on page 134. It is better to take the newly exported
graphics files, give them proper names, and go back into FrameMaker and import them by
reference in place of the original embedded images; then run the conversion again. Think
of it as a way to atone for past sins of importing by copying.

31.2.3.5 Setting export options for all embedded g raphics

To export embedded graphics from your document:
[GraphExport]
; make external files when they need to be converte d or changed
; normally wmf, bmp, and rf files do *not* need to be changed
; the first sets the default for the rest
; ImportGraphics =
; Normal (default),
; Retain (in file), or
; Export (external files)
ImportGraphics = Export

Settings for ImportGraphics have the following effects on your document when you
run Mif2Go :

Normally, Mif2Go does not export BMP, WMF, or FrameImage (RF) graphics, because
these types can be converted successfully for RTF output without creating external files.
Mif2Go exports all other types by default, so you can use a third-party graphics
conversion tool to convert the images to a usable format. See §5.7.2.3 Using third-party
graphics converters on page 130.

To produce the WMF images required for RTF output (Word or WinHelp), Mif2Go can
use only BMP, WMF, and RF embedded graphics; if your document contains embedded
graphics in other formats, you must provide Mif2Go with replacement images.

31.2.3.6 Setting export options for each embedded graphic type

To replace a graphic of a type that is not exported by default, you must specify that its type
should be exported. For example, if you want to export BMP graphics, specify these
settings:

[GraphExport]
ImportGraphics=Normal
ExportBmpFiles=Yes

Normal Retains embedded graphics of some types without exporting them, as
indicated by the default listed for each type in §31.2.3.6 Setting export
options for each embedded graphic type on page 880.

Retain Does not export any embedded graphics.

Export Exports all embedded graphics.

31 WORKING WITH GRAPHICS CONVERTING AND EXPORTING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 881

These are the graphic types for which you can set an individual export option, and the
default value of the option for each type:

[GraphExport]
; ExportWmfFiles = Yes (makes external .wmf files) or No (default)
ExportWmfFiles=No
; ExportBmpFiles = Yes (makes external .bmp files) or No (default)
ExportBmpFiles=No
; ExportRfFiles = Yes (makes external .rf files) or No (default)
ExportRfFiles=No
; ExportPctFiles = Yes (makes external .pct files, default) or No
ExportPctFiles=Yes
; ExportTifFiles = Yes (makes external .tif files, default) or No
ExportTifFiles=Yes
; ExportGifFiles = Yes (makes external .gif files, default) or No
ExportGifFiles=Yes
; ExportJpgFiles = Yes (makes external .jpg files, default) or No
ExportJpgFiles=Yes
; ExportPngFiles = Yes (makes external .png files, default) or No
ExportPngFiles=Yes
; ExportPcxFiles = Yes (makes external .pcx files, default) or No
ExportPcxFiles=Yes
; ExportWpgFiles = Yes (makes external .wpg files, default) or No
ExportWpgFiles=Yes
; ExportCdrFiles = Yes (makes external .cdr files, default) or No
ExportCdrFiles=Yes
; ExportEpsFiles = Yes (makes external .eps files, default) or No
ExportEpsFiles=Yes

31.2.4 Exporting images and creating files from OL E objects

Mif2Go does not support OLE or OLE2; these are proprietary, undocumented Microsoft
Structured Storage formats. An OLE object is like a binary mini-file system. The “files” in
an OLE object contain information needed for editing by the application that originally
created the object. The application is not required for viewing in FrameMaker or printing,
because at least one of the “files” is a WMF image that can be used for display (but only
on a Windows system).

In this section:
§31.2.4.1 Extracting the WMF preview image from an OLE object on page 881
§31.2.4.2 Extracting and exporting all WMF images from an OLE object on page 882
§31.2.4.3 Extracting OLE images with FrameMaker export filters on page 882
§31.2.4.4 Retrieving OLE objects for use in the original application on page 882

31.2.4.1 Extracting the WMF preview image from an OLE object

Each OLE object contains one or more WMF images. One of these is the preview image
you see in FrameMaker; we guess it is the last WMF in the object, and that is what
Mif2Go extracts, by default:

[GraphExport]
; ImportGraphics = Normal (default), Retain (in fil e)
; or Export (ext files)
ImportGraphics=Normal
; ExportWMFFiles=Yes (makes external .wmf files) or No (default)
ExportWMFFiles=Yes

When ImportGraphics=Normal , Mif2Go exports the extracted WMF preview image
as a .wmf file; otherwise the image is not exported.

CONVERTING AND EXPORTING GRAPHICS MIF2GO USER’S GUIDE

882 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When ImportGraphics=Export , Mif2Go does not hunt for a preview WMF image in
an OLE objects and merely dumps out the object. Our experience has been that such
objects cannot be converted to anything useful. However, you might find that by changing
the .ole extension to the extension required by the application that produced the object,
the file can be opened and edited in the original application; see §31.2.4.4 Retrieving OLE
objects for use in the original application on page 882.

31.2.4.2 Extracting and exporting all WMF images f rom an OLE object

With the following settings, Mif2Go extracts all WMFs from an OLE object, and exports
each to a separate .wmf file:

[GraphExport]
ImportGraphics=Normal
ExportWMFFiles=Yes
; MultipleOLE = No (export only the last WMF image in OLE object), or
; Yes (export all WMFs, with "Xn" suffixes for all but the last)
MultipleOLE=Yes

Set MultipleOLE=Yes only if the single WMF that Mif2Go extracts by default turns out
to be the wrong image.

How WMFs from
OLE objects are

named

When ExportWMFFiles=Yes and MultipleOLE=Yes , each WMF image extracted
from an OLE object becomes a .wmf file. Mostly you will get only two or three WMFs.
The last WMF extracted is the default file, and keeps the original graphic file name; for
example, aa123456.wmf (see §5.3 Identifying files and objects on page 117). All other
files extracted from the object get the same name with the addition of a base-name suffix
Xn, where n is 1, 2, ..., 10, ... 100 , and so forth; for example, aa123456X2.wmf . If one of
these other files turns out to be the correct image, you must delete the incorrect default
.wmf file, and rename the correct file by removing the Xn suffix.

31.2.4.3 Extracting OLE images with FrameMaker exp ort filters

Having Mif2Go extract WMFs works for the majority of OLE objects, but not for all of
them. If you still do not get a satisfactory image, you might have to resort to FrameMaker
export filters, which use the displayed image to create a graphic Mif2Go can use; see
§31.2.5 Converting graphics with FrameMaker export filters on page 883.

The resulting file will be large. If you are converting to Word, the embedded graphics in
RTF files are usually not compressed, and even those that can be compressed (256-color
or less) do not compress well. If Word can load the RTF at all, you might be able to save in
Word .doc format to get a more manageable size; this format has better compression. See
§6.14.11 Embedding graphics in converted RTF files on page 193.

31.2.4.4 Retrieving OLE objects for use in the ori ginal application

If you use Mif2Go to export from FrameMaker an OLE object originally created in
another application such as Excel or Visio, and then change the file extension, you can
subsequently open the exported file in the original application:

[GraphExport]
ImportGraphics=Export
; ExportOleFiles = Yes (makes external .ole files) or No (default)
; when not exported, a .wmf is extracted if possibl e and kept in DCL
ExportOleFiles=Yes

When ExportOleFiles=Yes , for each OLE object in your document, Mif2Go creates a
file with extension .ole and places the file in the project directory.

31 WORKING WITH GRAPHICS CONVERTING AND EXPORTING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 883

Note: Use this setting only to retrieve OLE objects for use in the application that created
them; the retrieved objects do not become usable external graphics files.

To change the file extension of all exported OLE objects to that required by (for example)
Visio:

[GraphSuffix]
ole=vsd

See §31.3.1.2 Substituting graphics files for HTML on page 888.

31.2.5 Converting graphics with FrameMaker export filters

Mif2Go can use FrameMaker export filters to convert any of the following:

 • referenced or embedded graphics
 • FrameMaker equations
 • FrameMaker vector graphics.

In this section:
§31.2.5.1 Understanding when FrameMaker export filters are required on page 883
§31.2.5.2 Understanding FrameMaker export filter limitations on page 883
§31.2.5.3 Directing Mif2Go to use FrameMaker export filters on page 884
§31.2.5.4 Controlling graphic size on page 884
§31.2.5.5 Specifying graphic output format and DPI on page 884
§31.2.5.6 Specifying a naming convention for converted graphics on page 885
§31.2.5.7 Converting graphics on reference pages on page 885
§31.2.5.8 Converting graphics on master pages on page 885
§31.2.5.9 Converting unanchored graphics on body pages on page 886

See also:
§5.7.2.2.1 Understanding when to use FrameMaker export filters on page 129
§5.7.2.2.2 Understanding FrameMaker filter limitations on page 129

31.2.5.1 Understanding when FrameMaker export filt ers are required

Mif2Go must use FrameMaker export filters to convert the following:
Compound graphics
Equations

Compound
graphics

Unless the images are WMF or BMP and you are converting to RTF, Mif2Go must use
FrameMaker export filters to convert compound graphics: referenced or embedded images
that include callouts, titles, or second images in the same anchored frame. The only
alternative is to create the compound graphics outside of FrameMaker.

Equations Mif2Go always uses FrameMaker export filters to convert equations. There is no
alternative. Mif2Go can export equations to any of the supported graphics formats.

31.2.5.2 Understanding FrameMaker export filter li mitations

On Windows systems, FrameMaker export filters use the GDI image, not the original
graphic. The exported graphics are created by GDI rendering, regardless of the original
DPI of the graphic. In effect, images are resampled to screen resolution (96 DPI) no matter
what DPI you set, which can degrade image quality. Adjusting the DPI at which the
resampling is done can help for vector graphics, but not for bitmap graphics. You can get
more pixels, but they are interpolated from the 96 DPI rendition.

CONVERTING AND EXPORTING GRAPHICS MIF2GO USER’S GUIDE

884 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

31.2.5.3 Directing Mif2Go to use FrameMaker export filters

To have Mif2Go convert graphics using the FrameMaker export filters, set the following
options:

[Graphics]
; UseGraphicPreviews = No (default)
; or Yes (use preview bitmaps for frames)
UseGraphicPreviews = Yes

[Setup]
; WriteEquations = No (default)
; or Yes (write only equations as graphics files)
WriteEquations = No
; WriteAllGraphics = No (default)
; or Yes (write all anchored frames as graphics file s)
WriteAllGraphics = Yes

Or, choose Write for anchored frames in the Mif2Go Export dialog; see Table 3-2 on
page 84.

31.2.5.4 Controlling graphic size

With FrameMaker export filters, Mif2Go has to export the whole anchored frame, empty
white space and all; the size of a graphic created with FrameMaker export filters is that of
the anchored frame in which the graphic is displayed in FrameMaker.

For example, if you include in your document a 2" x 3" graphic enclosed in a 7" x 3"
anchored frame (to center it so that there is no runaround); and if you export the graphic
using a FrameMaker graphic export filter; the resulting exported graphic is 7" x 3", which
is mostly whitespace.

If you are converting to HTML and the graphic in question was imported into
FrameMaker by reference, you can get around this problem with the following setting:

[Graphics]
UseOriginalGraphicNames=Yes

See §31.3.1.2 Substituting graphics files for HTML on page 888 for more information.

31.2.5.5 Specifying graphic output format and DPI

You can set the output DPI and graphic format for the FrameMaker export filters to use.
FrameMaker DPI for a bitmap graphic is not the native DPI of the image; instead it is a
measure of rescaling to whatever size you want the image to appear in your FrameMaker
document. Generally you want to retain that scaling.

[Setup]
; EquationExportDPI = number
; (from 50 to 1200, default 140 or HTML, 120 for RT F)
EquationExportDPI=140
; GraphicExportDPI = number (from 50 to 1200, defau lt 96)
GraphicExportDPI=96
; GraphicExportFormat = BMP, TIFF, WMF (RTF default),
; JPEG (HTML default), GIF, PNG, EPS, PICT, CGM, o r IGES
GraphicExportFormat=JPEG

If print quality is important, and you have scaled down a screenshot (for example) for on-
line help, leave all the original pixels in; the view on screen will be the same, and the
printout will be more legible because the printer has more pixels available for the image.

For HTML output, changing the GraphicExportDPI setting affects a displayed HTML
page only if browser scaling is turned off for the images involved.

31 WORKING WITH GRAPHICS CONVERTING AND EXPORTING GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 885

31.2.5.6 Specifying a naming convention for conver ted graphics

The graphics produced by the FrameMaker export filters are named by the FileID
followed by the ObjectID in hexadecimal; see §5.3 Identifying files and objects on
page 117 for information about FileIDs and ObjectIDs. You can set the way the name is
created:

[Setup]
; UseGraphicFileID = Yes (default) or No (single-fi le projects only)
UseGraphicFileID=Yes
; GraphicNameDigits = 6, or 4 to 8 (for longer or s horter names)
GraphicNameDigits=6

31.2.5.7 Converting graphics on reference pages

By default, when you use the FrameMaker export filters (see §31.2.5 Converting graphics
with FrameMaker export filters on page 883), Mif2Go includes graphics on reference
pages.

To exclude reference-page graphics:
[Setup]
; WriteRefPageGraphics = Yes (default) or No (exclu de ref frames)
WriteRefPageGraphics=Yes

A change to this setting takes effect only when you are running Mif2Go from within
FrameMaker.

For HTML output, see §23.5.4 Converting reference-page graphics for HTML on
page 712.

31.2.5.8 Converting graphics on master pages

By default, when you use the FrameMaker export filters (see §31.2.5 Converting graphics
with FrameMaker export filters on page 883), Mif2Go excludes graphics on master pages.

To include graphics on master pages:
[Setup]
; WriteMasterPageGraphics = No (default) or Yes (wr ite h/f graphics)
WriteMasterPageGraphics=No

A change to this setting takes effect only when you are running Mif2Go from within
FrameMaker.

Export master-
page graphics

You can export master-page graphics by specifying both of the following settings (see
§5.7.3.1 Processing all graphics first on page 132):

[Setup]
WriteMasterPageGraphics=Yes
GraphicsFirst=Yes

For HTML output, the resulting graphics are not referenced in the output file, unless you
include them with a macro.

For RTF output, Mif2Go tries to assign unanchored images and graphic frames on master
pages to a header or footer, whichever is closer.

Note: Mif2Go does not currently support unanchored arcs, bezier curves (smoothed
polylines), text lines (as opposed to text frames), or arrows that are drawn directly
on master pages.

CONVERTING AND EXPORTING GRAPHICS MIF2GO USER’S GUIDE

886 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

31.2.5.9 Converting unanchored graphics on body pa ges

For HTML output, unanchored frames on body pages are included by default. To exclude
them, set the following option:

[HTMLOptions]
; ReAnchorFrames = Yes (default, anchor unanchored frames to first
; para on page) or No (skip unanchored frames)
ReAnchorFrames=No

For RTF output, Mif2Go always ignores unanchored frames on body pages.

31.2.6 Embedding bitmap graphics in WMF for WinHel p

When you produce files for WinHelp use, Mif2Go replaces each of your bitmap graphics
with a reference to a .wmf file: an external metafile named after the .rtf file. Mif2Go
creates these metafiles, and embeds the bitmaps in them, so that the graphics are scaled
correctly in the WinHelp file. If it did not, all the bitmaps would be rendered by WinHelp
at screen resolution (typically 96 DPI) without regard for their original scale. It usually
means the graphics appear at two to four times their original size; this is generally not
what you want.

However, if you really do not want Mif2Go to wrap the bitmaps in metafiles, the
following setting makes Mif2Go use them as .bmp files, unscaled:

[Graphics]
; EmbedBMPsInWMFs = Yes (default, includes scaling info) or No
EmbedBMPsInWMFs=No

The same is true of .wmf files imported into your FrameMaker document. When you
choose File > Save Using Mif2Go... , Mif2Go reads in any external .bmp and .wmf
graphics, adds the FrameMaker elements such as callouts, and puts the results out in
scaled .wmf files, which are referenced in the .rtf files produced.

Mif2Go ’s default is to wrap .wmf graphics in new .wmf files. If you do not want them
handled this way, set [Graphics] EmbedWMFsInWMFs=No to use them at their native
size. There is a risk when Mif2Go tries to embed .wmf graphics produced in other
applications that the result will look very strange; in that case too, turn off the embedding.

You can specify that all Word frames are to be wrapped:
[Graphics]
; WrapAllFrames = No (default) or Yes (to eliminate use of nowrap)
WrapAllFrames=Yes

31.2.7 Exporting embedded graphics imported from W ord

When you import Word documents that contain embedded images into FrameMaker, you
might not have access to the original graphics, and you might not know what tool was
used to create them. Even so, you can have Mif2Go export those images from
FrameMaker in their original formats, and save them as external graphics files.

Internally, Word uses WMF, a vector format, to hold graphics. So you might be getting the
Word graphics as WMF, or as something else, depending on the import filter. Internally,
FrameMaker stores the embedded images as graphic insets. While the graphics do not
have their original file names, they do retain the original data, in FrameMaker’s own
(lossless) encoding. Mif2Go can extract the images and save them in their original
formats, with new names. You do not have to know the formats in advance; just tell
Mif2Go to export everything, including OLE objects, and see what you get. See §31.2.3
Exporting and converting embedded graphics on page 877.

31 WORKING WITH GRAPHICS REPLACING AND RELOCATING GRAPHICS FILES

ALL RIGHTS RESERVED. MAY 18, 2013 887

To replace the embedded graphics in FrameMaker with references to their exported
counterparts, see §2.5.3 Replacing embedded graphics with referenced graphics on
page 69.

31.3 Replacing and relocating graphics files
You might want to replace one or more referenced or exported graphics with others that
are in a more appropriate format. If you have created an alternate set of graphics files, you
might need to direct Mif2Go to look for them in a directory different from the location
referenced in FrameMaker.

Changing referenced file names and locations for Mif2Go requires different settings,
depending on whether you are converting to RTF (Word or WinHelp) or to HTML.

This section discusses the following topics:
§31.3.1 Changing graphics files for HTML output on page 887
§31.3.2 Changing graphics files for RTF output on page 890

31.3.1 Changing graphics files for HTML output

In this section:
§31.3.1.1 Specifying graphics location for HTML on page 887
§31.3.1.2 Substituting graphics files for HTML on page 888
§31.3.1.3 Overriding path specifications for referenced graphics on page 888
§31.3.1.4 Using original files and image sizes for referenced graphics on page 889
§31.3.1.5 Including referenced graphics without converting on page 889

See also:
§23 Including graphics in HTML on page 703

31.3.1.1 Specifying graphics location for HTML

Graphics files for HTML usually should be in the same directory as the HTML files, or in
a related directory. Their location relative to the HTML files might not be the same as their
location relative to FrameMaker files. Therefore, you must specify where they will be
when your HTML output is deployed on a Web server, in a Help system, or on a
production system different from your conversion system.

Note: Some HTML output types restrict placement of graphics; see §23.3 Locating
graphics files for HTML on page 704.

Graphics in
directory with

HTML files

To remove any path information from graphics file names, so that a browser or Help
viewer will look for graphics in the same directory as the HTML files that reference those
graphics:

[Graphics]
; StripGraphPath = No (default)
; or Yes (remove path from graphics references)
StripGraphPath = Yes

Graphics in a
different directory

To specify where a browser or Help viewer should look for graphics:
[Graphics]
; GraphPath = path to use (replacing any previous) for all graphics
GraphPath = relative/path/to/graphics/files

The location specified by GraphPath is relative to the wrap directory.

REPLACING AND RELOCATING GRAPHICS FILES MIF2GO USER’S GUIDE

888 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Move graphics to
the referenced

directory

To move graphics to the specified directory, do one of the following:

 • Have Mif2Go copy the graphics during conversion; see §35.7.1 Copying referenced
graphics to a distribution directory on page 965.

 • Use a system command to copy the graphics; see §34.4 Executing operating-system
commands on page 937.

 • Copy the graphics yourself, outside of the conversion process.

See also:
§35.7.4 Synchronizing graphics settings for HTML output on page 968
§23.3 Locating graphics files for HTML on page 704
§9.3.10 Locating graphics files for HTML Help on page 302
§10.3.9 Getting OmniHelp supporting files in the right place on page 349
§11.3.7.3 Locating graphics files for JavaHelp and Oracle Help on page 380

31.3.1.2 Substituting graphics files for HTML

You can tell Mif2Go to use a specific named graphic in place of the original or a generated
graphic. For example:

[GraphFiles]
; GraphicID (with or without extension) = new name (with extension)
; new name overrides any [Graphics]GraphPath spec ified
ch01f853.gif = tuner.gif

If your FrameMaker document references graphics in non-Web formats (such as TIFF)
and you plan to replace those graphics with matching Web-usable images in the same
directory, you can specify a new extension for the replacement files. For example:

[Graphics]
; GraphSuffix = suffix to use for replacement graph ics
GraphSuffix = jpg

If some referenced graphics are in a different format (for example GIF), specify the
exceptions. For example:

[GraphSuffix]
; old suffix = new suffix, overrides [Graphics]Grap hSuffix
; jpg = jpg leaves all .jpgs alone even if GraphS uffix=gif
; wmf = png .wmfs are being made into .pngs using a third-party tool
gif = gif

31.3.1.3 Overriding path specifications for refere nced graphics

To override path settings in [GraphFiles] and in configuration markers (see §33.2.9.4
Overriding graphic properties for HTML on page 929):

[Graphics]
; GraphPathOverrides = No (default) or Yes (overrid es any path
; in Config markers and in [GraphFiles], adding Gra phPath
; and using FixGraphSpaces)
GraphPathOverrides=Yes

When GraphPathOverrides=Yes , Mif2Go uses the path to graphics specified by
GraphPath (see §23.3 Locating graphics files for HTML on page 704) instead of any
path (or lack of a path) specified in [GraphFiles] (see §31.3.1.2 Substituting graphics
files for HTML on page 888) or in a *Config marker that has content:

[GraphFiles]= filename

Also, Mif2Go replaces with underscores any spaces in file names of referenced graphics;
see §31.3.1.4 Using original files and image sizes for referenced graphics on page 889.

31 WORKING WITH GRAPHICS REPLACING AND RELOCATING GRAPHICS FILES

ALL RIGHTS RESERVED. MAY 18, 2013 889

31.3.1.4 Using original files and image sizes for referenced graphics

You can have Mif2Go use the original referenced graphics files, instead of the files
generated by the FrameMaker export filters; and you can also eliminate spaces from the
names of those original files, to make the names valid in all environments:

[Graphics]
; UseOriginalGraphicNames = No (default, always use previews) or Yes
UseOriginalGraphicNames = Yes
; FixGraphSpaces = Yes (default, replace space with underscore) or No
FixGraphSpaces = Yes

When UseOriginalGraphicNames=Yes , Mif2Go overrides your request to use
FrameMaker-exported graphics only when possible, which is when a graphic is referenced
and alone in its anchored frame.

If you find that some of your referenced graphics are still being exported when
UseOriginalGraphicNames=Yes , look for artifacts in their anchored frames. In
FrameMaker, select an anchored frame, then on the right-click context menu choose
Select all in frame to see what turns up. For example, if an anchored frame contains two
.jpg images, includes callouts, or has a border drawn with FrameMaker drawing tools,
Mif2Go generates a graphics file using FrameMaker export filters. Also look for empty
Text Lines, and objects outside the boundary of the anchored frame; such objects are easy
to spot in a MIF representation of the document file, and can be deleted in MIF.

The tag references the original name of the graphics file (possibly modified for
path and extension by several other settings acting in concert), and uses the FrameMaker-
determined size of the original imported image as opposed to the size of the enclosing
anchored frame (to preserve scale, also possibly modified by other size settings).

Note: When you set UseOriginalGraphicNames=Yes , you are promising that there
are graphics files (Mif2Go does not check!) to be loaded by the resulting .htm
using whatever you set for the graphics path and extension; see §31.3.1.5
Including referenced graphics without converting on page 889.

The size of each graphic will be the size of the actual image, instead of the size of the
anchored frame in which it was displayed in FrameMaker. For example, if you put a 2" x
3" graphic in a 7" x 3" frame to center it so that there is no runaround; and you export the
graphic using FrameMaker graphic export filters; the resulting exported graphic is 7" x 3",
and mostly whitespace. When you use the original graphic, you do not want it stretched to
7" x 3", you want it to be 2" x 3".

31.3.1.5 Including referenced graphics without con verting

If the graphics in your FrameMaker document were imported by reference, and they are
already in a format and of a size appropriate for HTML output, you can have Mif2Go
include them as is, without passing them through any conversion process.

To use original referenced graphics, in the Mif2Go Export dialog check Use original
graphic names ; or, specify the following option in the configuration file:

[Graphics]
UseOriginalGraphicNames = Yes

Also comment out the following setting, if present:
[Graphics]
; GraphSuffix = gif

Additional settings depend on where you want graphics placed for output:
Graphics in the same directory as HTML output files

REPLACING AND RELOCATING GRAPHICS FILES MIF2GO USER’S GUIDE

890 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Graphics in a different directory

Graphics in the
same directory as
HTML output files

To locate graphics in the same directory as the .htm files, set StripGraphPath=Yes and
comment out GraphPath :

[Graphics]
StripGraphPath=Yes
; GraphPath = relative/path/to/graphics/files

Graphics in a
different directory

To locate graphics somewhere other than the directory with the .htm files, use
GraphPath to specify the relative path to their location:

[Graphics]
GraphPath = relative/path/to/graphics/files

The location specified by GraphPath is relative to the wrap directory. See §31.3.1.1
Specifying graphics location for HTML on page 887.

31.3.2 Changing graphics files for RTF output

For print RTF or WinHelp output, you can direct Mif2Go to use graphics files different
from those referenced in FrameMaker, or exclude graphics altogether.

In this section:
§31.3.2.1 Substituting graphics files for RTF on page 890
§31.3.2.2 Using already converted graphics for RTF on page 893
§31.3.2.3 Using different bitmaps for print RTF and for WinHelp on page 894
§31.3.2.4 Replacing embedded graphics for RTF on page 894
§31.3.2.5 Excluding graphics from RTF output on page 895

31.3.2.1 Substituting graphics files for RTF

If any graphics referenced in your FrameMaker document are not BMP or WMF, unless
you map those graphics to replacements, Mif2Go puts them in an INCLUDEPICTURE field
for Word output, and omits them from WinHelp output.

In this section:
§31.3.2.1.1 Replacing WMF files with BMP files on page 890
§31.3.2.1.2 Substituting files with different extensions on page 891
§31.3.2.1.3 Substituting files with different names or locations on page 891
§31.3.2.1.4 Understanding replacement examples on page 892

31.3.2.1.1 Replacing WMF files with BMP files

If all you want to do is change the file extension for referenced WMF files that you are
replacing with referenced BMP files, and if both of the following are true:

 • the BMP files are in the same directory as the WMF files
 • none of the BMP files form parts of FrameMaker vector graphics

you can use the following settings:
[Graphics]
; NameWMFsAsBMPs = No (default)
; or Yes (to change .wmf refs in the .rtf)
; EmbedBMPsInWMFs = Yes (default, includes scaling info) or No
NameWMFsAsBMPs=Yes
EmbedBMPsInWMFs=No

This setting is intended mainly for those who have to replace the WMFs generated by
Mif2Go , in order to deal with a resource-leak defect in Windows 9x systems. See §8.6.2
Avoiding the GDI resource leak on page 264.

31 WORKING WITH GRAPHICS REPLACING AND RELOCATING GRAPHICS FILES

ALL RIGHTS RESERVED. MAY 18, 2013 891

31.3.2.1.2 Substituting files with different exten sions

The simplest way to substitute graphics in a different format is as follows:

 • give all the replacement graphics the same base names as the originals
 • put all the replacement graphics in the project directory.

Then you can simply map the old extension to the new extension, as follows:
[Graphics]
FileNames=Map
FilePaths=None

[GraphFiles]
oldext=newext

Do not include a leading dot when you map extensions. For example:
[GraphFiles]
jpg=bmp

However, if some of your replacement graphics have different base names or are in other
directories, mapping old to new files becomes more complex. See §31.3.2.1.3 Substituting
files with different names or locations on page 891.

31.3.2.1.3 Substituting files with different names or locations

You can tell Mif2Go to look for replacement files that differ from the original files in any
or all of the following respects:

 • different location (file path)
 • different base file name
 • different file extension.

To map referenced graphics to replacements:
[Graphics]
; FileNames = Retain (default) or Map (in the Graph Files section)
; FilePaths (for graphics) = Retain (default) or No ne (strip off)
FileNames=Map

To specify different file paths, different names, or different extensions, when
FileNames=Map :

[GraphFiles]
; types to map, replace extension, old=new for refe renced graphics
; specific filenames to replace, old = new, overrid es type setting

Note: When you specify paths in [GraphFiles] , use forward slashes for separators.

Table 31-1 shows where Mif2Go expects to find replacement files for various
combinations of FileNames and FilePaths values and [GraphFiles] settings.

REPLACING AND RELOCATING GRAPHICS FILES MIF2GO USER’S GUIDE

892 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

FileNames=Map When FileNames=Map , Mif2Go uses the settings in [GraphFiles] to find
replacements.

FileNames=
Retain

When FileNames=Retain , Mif2Go ignores the settings in [GraphFiles] , and looks
for replacements in one of two places (determined by the FilePaths setting): the same
directory as the original graphics, or the project directory.

FilePaths=None When FilePaths=None , Mif2Go ignores the path component of the file references in
FrameMaker. Unless you specify FileNames=Map and a different path in
[GraphFiles] , Mif2Go looks for replacements only in the project directory.

You can use FilePaths=None when you are converting on a system different from the
system used for authoring or editing, to avoid replicating the directory structure. This
setting prevents problems with attempted access to drives (such as network drives) that do
not exist on the system used for conversions, but do exist on the systems used for
authoring or editing.

FilePaths=Retain When FilePaths=Retain , unless you specify FileNames=Map and different paths for
both original and replacement files in [GraphFiles] , Mif2Go looks for replacement
graphics only in the same directory as the original files.

Avoid specifying
original file paths

It is best to use FilePaths=None , and put the replacements in the project directory. This
is because specifying original file paths in [GraphFiles] is problematic; success
depends on exactly matching the paths in FrameMaker, whether they are absolute or
relative.

31.3.2.1.4 Understanding replacement examples

If replacement graphics have the same base names as the originals, and are located in the
same directory with the originals, and you are replacing some or all GIFs with BMPs:

[Graphics]
FilePaths=Retain
FileNames=Map

[GraphFiles]
gif=bmp

If all replacement graphics are in the project directory, and you are replacing GIFs with
BMPs, and in one instance replacing an existing BMP with a new one:

[Graphics]
FilePaths=None
FileNames=Map

Table 31-1 RTF replacement graphics file mappings and locations

FileNames

Valid [GraphFiles] mappings

Replacement
directory when
FilePaths =

Original graphics
file(s) = Replacement file(s) Retain None

Retain Ignored Original Output

Map ext = ext Original Output

filename.ext = filename.ext Output Output

path/filename.ext = filename.ext Output Output

filename.ext = path/filename.ext Per [GraphFiles] path

path/filename.ext = path/filename.ext Per [GraphFiles] path

31 WORKING WITH GRAPHICS REPLACING AND RELOCATING GRAPHICS FILES

ALL RIGHTS RESERVED. MAY 18, 2013 893

[GraphFiles]
gif=bmp
oldpic.bmp=newpic.bmp

If some replacement graphics are not with originals and not in the project directory, you
must specify paths to the replacement files:

[Graphics]
FilePaths=None
FileNames=Map

[GraphFiles]
oldpic.bmp=D:/Graphics/Beta/newpic.bmp

If some of the replacement graphics are in the same directory as the original graphics, but
some of the base file names are different, you must specify both the original and the
replacement path:

[Graphics]
FilePaths=Retain
FileNames=Map

[GraphFiles]
D:/Graphics/oldpic.bmp=D:/Graphics/newpic.bmp

Because path references in FrameMaker could be relative or absolute, it is better to avoid
specifying paths to the left of the equals sign in [GraphFiles] ; instead, move or copy
the replacement graphics to the project directory, and set FilePaths=None .

31.3.2.2 Using already converted graphics for RTF

To instruct Mif2Go to use graphics you have already converted to another format, do the
following:

1. Make sure each converted graphic has the same name as the graphic it replaces, except
for the file extension.

For example, if the original graphics were named:
screen01.tif
screen02.tif
screen03.tif

and you converted them to WMF format, name the WMF replacements:
screen01.wmf
screen02.wmf
screen03.wmf

2. Put the converted graphics in one of these directories:

 • the same directory as the original graphics
 • the project directory with the RTF files.

3. Specify settings in your project configuration file, m2rtf.ini .
3.1. Specify file-name treatment and replacement-file location:

[Graphics]
FileNames=Map

If you put the converted graphics in the same directory as the original graphics:
FilePaths=Retain

If you put the converted files in the project directory with the RTF files:
FilePaths=None

3.2. Map the original file extension to the new file extension; for example:

REPLACING AND RELOCATING GRAPHICS FILES MIF2GO USER’S GUIDE

894 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[GraphFiles]
tif=bmp (if you converted TIFF graphics to BMP format)
eps=wmf (if you converted EPS graphics to WMF format)

31.3.2.3 Using different bitmaps for print RTF and for WinHelp

Mif2Go allows you to use different versions of bitmaps for RTF print documents and for
WinHelp. You can do this in one step, if you imported the bitmaps into your FrameMaker
document by reference. Otherwise you can have Mif2Go export the bitmaps in the first
stage of conversion, then you can replace them in the second stage, as described in §31.2.3
Exporting and converting embedded graphics on page 877. In either case, the bitmaps you
prepare for WinHelp are placed in the project directory, rather than where the print-version
graphics are located.

31.3.2.4 Replacing embedded graphics for RTF

Suppose you have a FrameMaker document into which someone imported EPS graphics
by copying instead of by reference. You want to produce a Word RTF file that references
those graphics, and also produce the graphics files themselves, with their original names.
Mif2Go can do most of that for you, except provide the original file names.

When FrameMaker imports by copying, the original file name is lost; therefore Mif2Go
cannot access that name. Instead, Mif2Go generates a name that consists of the first four
characters of the FrameMaker file name, followed by an incremental number, starting with
0001; see §5.7.4.2 Naming files produced from embedded graphics on page 134.

For example, if your FrameMaker file is myfile.fm , default configuration settings would
yield myfi0001.eps , myfi0002.eps , and so forth. You can use the Mif2Go
Conversion Designer Import Graphics panel to set the number of letters and digits to use
in the names, in Name exported files... .

By default, Mif2Go exports EPS files from your FrameMaker document (see §31.2.3
Exporting and converting embedded graphics on page 877), so if you simply run the
conversion you will get external EPS files, and they will be referenced in the resulting
Word RTF by their Mif2Go -generated names. After you run the conversion and it
produces external EPS files, You might want to rename these files to something sensible,
and then re-import them by reference into your FrameMaker document, replacing the
copied-in graphics:

1. In FrameMaker:
1.1. Select a copied-in image (the imported object, not the frame).
1.2. Choose File > Import from the main FrameMaker menu.
1.3. Select the renamed replacement graphic file.
1.4. Import that file by reference.

2. In the Mif2Go Conversion Designer Import Graphics panel:
2.1. Set EPSI Usage to Both .
2.2. Click Apply

2.3. Click Update All .

3. Run the conversion again.

When you first open the resulting RTF file in Word, all referenced graphics files must be
in the same directory as the RTF file. After that, the graphics files are no longer needed;
when you save in Word format, all graphics are embedded. Even though this is by
reference, Word keeps the name around (unlike FrameMaker), and also keeps a full copy
of the graphic inside the .doc file. Therefore you can expect really large .doc files.

31 WORKING WITH GRAPHICS SPECIFYING CUSTOM SETTINGS FOR INDIVIDUAL GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 895

31.3.2.5 Excluding graphics from RTF output

To strip all graphics from the files you are converting to RTF, for either Word or WinHelp:
[Graphics]
; RemoveGraphics = No (default) or Yes (strip all g raphics from doc)
RemoveGraphics=Yes

You can keep empty frames, remove them, or identify them by having Mif2Go write the
name of the missing graphic visibly in the empty frame. For example, to display in RTF
output only file names and not the graphics themselves:

[WordOptions] or [HelpOptions]
; EmptyFrames = Standard (retain), Remove, or Ident ify (missing file)
EmptyFrames=Identify

31.4 Specifying custom settings for individual gra phics
Many of the graphics settings you can specify in the configuration file apply to all the
graphics in your document. However, if the right setting for one graphic is wrong for
another, you might be able to override the configuration value in your FrameMaker
document for an individual graphic.

In this section:
§31.4.1 Overriding graphics settings with custom markers on page 895
§31.4.2 Overriding graphics settings with FrameMaker object attributes on page 896

See also:
§23.7 Specifying HTML image attributes on page 718
§25.2 Applying WAI markup to images on page 756.
§29.2.4 Using attribute markers for HTML or XML on page 835

31.4.1 Overriding graphics settings with custom ma rkers

You can use custom FrameMaker markers (see §29.2 Adding custom marker types on
page 832) markers to insert configuration overrides in your FrameMaker document. For
RTF output, use a Config or RTFConfig marker for this purpose; for HTML output, a
Config or HTMConfig marker. See §33.2.2 Overriding settings with configuration markers
on page 921. The following tables show which settings can be overridden:

Table 33-2 Fixed-key configuration sections subject to overrides on page 925
Table 33-6 HTML graphic sections subject to overrides on page 930

Fixed-key overrides persist until the end of the file, or until changed by another override;
variable-key overrides apply only to the next graphic (see §33.2.7 Understanding fixed-
key vs. variable-key settings on page 923).

To override a setting for a given graphic, place the marker somewhere in the text before
the graphic-frame anchor and after the anchor of the preceding graphic frame. For marker
text, supply the setting you want to change. For example, for RTF output:

[Graphics]BitmapDPI=72

You can change only one setting per marker; however, you can use as many such markers
as you need.

Note: If you change the same setting in the FrameMaker Object Attributes dialog, the
value in the marker takes precedence.

SPECIFYING CUSTOM SETTINGS FOR INDIVIDUAL GRAPHICS MIF2GO USER’S GUIDE

896 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See also:
§29.1 Using custom FrameMaker markers on page 831
§33.2 Overriding settings with markers or macros on page 920
§31.4.2 Overriding graphics settings with FrameMaker object attributes on page 896

31.4.2 Overriding graphics settings with FrameMake r object attributes

For images in anchored frames, in FrameMaker 7.0 and later versions you can assign
image attributes via the FrameMaker Object Attributes dialog. Using the Object Attributes
dialog keeps image properties and attributes that apply to a single image contained, so
they always accompany the image when you move or copy its anchored frame to another
part of your document, or to another document.

Note: If you insert the same setting with a marker just before the anchored frame, the
value in the marker takes precedence; see §31.4.1 Overriding graphics settings
with custom markers on page 895.

To assign an attribute to a graphic object in an anchored frame, select the frame and
choose Object Properties... from the right-click context menu or the FrameMaker
Graphics menu. In the Object Properties dialog, click Object Attributes... to open the
FrameMaker Object Attributes dialog, shown in Figure 31-1 on page 898. Here you can
specify attributes for the graphic object in the frame.

Text Attributes
section

For HTML output, Mif2Go treats whatever you type in the Text Attributes section of the
Object Attributes dialog as follows:

For DITA output, Mif2Go treats whatever you type in the Text Attributes section of the
Object Attributes dialog as follows:

See §15.7.4 Providing alternate text for images on page 518.

New or Changed
Attribute names

In the New or Changed Attribute section of the Object Attributes dialog, Mif2Go
recognizes and acts on the following Name values:

Alternate: HTML tag alt attribute

Actual: HTML tag longdesc attribute

Alternate: DITA <alt> tag

Actual: Ignored

Graph* Any custom marker name that begins with Graph and ends with the name
of a valid HTML attribute.

Config Any configuration-override marker name that begins with HTMConfig ,
RTFConfig , or Config , and ends with any additional characters.

GraphGroup For HTML output, the [GraphGroup] configuration section name.

31 WORKING WITH GRAPHICS SPECIFYING CUSTOM SETTINGS FOR INDIVIDUAL GRAPHICS

ALL RIGHTS RESERVED. MAY 18, 2013 897

New or Changed
Attribute

definitions

For Definition , supply any value that would be valid in the corresponding marker or
configuration section:

Only one
definition per

attribute name

Because the Object Attributes dialog does not allow you to add more than one definition
for the same attribute name, Mif2Go recognizes any name that starts with “Config ” as
Config , and similarly for HTMConfig and RTFConfig .

For example, to specify two different HTML attributes for the same image:
Name: HTMConfigHi

Definition: [GraphHigh]=50

Name: HTMConfigWd

Definition: [GraphWide]=75

Object Attributes
dialog not always

trustworthy

Be sure to go back and check the settings you add via the Object Attributes dialog, because
at least in FrameMaker versions 7.0 and 7.1, the dialog seems to be somewhat unstable.
For example, based on our experience at Omni Systems:

 • You might have to delete and replace a definition that does not show the correct value
when you reopen the dialog.

 • If an attribute you add causes FrameMaker to crash the next time you open the dialog,
save the file as MIF, then open the MIF file as a regular FrameMaker file again
(Mif2Go can do this for you; see §D.2.6 Check for file corruption on page 1032). The
offending attribute should be gone, and you can re-enter its name and definition.

Once your entries persist when you reopen the dialog, the values should be reliable.

Graph* A value for Mif2Go to assign to the named HTML attribute. For
example:

Name: GraphLowsrc

Definition: lowres.jpg

causes Mif2Go to include the following attribute in the tag:

See §29.2.4 Using attribute markers for HTML or XML on page 835.

Config Any configuration setting that would otherwise appear in one of the
[Graph*] sections subject to overrides. For example:

Name: HTMConfig

Definition: [GraphDpi]=72

causes Mif2Go to change the resolution to 72 DPI for the image.

See §33.2.9.4 Overriding graphic properties for HTML on page 929.

GraphGroup The name of the group to which you want the image assigned. For
example:

Name: GraphGroup

Definition: 3x5pics

causes Mif2Go to include the image in group 3x5pics .

See §23.5.1.4 Creating named groups of graphics on page 710.

CONTROLLING IMAGE APPEARANCE IN RTF OUTPUT MIF2GO USER’S GUIDE

898 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Figure 31-1 FrameMaker 7+ Object Attributes dialog

31.5 Controlling image appearance in RTF output
In this section:

§31.5.1 Rescaling bitmap graphics on page 898
§31.5.2 Reorienting bitmap graphics on page 899
§31.5.3 Compressing bitmap graphics on page 899
§31.5.4 Positioning borders around inline graphics on page 900
§31.5.5 Mapping FrameMaker pen style patterns on page 900
§31.5.6 Converting graphic text on page 901
§31.5.7 Specifying transparency for WinHelp 4 on page 903

See also:
§6.14.6 Positioning graphics and wrapping text on page 191
§6.14.7 Preserving graphics scale in Word on page 191
§8.6.3 Positioning graphics in WinHelp on page 264

31.5.1 Rescaling bitmap graphics

You can rescale bitmaps using the [Graphics] BitmapDPI setting, either all at once or
individually. A setting of BitmapDPI=0 preserves the scaling used in FrameMaker; this
is usually best when producing RTF for use in Word.

If you are concerned with screenshots for WinHelp, though, any text in the bitmap is likely
to be unreadable if you scale it down at all. Instead, use BitmapDPI=96 to make the
screenshot appear at its full original size. If that is too big, you must make a different

31 WORKING WITH GRAPHICS CONTROLLING IMAGE APPEARANCE IN RTF OUTPUT

ALL RIGHTS RESERVED. MAY 18, 2013 899

version of the bitmap for WinHelp, rescaling it with a graphics program that actually
“resamples” it, instead of just dropping rows and columns the way WinHelp does when it
rescales.

Normally, Mif2Go sets the StretchMode , which specifies what method is to be used
later when other applications rescale the .wmf bitmaps, according to the type of bitmap
present. For color bitmaps, Mif2Go specifies mode 3, which means to drop the eliminated
lines without altering their neighbors. For monochrome, Mif2Go specifies mode 2, which
preserves black detail by ORing the bits in the adjacent lines; you can also set mode 1,
which keeps white detail by ANDing the bits.

[Graphics]
; StretchMode for bitmaps =
; 0 (default),
; 1 (black),
; 2 (white),
; 3 (color)
StretchMode=0

When Mif2Go wraps external WMFs in generated WMFs, so that they are scaled
correctly, the fill properties for the objects drawn are determined by the brush in effect. If
everything turns black, it may be that the maker of the original WMF assumed a different
default brush from the one Mif2Go assumes. You can try other possible starting values for
the brush (White and Hollow) to see if that improves the appearance of the graphic:

[Graphics]
; DefBrushType = Black (default), White, or Hollow
DefBrushType=Black

31.5.2 Reorienting bitmap graphics

Sometimes you might find that your bitmaps in the RTF file are upside down, and
somehow mirrored. This happens when the bitmap starts with the top scan line instead of
the bottom one. Unfortunately, the .bmp format does not contain any flag to indicate this
usage (which is increasingly common). Mif2Go cannot identify such bitmaps; you must
set [Graphics] BitmapFlip=1 . Generally if one bitmap is flipped, all the rest from the
same source are too, so the setting can often apply to the whole file. If some are flipped but
not others, you will need to add the setting as a marker before every graphic’s anchor in
the text, specifying BitmapFlip=1 to flip or BitmapFlip=0 to leave it as is.

31.5.3 Compressing bitmap graphics

Some printer drivers have problems with compressed bitmaps, which is the default for
Mif2Go . Other printer drivers have trouble with uncompressed bitmaps. If your bitmap
(usually color) looks fine on screen, but prints out black and white (on a color printer), you
might want to try changing these settings:

[Graphics]
; CompressRasters = Yes (default, compress 16 and 2 56 color BMPs)
; or No
CompressRasters=Yes
; RasterBorders = No (default), Inside (raster), Ou tside, or Frame
; Frame centers border on edge, as in FM, but resul ts in narrowing
; to half width if graphic edge is at an edge of it s anchored frame
RasterBorders=No

CONTROLLING IMAGE APPEARANCE IN RTF OUTPUT MIF2GO USER’S GUIDE

900 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

31.5.4 Positioning borders around inline graphics

If borders around inline graphics do not look right in Word output, try one of the following
settings:

[Graphics]
; FrBorders = Frame (default, centered), Inside, Ou tside, or None
FrBorders=Frame

Each of the values for FrBorders (except None) moves the position of the border
rectangle itself slightly. You might not see a difference unless the border is thick, because
the move is just half the border thickness.

If you do not get satisfactory results with FrBorders , try the following option instead:
[Graphics]
; FrameBorders = No (default, no borders on inlined frames) or Yes
; This is best used when such frames are alone in t heir paragraphs.
; Should not be used unless FrBorders does not oper ate correctly.
FrameBorders=Yes

Both methods work for in-line graphic frames that are alone in their paragraphs. However,
they do very different things:

 • FrBorders adds the border rectangle to the WMF graphic itself before embedding it
in the output.

 • FrameBorders uses Word paragraph properties to set a border for the paragraph that
contains the (in-line) frame.

Use one or the
other, not both

If you set both FrBorders and FrameBorders , you might get a thicker border; or if the
graphic is not alone in its paragraph, you might get a mess. For in-line graphics positioned
“at insertion point”, if you set FrameBorders=Yes , and there is other text in the
paragraph, the text gets the border along with the frame, all in one box together. Not likely
to be what you want. This does not happen when you use FrBorders .

If you set neither FrBorders nor FrameBorders , any border around an in-line graphic
is centered on the graphic.

Set line spacing
above

To get the correct line spacing at the top of in-line frames, also specify the following
setting:

[Graphics]
NoBlankFirstGTLine=No

See §31.5.6.5 Fine-tuning graphic text on page 902.

31.5.5 Mapping FrameMaker pen style patterns

FrameMaker’s graphic pen style patterns have no direct correspondence to the available
WMF line styles. For RTF output for which Mif2Go converts FrameMaker native
graphics (without using FrameMaker’s graphic export filters), you can map the
conversion. The values shown are the defaults; defaults for 1 through 6 are all zero (solid):

[GraphLineStyles]
; FrameMaker pen style number = WMF line style
8=1
9=1
10=2
11=2
12=4
13=3
14=3

31 WORKING WITH GRAPHICS CONTROLLING IMAGE APPEARANCE IN RTF OUTPUT

ALL RIGHTS RESERVED. MAY 18, 2013 901

Valid FrameMaker pen styles are 1-6 and 8-14, excluding 0 (black), 7 (white), and 15
(invisible), which have fixed mappings. Valid WMF line styles are 0 (solid, the default), 1
(dashed), 2 (dotted), 3 (dot-dash), 4 (dash-dot-dot), and 5 (invisible); all but solid force the
line width to the minimum (a WMF requirement).

The [GraphLineStyles] section is effective only when FrameMaker graphics are
being converted by Mif2Go , without using the FrameMaker graphic export filters.

31.5.6 Converting graphic text

A FrameMaker graphic can contain the following kinds of text:

 • individual text lines
 • text paragraphs in text frames.

Mif2Go normally converts both kinds to WMF text lines, approximating text features that
are not available in WMF.

In this section:
§31.5.6.1 Matching font and point size on page 901
§31.5.6.2 Specifying a default graphics font on page 902
§31.5.6.3 Converting graphic text to text on page 902
§31.5.6.4 Clipping text outside a text frame on page 902
§31.5.6.5 Fine-tuning graphic text on page 902
§31.5.6.6 Specifying graphic text background on page 903

31.5.6.1 Matching font and point size

Problems with text size or font in converted graphic text might indicate an unusual
FrameMaker default. Mif2Go defaults set the font as Times New Roman, and the size at
1200. Check the settings in FrameMaker as follows:

1. Open FrameMaker Character Designer (Ctrl-D).

2. Open a new FrameMaker document.

3. Insert an anchored frame in the document.

4. Type a text line in the anchored frame, using the “A” tool on the graphics palette.

5. Click the text you just typed.

If the font and size shown in Character Designer are different from the Mif2Go defaults,
adjust the Mif2Go settings to match the FrameMaker settings:

[Graphics]
; FrameDefaultFontName = name of default font in Fr ameMaker graphics
; must match setting Frame uses internally for this purpose
FrameDefaultFontName=Times New Roman
; FrameDefaultFontSize = size of default font in Fr ameMaker graphics
; must match setting Frame uses internally (hundred ths of a point)
FrameDefaultFontSize=1200

If graphic text properties (font, size, color, variation, etc.) still do not convert properly, try
this setting:

[Graphics]
; UseDefaultGraphicFormat = No (default), or Yes fo r graphics
; text formats, if text properties are not being ma intained correctly
UseDefaultGraphicFormat=Yes

CONTROLLING IMAGE APPEARANCE IN RTF OUTPUT MIF2GO USER’S GUIDE

902 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

31.5.6.2 Specifying a default graphics font

If most of your graphics use the same font, at the same size, you can reduce the amount of
storage required for graphics in the output by specifying these settings:

[Graphics]
; DefFont = name of default font in WMF graphics
DefFont=Arial
; DefFSize = size in twips for default font in WMF graphics
DefFSize=180

31.5.6.3 Converting graphic text to text

If a graphic consists of a single text frame, Mif2Go can output the text in a Word text
frame or as normal WinHelp text instead of in a graphics frame; the rendition is usually
much closer to that in FrameMaker, and is more easily edited:

[Graphics]
; GraphText = Embed (as for captions), Frame (as te xt), or Text
; applies only to "graphics" consisting solely of o ne text frame
GraphText=Embed

The default is to embed graphic text, which for Word produces a WMF Word Picture
containing the text. Although it is not editable text, a Word Picture can be easier to
position correctly than a Word text frame.

WinHelp does not allow text frames. For WinHelp, GraphText=Frame is equivalent to
GraphText=Text , and the text is output as normal text instead of being included in a
WMF.

31.5.6.4 Clipping text outside a text frame

Although FrameMaker clips text that goes below the bottom of its text frame, the text is
still present in the .mif file. You can specify how such text should be handled:

[Graphics]
; ClipType =
; Show (leave alone),
; Move (up into frame, default), or
; Delete (remove the text entirely)
; applies only to graphic text in Frame native vect or graphics
ClipType=Move
; ClipLimit = twips to allow below frame before cli pping graphic text
ClipLimit=20

ClipLimit sets the number of twips (twentieths of a point) to allow the text baseline to
go below the frame before the Move or Delete option takes effect. The default is 20 (one
point). You might have to adjust the value of ClipLimit if either of the following
happens:

 • ClipType=Move and text at the bottom of the frame still disappears: increase
ClipLimit .

 • ClipType=Delete and unwanted text is still visible: decrease ClipLimit .

Negative values of ClipLimit are acceptable.

31.5.6.5 Fine-tuning graphic text

Sometimes the text does not fit in the converted graphic quite the same way it fit in the
original. Often this is a result of differing font metrics. Your font mapping choices (see
§6.9 Specifying font usage on page 166) affect graphics text, also.

You can adjust text properties in graphics several ways:

31 WORKING WITH GRAPHICS CONTROLLING IMAGE APPEARANCE IN RTF OUTPUT

ALL RIGHTS RESERVED. MAY 18, 2013 903

[Graphics]
; GrVertAdjust = half-points to adjust in-line grap hics down
; (neg for up)
GrVertAdjust=4
; TextScale = value in percent to apply to font siz es in graphics
TextScale=100
; TextWidth = percent of unscaled font height for f ont widths
; in graphics
TextWidth=0
; TextVertAdjust = twips to move text in metafiles down (neg for up)
TextVertAdjust=0
; NoBlankFirstGTLine = Yes (default,
; ignore blank first line in graphic text frame) o r No
NoBlankFirstGTLine=Yes
; UseTopSpaceAbove = No (ignore first space above i n callouts) or Yes
UseTopSpaceAbove=No
; SuppressGTUnderlines = No (default) or Yes (no un derlines)
SuppressGTUnderlines=No
; FrameExactHeight = 0 (default, auto) or 1 (size a s original)
FrameExactHeight=0

Change these settings only if the normal defaults yield unacceptable results:

31.5.6.6 Specifying graphic text background

You can specify whether the background around graphic text is transparent or opaque:
[Graphics]
; BackMode = 1 (transparent) or 2 (opaque) for grap hic text
BackMode=1

31.5.7 Specifying transparency for WinHelp 4

For WinHelp 4 only, you can choose to make bitmap graphics transparent:
[Graphics]
; Transparent makes white bitmap pixels transparent (WinHelp 4 only)
Transparent=Yes

GrVertAdjust Move in-line graphics up or down by half-point
increments

TextScale Percentage of the original font size; this affects both
height and width of characters.

TextWidth Percentage of character height; 0 leaves it at the normal
proportion for the font (usually about 35).

TextVertAdjust Number of twips (twentieths of a point) to move the text
down (or up, using negative numbers).

UseTopSpaceAbove Keep or ignore the first space above callouts.

NoBlankFirstGTLine Keep or ignore a blank first line.

SuppressGTUnderlines Keep or ignore underlines in callouts.

FrameExactHeight Keep the original height of the frame, or auto-scale it.

CONVERTING GRAPHICS WITH MICROSOFT WORD FILTERS MIF2GO USER’S GUIDE

904 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

31.6 Converting graphics with Microsoft Word filte rs
As a “last resort” way to convert graphics, you can try using Microsoft Word filters if the
usual graphics export procedures do not suffice.

If a graphic imported into or exported from your FrameMaker document is neither WMF
or BMP, and you have not mapped that graphic to another that is WMF or BMP, Mif2Go
inserts an INCLUDEPICTURE field (Word 8) or IMPORT field (Word 7) in the RTF output
to give Word a crack at the graphic. That is, Mif2Go puts the name of any graphic that it
cannot process into an INCLUDEPICTURE (or IMPORT) field in the Word RTF file. If the
graphic is in a format Word accepts, Word runs its own filter to import the graphic,
creating an internal WMF in the process. The internal WMF is what you see as the graphic
rendition in Word.

See §5.7 Processing graphics on page 126 for normal export options for graphics.

ALL RIGHTS RESERVED. MAY 18, 2013 905

32 Working with content models

Mif2Go provides built-in configurations for content models for DITA and DocBook. This
section shows how to modify or replace a built-in content model, or generate a new
content model from a valid DITA or DocBook DTD (Document Type Definition). Topics
include:

§32.1 Understanding Mif2Go content models on page 905
§32.2 Modifying or replacing a content model on page 905
§32.3 Preparing a content model for use with Mif2Go on page 907
§32.4 Understanding content-model configurations on page 908
§32.5 Understanding how Mif2Go uses content models on page 911
§32.6 Inspecting and correcting element types on page 912
§32.7 Specializing or modifying DITA topic types on page 913
§32.8 Extracting content-model debug information on page 918

See also:
§15 Converting to DITA XML on page 473
§17 Converting to DocBook XML on page 557
§F Content model configuration on page 1043

32.1 Understanding Mif2Go content models
A Mif2Go content model is a configuration-style representation of a DTD. A content-
model configuration summarizes DTD information in a form Mif2Go can use to produce
XML output that conforms to the DTD. Mif2Go provides built-in content models for
basic DITA version 1.0 and 1.1 topic types, and for DocBook version 4.5. You do not have
to include anything special in your Mif2Go conversion project to use these content
models.

The Mif2Go built-in content models were derived from:
http://docs.oasis-open.org/dita/v1.0.1/dtd/ for DITA version 1.0
http://docs.oasis-open.org/dita/v1.1/CS01/dtd/ for DITA version 1.1
http://www.oasis-open.org/docbook/xml/4.5/ for DocBook 4.5.

These content models are complete. You should not need to modify any of them, except
possibly to correct element type assignments; see §32.6 Inspecting and correcting element
types on page 912. Each built-in content model has a matching configuration file.

The DTD for DITA version 1.2 is available here:
http://docs.oasis-open.org/dita/v1.2/cs01/dtd1.2/

You can use utility program dtd2ini to abstract content models from this and other
DTDs; see §32.2.2 Generating a content model from a DTD on page 906.

32.2 Modifying or replacing a content model
To modify a Mif2Go built-in content-model, first locate and extract the appropriate
content-model configuration file.

To replace a built-in content model, or to add a content model for a new DITA topic type,
generate a content-model configuration file from an appropriate DTD.

http://docs.oasis-open.org/dita/v1.0.1/dtd/
http://docs.oasis-open.org/dita/v1.1/CS01/dtd/
http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd
http://docs.oasis-open.org/dita/v1.2/cs01/dtd1.2/

MODIFYING OR REPLACING A CONTENT MODEL MIF2GO USER’S GUIDE

906 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

In this section:
§32.2.1 Obtaining a copy of a built-in content-model on page 906
§32.2.2 Generating a content model from a DTD on page 906

32.2.1 Obtaining a copy of a built-in content-mode l

If you need to modify one of the Mif2Go built-in content models to correct an element
type assignment (see §32.6 Inspecting and correcting element types on page 912), you
must first extract a configuration file for the content model from the appropriate content-
model archive. You can download these archives from the Omni Systems Web site.

Archives of content models are available for the following DTDs:

Each archive contains both content-model configuration files and the DTD-to-model
configuration files used by utility program dtd2ini to generate the content models.
Table 32-1 lists the configuration files in each archive. Extract from the relevant archive
the content-model configuration file you wish to modify.

32.2.2 Generating a content model from a DTD

Utility program dtd2ini can produce, from a valid DTD, a content-model configuration
file to use with Mif2Go for DITA or DocBook XML output.

Because dtd2ini is GPL software (GNU General Public License), this utility cannot be
packaged with any non-GPL software. Therefore dtd2ini is not included in your
Mif2Go distribution. However, you can download dtd2ini NNwin.zip from the Omni
Systems Web site:

http://mif2go.com

DTD Content model archive
DITA version 1.0 dita10contentmods.zip

DITA version 1.1 dita11contentmods.zip

DocBook version 4.5 docbook45contentmods.zip

Table 32-1 Configuration files for Mif2Go built-in content models

Content model archive
Content model
configurations

DTD-to-model
configurations

dita10contentmods.zip ditaconcept10.ini dtd2concept10 .ini

ditamap10.ini dtd2map10.ini

ditareference10.ini dtd2reference10.ini

ditatask10.ini dtd2task10.ini

ditatopic10.ini dtd2topic10.ini

dita11contentmods.zip ditabookmap11.ini dtd2bookmap11 .ini

ditaconcept11.ini dtd2concept11.ini

ditaglossary11.ini dtd2glossary11.ini

ditamap11.ini dtd2map11.ini

ditareference11.ini dtd2reference11.ini

ditatask11.ini dtd2task11.ini

ditatopic11.ini dtd2topic11.ini

docbook45contentmods.zip docbook45a.ini docbook45a.in i

docbook45b.ini docbook45b.ini

http://mif2go.com

32 WORKING WITH CONTENT MODELS PREPARING A CONTENT MODEL FOR USE WITH MIF2GO

ALL RIGHTS RESERVED. MAY 18, 2013 907

where NN is the dtd2ini version number.

To generate a content-model configuration file:

1. Extract the following files from archive dtd2ini NNwin.zip :
dtd2ini.exe (program)
dtd2ini.txt (instructions)
dtd2ditatopic.ini (for a DITA specialization), or
dtd2docbook.ini (for a DocBook DTD).

2. Edit the dtd2*.ini file you extracted, and save it as dtd2ini.ini .

3. Copy dtd2ini.exe to %OMSYSHOME%\common\bin.

4. Follow the instructions in dtd2ini.txt to produce a content-model configuration
file, one of the following:

32.3 Preparing a content model for use with Mif2Go
If you plan to use a built-in content model as is, you do not need to do anything described
in this section.

To prepare a new, modified, or replacement content-model configuration for use with
Mif2Go :

1. Inspect and (if necessary) change element type assignments; see §32.6 Inspecting and
correcting element types on page 912.

2. For DITA only, if you are adding or replacing a content model, provide information
needed by Mif2Go that is not available in the DTD:

 • Most settings in section [Topic] except for TopicRoot ; see §32.4.1 Content
model [Topic] settings on page 909.

 • Table structure information; see §32.7.7 Providing table structure information for
DITA topic types on page 916.

If you generated the content model from a DTD and you plan to rerun dtd2ini , also
include in configuration file dtd2ini.ini as overrides any [Topic] and [*Table]
settings you add. See dtd2ini.txt for instructions.

3. Include the following setting in the content-model configuration file:
[Topic]
; ModelName = name of type (usually a built-in) to be replaced
; after this file loads, effective only when this fi le is
; specified in [DITAContentModels] or
; [DocBookOptions]ContentModel in the project config uration file;
; overrides the default use of the filename (without "DITA").
ModelName = contentmodelname

ModelName specifies either the name of an existing content model to be replaced by
the current content model, or a name for the new content model to be added.

DITA DITAtopictype.ini , where topictype is the name of the topic
type you are adding or replacing; this is also the name of the content
model

DocBook contentmodel.ini , where contentmodel is any name you
choose.

UNDERSTANDING CONTENT-MODEL CONFIGURATIONS MIF2GO USER’S GUIDE

908 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

If you are replacing a built-in content model, the value for ModelName must be one of
the following, depending on the output type:

If you assign any other value to ModelName, Mif2Go adds the new name to the list of
models. For example, to add a new DITA topic type widget defined in content-model
configuration file DITAwidget.ini , in DITAwidget.ini you would include the
following setting:

[Topic]
ModelName = widget

To replace the built-in DITA reference content model with a model you have
defined in content-model configuration file DITAmyref.ini , in DITAmyref.ini
you would include the following setting:

[Topic]
ModelName = reference

4. Place the new or modified content-model configuration file in your DITA or DocBook
project directory.

5. Specify the base name of the content-model configuration file in your project
configuration file:

For DITA, add the base name of each new or modified content-model configuration:
[DITAContentModels]
; Topic type name = any text (not used)
DITAtopictype = replaced or new topictype content model

For DocBook, specify the base name of the new or modified content-model
configuration:

[DocBookOptions]
; ContentModel = name of content-model .ini, withou t extension,
; with which to replace the built-in DocBook 4.5 con tent model.
ContentModel = otherdocbookmodel

32.4 Understanding content-model configurations
A content-model configuration file includes the following sections:

Output
type Built-in content model to be replaced by current mo del

DITA 1.0 topic , concept , task , reference , or map

DITA 1.1 topic , concept , task , reference , map, glossary , or bookmap

DocBook book or article

[Topic] Lists the root element used to generate the content model.
Also includes PUBLIC and SYSTEM identifiers for DITA or
DocBook, and the starting topic and body element for DITA
topic types. See §32.4.1 Content model [Topic] settings on
page 909.

[ElementSets] Groups elements into sets for assignment in sections
[TopicParents] and [TopicFirst] . See §32.4.2 Content
model [ElementSets] settings on page 910

[TopicParents] Lists the valid parent element(s) of each element. See §32.4.3
Content model [TopicParents] settings on page 910.

[TopicFirst] Lists parent elements for which a given element must be the
first child. See §32.4.4 Content model [TopicFirst] settings on
page 910.

32 WORKING WITH CONTENT MODELS UNDERSTANDING CONTENT-MODEL CONFIGURATIONS

ALL RIGHTS RESERVED. MAY 18, 2013 909

In this section:
§32.4.1 Content model [Topic] settings on page 909
§32.4.2 Content model [ElementSets] settings on page 910
§32.4.3 Content model [TopicParents] settings on page 910
§32.4.4 Content model [TopicFirst] settings on page 910
§32.4.5 Content model [TopicLevels] settings on page 911

32.4.1 Content model [Topic] settings

The following content-model settings specify information for either a DITA or a DocBook
content model:

[Topic]
; TopicRoot = name of root element for this content model.
TopicRoot = concept
; PrologDType = PUBLIC name used in DOCTYPE header.
PrologDType = "-//OASIS//DTD DITA Concept//EN"
; PrologDTD = SYSTEM name, such as "concept.dtd", c an include a path.
PrologDTD ="http://docs.oasis-open.org/dita/v1.1/CD 01/dtd/concept.dtd"
; ModelName = name of content model.
ModelName = contentmodelname

Root element TopicRoot is the name of the root element for the content model. For DITA, TopicRoot
is the name of one of the built-in topic types: topic , concept , task , reference , map,
or (for DITA version 1.1) glossary .

Identifiers Double quotes are required for the PUBLIC name and the SYSTEM name. If the SYSTEM
name is less than 16 characters long, you must prefix the name with two spaces. For
example:

PrologDTD= "xyz-topic.dtd"

Mif2Go always removes the first space after the equals sign, and retains any subsequent
spaces. DOCTYPE styles differ: some require an indent, some prohibit an indent, some want
a return, some do not. Mif2Go includes a return automatically if (and only if) the SYSTEM
name is more than 16 characters long. Therefore a shorter SYSTEM name requires a
leading space, to separate it from the preceding PUBLIC name when the DOCTYPE header
is generated.

Replaced content
model

If you are providing a replacement content model, ModelName specifies the name of the
built-in content model to be replaced by the current content model. ModelName is
effective only when the current content model is listed in [DITAContentModels] , or
specified for [DocBookOptions]ContentModel , in your project configuration file.

DITA-only
settings

The following settings apply only to DITA content models:
[Topic]
; TopicStart = name of element that starts topic, s uch as "glossterm"
; (for glossary) or "title" (for every other type).

[TopicLevels] Specifies required levels for certain elements. See §32.4.5
Content model [TopicLevels] settings on page 911.

[ElementTypes] Classifies each element as to whether it is block or inline,
whether it allows text, and whether it is preformatted. See
§32.6 Inspecting and correcting element types on page 912.

[*Table] DITA only: these sections provide information about table
structure that cannot be abstracted from DITA topic-type
DTDs. See §32.7.7 Providing table structure information for
DITA topic types on page 916.

UNDERSTANDING CONTENT-MODEL CONFIGURATIONS MIF2GO USER’S GUIDE

910 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

TopicStart = title
; TopicBody = name for its body element, such as co nbody for concept.
TopicBody = conbody
; TopicDerivation = name of type from which it is d erived.
TopicDerivation = topictype

See §32.7 Specializing or modifying DITA topic types on page 913.

32.4.2 Content model [ElementSets] settings

To specify groups of elements as the values for certain settings, content-model
configuration files define sets of elements:

[ElementSets]
; Name for set = list of elements and element sets, separated by
; spaces.
*setname = element1 element2 *otherset

Set names start with “* ”. Sets can include other sets. Included sets must be defined in
[ElementSets] above the sets that include them. Within each set, the elements are
alphabetical; that is for convenience in human look-up, and need not be preserved. They
do have to be one line each; do not use an editor that wraps the lines in [ElementSets] .

Each set has an alphanumeric name prefixed with an asterisk. Names of members of the
set are listed to the right of the equals sign, separated by spaces. A member of an element
set can be either of the following:

 • the name of an element
 • the name of a previously defined element set.

This allows elements to be grouped for use on the right side of the equals sign in
[TopicParents] and [TopicFirst] , so that the same set of parents can be used in
more than one setting.

Element sets are roughly equivalent to the parameter entities used in DTDs.

32.4.3 Content model [TopicParents] settings

These settings specify the possible parents of each element:
[TopicParents]
; element = single parent or single *elementset or Any or No

All elements are listed to the left of the equals sign, other than (for DITA) the topic type
itself and the topic body type. If an element has more than one possible parent, those
parents are defined as a single set, listed in [ElementSets] ; see §32.4.2 Content model
[ElementSets] settings on page 910.

Each of the items listed to the right of the equals sign is one of the following:

 • an element name (single parent)
 • an element set name (set of possible parents)
 • either of two reserved parent names:

32.4.4 Content model [TopicFirst] settings

If an element must be the first child of its parents, the element is listed here:

Any Any parent is acceptable; mainly for inline elements
No No parent is acceptable; for DITA, this includes elements present in the

derived-from type that are excluded from the specialized type.

32 WORKING WITH CONTENT MODELS UNDERSTANDING HOW MIF2GO USES CONTENT MODELS

ALL RIGHTS RESERVED. MAY 18, 2013 911

[TopicFirst]
; Child element = parents, where child must be the first child of the
 ; specified parents.

If an element must be the first child of more than one possible parent, those parents are
defined as a single set, listed in [ElementSets] ; see §32.4.2 Content model
[ElementSets] settings on page 910.

One of the following is assigned to each child element that must be the first child, either of
a single parent or of any member of a set of parents:

 • an element name (single parent)
 • an element set name (set of possible parents)
 • either of two reserved parent names:

For any child element listed to the left of the equals sign that is not the first child of a
specified parent, when processing your FrameMaker document Mif2Go closes the current
parent and opens a new instance of that parent.

Settings in [TopicFirst] are used mainly for lists, and for the DITA <title> element.

32.4.5 Content model [TopicLevels] settings

Each element that must be at a specific level is listed here:
[TopicLevels]
; Element name = required level in topic

Levels are specified only for elements that must be at a specific level, such as DITA
shortdesc , prolog , body , and related-links at level 1, and DITA example and
metadata at level 2.

The content models generated by dtd2ini name only level 1 elements in this section.

See also:
§15.5.13 Specifying DITA element levels on page 509
§17.5.11 Specifying DocBook element levels on page 579

32.5 Understanding how Mif2Go uses content models
Where there are multiple possible parent elements of a given DITA XML element, a set is
defined for those parent elements in the [ElementSets] section of the content model
configuration file; see §32.1 Understanding Mif2Go content models on page 905. The
*Part N sets in this section are computer generated to keep the lengths of the individual
sets short enough to be editable; they have no other special purpose. Within each set,
elements are listed alphabetically for convenience in human look-up.

For example:
[TopicParents]
data=data=*data

[ElementSets]
*data=data-about *Part2 *Part6 *Part9 *Part10

. . .

Any Must be the first child of every possible parent
No Must not be the first child of any parent; for DITA, this includes

elements present in the derived-from topic type that are excluded from
the specialized topic type.

INSPECTING AND CORRECTING ELEMENT TYPES MIF2GO USER’S GUIDE

912 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

*Part2=b cite codeblock codeph data i lq note p ph pre q screen
shortdesc sub sup title tt u xref

. . .
*Part6=abstract dd ddhd desc draft-comment dt dthd entry example fn
itemgroup li lines linkinfo pd pt section sli stent ry

. . .
*Part9=alt author brand category copyrholder filepa th index-base
index-see index-see-also index-sort-as indexterm ms gblock msgph
prodname publisher source systemoutput uicontrol us erinput

. . .
*Part10=body component coords delim featnum fig fra gref linktext
metadata navtitle oper platform prognum prolog reps ep searchtitle sep
series var

Mif2Go uses a complex algorithm to determine which element to interpolate in places in
your document where a parent element is required. When Mif2Go processes your
document and encounters text that you have mapped to a <data> element (for example),
Mif2Go searches the above element sets, in sequence, for the current parent element. If
the parent is not found, Mif2Go performs a graph analysis, breadth-first, of possible
parent series that could fit under the current parent. In each case, Mif2Go takes the first of
those candidate parents with equal-length sequences and interpolates it between the
<data> element and its current parent.

This means that you could change the usage priority of interpolated parents by altering the
order of items in a content-model element set. (The full collection of algorithms is rather
more complex; for example, Mif2Go also considers closing existing parents to find a
better solution to the graph problem.)

Suppose you want to tell Mif2Go not to use certain elements; for example, “forget about
<data> ” or “never use <fn> in a <fig> ”. If you delete data from all element sets, this
element will never be interpolated into your DITA XML output. If you delete fig from all
element sets that contain possible parents of fn , fig will never be interpolated as a parent
of fn . However, we advise not adding or removing any items, because doing so can result
in invalid DITA XML. (Removal is safer than addition.)

32.6 Inspecting and correcting element types
Utility program dtd2ini cannot always determine from a DTD the correct type of an
element. Examine the classifications in section [ElementTypes] of the content-model
configuration file, and correct any that are not right.

Element types are as follows:

The default element type is Block without Text .

Block and Inline properties determine whether returns are inserted before start tags and
after end tags. The Text property determines whether an attempt is made to wrap any
invalid text (in an element that does not allow Text) in a valid container element, such as
<ph> for DITA. Preform determines whether whitespace within the element is retained
as is. Preform elements are always Block elements, and they always allow Text .

Block Block element that does not allow text content

Block Text Block element that allows text content

Block Text Preform Block element with preformatted text

Inline Inline element that does not allow text content

Inline Text Inline element that allows text content

32 WORKING WITH CONTENT MODELS SPECIALIZING OR MODIFYING DITA TOPIC TYPES

ALL RIGHTS RESERVED. MAY 18, 2013 913

If you generated the content model from a DTD and you plan to rerun dtd2ini , include
any changed [ElementTypes] settings as overrides in configuration file dtd2ini.ini .
You can override the Block , Inline , and Preform properties, but not the Text property.

Getting the Block vs. Inline typing wrong for an element is not a major disaster. The
element type primarily affects the way XML output is formatted. Most XML processors
ignore the formatting, except for preformatted elements.

DITA only: If your DTD defines a block element with no text (for example, to include just
markers in the paragraphs from which the element is mapped), also map the no-text block
element to No in [DITAParaTags] , in your configuration file; see §15.4.3.1 Assigning
DITA elements to FrameMaker paragraph formats on page 487. That way you will not be
forced to use CodeBefore and CodeAfter settings to insert the tags for such an element.

32.7 Specializing or modifying DITA topic types
To include custom specialized topic types or maps in your DITA project, you must provide
a separate content-model configuration file for each new topic type or modified map or
bookmap DTD. You can derive a new type from any of the built-in topic types topic ,
concept , task , reference , map, or glossary (DITA 1.1 only), or from another
specialized type for which you provide a DTD.

To produce the constraints supported by DITA 1.2, you can run utility program dtd2ini
(see §32.2.2 Generating a content model from a DTD on page 906) on a local document
type shell, and reference the result in your project configuration chain.

In this section:
§32.7.1 Creating a content model for a specialized topic type on page 913
§32.7.2 Overriding settings in a DITA content model on page 914
§32.7.4 Overriding declarations in a DITA map content model on page 915
§32.7.5 Listing DITA topic type configuration files on page 915
§32.7.6 Locating DITA topic type configuration files on page 916
§32.7.7 Providing table structure information for DITA topic types on page 916

32.7.1 Creating a content model for a specialized topic type

To create a content model for a specialized DITA topic type:

1. Run utility program dtd2ini with the DTD file for your specialized type as input.
Specify for output a content-model configuration file with a name of the form
DITAnewtype.ini , where newtype is the name of the new topic type you are
defining. See §32.2.2 Generating a content model from a DTD on page 906.

2. Add the following settings to DITAnewtype.ini :
[Topic]
; TopicStart = name of element that starts topic, s uch as
; "glossterm" (for glossary) or "title" (for every o ther type).
TopicStart = title
; TopicBody = name for its body element, such as co nbody for
; concept.
TopicBody = conbody

The required starting element is <title> for all built-in DITA topic types (including
map), except for glossary . For glossary topics, the starting element is
<glossterm> . For a specialized topic type, your DTD specifies the starting element.

SPECIALIZING OR MODIFYING DITA TOPIC TYPES MIF2GO USER’S GUIDE

914 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When the FrameMaker format mapped to the TopicStart element in
[DITAParaTags] is also mapped to level 1 in [DITALevels] , that format always
starts a new topic of the specialized type. See §15.5.13 Specifying DITA element
levels on page 509.

3. Add settings for table structure; see §32.7.7 Providing table structure information for
DITA topic types on page 916.

4. In your project configuration file, list the name of your new topic type:
[DITAContentModels]
DITAnewtype = any text here (ignored)

See §32.7.5 Listing DITA topic type configuration files on page 915.

5. Place DITAnewtype.ini where Mif2Go can find it; see §32.7.6 Locating DITA
topic type configuration files on page 916.

32.7.2 Overriding settings in a DITA content model

You can override features of a built-in or previously defined DITA content model without
creating a specialized type, by providing a content-model configuration file that lists only
the differences from the original model. You can use this method to modify maps as well
as topic types; see §32.7.4 Overriding declarations in a DITA map content model on
page 915.

To override settings in a DITA content model:

1. Create a new DITAtopictype.ini configuration file from scratch, named for the
topic type you are overriding. Do not use dtd2ini to generate this file from a DTD.

2. In configuration file DITAtopictype.ini , specify the name of the topic type you
are overriding:

[Topic]
; TopicDerivation = name of type from which it is d erived,
; either one of the defined types (topic, concept, t ask,
; reference, glossary, or map) or another specialize d type
; for which an .ini is available.
TopicDerivation = topictype

TopicDerivation can be any of the built-in topic types (topic , concept , task ,
reference , glossary , map, or bookmap), or any specialized type for which a
content-model configuration file named DITAtopictype.ini is available (see §32.7
Specializing or modifying DITA topic types on page 913). Do not use
TopicDerivation in content-model configuration files generated by dtd2ini ;
those content models are always complete.

3. Other than a value for TopicDerivation , include settings in DITAtopictype.ini
only for elements you are adding or modifying.

4. In your project configuration file, list the name of the topic type you are overriding:
[DITAContentModels]
topictype = any text here (ignored)

See §32.7.5 Listing DITA topic type configuration files on page 915.

5. Place DITAtopictype.ini where Mif2Go can find it; see §32.7.6 Locating DITA
topic type configuration files on page 916.

For example, to change the PUBLIC declaration for glossary topics (to conform to
XMetaL requirements) without changing the declaration for any other topic type:

[Topic]
ModelName = glossary

32 WORKING WITH CONTENT MODELS SPECIALIZING OR MODIFYING DITA TOPIC TYPES

ALL RIGHTS RESERVED. MAY 18, 2013 915

TopicDerivation = glossary
TopicRoot = glossentry
PrologDType = "-//OASIS//DTD DITA Composite//EN"
PrologDTD = "ditabase.dtd"

In your project configuration file:
[DITAContentModels]
glossary = my modified model for XMetaL (a comment)

32.7.3 Eliminating elements from a DITA content mo del

If you want to be able to tell Mif2Go not to use certain elements when unstructured
FrameMaker text is parsed and element parents are interpolated, you can adjust the
content model to remove those elements from the element sets, or alter their priority by
listing them last in each element set. Bear in mind that the same set can be used for many
elements. We advise not adding or removing any items, because that can result in invalid
DITA. However, removal is safer than addition.

32.7.4 Overriding declarations in a DITA map conte nt model

You can override the PUBLIC and SYSTEM IDs for a specialized map or bookmap the same
way as for other topic types; see §32.7.2 Overriding settings in a DITA content model on
page 914. However, for the maps Mif2Go generates, these declarations are about all you
can change; the rest is hardwired.

To override declarations in a DITA map content model, create a new empty
DITAmap.ini configuration file. In this new configuration file specify the PUBLIC and
SYSTEM IDs for a your specialized map. For example:

[Topic]
ModelName = map
TopicDerivation = map
PrologDType = "-//MYCO//DTD DITA MYCO Map//EN"
PrologDTD = "myco-map.dtd"

Also include the following setting in your project configuration file:
[DITAContentModels]
map = my company’s modified map model (a comment)

See §32.7.5 Listing DITA topic type configuration files on page 915.

32.7.5 Listing DITA topic type configuration files

When you provide a DITAtopictype.ini configuration file, you must list the name of
the topic type in your project configuration file, so Mif2Go knows you are specializing,
and knows to look for the name of the specialized configuration file.

To list specialized topic types, in your project configuration file specify the following:
[DITAContentModels]
DITAopictype = any text here (ignored)

Give each new type any alphanumeric name, except the name of a built-in type; that is,
you may not name a new type topic , concept , task , reference , map, or (for DITA
version 1.1) glossary . List the name of a built-in topic type only if you are overriding a
feature of that topic type.

You can put whatever you want to the right of the equals sign; Mif2Go reads only the
topic type name to the left of the equals sign.

SPECIALIZING OR MODIFYING DITA TOPIC TYPES MIF2GO USER’S GUIDE

916 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Provide a DITAtopictype.ini configuration file named for each topic type you list; see
§32.2.2 Generating a content model from a DTD on page 906. or §32.7.2 Overriding
settings in a DITA content model on page 914. Mif2Go loads each listed
DITAtopictype.ini configuration file at start-up, after initializing internal values for
the built-in base topic types.

You do not have to list a topic type if the type is explicitly requested through an
assignment to [DITAOptions]DefTopic (see §15.9.2.2 Specifying a default DITA topic
type on page 525), or in a DITATopic marker, in which case the corresponding
DITAtopictype.ini configuration file loads on demand. If the topic type information
replaces one or more of the built-in types, this is the best way to load it.

If you create a new topic type that is derived from another new type, you can optionally
list only the last topic type in the chain to get the whole batch loaded. Listing all types in
the chain is harmless, but unnecessary.

32.7.6 Locating DITA topic type configuration file s

By default, Mif2Go expects to find DITA*.ini configuration files in the project
directory. To specify a different location for DITA*.ini configuration files for your
project, include the following setting in your project configuration file:

[DITAOptions]
; SpecIniDir = path to add to names of specialized .inis,
; default "./"
SpecIniDir = D:/path/to/myproj/config/

You can specify either a relative path or an absolute path for SpecIniDir . A relative path
is relative to the project directory.

32.7.7 Providing table structure information for D ITA topic types

You must include a section for each table type in each DITA topic-type content model, to
provide information about table structure that cannot be abstracted from a DTD.

If you generated the content model for a specialized topic type from a DTD, and you plan
to rerun dtd2ini , include in configuration file dtd2ini.ini any sections and settings
you add for tables, in addition to including those sections in the content-model
configuration file for the topic type.

In this section:
§32.7.7.1 Mapping Mif2Go table types to configuration sections on page 916
§32.7.7.2 Omitting a table type from a derived topic type on page 917
§32.7.7.3 Assigning properties to Mif2Go table types on page 917
§32.7.7.4 Deriving a new table type on page 917

32.7.7.1 Mapping Mif2Go table types to configurati on sections

To provide a configuration for a Mif2Go table type, in the DITAtopictype.ini
configuration file for the applicable topic type, map the table type name to a configuration
section you provide. For example:

[TopicTables]
; Table name = name of configuration section that d escribes it.
property = PropertyTable
simple = SimpleTable
complex = ComplexTable

32 WORKING WITH CONTENT MODELS SPECIALIZING OR MODIFYING DITA TOPIC TYPES

ALL RIGHTS RESERVED. MAY 18, 2013 917

“Table name” is the name of a Mif2Go table type; see §15.6 Converting tables to DITA
XML on page 510. Define here all table types supported by this topic type (other than
those defined in the topic type from which this type was derived).

Because dtd2ini does not generate these sections, you must either include them in
dtd2ini.ini as [AddedSections] , or add them to the generated content-model
configuration file after dtd2ini produces it.

You can define variants for all table types that are supported by the topic type to which the
DITAtopictype.ini configuration file applies. Multiple named Mif2Go table types can
be mapped to variants of the same DITA table type.

32.7.7.2 Omitting a table type from a derived topi c type

To undefine a Mif2Go table type in a derived topic type, set the table type name to No. For
example:

[TopicTables]
complex = No

32.7.7.3 Assigning properties to Mif2Go table type s

Give each DITA topic-type configuration section that contains table-type definitions the
same name you assign to the table type in [*Tables] ; see §32.7.7.1 Mapping Mif2Go
table types to configuration sections on page 916. The examples in §F Content model
configuration on page 1043 show all available settings for table types.

32.7.7.4 Deriving a new table type

Although you can assign the strip table type to omit table coding from DITA output for
a particular FrameMaker table format (see §15.6.6 Converting tables used only as image
containers on page 514), and build your own structure around the content of a table, in
some cases it is better to derive a new table type with exactly the properties you need.

For example, you can add a derived reference topic type that includes a properties
table type that has only two columns (propvalue and propdesc), replacing the original
reference content model. Then you can list the new table type in project configuration
section [DITATables] .

Suppose your FrameMaker table format is named Commands, and you want to define a
new properties table type named propval for this format. You would create content-
model configuration file DITApropval.ini for the definition of propval .

In your project configuration file:
[DITAOptions]
SpecIniDir = path/to/content/models

[DITATables]
Commands = propval

[DITAContentModels]
propval = added propval table type

In DITApropval.ini :
; Content model to modify reference.dtd by adding p ropval table type

[Topic]
TopicRoot = reference
TopicStart = title
TopicBody = refbody
PrologDType = "-//OASIS//DTD DITA 1.1 Reference//EN "
; Note -- the following setting must be all on one line:

EXTRACTING CONTENT-MODEL DEBUG INFORMATION MIF2GO USER’S GUIDE

918 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

PrologDTD =
"http://docs.oasis-open.org/dita/v1.1/CS01/dtd/refe rence.dtd"

TopicDerivation = reference
ModelName = reference

[TopicTables]
propval = PropvalTable

[PropvalTable]
TableType = properties
ColCountMax = 2
HeadRowMax = 1
HeadRow = prophead
HeadCell1 = propvaluehd
HeadCell2 = propdeschd
Row = property
Cell1 = propvalue
Cell2 = propdesc

You can add as many variants of the property table type as you please, such as another
property table with no header rows. Give each variant a new table type name (such as
propval) but the same regular DITA TableType .

32.8 Extracting content-model debug information
You can have Mif2Go save tag-set information from a content model, for debugging
purposes. The default is not to dump tag-set information. If the tag set is used more than
once in processing a FrameMaker file, it is dumped only the first time.

To see what the tag set looks like for a content model:
[Topic]
; DumpToFile = name with optional path of file in w hich to dump the
; tagset information (including error lists) after l oading.
DumpToFile = anyname.txt

You can specify any file name for DumpToFile , and optionally include a path. If you do
not include a path, Mif2Go places the dump file in the project directory.

(No illustrations)

ALL RIGHTS RESERVED. MAY 18, 2013 919

33 Overriding configuration settings

You can provide different configuration settings for individual FrameMaker files in a
book, and you can also override configuration settings for one or more paragraphs,
character spans, tables, graphics, or cross references within a FrameMaker file. Topics
include:

§33.1 Using a different configuration for selected files on page 919
§33.2 Overriding settings with markers or macros on page 920
§33.3 Overriding configuration settings with text on page 931

See also:
§22.6.2 Changing CSS files in the middle of a document on page 689

33.1 Using a different configuration for selected files
If you need different configuration settings for one or more files in a book, you can create
individual, file-specific configuration files.

In this section:
§33.1.1 Providing configuration files for individual chapters on page 919
§33.1.2 Understanding precedence of configuration settings on page 919
§33.1.3 Updating a single chapter of a FrameMaker book on page 920

33.1.1 Providing configuration files for individua l chapters

To provide individual configuration files:

 • Name each configuration file the same as the chapter file name, with extension .ini .
 • Place individual configuration files in the same directory as the main configuration

file for the project.
 • Include in these chapter-specific configuration files only those settings that are

different from settings in the main project configuration file.

When you run Mif2Go from the book file, the individual configuration files work in
concert with the main configuration file; settings in an individual configuration file
override the corresponding settings in the main configuration file, for that chapter file.

See also:
§30.4 Including chapter-specific configuration files on page 855

33.1.2 Understanding precedence of configuration s ettings

At run time Mif2Go builds a configuration for each FrameMaker file in your project,
beginning with the most specific settings: those in any chapter-specific configuration file,
if there is one. Next come settings in the project configuration file.

Chain of
configuration

templates

Next, if the chapter-specific configuration file includes a value for
[Templates]Configs (see §30.2 Referencing configuration files and templates on
page 851), settings in the referenced configuration template (and any additional templates
chained to it) are applied. If the chapter-specific configuration file does not reference a
configuration template, next come settings in any configuration template referenced by the
project configuration file; then on up the chain from that template. Table 33-1 shows the
precedence of settings in configuration files and templates.

OVERRIDING SETTINGS WITH MARKERS OR MACROS MIF2GO USER’S GUIDE

920 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

A chain of configuration templates, if any, is applied to the source either from
chapter.ini (preferentially) or from the project configuration file, but not from both. In
either case, settings from the templates are applied after settings from the project
configuration file, which are applied after settings from the chapter configuration file. For
the same setting with different values in different configuration files or templates, the
value in the most specific file takes precedence. See §30.6.3 Chaining configuration
templates on page 863.

33.1.3 Updating a single chapter of a FrameMaker b ook

To update a single chapter for which you have created an individual configuration file:

1. Make sure you have already set up the project from the book file; see §3.3 Creating a
Mif2Go conversion project on page 78.

2. Keeping the book file open, run Mif2Go from the chapter file.

Mif2Go determines that this is a chapter of a book, and builds both chapter-related files
and book-related files. For HTML output, if a change you make in a chapter results in a
change of file name for a split file, and another chapter has a cross reference or hypertext
link to a marker in that split file, Mif2Go updates the link in files produced from the other
chapter.

33.2 Overriding settings with markers or macros
To change the value of a configuration setting partway through a FrameMaker file, you
assign a new value to a configuration variable. You can insert a FrameMaker marker that
contains the assignment or (for some settings) define a Mif2Go macro that includes the
assignment. Both methods allow you to shift configuration values back and forth within
the same FrameMaker file.

In this section:
§33.2.1 Determining the extent of a configuration override on page 921
§33.2.2 Overriding settings with configuration markers on page 921

Table 33-1 Precedence of settings in configuration files and templates

Precedence Configuration file Description

Highest chapter.ini For a book, configuration file (if any) for a single
FrameMaker file named chapter.fm

_m2*.ini Project configuration file

chaptemplate.ini or Template referenced by chapter.ini , if any

doctemplate.in i Template referenced by _m2*.ini via
[Templates]Document if no such template is
referenced by chapter.ini (or no chapter.ini is
present)

projtemplate.in i Template referenced by _m2*.ini if no template is
referenced by chapter.ini (or no chapter.ini is
present)

commontemplate1.ini Template referenced by chaptemplate.ini or by
projtemplate..ini , whichever is used

commontemplateN.ini Template referenced by commontemplateN-1.ini

Lowest Default value Whatever the Mif2Go default value is for the setting in
question

33 OVERRIDING CONFIGURATION SETTINGS OVERRIDING SETTINGS WITH MARKERS OR MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 921

§33.2.3 Overriding settings with macros on page 921
§33.2.4 Assigning values to configuration variables on page 922
§33.2.5 Adding a new configuration setting on the fly on page 923
§33.2.6 Assigning a macro or variable to a configuration variable on page 923
§33.2.7 Understanding fixed-key vs. variable-key settings on page 923
§33.2.8 Overriding fixed-key configuration settings on page 924
§33.2.9 Overriding variable-key configuration settings on page 925
§33.2.10 Assigning HTML table and graphic groups with overrides on page 930

33.2.1 Determining the extent of a configuration o verride

An override to a configuration setting can affect either a single item in your document (a
temporary override), or a series of items (a persistent override), depending on the syntax
you use for the override; see §33.2.4 Assigning values to configuration variables on
page 922. Mif2Go does not store either persistent or temporary overrides in your
configuration file. The configuration file always retains the original values of the settings.

Persistent
overrides

A persistent override stays in effect until changed by another override of the same setting,
or until the end of the FrameMaker file in which the override occurs, whichever comes
first. To apply a persistent override, insert a marker in your document just before the place
where you want the override to take effect; and (optionally) later, another marker to
reverse the effect. For certain fixed-key settings, you can include a configuration override
in a regular Mif2Go macro instead of in a marker; see §33.2.3 Overriding settings with
macros on page 921.

Temporary
overrides

A temporary override affects only one instance of the item (text, table, or graphic) to
which the setting applies. To apply a temporary override, you insert a markerin or just
before the item to which the override should apply. Temporary overrides can be applied
only to variable-key settings; see §33.2.7 Understanding fixed-key vs. variable-key
settings on page 923.

33.2.2 Overriding settings with configuration mark ers

To change a configuration setting mid-document with a configuration marker, you must
first define one (or more) of the following custom marker types in FrameMaker:

To add these marker types to your document, use the FrameMaker Edit Custom Marker
Type dialog, reached via Special > Marker > Marker Type: Edit... ; see §29.2 Adding
custom marker types on page 832.

To change the value of a configuration setting partway through your document, insert a
configuration marker (Config , HTMConfig , or RTFConfig) at the place where you want the
value to change, and supply a configuration-variable assignment as content for the marker,
according to the syntax and usage described in §33.2.4 Assigning values to configuration
variables on page 922.

33.2.3 Overriding settings with macros

To change a configuration setting mid-document with a macro, you must include a
configuration-variable assignment either in a code-type FrameMaker marker or (for

Config applies either to HTML or to RTF, wherever the setting is applicable

HTMConfig applies only to HTML output; ignored for RTF output

RTFConfig applies only to RTF output; ignored for HTML output.

OVERRIDING SETTINGS WITH MARKERS OR MACROS MIF2GO USER’S GUIDE

922 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

persistent overrides only) in a configuration macro included in your configuration file or
macro library.

The macro override choices apply as follows:

To change the value of a configuration setting with a macro in a marker, insert a marker of
type Code or HTML Code at the place where you want the value to change, and supply as
content for the marker a configuration-variable assignment constructed as described in
§33.2.4 Assigning values to configuration variables on page 922.

For persistent overrides only, you can include the configuration-variable assignment in a
configuration macro that applies the directive based on some condition; see §33.2.1
Determining the extent of a configuration override on page 921.

33.2.4 Assigning values to configuration variables

A configuration-variable assignment can be any of the following, depending on the
context and the extent of the configuration override:

where the components of the assignment are as follows: :

When you assign a value to a configuration variable, observe the following:

 • Spaces around [Section] are optional.
 • Section is not case sensitive.
 • In a macro, [Section] must be prefixed with $$; in a *Config marker, the prefix is

optional.
 • Include Key only for a persistent override; see §33.2.1 Determining the extent of a

configuration override on page 921.
 • Key is case sensitive for variable-key settings.
 • Key may not use wildcards.
 • Key must be enclosed in quotes if Key contains any spaces or non-alphanumeric

characters.
 • If Key requires an on/off value, Mif2Go recognizes “1” (numeral one), “Yes”, and

“True” as on, and “0” (zero), “No”, and “False” as off.
 • In a macro, if Value is a text string, Value must be enclosed in quotes. In a *Config

marker, quotes around text values are optional; if present, Mif2Go removes them.
Therefore, if the value to be assigned actually contains quotes at both ends, you must
double them for assignment in a *Config marker. For example:

HTMConfig : [StyleTextStore]= "" a quoted phrase""

HTML Code marker HTML output only; ignored for RTF output

Code marker HTML or RTF output, wherever the setting is applicable

Mif2Go macro HTML or RTF output, wherever the setting is applicable,
but only for persistent overrides.

Context Persistent override Temporary override
*Config marker [Section] Key=Value [Section]= Value

Mif2Go macro $$[Section] Key=Value $$[Section]= Value

Section Name of the configuration-file section where the setting belongs
Key Keyword whose value you want to change, or the format or object

whose properties you want to change; omit for temporary overrides
Value New value for the setting.

33 OVERRIDING CONFIGURATION SETTINGS OVERRIDING SETTINGS WITH MARKERS OR MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 923

 • If Value includes the name of a macro or macro variable, whether that name should
be enclosed in quotes depends on the context; see §33.2.6 Assigning a macro or
variable to a configuration variable on page 923.

33.2.5 Adding a new configuration setting on the f ly

Besides overriding existing settings in the configuration file, you can use a configuration-
variable assignment to specify a persistent override for a setting that is not even present in
your configuration file, provided both of the following are true:

 • [Section] is listed as subject to overrides in one of Table 33-2 through Table 33-6.
 • Key is a valid key for the section.

If the section is not listed, or the key is not valid for the section, the setting you specify is
treated instead as an error, with value “0” (zero).

33.2.6 Assigning a macro or variable to a configur ation variable

When you assign a value to a configuration variable, and the value includes the name of a
macro or a macro variable, whether or not that name should be enclosed in quotes depends
on the context:

 • In a *Config marker, a value is always assigned literally, as is, so you can either
include or omit quotes around the name of a macro or variable.

 • In a macro, a value is assigned literally only if it is enclosed in quotes. If the value
includes a macro name, the entire value should be quoted. Such a value may not
contain a quote.

For example:
HTMConfig : [ParaStyleCodeAfter]=<$ macafter>

HTML Macro : <$$[ParaStyleCodeAfter]="<$ macafter>">

Angle brackets
get processed in

a macro

When you assign a value to a configuration variable in a macro, and the value contains any
< or > characters (angle brackets), absent enclosing quotes Mif2Go processes each angle
bracket as the start or end of a macro, instead of assigning the entire value as a string. That
is, Mif2Go would try to figure out if maybe the string is something else first. When the
value includes a > character that it is not in quotes, the macro ends prematurely. In this
example:

<$$[ParaStyleCodeAfter]=<hr>>

Mif2Go would assign only <hr to the configuration variable, because the > after <hr
would be taken as the end of the macro; and then Mif2Go would drop the real ending >
into the current text.

Unquoted
variables are

evaluated in a
macro

When you assign a macro variable to a configuration variable in a macro:

 • Enclose the macro variable name in quotes if you want the macro variable to be
evaluated later, at run time.

 • Do not enclose the macro variable name in quotes if you want the macro variable to be
evaluated immediately, so the configuration setting gets the current value of the macro
variable instead of just its name.

33.2.7 Understanding fixed-key vs. variable-key se ttings

The settings in some Mif2Go configuration sections are global in scope, and use fixed
keys: predefined keywords to which you can assign values. The settings in other
configuration sections use variable keys: the names of formats, tables, or graphics in your

OVERRIDING SETTINGS WITH MARKERS OR MACROS MIF2GO USER’S GUIDE

924 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

document. You can override some settings in most fixed-key sections, and all settings in
most variable-key sections.

Fixed-key
configuration

sections

Configuration sections such as [HTMLOptions] have a set of predefined keywords, and
the value you assign to a given keyword usually applies to the entire document. You can
change the value of a fixed-key setting only with a persistent override, where you name
the key whose value is to be overridden. Temporary overrides do not apply to fixed-key
settings; see §33.2.1 Determining the extent of a configuration override on page 921.
Table 33-2 on page 925 lists the fixed-key configuration sections that include settings
subject to override.

Variable-key
configuration

sections

Configuration sections such as [HelpStyles] or [GraphAlign] use format names or
object identifiers as keys, where the key name is one of the following:

 • a character, paragraph, or cross-reference format name; the value applies only to text
in the named format

 • a graphic ID, table ID, or table format name, or a named group of graphics or tables;
the value applies only to the named table, graphic, or group.

You can use either persistent overrides or temporary overrides for most variable-key
settings. You can override settings in the variable-key sections listed in the following
tables:

Table 33-3 Text configuration sections subject to overrides on page 926
Table 33-4 Cross-reference sections subject to overrides on page 928
Table 33-5 HTML table sections subject to overrides on page 928
Table 33-6 HTML graphic sections subject to overrides on page 930

33.2.8 Overriding fixed-key configuration settings

An override to a fixed-key configuration setting stays in effect until the end of the current
FrameMaker file, or until changed again by another configuration marker or
configuration-variable assignment to the same setting. You can override some (but not all)
settings in the configuration sections listed in Table 33-2 on page 925. For example, to
switch mid-file to turning on revision tracking in Word:

Only persistent overrides work for fixed-key settings; temporary overrides do not work.
Also, persistent overrides work only for fixed-key settings that do not have to apply to an
entire FrameMaker file. For instance, it would make no sense to try to change, in the
middle of a file, the value of [Setup]ApplyTemplateFile ; applying a conversion
template is a one-time function that takes place before Mif2Go processes the file content.
Other settings such as [WordOptions]SideHeads affect margins, and must apply to an
entire file.

For example, suppose your document contains white text that you do not want to display
in HTML output; so, in the configuration file you include the following setting:

[HTMLOptions]
HideWhiteText=Yes

But suppose your document also includes some white headings, in paragraph format
Head1, that are displayed inside a black box provided in a Frame Below with negative
space. You could use macros to override the HideWhiteText setting for these headings:

[ParaStyleCodeBefore]
Head1=<$$[HTMLOptions]HideWhiteText=0>

Configuration setting RTFConfig override
[WordOptions]
RevTrack = No

[WordOptions]RevTrack=Yes

33 OVERRIDING CONFIGURATION SETTINGS OVERRIDING SETTINGS WITH MARKERS OR MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 925

[ParaStyleCodeAfter]
Head1=<$$[HTMLOptions]HideWhiteText=1>

If you are producing HTML output, the only way to specify attributes for <body> is with
a configuration override. For example, placing a marker at the beginning of the second
topic in a FrameMaker file:

[Attributes]body= onload='prettyPrint()'

Then at the beginning of the fourth topic:
[Attributes]body=

The effect would appear in HTML output for the second and third topics, but not the
fourth. The marker affects the output file for the topic in which it is included, and
continues until set otherwise.

You can also override a fixed-key setting with a configuration-variable assignment in a
regular Mif2Go macro instead of in a marker. See §28.9.3 Surrounding or replacing text
with code or macros on page 822.

33.2.9 Overriding variable-key configuration setti ngs

In this section:
§33.2.9.1 Overriding paragraph and character format properties on page 926

Table 33-2 Fixed-key configuration sections subject to overrides

Fixed-key configuration section * HTML/XML Word WinHel p

[Attributes] Yes

[Base] Yes

[CharClasses] Yes

[Defaults] Yes Yes

[Setup] Yes Yes Yes

[GraphExport] Yes Yes Yes

[Graphics] Yes Yes Yes

[HelpBrowse] Yes

[HelpContents] Yes

[HelpOptions] Yes

[HTMLOptions] Yes

[Inserts] Yes Yes Yes

[JavaHelpOptions] Yes

[LocalTOC] Yes

[Macros] Yes

[MSHtmlHelpOptions] Yes

[NavigationMacros] Yes

[OmniHelpOptions] Yes

[Options] Yes Yes Yes

[ParaClasses] Yes

[Tables] Yes

[Trails] Yes

[WordOptions] Yes

* Some settings cannot be overridden in these sections; you might have to experiment.

OVERRIDING SETTINGS WITH MARKERS OR MACROS MIF2GO USER’S GUIDE

926 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§33.2.9.2 Overriding cross-reference properties on page 928
§33.2.9.3 Overriding table properties for HTML on page 928
§33.2.9.4 Overriding graphic properties for HTML on page 929

33.2.9.1 Overriding paragraph and character format properties

You can override character and paragraph format settings in the configuration sections
listed in Table 33-3. For example, to specify new properties for a single paragraph in
HTML, you could insert in the paragraph an HTMConfig marker with content different
from the default:

[HTMLParaStyles]Size5 Bold

In a macro, you would specify:
<$$[HTMLParaStyles]Size5 Bold>

Temporary
overrides

Most configuration settings for text properties can apply to either a paragraph format or a
character format. Temporary overrides lack a key to name the format to be affected;
therefore, for a temporary override, where in the text you place the configuration marker
with respect to paragraph and character formats is critical:

 • A temporary-override marker placed in a paragraph but not in a character span affects
the entire paragraph, even if character spans intervene or end the paragraph.

 • If a paragraph starts with a character span, whether you place the marker for a
temporary override before or after the start of the character format determines whether
the override applies to the paragraph or to the character span. Check the FrameMaker
status bar when you insert the marker, to see which format is shown.

 • A temporary-override marker placed in the span of a character format affects only the
current span; the end of the character span resets the override, and it has no further
effect, even if the same character format is used again in the same paragraph.

Persistent
overrides

A persistent override affects the next instance of the paragraph or character format named
by the Key in [Section] Key=Value, or the current instance if the marker is placed in a
matching paragraph or character span; plus all subsequent instances in the same
FrameMaker file, unless changed again by a later override.

Markers in
replaced text are

ignored

For [ParaStyleCodeReplace] , if placement code is already in effect because it was
specified in the configuration file, any configuration marker in the replaced text is ignored.
This means you cannot use a temporary override in a configuration marker for the
replacement; instead you must use a persistent override that names the format to be
replaced, and insert the configuration marker before the text to be replaced.

Place overrides to
code with care

For [HTMLParaStyles] and [HTMLCharStyles] , temporary overrides to Delete
assignments must be inserted before the first text in the affected paragraph or character
span. Persistent overrides should be placed before the affected paragraph or character
span.

Table 33-3 Text configuration sections subject to overrides

Text configuration section HTML/XML Word WinHelp

[AnumCodeAfter] Yes Yes Yes

[AnumCodeBefore] Yes Yes Yes

[CharStyleCodeAfter] Yes Yes Yes

[CharStyleCodeBefore] Yes Yes Yes

[CharStyleCodeEnd] Yes Yes Yes

[CharStyleCodeReplace] Yes Yes Yes

[CharStyleCodeStart] Yes Yes Yes

33 OVERRIDING CONFIGURATION SETTINGS OVERRIDING SETTINGS WITH MARKERS OR MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 927

[CharStyleCSS] Yes

[CharTags] Yes

[ExtrBottom] Yes

[ExtrHead] Yes

[ExtrReplace] Yes

[ExtrTitle] Yes

[ExtrTop] Yes

[HelpBrowsePrefixStyles] Yes

[HelpCntStyles] Yes

[HelpContentsLevels] Yes

[HelpJumpFileStyles] Yes

[HelpKeywordStyles] Yes

[HelpMacroStyles] Yes

[HelpRefStyles] Yes

[HelpReplacements] Yes

[HelpStyles] Yes

[HelpSuffixStyles] Yes

[HelpTitleSufStyles] Yes

[HelpTopicBuildStyles] Yes

[HelpWindowStyles] Yes

[HTMLCharStyles] Yes

[HTMLParaStyles] Yes

[LocalTOCLevels] Yes

[ParaStyleCodeAfter] Yes Yes Yes

[ParaStyleCodeBefore] Yes Yes Yes

[ParaStyleCodeEnd] Yes Yes Yes

[ParaStyleCodeReplace] Yes Yes Yes

[ParaStyleCodeStart] Yes Yes Yes

[ParaStyleCSS] Yes

[ParaTags] Yes

[SecWindows] Yes

[StyleCellAbbr] Yes

[StyleCellAttribute] Yes

[StyleCellAxis] Yes

[StyleCellScope] Yes

[StyleCodeStore] Yes Yes Yes

[StyleFilePrefix] Yes

[StyleFileSuffix] Yes

[StyleLinkSrc] Yes

[StyleMetaName] Yes

[StyleParaLinkClass] Yes

[StyleRowAttribute] Yes

[StyleTextStore] Yes

Table 33-3 Text configuration sections subject to overrides (continued)

Text configuration section HTML/XML Word WinHelp

OVERRIDING SETTINGS WITH MARKERS OR MACROS MIF2GO USER’S GUIDE

928 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

33.2.9.2 Overriding cross-reference properties

You can use configuration markers and configuration-variable assignments to override
settings in [XrefStyles] and in the HTML [XrefStyleLinkSrc] section; see
Table 33-4.

A temporary override to a cross-reference format affects the next cross reference after the
configuration marker.

A persistent override affects the next cross reference in the format named by the Key in
[Section] Key=Value, and all subsequent instances in the same FrameMaker file,
unless changed again by a later override.

33.2.9.3 Overriding table properties for HTML

You can use configuration markers and configuration-variable assignments to override
settings in the HTML [Table*] sections listed in Table 33-5.

A temporary override to a table affects the entire table within which a configuration
marker is placed; or the next table, if the marker is not in a table.

A persistent override affects the next table with the ID or table format, or in the table
group, named by the Key in [Section] Key=Value; or the current instance, if the marker
is placed in a matching table. For table formats and groups, the override also affects all
subsequent matching instances in the same FrameMaker file, unless changed again by a
later override.

[StyleTitlePrefix] Yes

[StyleTitleSuffix] Yes

[StyleTrailPrefix] Yes

[StyleTrailSuffix] Yes

[Targets] Yes

[TrailLevels] Yes

[WordCntStyles] Yes

[WordReplacements] Yes

[WordStyles] Yes

Table 33-3 Text configuration sections subject to overrides (continued)

Text configuration section HTML/XML Word WinHelp

Table 33-4 Cross-reference sections subject to overrides

Cross-reference section HTML/XML Word WinHelp

[XrefStyleLinkSrc] Yes

[XrefStyles] Yes Yes Yes

Table 33-5 HTML table sections subject to overrides

Table configuration section

[TableAccess]

[TableAfterMacros]

[TableAttributes]

[TableBeforeMacros]

[TableBodyAttributes]

33 OVERRIDING CONFIGURATION SETTINGS OVERRIDING SETTINGS WITH MARKERS OR MACROS

ALL RIGHTS RESERVED. MAY 18, 2013 929

See also:
§33.2.10 Assigning HTML table and graphic groups with overrides on page 930

33.2.9.4 Overriding graphic properties for HTML

You can use configuration markers and configuration-variable assignments to override any
variable-key settings and some fixed-key settings in the HTML [Graph*] sections listed
in Table 33-6.

A temporary override to a graphic affects the next graphic after the point in your document
where you insert the marker.

Note: Configuration markers placed in text frames within graphic frames do not work.

A persistent override affects the next graphic with the ID or in the graphic group named by
the Key in [Section] Key=Value; and for graphic groups, all subsequent matching
instances in the same FrameMaker file, unless changed again by a later override.

One additional section, [GraphGroup] , is handled differently from the rest. For
[GraphGroup] , the directive assigns the graphic to a named graphic group. You can use
only a temporary setting applied with a *Config marker, not a macro, to specify the
graphic group.

Overriding the
overrides

To override path settings both in [GraphFiles] and in configuration markers with
whatever you specify for [Graphics]GraphPath :

[Graphics]
; GraphPathOverrides = No (default) or Yes (overrid es any path
; in Config markers and in [GraphFiles], adding Gra phPath
; and using FixGraphSpaces)
GraphPathOverrides=Yes

When GraphPathOverrides=Yes , Mif2Go uses the path to graphics specified by
GraphPath (see §31.3.1.1 Specifying graphics location for HTML on page 887) instead
of any path (or lack of a path) specified in [GraphFiles] (see §31.3.1.2 Substituting
graphics files for HTML on page 888) or in a *Config marker with content:

[TableCellAttributes]

[TableCellEndMacros]

[TableCellStartMacros]

[TableEndMacros]

[TableFooterAttributes]

[TableGroup]

[TableHeaderAttributes]

[TableIndents]

[TableReplaceMacros]

[TableRowAttributes]

[TableRowEndMacros]

[TableRowStartMacros]

[TableSizing]

[TableStartMacros]

[TableUseRowColor]

Table 33-5 HTML table sections subject to overrides (continued)

Table configuration section

OVERRIDING SETTINGS WITH MARKERS OR MACROS MIF2GO USER’S GUIDE

930 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[GraphFiles]= filename

Also, Mif2Go replaces with underscores any spaces in file names of referenced graphics;
see §31.3.1.4 Using original files and image sizes for referenced graphics on page 889.

See also:
§23.7 Specifying HTML image attributes on page 718
§31.4.2 Overriding graphics settings with FrameMaker object attributes on page 896
§33.2.10 Assigning HTML table and graphic groups with overrides on page 930

33.2.10 Assigning HTML table and graphic groups wi th overrides

Two variable-key configuration sections, [TableGroup] and [GraphGroup] , are
handled differently from the rest. For [TableGroup] and [GraphGroup] , a
configuration marker assigns the table or graphic to a named group. You can use only a
temporary override applied with a *Config marker, not a macro, to specify the group name.
Any key included in the marker is ignored.

Table groups If you put a [TableGroup] configuration marker in each table that should be assigned to
a given group, you can specify settings for all members of that table group in a [Table*]
section in the configuration file, without having to look up any table IDs.

Note: Each table can belong to only one table group.

See also:
§24.2.2 Creating table groups on page 729
§33.2.9.3 Overriding table properties for HTML on page 928

Graphic groups If you put a [GraphGroup] configuration marker just before each graphic that should be
assigned to a given group, you can specify settings for all members of that graphic group
in a [Graph*] section in the configuration file, without having to look up graphic IDs.

Note: Each graphic can belong to only one graphic group.

Table 33-6 HTML graphic sections subject to overrides

Graphic configuration section

[GraphAlign]

[GraphALT]

[GraphAttr]

[GraphDpi]

[GraphEndMacros]

[GraphFiles]

[GraphGroup]

[GraphHigh]

[GraphIndents]

[GraphParaAlign]

[GraphReplaceMacros]

[GraphRightSpacers]

[GraphScale]

[GraphStartMacros]

[GraphWide]

33 OVERRIDING CONFIGURATION SETTINGS OVERRIDING CONFIGURATION SETTINGS WITH TEXT

ALL RIGHTS RESERVED. MAY 18, 2013 931

See also:
§23.5.1.2 Using markers to assign properties to graphics on page 709
§33.2.9.4 Overriding graphic properties for HTML on page 929

33.3 Overriding configuration settings with text
To override configuration settings on the fly, you can include a configuration setting in
your document as text, give it a unique paragraph format, and assign that format a special
property. This method is an alternative to inserting Config or HTMConfig or RTFConfig
markers in your document, and it works the same way. See §33.2.2 Overriding settings
with configuration markers on page 921.

To make a FrameMaker paragraph act as a configuration override:
[HTMLParaStyles] or [WordStyles] or [HelpStyles]
; Config (and HTMConfig or RTFConfig) use the conte nts of the para as
; though it is a set of Config markers, each ending with a hard
; return, but also allow the normal .ini syntax with [Sections] on
; their own lines, and comments.
ParaFmt = Config Delete

Property HTMConfig is effective only in HTML output types, property RTFConfig is
effective only in RTF output types, and where applicable, property Config is effective in
both.

When you also assign property Delete , Mif2Go removes the paragraph from the actual
text stream, so the text does not appear in the output.

The content of each paragraph in a format assigned the Config (or HTMConfig or
RTFConfig) property is treated as a configuration override, or a series of configuration
overrides, provided the content:

 • conforms to configuration syntax
 • specifies settings that are subject to overrides.

See §33.2.7 Understanding fixed-key vs. variable-key settings on page 923.

You have two choices of syntax for *Config paragraph content; you can intermix them in
the same paragraph:

For example, a *Config paragraph that precedes an anchored frame that contains a
graphic might provide the name of a different graphic to substitute for the one in your
document:

[GraphFiles]
=Screen1.gif

The content of the paragraph could just as well look like this:
[GraphFiles]=Screen1.gif

File
syntax:

Make the paragraph look like a configuration-file section, with a hard return at
the end of each line (although a hard return is not required after the last line).
You can include multiple configuration sections, and also include comment
lines that start with a semicolon; see §4.4 Understanding the rules for
configuration settings on page 102.

Marker
syntax:

Use the same syntax as for *Config markers; see §33.2.4 Assigning values to
configuration variables on page 922. Place a hard return at the end of each
override.

OVERRIDING CONFIGURATION SETTINGS WITH TEXT MIF2GO USER’S GUIDE

932 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

The result works exactly like the same content put in markers at the same location in your
document, and is subject to the same limitations as for markers, except there is no length
limit to the content.

If your FrameMaker document is subject to frequent updates that might result in
accidentally deleting markers, using a *Config paragraph instead makes the overrides
less likely to be lost. For example, if you use conditional text to hide *Config paragraphs
while you are editing the document, FrameMaker warns you before deleting the hidden
text.

Note: For graphics in anchored frames, FrameMaker 7.0 and later versions provide yet
another way to override settings; see §31.4.2 Overriding graphics settings with
FrameMaker object attributes on page 896.

(No illustrations)

ALL RIGHTS RESERVED. MAY 18, 2013 933

34 Automating Mif2Go conversions

Mif2Go supports several techniques for single-sourcing FrameMaker documents, and for
automating conversion workflow. This section includes the following topics:

§34.1 Preparing documents for single-sourcing on page 933
§34.2 Converting a single chapter of a book on page 937
§34.3 Considering ways to automate conversions on page 937
§34.4 Executing operating-system commands on page 937
§34.5 Supplying run-time values for user variables on page 941
§34.6 Supporting document review in Word on page 943
§34.7 Converting autonumbers for database systems on page 944
§34.8 Renaming output files for automated systems on page 946

See also:
§35 Producing deliverable results on page 955
§36 Converting via runfm on page 979
§37 Converting via DCL on page 995
§38 Generating intermediate output on page 1005

34.1 Preparing documents for single-sourcing
You can fine-tune a FrameMaker document for single-sourcing, so Mif2Go can produce
both print and on-line versions with no intermediate text editing or format tweaking. This
section describes several techniques:

§34.1.1 Using character formats to identify Help elements on page 933
§34.1.2 Using markers to add links and instructions on page 935
§34.1.3 Using conditional text to differentiate output on page 936
§34.1.4 Importing formats and conditional text settings on page 936

34.1.1 Using character formats to identify Help el ements

You can use character-format tagging to identify text you want to trigger help-specific
actions. The character format need not have any effect on the text in FrameMaker; the
format name is what Mif2Go goes by.

For example, to identify pop-up hotspots, you might create a FrameMaker character
format called Popup, and apply it to each text item that should act as a pop-up hotspot in
your help file. Suppose your document contains the following text:

As the fund-raising campaign progresses you will have an opportunity to visit
Northcoast Redwoods and see for yourself the beauty of this forest.

Suppose you want “Northcoast Redwoods” to be a pop-up hotspot when you convert the
document to Help:

1. Use the FrameMaker Character Designer Set Window to As Is command to define
character format Popup as shown in Figure 34-1 on page 934.

PREPARING DOCUMENTS FOR SINGLE-SOURCING MIF2GO USER’S GUIDE

934 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Figure 34-1 Defining character format Popup

2. Apply character format Popup—which you have defined in Character Designer to be
entirely “As Is”— to the phrase “Northcoast Redwoods”. The appearance of the text
does not change in your FrameMaker document.

3. Add this setting to your project configuration file:
[HelpStyles]
Popup=PopOver Green

Or, create the same setting in Conversion Designer, as shown in Figure 34-2.

Figure 34-2 Defining a character format for pop-up hotspots

When Mif2Go converts your document, the text in the resulting Help file looks something
like Figure 34-3.

Figure 34-3 Pop-up hotspot in WinHelp

Clicking Northcoast Redwoods pops up whatever text or graphics you define in your Help
file to be a target for this pop-up.

As the fund-raising campaign progresses you will have an opportunity to visit
Northcoast Redwoods and see for yourself the beauty of this forest.

34 AUTOMATING MIF2GO CONVERSIONS PREPARING DOCUMENTS FOR SINGLE-SOURCING

ALL RIGHTS RESERVED. MAY 18, 2013 935

See also:
§8.9.9 Using the same content for both normal topics and pop-ups on page 278
§8.9.11.5 Assigning properties to alternative jumps and pop-ups on page 281

34.1.2 Using markers to add links and instructions

You can use markers in a FrameMaker file to provide features required for assorted
delivery formats:

Hypertext alerts and navigation links
Reference strings in WinHelp
Code to execute in HTML
Conversion instructions

Hypertext alerts
and navigation

links

To insert a hypertext marker:

1. Position the cursor in FrameMaker text where you want the marker.

2. Choose Special > Hypertext... from the FrameMaker top menu bar; the Hypertext
dialog opens.

3. From the Command: list select the command for the type of hypertext marker you
want to insert; typical hypertext markers and their corresponding FrameMaker
hypertext commands are as follows:

The marker type name for the command appears in the Syntax: box, followed by a
space. Above the Syntax: box you should see an example of the syntax to use with
that marker type.

4. In the Syntax: box, after the space type a unique name for the link target, along with
any other parameters required for the marker type.

5. Click New Hypertext Marker to insert the marker and dismiss the Hypertext dialog.

Reference strings
in WinHelp

To add reference strings as hypertext newlinks in WinHelp, see §8.9.5 Using hypertext
links for jumps and pop-ups on page 276.

Code to execute
in HTML

To include JavaScript or Mif2Go macro code in HTML, see §29.7 Inserting code or text
with markers on page 842.

Conversion
instructions

To embed conversion instructions in a FrameMaker document, see §33.2 Overriding settings
with markers or macros on page 920.

Marker type FrameMaker hypertext
command

alert Alert
alerttitle Alert with Title
gotolink Jump to Named Destination
message openfile Message Client (closest fit)
message URL Go to URL
newlink Specify Named Destination
openlink Open Document

PREPARING DOCUMENTS FOR SINGLE-SOURCING MIF2GO USER’S GUIDE

936 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

34.1.3 Using conditional text to differentiate out put

FrameMaker’s conditional text feature is a powerful aid to single-sourcing. Conditional
text allows you to create differences in content between printed documents and various
on-line formats. You can do this with condition tags; for example:

Content that should be present both in print and on line would be left Unconditional .

Although some people advise tagging no less than a paragraph, we have had no trouble
applying condition tags to phrases, to individual words, and even to frame anchors, to
include different graphics for different uses.

Mif2Go can import Conditional Text Settings from a FrameMaker template, to show
only the conditions appropriate for a particular conversion; see §2.4 Importing formats
from a conversion template on page 67.

See also:
§3.4.1 Importing formats from a FrameMaker template on page 79
§30.7 Applying FrameMaker conversion templates on page 863
§34.1.4 Importing formats and conditional text settings on page 936

34.1.4 Importing formats and conditional text sett ings

You can import formats from a FrameMaker template to create alternate output.

To tell Mif2Go which template to use and what to import, do one of the following:
Specify imports at set-up time
Specify imports in the configuration file
Import manually for command-line conversion.

Specify imports at
set-up time

When you first set up your Mif2Go conversion project in FrameMaker, use the Set Up
dialog to specify the template and check the formats you wish to import; see §3.4.1
Importing formats from a FrameMaker template on page 79.

Specify imports in
the configuration

file

If you have already set up your Mif2Go conversion project, and you intend to run the
conversion from FrameMaker, edit your project configuration file to specify template and
formats; see §30.7 Applying FrameMaker conversion templates on page 863.

Import manually
for command-line

conversion

If you intend to run your Mif2Go conversion from the command line (see §37 Converting
via DCL on page 995), you must provide your document in .mif format:

1. When you finish editing the print document, save it, but leave it open in FrameMaker.
The .fm copy you just saved is the one you will use for revisions later.

2. Open the Help template or HTML template, shift to the open print document, and
import formats from the template.

3. Regenerate the file, then save as .mif ; this is the .mif copy you will use for Mif2Go
to convert to on-line help or HTML. Close the file without saving again, so that your
print document remains unchanged.

See also:
§2.4 Importing formats from a conversion template on page 67
§30.7 Applying FrameMaker conversion templates on page 863
§34.1.3 Using conditional text to differentiate output on page 936

PrintOnly Content that should appear only in the printed document

HelpOnly Content that should appear only in on-line Help

34 AUTOMATING MIF2GO CONVERSIONS CONVERTING A SINGLE CHAPTER OF A BOOK

ALL RIGHTS RESERVED. MAY 18, 2013 937

34.2 Converting a single chapter of a book
When you convert a single file in your book after making some edits, always do the
conversion as follows:

1. Open the book file.

2. Open the chapter file from the book file.

3. Save Using Mif2Go... from the chapter file.

This way you get the .prj (Mif2Go project file) settings for the book, and the output
conversion files are updated automatically. Never convert a chapter alone without the
book file open in FrameMaker.

If you change only wording in one chapter, just rerun Mif2Go on that chapter, and the
entire book will be updated accordingly. However, if you add new cross references that
link to other chapters (thus modifying those chapters also), or if you make changes to
several chapters, it is better to run Mif2Go on the entire book.

34.3 Considering ways to automate conversions
To automate Mif2Go conversions, you can do either or both of the following:

 • from outside FrameMaker, run one or more conversion projects unattended; either:
 – set up FrameMaker to run from the command line, invoke Mif2Go automatically,

and optionally close when all conversions are finished; see §36 Converting via
runfm on page 979

 – use the Mif2Go DCL filter at a command prompt to convert MIF files; see §37
Converting via DCL on page 995.

 • within FrameMaker, have Mif2Go do any or all of the following:
 – assemble files, compile Help systems, and archive deliverables; see §35

Producing deliverable results on page 955
 – execute system commands before the conversion, before compiling and archiving,

at the end of archiving, or all three; see §34.4 Executing operating-system
commands on page 937

 – prompt you for run-time values for user variables (except, of course, during
unattended operation); see §34.5 Supplying run-time values for user variables on
page 941.

See also:
§35 Producing deliverable results on page 955
§36 Converting via runfm on page 979
§37 Converting via DCL on page 995

34.4 Executing operating-system commands
Suppose you always check files out of a source-control system before you convert them,
and check them back in afterward; or suppose you always copy generated files to multiple
locations after conversion. Mif2Go can perform these kinds of chores automatically by
executing operating-system commands that you specify in the project configuration file.

Note: When you use system commands, exit and restart FrameMaker between projects;
otherwise, some internal variables might not be re-initialized.

EXECUTING OPERATING-SYSTEM COMMANDS MIF2GO USER’S GUIDE

938 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

In this section:
§34.4.1 Specifying system commands on page 938
§34.4.3 Monitoring system command execution on page 939
§34.4.4 Changing configuration settings with system commands on page 940
§34.4.5 Supplying system commands in a .bat file on page 940
§34.4.6 Supplying system commands in a macro on page 940

34.4.1 Specifying system commands

To specify a command (or a macro) to execute before or after a document is converted
(and optionally compiled and/or archived):

[Automation]
; SystemStartCommand = command line to run at start of processing
; SystemWrapCommand = command line to run at end, b efore compiling
; and archiving
; SystemEndCommand = command line to run at end, af ter compiling
; and archiving

Use only commands that can run without interaction.

The value you assign to one of the System*Command keywords is an actual Windows
system command, just as you would have typed it at a Windows command prompt. For
example:

[Automation]
SystemEndCommand = copy /Y G:\MyProj_wrap*.xml D: \xml\backups

If you specify a relative path in a system command, that path is considered to be relative to
the project directory. For example, the following command renames a file located in the
wrap directory (see §35.2 Activating and logging production of deliverables on page 956):

[Automation]
SystemEndCommand = rename .\wrap\ugmif2go.htm _ugmi f2go.htm

Assign only one command to each keyword; the command must be all one line. If you
need multiple commands or multiple lines per keyword, see the following:

§34.4.5 Supplying system commands in a .bat file on page 940
§34.4.6 Supplying system commands in a macro on page 940.

When you assign a system command (or a macro) to a System*Command, Mif2Go
generates one or more lines of code, each of which is a command to be run at a Windows
command prompt. Mif2Go writes these lines to a .bat file named for the keyword, saves
the file in your project directory, and causes Windows to execute the file.

Use backslashes
in file paths

When you specify a file path in a system command, use “\ ” as the separator character. For
example, suppose you want to make a backup copy of your book on another server before
you run each conversion, and then copy your result files to another directory:

[Automation]
SystemStartCommand = copy <$$_prjpath>*.fm x:\back up
SystemEndCommand = copy <$$_currpath>*.htm \outcop y

Start commands
work only when

you convert

If your configuration file includes the following setting:
[Automation]
OnlyAuto = Yes

commands assigned to SystemWrapCommand and to SystemEndCommand are executed;
however, commands assigned to SystemStartCommand are ignored. When you set
OnlyAuto=Yes , you are deploying an existing set of output files, and you do not want
that set disturbed; see §35.13 Postprocessing separately from converting on page 976.

34 AUTOMATING MIF2GO CONVERSIONS EXECUTING OPERATING-SYSTEM COMMANDS

ALL RIGHTS RESERVED. MAY 18, 2013 939

34.4.2 Including macros and variables in system co mmands

System commands can include the following:

 • Mif2Go macro expressions
 • user variables you have defined in [UserVars]
 • macro variables you have defined in [MacroVariables]
 • the following predefined macro variables (see §28.3.4 Using predefined macro

variables on page 800):

Predefined macro variables other than those listed here do not work in system commands.
Macro variable <$$_macroparam> can be used only within a macro; see §28.7 Passing a
parameter to a macro on page 820.

Include macro
expressions

You can use macro expressions in system commands: math and string manipulations,
conditional expressions, loops, formatted output, and so forth; see §28.6 Using
expressions in macros on page 811.

Prompt for user
variables

You can have Mif2Go prompt you for values of user variables that appear in system
commands; see §34.5 Supplying run-time values for user variables on page 941.

34.4.3 Monitoring system command execution

To make system commands (and Windows system responses) visible in a command-
prompt window while a conversion is running:

[Automation]
; SystemCommandWindow =
; Hide (default, no display),
; Show (show during execution only),
; Keep (show until user dismisses)
SystemCommandWindow = Show

When you specify Show or Keep for SystemCommandWindow, the system-
command.bat file starts with the following lines:

REM For: path\to\sourcefilename
@ECHO Running batfilename
@ECHO ON

The @ECHO ON command causes the rest of the commands in the .bat file to be visible as
they are executed; however, the display might be very brief unless you have a huge
project. If there is an error, the error message displays even before the Running
batfilename line, an unavoidable Windows feature (because stderr cannot be
redirected to stdout).

The next line in the .bat file after your system command is:
@ECHO Finished batfilename

If SystemCommandWindow=Keep, the .bat file ends with:
@PAUSE

so that you can see what happened.

<$$_basename> Base file name (without path or extension) of the current
FrameMaker source file

<$$_currpath> Path (without trailing slash) to the current directory where
the configuration file resides

<$$_macroparam> Value of a parameter passed to the enclosing macro.
<$$_prjpath> Path (without trailing slash) to the directory where the

.prj file resides

EXECUTING OPERATING-SYSTEM COMMANDS MIF2GO USER’S GUIDE

940 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Note: Do not specify SystemCommandWindow=Keep for unattended use, because the
.bat file would wait forever for you to press a key.

The .bat file remains in the project directory, so you can see what it contains. The next
time you run the same kind of command, Mif2Go recycles the .bat file.

34.4.4 Changing configuration settings with system commands

You can use a system command to make an arbitrary run-time change to a project
configuration file, by having the command invoke command-line utility setini.exe ,
which is included in the Mif2Go distribution.

Command setini changes the value of a single setting:
setini inifile.ini section keyword value

For example:
setini _m2html.ini HTMLOptions NoFonts Yes

would exclude the use of tags in HTML output. To achieve this via system
command, you would specify:

[Automation]
SystemStartCommand = setini _m2html.ini HTMLOptions NoFonts Yes

34.4.5 Supplying system commands in a .bat file

You can use a text editor to create a Windows .bat file, put system commands in that file,
and assign the file name (along with any required path and parameters) to a
System*Command keyword. For example:

[Automation]
SystemEndCommand = buildjh 40

The file buildjh.bat contains a series of commands to build release 40 of a JavaHelp
system. See Windows Help for the syntax required for a .bat file to process parameters.

Note: Because system commands in .bat files require Windows command syntax, you
cannot use Mif2Go variables in .bat files.

34.4.6 Supplying system commands in a macro

You can put system commands in a Mif2Go macro. A macro consists of a special
configuration-file section to which you give a unique name; you invoke the macro by
assigning its name, enclosed in <$ >, to a System*Command keyword. See §28.1
Defining and invoking macros on page 787.

For example, suppose your workflow requires backing up your FrameMaker files to two
servers. You could define a macro to supply the two copy commands, and assign that
macro to a system command:

[Automation]
SystemStartCommand = <$backup>

[backup]
copy <$$_currpath>*.fm x:\\backup
copy <$$_currpath>*.fm "y:\\my other\\backup"

Notice the doubled backslashes (required in Mif2Go macros, where backslash is used as
an escape character), and the quotes around the path that includes a space. See §28.1.1
Defining macros on page 787.

34 AUTOMATING MIF2GO CONVERSIONS SUPPLYING RUN-TIME VALUES FOR USER VARIABLES

ALL RIGHTS RESERVED. MAY 18, 2013 941

Prompt for values
of variables in

macros

You can have Mif2Go prompt you for a value each time a System*Command is
processed; see §34.5 Supplying run-time values for user variables on page 941.

For example, suppose the second back-up location changes frequently. Mif2Go could
prompt you for a path name each time a back-up command is executed:

[Automation]
AskForUserVars=Always
SystemStartCommand=<$backup>

[UserVars]
back2=H:\Docfiles\backup2

[UserVarPrompts]
back2=Enter pathname for backup 2:

[backup]
copy <$$_prjpath>*.fm x:\\backup
copy <$$_prjpath>*.fm <$$back2>

When you start the conversion, Mif2Go prompts you for the value of back2 . Your
response replaces the initial default value in the configuration file. Next time you run the
conversion, the value you supplied last time appears as the initial value.

Comment out
commands in

macros

To omit running a particular system command without actually deleting the macro line
that executes the command, you can “comment out” the command by preceding it with a
semicolon. For example, suppose you do not always want to create a second backup:

[backup]
copy <$$_currpath>*.fm x:\\backup
; copy <$$_currpath>*.fm "y:\\my other\\backup"

34.5 Supplying run-time values for user variables
If some user variables change from one conversion run to the next, or if you do not know
what value to specify for a certain user variable until you are about to start a conversion,
you can have Mif2Go prompt you for a value. The prompt appears in the Edit User
Variable dialog, shown in Figure 34-4 on page 943.

In this section:
§34.5.1 Assigning an initial value to a user variable on page 941
§34.5.2 Assigning a prompt to a user variable on page 942
§34.5.3 Deciding how often to prompt for values of user variables on page 942
§34.5.4 Understanding when Mif2Go prompts for user variables on page 942
§34.5.5 Inspecting and editing values of user variables on page 943

34.5.1 Assigning an initial value to a user variab le

To be prompted for the value of a user variable, you must assign the variable an initial
default value in the following section:

[UserVars]
; User variables can be used in book commands, in m acros, or both.
; Enclose each variable in <$$...>.
; The [UserVars] section is searched after section [MacroVariables]
; in the .ini file, but before the same section in the macros file.
varname=initial value

The value you assign is the value Mif2Go displays via the Edit User Variable dialog at run
time. If you change the value via the Edit User Variable dialog, Mif2Go stores the new

SUPPLYING RUN-TIME VALUES FOR USER VARIABLES MIF2GO USER’S GUIDE

942 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

value in the configuration file in place of the initial default value. See §34.5.5 Inspecting
and editing values of user variables on page 943.

Note: The [UserVar] section must be in your project configuration file, not in a
configuration template. See §30.6.2 Deciding what to include in a general
configuration template on page 862

34.5.2 Assigning a prompt to a user variable

To specify what the Edit User Variable dialog displays for a prompt, assign a phrase to the
variable in question:

[UserVarPrompts]
varname=Prompt to use when a value is requested

If you do not specify a prompt for a user variable, Mif2Go displays the following default
prompt:

Edit content of variable, or supply new content:

For example:
[UserVarPrompts]
Version=Enter current version number:

Note: The [UserVarPrompts] section must be in your project configuration file, not
in a configuration template. See §30.6.2 Deciding what to include in a general
configuration template on page 862

34.5.3 Deciding how often to prompt for values of user variables

To tell Mif2Go that you want to be prompted for values of user variables, you must
specify when to display the prompt:

[Automation]
; AskForUserVars = Never (default), Always, or Once

Settings for AskForUserVars have the following effects:

See §34.5.1 Assigning an initial value to a user variable on page 941.

34.5.4 Understanding when Mif2Go prompts for user variables

Mif2Go prompts for user-variable values at the start of a conversion. Mif2Go reads the
main configuration file first, and then prompts for values of variables:

 • before reading file-specific configuration files, if you are converting a book
 • after reading any file-specific configuration file, if you are converting a single file.

As a result, if you specify an initial value for user variable MyVar in filename.ini , you
are prompted for the value of MyVar when you are converting filename.fm by itself; but

Never You are not prompted for values of user variables; Mif2Go uses whatever
values are specified in [UserVars] .

Always You are prompted for values each time you run the conversion; any value
you supply becomes the new default value in [UserVars] .

Once You are prompted for values the first time you run the conversion; then
Mif2Go resets AskForUserVars to Never , so the next time you run the
same conversion, the default values of user variables are whatever you
specified on the first run (unless, of course, you change the setting for
AskForUserVars back to Always or Once).

34 AUTOMATING MIF2GO CONVERSIONS SUPPORTING DOCUMENT REVIEW IN WORD

ALL RIGHTS RESERVED. MAY 18, 2013 943

you would be prompted for the value of MyVar when you are converting a book that
includes filename.ini only if you also specified an initial value for MyVar in the main
configuration file for the book.

34.5.5 Inspecting and editing values of user varia bles

To prompt you for the values of user variables, Mif2Go displays the Edit User Variable
dialog, shown in Figure 34-4. When the dialog opens, you see the following:

 • the name of the first user variable listed in [UserVars] ; see §34.5.1 Assigning an
initial value to a user variable on page 941

 • the prompt you specified for that variable (or the default prompt); see §34.5.2
Assigning a prompt to a user variable on page 942

 • the default value of the variable (as specified in [UserVars]).

Figure 34-4 Edit User Variable dialog

>> To change the value of a variable, edit the value displayed in the text box.

>> To change the variable back to its default value, click Revert .

>> To save the value of a variable, click OK; Mif2Go stores the value in the
[UserVars] section of the configuration file. If there is another variable listed in
[UserVars] , Mif2Go displays its name, prompt, and value; if not, the dialog is
dismissed.

>> To inspect (or change) the value of a previously displayed variable, click Prev. If
your pointing device is set to “Snap to default”, proceed cautiously, because each time you
click Prev the pointer will snap back to the OK button.

>> To cancel the conversion, click STOP! Any values you already changed are stored in
the configuration file as the new defaults.

34.6 Supporting document review in Word
Mif2Go converts FrameMaker documents to Word, but Mif2Go does not convert Word
documents to FrameMaker (see §6.1 Converting to Word: a one-way street on page 141).
However, in an environment where writers use FrameMaker and everyone else uses Word,
you can still create a workable review process in which reviewers get to work in Word,
which they already know how to use, and writers maintain the documents in FrameMaker:

1. Create a FrameMaker conversion template (see §2.4 Importing formats from a
conversion template on page 67) to make converted documents look almost the same
in Word as they look in FrameMaker.

CONVERTING AUTONUMBERS FOR DATABASE SYSTEMS MIF2GO USER’S GUIDE

944 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

2. Create a Word template with macros set up to turn on revision tracking automatically
whenever anyone opens a converted document.

3. Use Mif2Go to convert FrameMaker documents to RTF.

4. Place the converted documents where your reviewers can access them; probably on a
network drive.

5. Allow reviewers time to edit the documents in Word. Any changes they make show up
in color. Word not only tracks the changes, but also shows who made them, so if you
have questions you can contact the author.

6. When reviewers are finished, use Paste Special in FrameMaker for plain-text (not
RTF) copy/paste, to incorporate Word changes into the original FrameMaker
document. Pasting as plain text will save you endless grief from the (mostly invisible)
artifacts that are retained in your FrameMaker file when you use RTF import.

7. Use Mif2Go to convert the updated FrameMaker documents to RTF again, so
reviewers can open the converted documents in Word and see the results.

Do not attempt to “round-trip” an edited Word document back into FrameMaker; in most
cases the clean-up time and cost would far exceed the time and cost to insert edits by hand
in FrameMaker. Problems might not be visible immediately, but then will surface when
you are in final production. For example, applying to the reimported document a template
that changes character properties of paragraph formats might appear not to work at all,
because a character format was silently added to all default-format text. Even when
changes are extensive, it is best to use copy and paste as plain text, one FrameMaker
paragraph at a time.

See §6 Converting to print RTF on page 141.

34.7 Converting autonumbers for database systems
Suppose you use FrameMaker autonumbers for headings of the style you see in the
Mif2Go User’s Guide; and suppose you use an automated system to populate a database
with the number and text of each heading, from Mif2Go -generated HTML output. You
could use macros and macro variables to capture the numerical value of each autonumber,
and perhaps output the number as the name value of a tag, such as .

For example, suppose in FrameMaker you have three heading format levels, with the
following autonumber scheme:

Suppose all the headings are bold, including the autonumbers. In HTML output these
heading formats might look like the following:

2 This is a chapter title
13.5 This is a second-level heading
6.2.7 This is a third-level heading

To capture each autonumber as a six-digit number, with a leading zero (as needed) for
each level (for example, 060207), you could provide settings and macros such as the
following:

[HTMLParaStyles]
Chapter=Split Title CodeStore CodeAfter

Chapter H:<$chapnum> < =0>< =0>

Heading1 H:<$chapnum>.<n+> < =0>

Heading2 H:<$chapnum>.<n>.<n+>

34 AUTOMATING MIF2GO CONVERSIONS CONVERTING AUTONUMBERS FOR DATABASE SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 945

Heading1=Split Title CodeStore CodeAfter
Heading2=Split Title CodeStore CodeAfter

[StyleCodeStore]
; Set aside in a macro variable the code generated for each heading:
*=Stored

[ParaStyleCodeAfter]
; Parse the autonumber of each heading format; inse rt the resulting
; six-digit number as , and then outp ut the stored
; heading itself:
Chapter=<$ParseAnum><a name="<$ChapNum>"><$$Stored>
Heading1=<$ParseAnum><a name="<$Hdg1Num>"><$$Stored >
Heading2=<$ParseAnum><a name="<$Hdg2Num>"><$$Stored >

[ChapNum]
; Chapter number followed by four zeros:
<$$Chap as %0.2d>0000\

[Hdg1Num]
; Chapter number, then Heading1 number, then two ze ros:
<$$Chap as %0.2d><$$Hdg1 as %0.2d>00\

[Hdg2Num]
; Chapter number, then Heading1 number, then Headin g2 number:
<$$Chap as %0.2d><$$Hdg1 as %0.2d><$$Hdg2 as %0.2d> \

[ParseAnum]
; Pick through the stored code to pull out successi ve pieces of
; the autonumber, and put them in separate macro var iables:
<$$Text = ($$Stored after "")>\
<$$Anum = ($$Text before " ")>\
<$$Chap = ($$Anum before ".")>\
<$$Anum2 = ($$Anum after ".")>\
<$$Hdg1 = ($$Anum2 before ".")>\
<$$Hdg2 = ($$Anum2 after ".")>\

Trailing backslashes in the macro code prevent hard line breaks from going into the
HTML output.

As each heading is processed, Mif2Go sets aside the generated HTML code in macro
variable $$Stored . Mif2Go parses the stored code as follows, to extract the autonumber:

1. Skips everything in the stored code up through the tag.

2. Puts in $$Anum everything between the tag and the next space; this includes the
whole autonumber.

3. Stores in $$Chap the characters before the first period in $$Anum.

4. Puts in $$Anum2 the characters after the first period in $$Anum.

5. Stores in $$Hdg1 the characters before the first period in $$Anum2.

6. Stores in $$Hdg2 the characters after the first period in $$Anum2.

7. Assembles each six-digit number. The %0.2d format specifier takes care of any
dangling tags, and provides any needed leading zeros.

Back in the individual format settings in [ParaStyleCodeAfter] , Mif2Go puts out the
start of the <a> tag, and then whichever of the macro variables is needed. Finally, Mif2Go
adds the original stored heading itself to the output, and closes the <a> tag.

See §28 Working with macros on page 787.

RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS MIF2GO USER’S GUIDE

946 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

34.8 Renaming output files for automated systems
For names of Mif2Go -generated files, Mif2Go is more restrictive than Windows. Only
alphanumeric characters and upper-ASCII accented characters are allowed; no
punctuation at all (except a leading underscore for starting topic files), and no spaces,
unless you explicitly override these restrictions. See §1.1.2 File, directory, and path names
on page 51.

The ability to respecify output file names is available for a single purpose: to allow
creation of files that external software tools need to have named a particular way. Doing so
works well for that purpose. Do not try to rename split files unless you are constructing
an automated system. Why? Because our experience shows there is a very high
probability of name collisions.

Note: Renaming an output file outside of Mif2Go breaks any links to that file; however,
see §19.6.3 Enabling links to renamed or relocated files on page 622.

In this section:
§34.8.1 Understanding which files can be renamed on page 946
§34.8.2 Renaming individual output files on page 946
§34.8.3 Using custom markers to name output files on page 947
§34.8.4 Using paragraph formats to name output files on page 947
§34.8.5 Including identifiers and sequence numbers in file names on page 952

34.8.1 Understanding which files can be renamed

You can rename only split and extracted HTML and XML files. You cannot rename the
file produced before the first split; that file must have the same name as its FrameMaker
file. For example, suppose you are converting a FrameMaker file named models.fm , and
splitting it into multiple HTML files. The first file created, which will most likely be
empty of content, is named models.htm . Mif2Go generates the names of the rest of the
files.

The reason for this requirement is that when Mif2Go checks to see if a referencing (or
referenced) file has been created, Mif2Go knows only the name of the FrameMaker file,
not the names of split files. So Mif2Go looks for an HTML file with the same name; if it is
not there, Mif2Go concludes that the file has not been processed yet, and therefore does
not try to update any references it contains to the current file. When Mif2Go does see the
originally named file, updating can proceed.

You can have Mif2Go split each FrameMaker file on the very first heading (see §18.2.2.2
Preventing splits that create unwanted files on page 588), so that the first output file is
empty; then you can leave the empty files behind when you move output files to their final
destination. (Do not delete the empty files; doing so could break interfile links. See
§20.4.8 Specifying an alternate file sequence for browse links on page 644.)

34.8.2 Renaming individual output files

Do not try to rename Mif2Go-generated files outside of Mif2Go.

To substitute a different name for a particular split or extract output file, map the original
name to the new name (without extension):

[HtmlFiles]
; original html filename = desired html filename, o nly for split
; or extract files, not usable for files named for t he original

34 AUTOMATING MIF2GO CONVERSIONS RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 947

; Frame file
splitfilename = newname

We strongly advise all-lowercase file names, so that they work from a UNIX server, where
references are case sensitive. Do not include spaces or non-alphanumeric characters in file
names.

You cannot use the [HtmlFiles] section to rename files other than those produced by
splitting; not even the file before the first split point, which retains the original
FrameMaker name. Mif2Go writes this file even if it is essentially empty.

See also:
§18.2.2.2 Preventing splits that create unwanted files on page 588.
§18.4.1 Understanding how split and extract files are named on page 593.

34.8.3 Using custom markers to name output files

To specify a file name via marker, you can create a FrameMaker marker type called
FileName and insert a FileName marker in the first paragraph of each part to be split or
extracted. Make the content of each FileName marker the name you want for the resulting
file, without path or extension.

Duplicated file
names are hard

to locate

Using FileName marker can result in two sections of your document having the same
name. When this happens the second file overwrites the first, and the first topic does not
appear in output. This error is almost impossible to find, unless you search very
specifically through all file-name settings and markers. Expect many problems of this type
if you use FileName markers to override Mif2Go -generated file names.

Use FileName
markers only for
split or extracted

files

FileName markers work for any split or extracted file, but not for the first file produced
from each FrameMaker file, which must have the same base name as the FrameMaker file.
However, you can specify a split at the very first paragraph in each FrameMaker file,
usually a chapter heading. For example:

[HTMLOptions]
StartingSplit=Yes

[HTMLParaStyles]
ChapTitle=Split

Keep empty files The FrameMaker-named split files will be empty, and need not be included with your
deliverables. However, do not delete these files from the project directory; subsequent
conversions might require their presence.

As an alternative, you can add the FileName property to another marker: for example,
custom marker type Split (see §18.2.1 Designating split points on page 586), or custom
marker type ExtrStart (see §18.7.1 Using markers for extract processing on page 602); and
specify the name of the file as the marker content.

See also:

§29 Working with FrameMaker markers on page 831
§18 Splitting and extracting files on page 585

34.8.4 Using paragraph formats to name output file s

According to Mif2Go developers, naming output files using paragraph content is a Very
Bad Idea. You are almost certain to have name conflicts that result in Mif2Go overwriting
one file with another, and you will not know it happened until users complain.

RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS MIF2GO USER’S GUIDE

948 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

However, at your peril, you can assign file names based on the content of paragraphs:
either existing paragraphs (usually heading paragraphs whose formats designate split
points), or paragraphs in a special format that you dedicate to this purpose.

To help ensure uniqueness of file names, you can also specify a fixed or variable file-name
prefix or suffix, or both.

In this section:
§34.8.4.1 Constructing file names based on paragraph content on page 948
§34.8.4.2 Including FrameMaker variables in output file names on page 949
§34.8.4.3 Basing output file names on existing paragraph formats on page 949
§34.8.4.4 Creating special paragraph formats to name output files on page 950
§34.8.4.5 Specifying a file-name prefix or suffix on page 950
§34.8.4.6 Constructing file names from multiple paragraph formats on page 951
§34.8.4.7 Preventing duplicate file names based on paragraph formats on page 952

34.8.4.1 Constructing file names based on paragrap h content

You can specify names for HTML or XML output files by designating a FrameMaker
paragraph format to use for this purpose, and listing the format name in the
[HTMLParaStyles] section. The content of each paragraph in this format becomes the
base name of a new split part:

 • prefixed with whatever you specify for [StyleFilePrefix] ,
 • suffixed with whatever you specify for [StyleFileSuffix] , and then
 • followed by the file extension.

To use a paragraph format to name split files, assign the FileName property to the format:
[HTMLParaStyles]
paratag = FileName

Object ID
replaces

unusable content

If the content of a paragraph to which you assign the FileName property is empty, or
consists only of characters that are not valid for file names, Mif2Go uses the ObjectID of
the paragraph for the file name instead (see §18.4.1 Understanding how split and extract
files are named on page 593), along with any prefix or suffix you specify for file names
(see §34.8.4.5 Specifying a file-name prefix or suffix on page 950).

Ensure valid file
names

These cobbled-together split-file names are guaranteed to consist of valid file-name
characters only with the following default setting:

[HTMLOptions]
; UseRawName = No (default, make [HTMLParaStyles] F ileName valid)
; or Yes
UseRawName = No

When UseRawName=Yes, file names generated from paragraphs retain the full content of
the paragraph, including any whitespace and punctuation; that is, unless the paragraph
consists only of non-alphanumeric characters, in which case Mif2Go uses the ObjectID of
the paragraph for the file name.

When UseRawName=No, all whitespace and punctuation are removed from the file name,
unless you set either or both of the following options to Yes; if you set either option, we
can no longer guarantee that the generated file names will be valid:

[HTMLOptions]
; When UseRawName=No, allow underscores and spaces to be passed
; through from headings with the FileName property as follows:
; KeepFileNameUnderscores = No (default, remove und erscores) or Yes
KeepFileNameUnderscores = Yes

34 AUTOMATING MIF2GO CONVERSIONS RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 949

; KeepFileNameSpaces = No (default, remove or chang e spaces) or Yes
KeepFileNameSpaces = Yes

When KeepFileNameSpaces=No , you can choose to replace each space in the file name
with some other character:

[HTMLOptions]
KeepFileNameSpaces = No
; ChangeFileNameSpaces = No (default; if not kept, remove) or
; Yes (if not kept, replace with the FileNameSpace Char, below)
ChangeFileNameSpaces = Yes
; FileNameSpaceChar = character with which to repla ce spaces,
; default '_', used if both KeepFileNameSpaces=No an d
; ChangeFileNameSpaces=Yes
FileNameSpaceChar = _

The default replacement character is an underscore. The setting for
FileNameSpaceChar takes effect only if both of the following are true:

 • KeepFileNameSpaces = No

 • ChangeFileNameSpaces = Yes .

The only non-alphanumeric character replaced is the space. All other non-alphanumeric
characters are removed. For example:

Basic 40/41/42 Chipset

becomes:
Basic_404142_Chipset

The forward slashes are removed.

34.8.4.2 Including FrameMaker variables in output file names

To construct HTML or XML output file names based in part on the values of FrameMaker
variables present in the document you are converting, you might have to employ
additional Mif2Go macros to make variable values comply with the requirements for
Mif2Go file names. This is because the following options described in §34.8.4.1
Constructing file names based on paragraph content on page 948 have no effect on content
derived from FrameMaker user variables:

UseRawName
KeepFileNameSpaces
ChangeFileNameSpaces
FileNameSpaceChar

For example, to replace spaces in the content of a FrameMaker user variable, you might
have to use a macro such as the following to transform the variable value to a string that is
acceptable for inclusion in a file name:

<$$newval = ($$myspecialvar replace " " with "-")>

See also:
§28.3.5 Treating FrameMaker user variables as macro variables on page 801
§28.3.6 Using some FrameMaker system variables as macro variables on page 802
§28.6.5 Specifying substrings in expressions on page 817
§34.8.4.5 Specifying a file-name prefix or suffix on page 950

34.8.4.3 Basing output file names on existing para graph formats

If you use an existing paragraph format (usually a heading) in your FrameMaker
document to mark split points, and the paragraphs in this format already contain

RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS MIF2GO USER’S GUIDE

950 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

appropriate text for output file names, you can assign the FileName property to that
format, and if necessary specify prefix and suffix (see §34.8.4.5 Specifying a file-name
prefix or suffix on page 950). This is a simple way to use titles for file names.

However, if you are creating HTML Help (see §9 Generating Microsoft HTML Help on
page 295) you would be asking for trouble. Most Help systems have files with identical
titles at several points; titles such as “Summary” or “Overview” often appear under several
topics, so using the title as the file name is almost certain to cause name collisions, unless
you also include a unique identifier in the prefix or suffix, such as the FileID and a
sequence number. See §34.8.5 Including identifiers and sequence numbers in file names
on page 952.

If you ever duplicate a FileName heading in the same file, you are in deep trouble with no
warning. The later file will silently overwrite the earlier. It is your responsibility to detect
and avoid potential collisions, by changing the text of duplicate headings, or insuring
uniqueness via sequence numbers. See §34.8.4.7 Preventing duplicate file names based on
paragraph formats on page 952 for another way to accomplish this. In a large Help system,
you might have to use a DBMS (Data Base Management System), such as SQL Server or
Access, for the names.

34.8.4.4 Creating special paragraph formats to nam e output files

A way to assign file names that is slightly less hazardous than using titles, but still unsafe,
is to specify a special paragraph format to hold the names. If paragraphs in this format are
used solely for naming files, most likely you do not want them to actually appear in the
output. To prevent their appearance, specify the Delete property:

[HTMLParaStyles]
ParaFmt = FileName Delete

Insert a new paragraph with format ParaFmt anywhere after a split heading and before
the next split point. Although the element paragraph whose format you designated can be
anywhere in the split file, usually you would put it right after the heading that starts the
split. Mif2Go uses the content of that paragraph as the base part of the file name. The
Delete property removes the paragraph from the HTML output (see §21.3.12
Eliminating unwanted paragraphs on page 652); you can use conditional text to remove it
from your FrameMaker print version.

For example, to supply your own names for all the HTML topic files to be generated from
your FrameMaker document, you could do the following:

1. Create and catalog a FrameMaker paragraph format (for example, Splitname).

2. Place a Splitname paragraph in each portion of your FrameMaker document that will
become a separate HTML topic file.

3. Make the contents of each Splitname paragraph the base file name you want for that
particular topic.

4. Make all Splitname paragraphs conditional, so they do not show up in print versions of
your FrameMaker document.

5. Specify the following setting:
[HTMLParaStyles]
Splitname=FileName Delete

34.8.4.5 Specifying a file-name prefix or suffix

You can specify a prefix, a suffix, or both, for format-based names of HTML output files:

34 AUTOMATING MIF2GO CONVERSIONS RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 951

[StyleFilePrefix]
; doc format = prefix to use (if any) for file name in para content
parafmt=splitfileprefix

[StyleFileSuffix]
; doc format = suffix to use (if any) for file name in para content
parafmt=splitfilesuffix

If you are splitting files at Heading1 paragraphs, for example, you could specify the
following properties:

[HTMLParaStyles]
Heading1=Split Title FileName

[StyleFilePrefix]
Heading1=ug

[StyleFileSuffix]
Heading1=03

If a given instance of Heading1 consists of the text “Getting Started”, the resulting HTML
filename would be ugGettingStarted03.htm .

You can use macros and macro variables (see §28.1 Defining and invoking macros on
page 787) in sections [StyleFilePrefix] and [StyleFileSuffix] .

For example, suppose you have defined a FrameMaker variable called BkNum in your
document, and you want to use the value of that variable as a file-name prefix:

[StyleFilePrefix]
Heading1=<$$BkNum>

This works because FrameMaker user variables can be employed as Mif2Go user
variables; see §28.3.1 Creating and invoking macro variables on page 796. To make the
content conform to file-name requirements, see §34.8.4.2 Including FrameMaker
variables in output file names on page 949.

You can also use predefined macro variables; for example, <$$_objectid> , which has
the advantage of guaranteeing that each file name will be unique. See §29.8 Identifying
markers with variable <$$_objectid> on page 847.

34.8.4.6 Constructing file names from multiple par agraph formats

Suppose you split files on both Heading1 and Heading2 paragraph formats, and you want
each Heading2 split-file name to be prefixed by the content of the preceding Heading1
paragraph. You can use the TextStore property to capture the content of each succeeding
Heading1 paragraph, and make that content available to all Heading2 split files up to the
next Heading1 paragraph:

[HTMLParaStyles]
ChapterTitle = Split Title FileName
Heading1 = Split Title FileName TextStore
Heading2 = Split Title Filename

[StyleFilePrefix]
Heading2 = <$($$Heading1 replace " " with "_")>_

The TextStore property uses the format name by default for the name of the variable it
creates (see §28.3.7.1 Capturing paragraph content with the TextStore property on
page 803), so you can simply specify $$Heading1 in the prefix value. You can use a
macro expression to replace any spaces in Heading1 content; see §28.6.5 Specifying
substrings in expressions on page 817.

RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS MIF2GO USER’S GUIDE

952 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

34.8.4.7 Preventing duplicate file names based on paragraph formats

To ensure uniqueness of file names without using a prefix or suffix, you can have Mif2Go
override a file name, by combining the two paragraph-based file-naming methods:

1. Add a special paragraph format in FrameMaker to enable creation of a file name other
than from an existing paragraph, as described in §34.8.4.4 Creating special paragraph
formats to name output files on page 950.

2. Use the FileName property in [HTMLParaStyles] for both the existing paragraph
and the special paragraph formats. The file-name paragraph should follow (not
precede) the heading paragraph; the last name specified wins.

For example:
[HTMLParaStyles]
Heading1 = Split Title FileName
Splitname = FileName Delete

34.8.5 Including identifiers and sequence numbers in file names

To ensure uniqueness of file names for split files, when you are constructing file names
based on paragraph formats you might want to include in the file-name prefix or suffix any
or all of the following predefined macro variables:

To specify a starting value (default 0) and increment (default 1) for <$$_splitnum> :
[HtmlOptions]
SplitNumStart=0
SplitNumIncrement=1

The value of <$$_splitnum> :

 • begins at SplitNumStart for the first split file
 • increments by SplitNumIncrement for each subsequent split file
 • starts over again at SplitNumStart for each FrameMaker file.

You can format <$$_splitnum> to include leading zeroes, and to specify the number of
digits; see §28.6.3 Displaying expression results in output on page 813. For example:

[StyleFilePrefix]
Head*=<$$_fileid><$$_splitnum as %0.3d>

You could use predefined macro variable <$$_basefile> instead of (or in addition to)
<$$_fileid> , to supply in a prefix or suffix the base name of the FrameMaker file from
which each HTML file was split:

[StyleFilePrefix]
Head*=<$$_fileid><$$_basefile><$$_splitnum as %0.3d >

You can include the base file name that Mif2Go assigns to the split file. For example:
[HTMLParaStyles]
Head*=Split Title FileName

[StyleFilePrefix]
Head*=<$$_basefile>_<$$_splitnum as %0.4d>_

<$$_fileid> FileID (as specified in mif2go.ini) of the FrameMaker file from
which the file was split

<$$_splitid> Base name of the split file, excluding the FileID portion

<$$_splitnum> A sequential number whose starting value and increment you can
specify

34 AUTOMATING MIF2GO CONVERSIONS RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS

ALL RIGHTS RESERVED. MAY 18, 2013 953

[StyleFileSuffix]
Head*=_<$$_fileid><$$_splitid>

Sequence
numbers have

their drawbacks

There are good reasons not to use sequence numbers in file names. With sequence
numbers, almost any revision can result in changes to file names. If you insert a new topic,
every topic that follows gets a new file name. The default Mif2Go file naming method
ensures the exact opposite: that hardly any revisions result in a file name change; the most
you usually get is a name addition for an added topic. Mif2Go does not change the file
names for all the following topics when you insert a new topic. Why is this important?
Because any links from other documents and projects, possibly created by other writers,
will be broken unless you rebuild absolutely everything in the document system, which
could be thousands of files. With the default method, nothing will break. If you think you
are the only one who cares about those links, do you know that will always be the case?

(No tables)

RENAMING OUTPUT FILES FOR AUTOMATED SYSTEMS MIF2GO USER’S GUIDE

954 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 955

35 Producing deliverable results

Mif2Go can automatically handle a certain amount of pre- and post-conversion processing
to prepare deliverables. This section describes the steps you can automate. Topics include:

§35.1 Understanding Mif2Go pre- and post-processing on page 955
§35.2 Activating and logging production of deliverables on page 956
§35.3 Understanding path values for deliverables on page 957
§35.4 Clearing out old files before converting on page 957
§35.5 Gathering additional files before converting on page 960
§35.6 Assembling files for distribution on page 961
§35.7 Placing graphics files for distribution on page 965
§35.8 Placing CSS or XSL files for assembly on page 969
§35.9 Gathering files for an HTML project: an example on page 970
§35.10 Gathering and processing Help-system files on page 971
§35.11 Archiving deliverables on page 973
§35.12 Placing deliverables in a shipping directory on page 975
§35.13 Postprocessing separately from converting on page 976

See also:
§34 Automating Mif2Go conversions on page 933

35.1 Understanding Mif2Go pre- and post-processing
When you convert a document, Mif2Go usually places all the files generated in the course
of the conversion in the project directory. As a result, the project directory subsequently
contains not only newly converted document files, but also configuration files and
generated conversion files that are not part of the converted document. It might even
contain obsolete output files from a previous conversion. See §C Document and
conversion files on page 1019.

For many output types, when you prepare a converted document for distribution you need
to separate the wheat from the chaff. It is a good idea to copy the converted files, along
with any other files that must be distributed with the output, to a directory where they can
be accessed by others, or easily compiled or archived for distribution. In many cases
Mif2Go can handle the compiling or archiving for you.

Before generating output files, Mif2Go can do the following:

 • Delete prior MIF files from the project directory. If you have just edited and
regenerated your FrameMaker documents, you do not need the MIF files from a prior
conversion. Deleting them instead of overwriting them avoids creating FrameMaker
back-up files, and speeds up conversion.

 • Delete prior output and conversion files from the project directory. Best not to leave
orphaned and obsolete files where they can be swept up into a new distribution.

 • Copy needed files into the project directory, such as configuration files and CSS files
that you keep in a central, safe location.

After generating output files, Mif2Go can do any or all of the following:

 • Assemble files for distribution:
 – Create a separate directory (or a directory structure) where results of a conversion,

along with ancillary files such as graphics, can be assembled for compiling,

ACTIVATING AND LOGGING PRODUCTION OF DELIVERABLES MIF2GO USER’S GUIDE

956 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

archiving, distribution, or use. Or, use an existing directory (or directory structure)
you designate for this purpose.

 – Gather necessary files into the wrap directory (and subdirectories, if appropriate).
 • Compile or archive deliverables, or both:

 – Create a separate “shipping” directory for compiled or archived results, or use an
existing directory you designate for this purpose.

 – Run a full-text-search indexing program (JavaHelp; putatively, Oracle Help for
Java).

 – Run a compiler (WinHelp or HTML Help).
 – Run an archiving program, and place the results in the shipping directory.

 • Log any operating-system commands executed in the course of assembling,
compiling, and archiving.

If your workflow is more involved than this, you can specify other pre- and post-
processing custom steps and arrange for interactive prompts, via system commands; see
§34 Automating Mif2Go conversions on page 933.

35.2 Activating and logging production of delivera bles
To have Mif2Go assemble files and optionally archive deliverables, either check
Wrap and Ship on the Export dialog, or specify the following option in your project
configuration file:

[Automation]
; WrapAndShip = No (default) or Yes (use WrapPath, ArchiveCommand,
; ShipPath, CopyGraphicsFrom, and CopyCssFrom)
WrapAndShip=Yes

When WrapAndShip=Yes , Mif2Go acts on all options in the [Automation] section of
the configuration file. To have Mif2Go place deliverables in a shipping directory, you
must also specify a value for ArchiveCommand ; see §35.11 Archiving deliverables on
page 973.

When WrapAndShip=No (the default), Mif2Go ignores most [Automation] settings,
unless you have Mif2Go run a compiler or indexer for a Help system (see §35.10
Gathering and processing Help-system files on page 971). Table 35-4 on page 972 shows
which [Automation] settings are activated when Mif2Go runs a compiler or indexer for
a Help system.

Note: If you specify CopyOriginalGraphics=Yes , graphics are copied regardless of
the value of WrapAndShip ; see §35.7.1 Copying referenced graphics to a
distribution directory on page 965.

Log the actions
taken

To have Mif2Go log the commands executed when WrapAndShip=Yes :
[Automation]
WrapAndShip=Yes
; LogAuto=No (default) or Yes (log all automation c ommands)
LogAuto=Yes

When LogAuto=Yes , each command Mif2Go executes to carry out an automation option
is recorded in the Mif2Go log file, provided logging is enabled; see §5.2 Logging
conversion events on page 115. LogAuto takes effect only when WrapAndShip=Yes .

Log runfm
diagnostic
messages

If you plan to use runfm for unattended production runs (see §36 Converting via runfm on
page 979), while you work out the process you might want to log additional diagnostic
messages to the FrameMaker console window:

35 PRODUCING DELIVERABLE RESULTS UNDERSTANDING PATH VALUES FOR DELIVERABLES

ALL RIGHTS RESERVED. MAY 18, 2013 957

[Automation]
; RunfmDiagnostics = No (default) or Yes (include m ore diagnostic
; messages in the Frame console file when running f rom runfm)
RunfmDiagnostics=Yes

RunfmDiagnostics takes effect only when WrapAndShip=Yes . When you use runfm ,
you can also capture FrameMaker console messages in a log file. See:

§36.5.1 Increasing console diagnostics: runfm -diag option on page 988
§36.5.2 Capturing console diagnostics: runfm -log option on page 988.

35.3 Understanding path values for deliverables
When you set up a new conversion project (see §3.4 Choosing project set-up options on
page 79), Mif2Go includes the following settings in your new configuration file:

[Automation]
WrapAndShip = Yes
WrapPath = ._wrap
ShipPath = ..\.._ship

The default path for WrapPath is relative to the project directory for your project, and the
default path for ShipPath is relative to the WrapPath value; therefore, by default:

 • _wrap becomes a subdirectory of the project directory
 • _ship becomes a directory parallel to the project directory.

For example, if your FrameMaker files are in d:\mydoc , and you specify
d:\mydoc\myout as the project directory, the default values of WrapPath and
ShipPath would specify, respectively, the following locations:

d:\mydoc\myout_wrap
d:\mydoc_ship

You can specify other names and locations for these directories. See:
§35.6.1 Specifying a wrap directory on page 961
§35.12.1 Specifying a shipping directory for deliverables on page 975

See also:
§4.5 Specifying file paths in configuration settings on page 105

35.4 Clearing out old files before converting
By the time you are ready to start a production run, typically you have already completed
one or more trial conversions, perhaps leaving MIF files, conversion files, and old output
files in the project directory. You can have Mif2Go remove these files before starting the
next conversion, so they do not slow down the process, and so obsolete and unneeded files
do not accidentally end up in a deliverable.

In this section:
§35.4.1 Specifying when to delete old files from the project directory on page 958
§35.4.2 Specifying which files to delete from the project directory on page 958
§35.4.3 Understanding when not to delete .ref and .htm files on page 959
§35.4.4 Deleting MIF files from the project directory on page 960

See also:
§35.6.2 Emptying the wrap directory before copying on page 962

CLEARING OUT OLD FILES BEFORE CONVERTING MIF2GO USER’S GUIDE

958 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

35.4.1 Specifying when to delete old files from th e project directory

To specify under which conditions certain old files should be deleted from the project
directory before conversion:

[Automation]
WrapAndShip=Yes
; EmptyOutputDir = Never (default), Book (when runn ing a full book),
; or File (for running a single-file project with n o external links).
EmptyOutputDir = Never

Values of EmptyOutputDir have the following effects:

To determine which files to delete before conversion, see:
§35.4.2 Specifying which files to delete from the project directory on page 958
§35.4.3 Understanding when not to delete .ref and .htm files on page 959.

Note: EmptyOutputDir takes effect not only when WrapAndShip=Yes , but also when
one of the following is true for the output type specified:

HTML Help: [Automation]CompileHelp=Yes

WinHelp: [Automation]CompileHelp=Yes

JavaHelp: [JavaHelpOptions]FTSCommand= path/to/indexer
Oracle Help: [OracleHelpOptions]FTSCommand= path/to/indexer

See §35.10 Gathering and processing Help-system files on page 971.

35.4.2 Specifying which files to delete from the p roject directory

To specify which files Mif2Go should delete from the project directory before conversion:
[Automation]
WrapAndShip=Yes
; EmptyOutputFiles = list of files to delete, separ ated by spaces,
; wildcards allowed but not paths, no spaces within an item
EmptyOutputFiles = *.htm *.ref *.grx

If you do not include a setting for EmptyOutputFiles , depending on the value of
EmptyOutputDir (see §35.4.1 Specifying when to delete old files from the project
directory on page 958), by default Mif2Go deletes the following old files from the project
directory before conversion:

Note: If you list either *.dcl or *.dcb for EmptyOutputFiles , Mif2Go ignores
EmptyOutputDir and logs a warning. To delete .dcl and .dcb files, see §5.1.4
Reusing or discarding ASCII DCL files on page 111.

Never Default. Mif2Go does not delete any files from the project directory
before conversion.

Book Mif2Go deletes files before conversion only if you are converting a
FrameMaker book. Use this setting when you convert an entire book, or
reconvert a single chapter of a book.

File Mif2Go deletes the specified files before conversion only if you are
converting a single FrameMaker file. This setting is hazardous; use it only
for single-file projects with no external links.

Output type Default files deleted before conversion
HTML (all), XHTML *.htm *.html *.ref *.grx

XML *.xml *.ref *.grx

DITA *.dita *.ditamap *.bookmap .ref .grx

RTF *.rtf *.grx

35 PRODUCING DELIVERABLE RESULTS CLEARING OUT OLD FILES BEFORE CONVERTING

ALL RIGHTS RESERVED. MAY 18, 2013 959

Use wildcards; do
not use paths

The file specifications you assign to EmptyOutputFiles must be separated by spaces,
and no spaces are allowed within a file specification. You can use wildcards in file
specifications, but you cannot include paths.

Warning: Do not specify *.* or *.ini , or you will lose your configuration file(s);
and for Help systems, you might lose a great deal more.

Depending on the value of EmptyOutputDir (see §35.4.1 Specifying when to delete old
files from the project directory on page 958), Mif2Go deletes the specified files before
conversion begins, immediately after executing any system commands listed in your
configuration file for SystemStartCommand , in section [Automation] ; see §34.4
Executing operating-system commands on page 937.

Files get deleted
on compiling and

indexing, also

Note: EmptyOutputFiles takes effect not only when WrapAndShip=Yes , but also
when one of the following is true for the output type specified:

HTML Help: [Automation]CompileHelp=Yes

WinHelp: [Automation]CompileHelp=Yes

JavaHelp: [JavaHelpOptions]FTSCommand= path/to/indexer
Oracle Help: [OracleHelpOptions]FTSCommand= path/to/indexer

See §35.10 Gathering and processing Help-system files on page 971.

See also:
§5.1.4 Reusing or discarding ASCII DCL files on page 111
§35.4.1 Specifying when to delete old files from the project directory on page 958
§35.4.3 Understanding when not to delete .ref and .htm files on page 959
§35.4.4 Deleting MIF files from the project directory on page 960

35.4.3 Understanding when not to delete .ref and . htm files

If the files you are converting have no interfile links, you do not need.ref files. However,
if there are interfile links, .ref files are essential to make any links to split parts point to
the correct split file (see §18.2 Splitting files on page 586).

If you are converting to any HTML output type, in the following situations you must
provide an explicit setting for EmptyOutputFiles that does not include *.ref :

 • EmptyOutputDir =Book , and you are converting a book that has interbook links
 • EmptyOutputDir =File , and you are converting a file that has interfile links.

External links
require keeping

.ref files

By default, Mif2Go deletes *.ref when EmptyOutputDir is in play (see §35.4.1
Specifying when to delete old files from the project directory on page 958) and there is no
explicit setting for EmptyOutputFiles (see §35.4.2 Specifying which files to delete
from the project directory on page 958). When reference files are removed, you lose the
information added from other books or files that were already converted. If you are
running a series of such conversions, you can delete *.ref files before the first
conversion, but not thereafter.

On the other hand, a .ref file might actually be inaccurate if it covers a version of a file
that has different page breaks; and .ref files clutter the project directory. It is best to
remove them when you are about to reconvert an entire book.

External links
might require

keeping .htm files

When you are converting a single file with external links (such as a chapter of a book), for
links from the file being converted, the .ref s for the files referenced are needed. For links
to a file being converted, the .ref for that file is needed by the other files. The other .htm
files are needed too, because the file being converted might patch other .htm files when

GATHERING ADDITIONAL FILES BEFORE CONVERTING MIF2GO USER’S GUIDE

960 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

references shift to a different split part. Therefore, removing .htm files is hazardous when
there are interfile references of any sort; broken links can result.

On the other hand, obsolete and orphaned .htm files can end up in a deliverable if they
remain in the project directory, so it is best to remove them when you are about to
reconvert an entire book.

See also:
§35.4.1 Specifying when to delete old files from the project directory on page 958
§35.4.2 Specifying which files to delete from the project directory on page 958
§C.5 Working with reference files for HTML or XML on page 1027

35.4.4 Deleting MIF files from the project directo ry

To delete MIF files from the project directory before conversion, see §5.1.3 Reusing or
discarding MIF files on page 111.

As an alternative to DeleteExistingMIF , you could list *.mif as one of the file types
for EmptyOutputFiles . Then, MIF files would be deleted before conversion only when
the type of conversion (book vs. single file) is consistent with the setting for
EmptyOutputDir (see §35.4.1 Specifying when to delete old files from the project
directory on page 958). However, if you expect to rerun a conversion from the book file
after manually deleting only those MIF files you want to replace, do not list *.mif as a
file type for EmptyOutputFiles ; all your MIF files will be deleted, regardless of what
you check on the Export dialog. Use DeleteExistingMIF instead.

35.5 Gathering additional files before converting
For safety, or for sharing with other writers, you might keep copies of ancillary files in a
location other than the project directory. You can have Mif2Go copy those files into the
project directory before beginning a conversion.

To copy files into the project directory:
[Automation]
; CopyBeforeFrom = path to directory containing fil es to add to the
; project directory before processing. For example:
CopyBeforeFrom = ..\..\keepers
; CopyBeforeFiles = list of files to copy from Copy BeforeFrom
; to the project directory, separated by spaces, wi ldcards and
; paths (relative and absolute) allowed, no spaces within an
; item, default is no files
CopyBeforeFiles = *.ini

You can specify either an absolute path or a path relative to the project directory for
CopyBeforeFrom . If the path contains spaces, you must enclose it in quotes.

CopyBeforeFiles lists the files to copy from the CopyBeforeFrom directory to your
project directory. Files are copied after any pre-conversion actions that delete files from
the project directory; see §35.4 Clearing out old files before converting on page 957.

The file specifications you assign to CopyBeforeFiles must be separated by spaces, but
no spaces are allowed within a file specification. You can use wildcards in file
specifications. File specifications can include absolute or relative paths to indicate where
files should be copied from; the default is from the CopyBeforeFrom directory, and
relative paths are relative to the CopyBeforeFrom directory. The destination is always
the project directory

35 PRODUCING DELIVERABLE RESULTS ASSEMBLING FILES FOR DISTRIBUTION

ALL RIGHTS RESERVED. MAY 18, 2013 961

See also:
§35.6.6 Listing extracurricular files to put in the wrap directory on page 964

35.6 Assembling files for distribution
Mif2Go can create a “wrap” directory for assembling files, copy selected files to the wrap
directory for distribution, and optionally clear out the wrap directory first.

In this section:
§35.6.1 Specifying a wrap directory on page 961
§35.6.2 Emptying the wrap directory before copying on page 962
§35.6.3 Listing files to copy to the wrap directory on page 962
§35.6.4 Understanding when to use other file copy settings on page 963
§35.6.5 Understanding which files are copied from where on page 963
§35.6.6 Listing extracurricular files to put in the wrap directory on page 964

35.6.1 Specifying a wrap directory

To specify a wrap directory where Mif2Go can place files for distribution:
[Automation]
WrapAndShip = Yes
; WrapPath = path to dir to contain the files for d istribution,
; relative OK
WrapPath = path\to\wrap\directory

WrapPath can be an absolute path, or a path relative to the project directory. If the
directory specified by WrapPath does not exist, Mif2Go creates it.

When you first set up a conversion project, by default Mif2Go includes the following
setting for WrapPath in your new configuration file (see §35.3 Understanding path values
for deliverables on page 957):

WrapPath = ._wrap

This path is relative to the project directory. You can change this setting to specify a
different path, either relative or absolute. If the path contains spaces, you must enclose it
in quotes. If the directory named by WrapPath does not exist, Mif2Go creates the
directory.

To get rid of WrapPath entirely, you would have to set WrapPath to blank; if there is no
setting at all the default value is ._wrap , relative to the project directory.

Note: WrapPath takes effect not only when WrapAndShip=Yes , but also when one of
the following is true for the output type specified:

HTML Help: [Automation]CompileHelp=Yes

WinHelp: [Automation]CompileHelp=Yes

JavaHelp: [JavaHelpOptions]FTSCommand= path/to/indexer
Oracle Help: [OracleHelpOptions]FTSCommand= path/to/indexer

To make the wrap directory the same as your project directory, set WrapPath to blank:
[Automation]
WrapAndShip=Yes
WrapPath =

You might want to use this setting for HTML Help or for WinHelp; see §35.10 Gathering
and processing Help-system files on page 971.

ASSEMBLING FILES FOR DISTRIBUTION MIF2GO USER’S GUIDE

962 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

35.6.2 Emptying the wrap directory before copying

To clear out the wrap directory before Mif2Go copies files:
[Automation]
WrapAndShip=Yes
; EmptyWrapPath = Yes (default, remove all files be fore copying)
; or No (leave old files in place in WrapPath direc tory)
EmptyWrapPath=Yes

When EmptyWrapPath=Yes , provided WrapPath does not point to the project directory,
Mif2Go deletes the entire contents of the WrapPath directory before copying files.
However, if either of the following is true, Mif2Go does not delete anything, regardless of
the value of EmptyWrapPath :

 • neither the configuration file nor any referenced template has a setting for WrapPath

 • WrapPath points to the project directory.

For HTML output types, if WrapPath points to the same directory as
[Graphics]GraphPath , Mif2Go does not delete files unless both EmptyWrapPath and
EmptyGraphPath are set to Yes; see §35.7 Placing graphics files for distribution on
page 965.

When EmptyWrapPath=No , Mif2Go leaves the prior contents of the WrapPath directory
in place. Orphaned and obsolete files from previous conversion runs could accumulate and
find their way into current deliverables. For this reason, it is better to designate a directory
for WrapPath that is different from the project directory, and set EmptyWrapPath=Yes ;
that way nothing important is lost, and nothing unwanted is delivered.

Note: EmptyWrapPath takes effect not only when WrapAndShip=Yes , but also when
one of the following is true for the output type specified:

HTML Help: [Automation]CompileHelp=Yes

WinHelp: [Automation]CompileHelp=Yes

JavaHelp: [JavaHelpOptions]FTSCommand= path/to/indexer
Oracle Help: [OracleHelpOptions]FTSCommand= path/to/indexer

See §35.10 Gathering and processing Help-system files on page 971.

35.6.3 Listing files to copy to the wrap directory

To list files for Mif2Go to copy to the wrap directory (for example):
[Automation]
WrapAndShip=Yes
; WrapCopyFiles = list of files to copy, separated by spaces
WrapCopyFiles = *.htm *.js

The file specifications you assign to WrapCopyFiles must be separated by spaces, but no
spaces are allowed within a file specification. You can use wildcards in file specifications.
File specifications can include absolute or relative paths to indicate where files should be
copied from; the default is from the project directory, and relative paths are relative to the
project directory. The destination is always the WrapPath directory; see §35.6.1
Specifying a wrap directory on page 961.

Note: WrapCopyFiles takes effect not only when WrapAndShip=Yes , but also when
one of the following is true for the output type specified:

HTML Help: [Automation]CompileHelp=Yes

WinHelp: [Automation]CompileHelp=Yes

JavaHelp: [JavaHelpOptions]FTSCommand= path/to/indexer

35 PRODUCING DELIVERABLE RESULTS ASSEMBLING FILES FOR DISTRIBUTION

ALL RIGHTS RESERVED. MAY 18, 2013 963

Oracle Help: [OracleHelpOptions]FTSCommand= path/to/indexer

See §35.10 Gathering and processing Help-system files on page 971.

If no setting for WrapCopyFiles is present, certain files are copied by default from the
project directory to the wrap directory. Table 35-1 lists the files that are copied by default
for each output type.

Note: Never move output files; the originals must remain in the project directory to
permit links to work from other files (whenever you convert less than a full
document) and from other projects (always).

35.6.4 Understanding when to use other file copy s ettings

Use settings other than WrapCopyFiles for the following:

 • JavaHelp and Oracle Help files; see §11.3.7.2 Letting Mif2Go set up the directory
structure and copy files on page 379.

 • Graphics files and CSS files; see §35.7 Placing graphics files for distribution on
page 965 and §35.8 Placing CSS or XSL files for assembly on page 969.

35.6.5 Understanding which files are copied from w here

If WrapPath has a value other than the project directory when you run a conversion, by
default Mif2Go does the following:

 • If the directory designated by WrapPath already exists, and EmptyWrapPath=Yes
(the default), Mif2Go deletes the prior contents; otherwise Mif2Go creates the
directory.

 • After converting your document, Mif2Go copies necessary files from the project
directory to the WrapPath directory (and to subdirectories, if appropriate). Table 35-2
lists the files that are copied by default.

For example, to have Mif2Go copy to the WrapPath directory only HTML files and just
one particular JavaScript file from the project directory, and all other JavaScript files from
another directory:

[Automation]
WrapAndShip=Yes
WrapPath=.\Done
WrapCopyFiles = *.htm justone.js ..\jsfiles*.js

With these settings, Mif2Go also copies graphics files and CSS files from the project
directory, unless you specify otherwise; see §35.7 Placing graphics files for distribution on
page 965 and §35.8 Placing CSS or XSL files for assembly on page 969.

Table 35-1 Default files copied from project directory to wrap directory

Output type Files copied by default from project to WrapPath directory

HTML, XHTML, XML *.htm *.html *.xhtm *.xhtml *.xml *.js *.dtd *.mod *.ent
*.xsd

DITA *.dita *.ditamap *.bookmap *.dtd *.mod *.ent *.xsd

Eclipse Help *.htm *.js *.xml

HTML Help *.htm *.js *.hh? *.h

OmniHelp *.htm *.js

WinHelp *.rtf *.hpj *.cnt *.h

Word *.rtf

ASSEMBLING FILES FOR DISTRIBUTION MIF2GO USER’S GUIDE

964 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

For all output types, files specified by GraphCopyFiles (default *.gif , *.jpg , *.png ,
and *.svg for HTML, or *.bmp and *.wmf for RTF) are copied from the project
directory to the GraphPath directory; or to a subdirectory, for JavaHelp and Oracle Help;
see §35.7.1 Copying referenced graphics to a distribution directory on page 965.

For all HTML output types, files specified by CssCopyFiles (default *.css and
*.xsl) are copied from the project directory to the CssPath directory; see §35.8 Placing
CSS or XSL files for assembly on page 969.

35.6.6 Listing extracurricular files to put in the wrap directory

If your distribution should include other files in addition to those produced by Mif2Go ,
you can have those files copied into the wrap directory after conversion.

[Automation]
; CopyAfterFrom = path to directory containing file s to add to the
; wrap directory, after moving other files there; f or example:
CopyAfterFrom = ..\..\keepers
; CopyAfterFiles = list of files to copy from CopyA fterFrom
; to the wrap directory, default is no files; for e xample:
CopyAfterFiles = *.bookmap

For CopyAfterFrom you can specify either an absolute path or a path relative to the
project directory. If the path contains spaces, you must enclose it in quotes.

CopyAfterFiles lists the files to copy from the CopyAfterFrom directory to the wrap
directory, after all other files have been placed in the wrap directory.

The file specifications you assign to CopyAfterFiles must be separated by spaces, but
no spaces are allowed within a file specification. You can use wildcards in file
specifications. File specifications can include absolute or relative paths to indicate where
files should be copied from; the default is from the CopyAfterFrom directory, and
relative paths are relative to the CopyAfterFrom directory. The destination is always the
wrap directory.

Table 35-2 Files copied by default to the wrap directory

Output type

Files copied by default to the wrap directory, via:

WrapCopyFiles GraphCopyFiles CssCopyFiles

HTML, XHTML,
XML

*.htm *.html *.xml *.dtd
*.mod *.ent *.txt *.xsd
*.js

*.gif *.jpg *.png *.css *.xsl

DITA *.dita *.ditamap *.bookmap
*.dtd *.mod *.ent *.xsd

*.gif *.jpg *.png *.css *.xsl

HTML Help *.htm *.hh? *.h *.js *.gif *.jpg *.png *.css *.xsl

Eclipse Help *.htm *.js *.xml *.gif *.jpg *.png *.css *.xsl

JavaHelp,
Oracle Help *

*.xml *.hs *.jhm
*.htm *.js

*.gif *.jpg *.png *.css *.xsl

OmniHelp ** *.htm *.oh? *.gif *.jpg *.png *.css *.xsl

WinHelp *.rtf *.hpj *.cnt *.h *.bmp *.wmf Not applicable

Word *.rtf *.bmp *.wmf Not applicable

* Second group of files is copied to the HTML subdirectory. See §11.3.7 Creating a directory structure for
JavaHelp / Oracle Help on page 378.
** For OmniHelp, additional files are copied from a viewer directory; see §10.13 Assembling OmniHelp
files for viewing on page 369.

35 PRODUCING DELIVERABLE RESULTS PLACING GRAPHICS FILES FOR DISTRIBUTION

ALL RIGHTS RESERVED. MAY 18, 2013 965

35.7 Placing graphics files for distribution
If external graphics files referenced by your document are not already in the project
directory, you can have Mif2Go copy them there, or to a subdirectory, or to a wrap
directory for distribution. This is primarily an issue for HTML output; it is not usually
necessary for compiled WinHelp or for normal Word output. For some HTML output
types, graphics placement is restricted; see §23.3 Locating graphics files for HTML on
page 704.

In this section:
§35.7.1 Copying referenced graphics to a distribution directory on page 965
§35.7.2 Selecting graphics to copy from arbitrary locations on page 966
§35.7.3 Deleting prior contents of the graphics destination directory on page 967
§35.7.4 Synchronizing graphics settings for HTML output on page 968
§35.7.5 Synchronizing graphics settings for RTF output on page 969

See also:
§35.6 Assembling files for distribution on page 961.

35.7.1 Copying referenced graphics to a distributi on directory

When you specify WrapAndShip=Yes or designate a WrapPath directory, for HTML
output Mif2Go automatically copies graphics files from the project directory to the
directory designated by [Graphics]GraphPath ; see §23.3 Locating graphics files for
HTML on page 704. Mif2Go can also copy graphics files from other locations.

To have Mif2Go copy the graphics files referenced by your document to a location
relative to the HTML files generated for distribution:

[Automation]
; CopyOriginalGraphics = No (default) or Yes (copy graphics to the
; location specified by GraphPath)
CopyOriginalGraphics = Yes

When CopyOriginalGraphics=Yes , Mif2Go copies graphics from wherever they are
referenced by your FrameMaker document to one of the following destinations:

 • for JavaHelp and Oracle Help for Java, the directory designated by
[JavaHelpOptions]GraphSubdir (see §11.3.7.2 Letting Mif2Go set up the
directory structure and copy files on page 379)

 • for other HTML output types (and DCL output), the directory designated by
[Graphics]GraphPath , if any (see §35.7.4 Synchronizing graphics settings for
HTML output on page 968), otherwise the WrapPath directory

 • for RTF output types (and MIF output), the directory designated by WrapPath .

In other words, Mif2Go gathers referenced graphics by following the relevant links in the
source document; then, using the values of WrapPath and GraphPath , places those
graphics where links in the ready-for-distribution topic files expect to find them.

If your FrameMaker document references graphics files that are in a format not suitable
for HTML output, and if you have provided alternates in the same directory with the same
file names but a different file extension, you can specify the extension to use for HTML
output. See §31.3.1.2 Substituting graphics files for HTML on page 888.

Note: If you specify [Automation]OnlyAuto=Yes (see §35.13 Postprocessing
separately from converting on page 976), and you are relying on

PLACING GRAPHICS FILES FOR DISTRIBUTION MIF2GO USER’S GUIDE

966 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

CopyOriginalGraphics to get your graphics files into the wrap directory, they
will not arrive; graphics files are not copied when OnlyAuto=Yes .

35.7.2 Selecting graphics to copy from arbitrary l ocations

In addition to (or instead of) having Mif2Go gather up copies of the graphics files
referenced by your FrameMaker document (see §35.7.1 Copying referenced graphics to a
distribution directory on page 965), you can have Mif2Go copy all or selected graphics
files from other locations.

The paths in your FrameMaker document point to the images used during authoring. But
different output types require different image formats, so if an image is in the right format
for HTML, it is wrong for RTF. You can choose, on a per-project basis, which set of
images you want by selecting where to copy them from.

To specify which graphics files to copy and from where:
[Automation]
; CopyGraphicsFrom = path to dir containing graphic s files,
; relative OK
CopyGraphicsFrom = path\to\graphics\files
; GraphCopyFiles = list of files to copy from CopyG raphicsFrom,
; from project directory, and from arbitrary locatio ns.
GraphCopyFiles = *.gif *.jpg G:\special\images\logo .png

CopyGraphicsFrom and GraphCopyFiles take effect when WrapAndShip=Yes ,
CompileHelp=Yes , or FTSCommand=path\to\indexer (see §35.10 Gathering and
processing Help-system files on page 971).

Where to get
graphics files

When you specify a value for CopyGraphicsFrom , graphics files are copied first from
the project directory (unless it is the same as the destination directory), then from the
directory designated by CopyGraphicsFrom , to one of the destinations listed in §35.7.1
Copying referenced graphics to a distribution directory on page 965. If you specify a
relative path for CopyGraphicsFrom , that path is relative to the project directory.

Where to put
graphics files

The CopyGraphicsFrom command happens just before the CopyOriginalGraphics
command (see §35.7.1 Copying referenced graphics to a distribution directory on
page 965), and copies to the same place. When WrapAndShip=Yes , that place is the
concatenation of the wrap directory (if any) and the value of [Graphics]GraphPath . If
no value is specified for GraphPath , files are copied to the wrap directory; if no value is
specified for WrapPath , files are copied to a concatenation of the project directory and
GraphPath ; if neither is specified, files are copied to the project directory.

Which graphics
files to copy

You can use GraphCopyFiles to list files to be copied. Table 35-3 shows which graphics
files are copied by default for each output type. Files without paths assigned to
GraphCopyFiles are always copied first from the project directory, then from the
CopyGraphicsFrom directory (if any). If GraphCopyFiles is not specified, or is set to
nothing, all relevant graphics files are copied from the project directory and then from the
CopyGraphicsFrom directory (if any).

Table 35-3 Default graphics files copied for assembly

Output type Files copied by default from project dir ectory

DCL, MIF *.bmp *.wmf *.gif *.jpg *.png *.svg *.tif

HTML, XML types *.gif *.jpg *.png *.svg

RTF types *.bmp *.wmf

35 PRODUCING DELIVERABLE RESULTS PLACING GRAPHICS FILES FOR DISTRIBUTION

ALL RIGHTS RESERVED. MAY 18, 2013 967

The file specifications you assign to GraphCopyFiles must be separated by spaces, and
no spaces are allowed within a file specification. You can use wildcards in file
specifications, and include absolute or relative paths to indicate where graphics files
should be copied from. If you do not specify a path, the default is first from the project
directory, then from the CopyGraphicsFrom directory (if any). If you specify a relative
path, the path is relative to the project directory.

For example, to have Mif2Go copy graphics files for standard HTML output from
directory MyGraphics , parallel to the project directory, to directory Images , a
subdirectory of the WrapPath directory:

[Automation]
WrapAndShip=Yes
; WrapPath is relative to the project directory:
WrapPath=.\Final
; CopyGraphicsFrom is relative to the project direc tory:
CopyGraphicsFrom=..\MyGraphics

[Graphics]
; GraphPath is relative to the WrapPath directory:
GraphPath=./images

If you use backslashes for GraphPath , Mif2Go changes them to forward slashes before
inserting references in HTML output, from HTML files to image files. See §23.3 Locating
graphics files for HTML on page 704.

Synchronize with
other settings

If you plan to use CopyGraphicsFrom , make sure other graphics settings in the
configuration file are consistent with the setting for WrapPath . See:

§35.7.4 Synchronizing graphics settings for HTML output on page 968
§35.7.5 Synchronizing graphics settings for RTF output on page 969

Use system
commands

instead

As an alternative, you can collect graphics from multiple locations with a series of system
commands in a Mif2Go macro. For example:

[Automation]
SystemWrapCommand=<$GetGraphics>

[GetGraphics]
cd <$$_currpath>\\wrap
copy "c:\\my graphics*.jpg"
copy "c:\\more graphics*.jpg"

Notice the doubled backslashes (required in Mif2Go macros, where backslash is used as
an escape character), and the quotes around paths that includes spaces; see §34.4.6
Supplying system commands in a macro on page 940.

35.7.3 Deleting prior contents of the graphics des tination directory

To empty the destination directory before copying graphics files for HTML:
[Automation]
WrapAndShip=Yes
; EmptyGraphPath = No (default, leave graphics file s in place)
; or Yes (empty GraphPath directory before copying) HTML only
EmptyGraphPath=Yes

Note: For JavaHelp and Oracle Help, alternate settings apply; see §11.3.7.2 Letting
Mif2Go set up the directory structure and copy files on page 379.

EmptyGraphPath takes effect when WrapAndShip=Yes , CompileHelp=Yes , or
FTSCommand=path\to\indexer (see §35.10 Gathering and processing Help-system
files on page 971).

PLACING GRAPHICS FILES FOR DISTRIBUTION MIF2GO USER’S GUIDE

968 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When EmptyGraphPath=Yes , provided [Graphics]GraphPath does not point to the
project directory, Mif2Go deletes the entire contents of the GraphPath directory before
copying files into it. However, if either of the following is true, Mif2Go does not delete
anything, regardless of the value of EmptyGraphPath :

 • No setting is present for GraphPath

 • GraphPath points to the project directory.

If WrapPath points to the same directory as GraphPath , Mif2Go does not delete files
unless both EmptyWrapPath and EmptyGraphPath are set to Yes; see §35.6
Assembling files for distribution on page 961.

When EmptyGraphPath=No (the default), Mif2Go leaves the prior contents of the
GraphPath directory in place.

35.7.4 Synchronizing graphics settings for HTML ou tput

For HTML output types, check configuration settings for the following options; their
values must reflect the destination, not the origin, of graphics to be copied for distribution:

[Graphics]
; StripGraphPath = No (default)
; or Yes (remove path from graphics references)
; GraphPath = path to use (replacing any previous) for all graphics
; GraphPathOverrides = No (default) or Yes (overrid es any path
; in Config markers and in [GraphFiles], adding Grap hPath
; GraphSuffix = file extension to use for replaceme nt graphics

[GraphFiles]
; Original name (with or without extension) = new n ame (with
; extension); new name overrides any [Graphics]Grap hPath specified

[GraphSuffix]
; old suffix = new suffix, overrides [Graphics]Grap hSuffix

Note: For JavaHelp and Oracle Help, alternate settings apply; see §11.3.7.2 Letting
Mif2Go set up the directory structure and copy files on page 379.

The value for GraphPath , if present, is ordinarily a path relative to the wrap directory
where the generated HTML files are located. This value is inserted in tags in your
HTML output, as references to graphics files on the server; see §23.3 Locating graphics
files for HTML on page 704. If your configuration file does not include a setting for
GraphPath , by default tags do not include a path, unless you specify a path in
[GraphFiles] (see §31.3.1.2 Substituting graphics files for HTML on page 888).

If WrapPath points to the project directory:

 • Set StripGraphPath=Yes

 • Remove or comment out any setting for GraphPath

 • Set GraphPathOverrides=No (see §31.3.1.3 Overriding path specifications for
referenced graphics on page 888)

 • Make sure [GraphFiles] entries and configuration markers do not include paths.

If WrapPath points to any directory except the project directory:

 • Set StripGraphPath=No

 • Set GraphPath to point to the WrapPath directory, or to a directory relative to the
WrapPath directory

 • Set GraphPathOverrides=Yes

See also:
§23.3 Locating graphics files for HTML on page 704

35 PRODUCING DELIVERABLE RESULTS PLACING CSS OR XSL FILES FOR ASSEMBLY

ALL RIGHTS RESERVED. MAY 18, 2013 969

§23.4.1 Using referenced graphics without converting on page 706
§31.3 Replacing and relocating graphics files on page 887
§33.2.9.4 Overriding graphic properties for HTML on page 929

35.7.5 Synchronizing graphics settings for RTF out put

For RTF output types, check configuration settings for the following options; their values
must reflect the destination, not the origin, of graphics to be copied to the WrapPath
directory:

[Graphics]
; FileNames = Retain (default) or Map (in the Graph Files section)
; FilePaths (for graphics) = Retain (default) or No ne (strip off)

[GraphFiles]
; types to map, replace extension, old=new for refe renced graphics
; specific filenames to replace, old = new, overrid es type setting

If WrapPath points to the project directory:

 • Set FileNames=Map

 • Set FilePaths=None

 • Make sure [GraphFiles] entries do not include paths.

If WrapPath points to any directory other than the project directory:

 • Set FileNames=Map

 • Set FilePaths=Retain

 • Make sure any paths in [GraphFiles] entries point to the WrapPath directory.

See §Table 31-1 RTF replacement graphics file mappings and locations on page 892.

See also:
§31.3 Replacing and relocating graphics files on page 887.

35.8 Placing CSS or XSL files for assembly
For HTML output types, when you specify WrapAndShip=Yes and designate a
WrapPath directory, Mif2Go automatically copies CSS or XSL files from the project
directory to the directory designated by [CSS]CssPath . Mif2Go can also automatically
copy CSS or XSL files from another directory you specify.

To have Mif2Go copy CSS or XSL files:
[Automation]
WrapAndShip=Yes
; CopyCssFrom = path to directory containing the .c ss files,
; relative OK
CopyCssFrom=..\css
; CssCopyFiles = list of files to copy from CopyCss From and output
; directories to the [CSS]CssPath (which defaults t o the WrapPath)
CssCopyFiles=*.css *.xsl

CopyCssFrom and CssCopyFiles take effect when WrapAndShip=Yes ,
CompileHelp=Yes , or FTSCommand=path\to\indexer (see §35.10 Gathering and
processing Help-system files on page 971).

Say where to get
CSS files

When you specify a value for CopyCssFrom , *.css and *.xsl files are copied first from
the project directory (unless it is the same as the destination directory), then from the
directory designated by CopyCssFrom , to one of the following destinations:

GATHERING FILES FOR AN HTML PROJECT: AN EXAMPLE MIF2GO USER’S GUIDE

970 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • the directory designated by [CSS]CssPath , if any (see §22.4.3 Designating and
locating a CSS file on page 686); otherwise,

 • the directory designated by WrapPath (see §35.6 Assembling files for distribution on
page 961) or, for JavaHelp and Oracle Help, the .\html subdirectory.

If you specify a relative path for CopyCssFrom , that path is relative to the project
directory.

List CSS files to
be copied

You can use CssCopyFiles to list CSS or XSL files to be copied; the default files are
*.css and *.xsl . Files assigned to CssCopyFiles are always copied first from the
project directory to the directory designated by [CSS]CssPath , then from the
CopyCssFrom directory (if any). If CssCopyFiles is not present, or is set to nothing, all
*.css and *.xsl files are copied from the project directory and then from the
CopyCssFrom directory (if any).

The file specifications you assign to CssCopyFiles must be separated by spaces, and no
spaces are allowed within a file specification. You can use wildcards in file specifications,
and include absolute or relative paths to indicate where files should be copied from. If you
do not specify a path, the default is first from the project directory, then from the
CopyCssFrom directory. If you specify a relative path, the path is relative to the project
directory.

For example, to have Mif2Go copy CSS files from directory MyCSS, parallel to the project
directory, to directory Styles , a subdirectory of the WrapPath directory:

[Automation]
WrapAndShip=Yes
; WrapPath is relative to the project directory:
WrapPath=.\Final
; CopyCssFrom is relative to the project directory:
CopyCssFrom=..\MyCSS

[CSS]
; CssPath is relative to the WrapPath directory:
CssPath=.\Styles

35.9 Gathering files for an HTML project: an examp le
Suppose your file structure looks like this:

D:\AllDocs\CSS CSS files for all HTML projects
D:\MyDoc FrameMaker files, projects file, FileID file
D:\MyDoc\Graphics Graphics
D:\MyDoc\HTML Mif2Go output files and project configuration file

And you want the files for your HTML project assembled as follows:
D:\MyDoc\HTML_wrap HTML files should be copied here
D:\MyDoc\HTML_wrap\images Graphics files should be copied here
D:\MyDoc\HTML_wrap\styles CSS files should be copied here

Your projects file (.prj , in D:\MyDoc with your FrameMaker files) would specify
D:\MyDoc\HTML as the path for Mif2Go to use for output. D:\MyDoc\HTML is also
where your project configuration file is located.

35 PRODUCING DELIVERABLE RESULTS GATHERING AND PROCESSING HELP-SYSTEM FILES

ALL RIGHTS RESERVED. MAY 18, 2013 971

To get all the files where you want them, in the configuration file you would specify the
following:

35.10 Gathering and processing Help-system files
Most Help systems require additional steps after Mif2Go generates output files from your
FrameMaker document, and before archiving files for distribution. You can have Mif2Go
automatically do the following:

Compile WinHelp
or HTML Help

To direct Mif2Go to compile WinHelp or HTML Help:
[Automation]
; CompileHelp = No (default, run compiler separatel y),
; or Yes copy all needed files to the WrapPath, if given,
; then compile with hhc (HTML Help) or hcw (WinHelp).
CompileHelp = Yes

By default, CompileHelp=No . See:
§8.2.8 Setting basic WinHelp options in the configuration file on page 248
§9.14 Compiling and testing HTML Help on page 333

Section Setting
[Automation] WrapPath=._wrap

A location relative to the project directory. You could just as well use the absolute
path: WrapPath=D:\MyDoc\HTML_wrap . Notice the backslashes here, which are
required for Windows.

CopyCssFrom=D:\AllDocs\CSS

Where to find the CSS files for this project. Path separators are backslashes.
CopyGraphicsFrom=D:\MyDoc\Graphics

Where to find graphics for this project. Path separators are backslashes.

GraphCopyFiles=*.jpg *.gif

Files you want from the CopyGraphicsFrom directory.
[CSS] CssPath=.\styles

Where CSS files should be relative to the HTML files that use them (that is, relative
to the WrapPath directory). Mif2Go converts backslashes to forward slashes
before writing these references in the HTML files.

[Graphics] GraphPath=.\images

Where the graphics should be relative to the HTML files that reference them (that is,
relative to the WrapPath directory). Mif2Go converts backslashes to forward
slashes before writing these references in the HTML files.

WinHelp Run the WinHelp compiler; see §8.2.13 Compiling a WinHelp project
on page 250.

HTML Help Run the HTML Help compiler; see §9.14 Compiling and testing
HTML Help on page 333.

OmniHelp Copy viewer files to the WrapPath directory (needed only if they are
not already in the project directory); see §10.13 Assembling
OmniHelp files for viewing on page 369.

JavaHelp Run the full-text-search indexing program; see §11.5.2 Creating a
search index for JavaHelp on page 388.

Oracle Help
for Java

Run the full-text-search indexing program (although you might not get
a usable search index); see §11.5.3 Creating a search index for Oracle
Help on page 389.

Eclipse Help Archive topic files into doc.zip ; see §12.8 Packaging Eclipse Help
files on page 419.

GATHERING AND PROCESSING HELP-SYSTEM FILES MIF2GO USER’S GUIDE

972 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Index JavaHelp or
Oracle Help

To direct Mif2Go to run the JavaHelp or Oracle Help indexer to create a search index:
[JavaHelpOptions] or [OracleHelpOptions]
FTSCommand = path/to/indexer

If FTSCommand is missing or is set to blank, Mif2Go does not run the indexer. See:
§11.5 Providing full-text search for JavaHelp / Oracle Help on page 387

Certain
automation
settings are

activated

When CompileHelp=Yes or FTSCommand=path/to/indexer, Mif2Go acts on those
[Automation] settings that need to be processed prior to compilation or indexing,
regardless of the setting for WrapAndShip. Then Mif2Go runs the appropriate compiler
or indexer. Table 35-4 shows which settings are activated.

Assemble files
without compiling

or indexing

When CompileHelp=No (the default for WinHelp and HTML Help), or FTSCommand is
not specified for JavaHelp or Oracle Help, you must run the compiler or indexer
separately. If WrapAndShip=Yes , uncompiled or unindexed Help-system files are
assembled for distribution; see §35.2 Activating and logging production of deliverables on
page 956. You might use this combination for WinHelp if you are sending files to be
branded by a subcontractor, or to be integrated with other WinHelp systems. For HTML
Help, you might send uncompiled files for use on a server.

Assembling and
archiving are

optional

For WinHelp or HTML Help, you can set the value of WrapPath for compiled Help
output to blank (or explicitly to the project directory), because the Help compilers rely on
a list of files to include in the compilation. Eliminating a separate wrap subdirectory
avoids creating a duplicate set of output files. Also, archiving is not always necessary for
compiled Help, because compilation itself creates a compressed deliverable.

Convert first,
compile and
archive later

Having Mif2Go run either Help compiler as part of the conversion can be problematic for
large projects. Instead, you can do the conversion as a first step, then run Mif2Go again to
compile and prepare the deliverable; see §35.13 Postprocessing separately from
converting on page 976.

Table 35-4 Automation settings activated by CompileHelp or FTSCommand

[Automation] setting Action Ref.

CopyCssFrom Copy CSS files from the designated directory 35.8

CopyGraphicsFrom Copy graphics files from the designated directory 35.7.1

CssCopyFiles Select only specified CSS files for copying 35.8

DeleteExistingMIF Delete prior MIF files from the project directory before
conversion

35.4.4

EmptyGraphPath Delete prior copied graphics files before copying 35.7.3

EmptyOutputDir Delete files from the project directory before conversion 35.4.1

EmptyOutputFiles Select only specified files to delete from the project directory 35.4.2

EmptyWrapPath Delete all files from the WrapPath directory before copying 35.6

GraphCopyFiles Select only specified graphics files for copying 35.7.1

KeepCompileWindow Keep the compiler window open after compiling:
for WinHelp
for HTML Help

8.2.13
9.14.1

WrapCopyFiles Copy only specified files from the project directory 35.6

WrapPath Directory to which files are copied for compiling and
assembling for distribution

35.6

ShipPath Directory to which compiled or archived files are copied or
moved

35.12

35 PRODUCING DELIVERABLE RESULTS ARCHIVING DELIVERABLES

ALL RIGHTS RESERVED. MAY 18, 2013 973

35.11 Archiving deliverables
To archive output files assembled for distribution, Mif2Go can automatically run a
command-line archiving program such as pkzip.exe , or WinZip command-line add-on
wzzip.exe . Mif2Go composes and executes an archiving command based on values you
supply for the archiving program and its parameters. For example, for wzzip.exe the
command and basic parameters are as follows:

wzzip [options] zipfile [files...]

Mif2Go uses the following settings to put together the components of this command:

In this section:
§35.11.1 Specifying an archiving command on page 973
§35.11.2 Supplying parameters for the archiving command on page 973
§35.11.3 Specifying archive file name and optional version on page 974

35.11.1 Specifying an archiving command

To have Mif2Go archive files assembled for distribution:
[Automation]
WrapAndShip=Yes (or CompileHelp=Yes)
; ArchiveCommand = zip command, without parameters
ArchiveCommand= pkzip

ArchiveCommand must include the absolute path to the location of the archiving program
on your system, unless that location is already on the system PATH. If the path contains
spaces, you must enclose the path (including the command name) in quotes. For example,
the archiving command setting for the Mif2Go User’s Guide is:

ArchiveCommand = "g:\program files\winzip\wzzip"

ArchiveCommand has no default value; if you do not specify a value, Mif2Go does no
archiving, and the remaining Archive* settings are moot.

ArchiveCommand takes effect only when at least one of the following is true:

 • WrapAndShip=Yes (see §35.2 Activating and logging production of deliverables on
page 956)

 • OnlyAuto=Yes (see §35.13 Postprocessing separately from converting on page 976).

If WrapPath is set to blank, the archiving command works on whatever is in the project
directory; when this is the case, unless you include exactly the right parameters, you might
get a mess. See §35.11.2 Supplying parameters for the archiving command on page 973.

35.11.2 Supplying parameters for the archiving com mand

To provide values for parameters (other than the archive file name) required by the
archiving program:

[Automation]
; ArchiveStartParams = parameters preceding name of archive file
ArchiveStartParams= -add

Component Mif2Go archive setting(s) Reference
wzzip ArchiveCommand 35.11.1

[options] ArchiveStartParams 35.11.2
zipfile ArchiveName , ArchiveVer , ArchiveExt 35.11.3
[files...] ArchiveEndParams 35.11.2

ARCHIVING DELIVERABLES MIF2GO USER’S GUIDE

974 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; ArchiveEndParams = parameters following name of a rchive file
ArchiveEndParams= *.*

For parameters that are to be passed to an archiving program, observe the following:

 • Do not enclose parameter values in quotes.
 • Use backslashes as separators in path-name parameters.
 • Use a dash (“- ”) instead of a forward slash to prefix a command option.

Starting
parameters

ArchiveStartParams specifies any parameters to ArchiveCommand that must precede
the name of the archive file, such as command option -add for pkzip or -a (the default)
for wzzip . For example, the starting-parameter setting for the Mif2Go User’s Guide is
simply:

ArchiveStartParams =

Ending
parameters

ArchiveEndParams specifies any parameters to ArchiveCommand that must follow the
name of the archive file, such as *.* for pkzip or wzzip . For example, the ending-
parameter setting for the Eclipse Help version of the Mif2Go User’s Guide is:

ArchiveEndParams = doc.zip *.xml

Archiving directly
from the project

directory

If you are archiving from the project directory instead of from a separate directory
designated by WrapPath (see §35.6 Assembling files for distribution on page 961), it is
better to enumerate the files (at least by extension) to include in the archive. If you specify
ArchiveEndParams=*.* , you might end up with .ref , .ini , .grx , and other
unwanted files in the archive. For example, for an HTML project to be archived from the
project directory you might specify the following:

ArchiveEndParams = *.htm *.css *.gif *.jpg *.png

For the HTML Help version of the Mif2Go User’s Guide, which does not use a
WrapPath directory, the setting specifies each file to be included:

ArchiveEndParams = ugmif2go.chm

35.11.3 Specifying archive file name and optional version

To specify a name for the archive file:
[Automation]
; ArchiveName = base name for archive to be created
ArchiveName = MyProj
; ArchiveVer = version number (if any) to be append ed to ArchiveName,
; default is the system configuration output-type i dentifier
ArchiveVer = beta
; ArchiveExt = file extension to be appended, usual ly zip
ArchiveExt = zip

The full name of the archive file is a concatenation of the following:
Archive file base name
Archive version
A period (dot)
Archive file extension.

Archive file base
name

ArchiveName is the base file name of the archive to be created. For example, the base
name for the archive of the RTF version of the Mif2Go User’s Guide is:

ArchiveName = UGrtf

The value you specify for ArchiveName must not contain spaces. The default value of
ArchiveName depends on the output type. The default base name of any deliverable
(archive or compiled Help system) is the base name of the project. For most Help systems,
this is the Help project file name; for other output types, it is the Mif2Go project file

35 PRODUCING DELIVERABLE RESULTS PLACING DELIVERABLES IN A SHIPPING DIRECTORY

ALL RIGHTS RESERVED. MAY 18, 2013 975

name. Table 35-5 shows the source of the default base file name of the archive for each
output type.

Archive version ArchiveVer is an optional version identifier to be appended to ArchiveName , and may
include any alphanumeric characters allowed in file names; see §1.1.2 File, directory, and
path names on page 51. If you do not specify a value for ArchiveVer , Mif2Go uses a
default output-type identifier as the value; for example, OH for OmniHelp. Output-type
identifier values are located in system configuration files for each output type.

Archive file
extension

ArchiveExt is the file extension for the type of archive to be created (without the leading
period); usually zip or jar . The default depends on the value of ArchiveCommand (see
§35.11.1 Specifying an archiving command on page 973). If ArchiveCommand contains
jar , the default extension is .jar ; otherwise the default extension is .zip . Mif2Go
provides the leading period.

35.12 Placing deliverables in a shipping directory
You can have Mif2Go copy or move deliverable files to a separate directory for shipping,
or sharing, or storage.

In this section:
§35.12.1 Specifying a shipping directory for deliverables on page 975
§35.12.2 Understanding which files are placed in the shipping directory on page 976
§35.12.3 Choosing whether to copy or move deliverables on page 976

35.12.1 Specifying a shipping directory for delive rables

To have Mif2Go place compiled or archived deliverables in a shipping directory:
[Automation]
WrapAndShip=Yes
; ShipPath = path to dir to contain final result fi le of archiving
; or of compilation (.chm, .jar, or .zip), may be th e same for
; several projects.
ShipPath= path\to\deliverables

ShipPath takes effect only when WrapAndShip=Yes , and only if you have specified a
value for ArchiveCommand . See §35.2 Activating and logging production of deliverables
on page 956.

When you first set up a conversion project, Mif2Go includes the following setting for
ShipPath in your new configuration file (see §35.3 Understanding path values for
deliverables on page 957):

ShipPath=..\.._ship

Table 35-5 Default base file name for deliverables archive

Output type Source of default base file name for arc hive Ref.

HTML Help [MSHtmlHelpOptions]HHPFileName 9.3.7

JavaHelp, Oracle Help [JavaHelpOptions]HSFileName 11.3.8

OmniHelp [OmniHelpOptions]ProjectName (without prefix or
suffix)

10.3.3

WinHelp [HelpOptions]HPJFileName 8.2.8

Eclipse Help plugin (literally) 12.8.5

All other output types [Setup]PrjFileName (without path) C.3

POSTPROCESSING SEPARATELY FROM CONVERTING MIF2GO USER’S GUIDE

976 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You can change this setting to specify a different path. If the path contains spaces, you
must enclose it in quotes. If the directory specified by ShipPath does not exist, Mif2Go
creates this directory for you.

35.12.2 Understanding which files are placed in th e shipping directory

When WrapAndShip=Yes and you specify a value for ShipPath , which files get placed
in the ShipPath directory depends on the following factors:

 • whether or not you also specify a value for ArchiveCommand

 • the output type of your Mif2Go project.

If you specify a value for ArchiveCommand (see §35.11 Archiving deliverables on
page 973), Mif2Go copies (or moves) any resulting archive to the ShipPath directory
after all other processing is finished.

If you do not specify a value for ArchiveCommand , what gets placed in the ShipPath
directory depends on the output type. Compiled or JARred Help systems are copied or
moved; other output types are not:

35.12.3 Choosing whether to copy or move deliverab les

When WrapAndShip=Yes and a value is specified for ShipPath , by default Mif2Go
copies deliverables to the ShipPath directory, leaving the originals in the WrapPath
directory.

To have Mif2Go move deliverables instead of copying them:
[Automation]
WrapAndShip=Yes
; MoveArchive = No (default, copy archive to ShipPa th) or Yes (move
; archive to ShipPath instead of copying it)
MoveArchive=Yes

When MoveArchive=Yes , deliverables are moved to the ShipPath directory and the
originals are deleted from the WrapPath directory.

When MoveArchive=No , deliverables are copied to the ShipPath directory, and the
originals remain in the WrapPath directory.

MoveArchive takes effect only when WrapAndShip=Yes (see §35.2 Activating and
logging production of deliverables on page 956) and ShipPath has a non-blank value.

35.13 Postprocessing separately from converting
If you have already converted a document and the results are still in the project directory,
you can have Mif2Go carry out postprocessing steps without going through the entire
conversion again. These steps can include:

 • compiling for WinHelp or HTML Help
 • running a search indexer and creating a JAR file for JavaHelp or Oracle Help

Output type
File(s) placed in ShipPath when
no ArchiveCommand is specified

HTML Help MyProj.chm

JavaHelp, Oracle Help MyProj.jar

WinHelp MyProj.hlp , MyProj.cnt

All other output types None

35 PRODUCING DELIVERABLE RESULTS POSTPROCESSING SEPARATELY FROM CONVERTING

ALL RIGHTS RESERVED. MAY 18, 2013 977

 • any of the automation options available when you set WrapAndShip=Yes (see §35.2
Activating and logging production of deliverables on page 956) except
CopyOriginalGraphics ; see §35.7.1 Copying referenced graphics to a distribution
directory on page 965.

To postprocess conversion results independently of conversion:
[Automation]
WrapAndShip=Yes
; OnlyAuto = No (default) or Yes (run only automati on commands,
; rather than the full conversion)
OnlyAuto = Yes

When OnlyAuto=Yes , Mif2Go processes options specified in the [Automation]
section of the configuration file, without first performing any document conversion.

Note: Commands assigned to SystemStartCommand are not run when
OnlyAuto=Yes ; see §34.4 Executing operating-system commands on page 937.

OnlyAuto=Yes takes effect only when at least one of the following is true:
 • WrapAndShip=Yes
 • CompileHelp=Yes

 • A value is specified for FTSCommand (for JavaHelp or Oracle Help output) or for
JARCommand (for JavaHelp).

When OnlyAuto=No , Mif2Go runs the conversion before processing options specified in
the [Automation] section.

Compilation is
included for

WinHelp, HTML
Help

If the output type is WinHelp or HTML Help and you set CompileHelp=Yes (or you
check Compile Help on the Export dialog), Mif2Go runs the appropriate compiler before
placing the deliverable(s) in a shipping directory; see §35.10 Gathering and processing
Help-system files on page 971.

Note: If you set CompileHelp=No when OnlyAuto=Yes (because you compiled your
Help system in a previous run), be sure to set EmptyWrapPath=No ; otherwise,
your compiled Help system will be swept away before anything else happens.

Indexing search
terms is included

for JavaHelp,
Oracle Help

If the output type is JavaHelp or Oracle Help and you specify a value for FTSCommand in
the configuration file, Mif2Go runs the designated indexer before archiving the
deliverables and placing them in a shipping directory; see §11.5 Providing full-text search
for JavaHelp / Oracle Help on page 387.

(No illustrations)

POSTPROCESSING SEPARATELY FROM CONVERTING MIF2GO USER’S GUIDE

978 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. 2013 MAY 18 979

36 Converting via runfm

Omni Systems runfm is an asynchronous FDK client for FrameMaker version 6.0 and
above. Use runfm to run one or a series of unattended Mif2Go conversions from outside
FrameMaker. This section shows you how.

Note: Unattended conversions are meant for production use, where the process has
first been worked out interactively. To use runfm, you must have Mif2Go
installed, and you may need Windows administrator privileges.

In this section:
§36.1 Designing a project for unattended operation on page 979
§36.2 Setting up FrameMaker for unattended operation on page 980
§36.3 Understanding runfm command-line syntax on page 980
§36.4 Using runfm for Mif2Go conversions on page 982
§36.5 Troubleshooting runfm processes on page 987
§36.6 Comparing runfm with the DCL command-line filter on page 991
§36.7 Operating runfm across a network on page 992
§36.8 Using runfm for other FrameMaker plug-ins on page 993

See also:
§34 Automating Mif2Go conversions on page 933
§35 Producing deliverable results on page 955
§37 Converting via DCL on page 995

36.1 Designing a project for unattended operation
You can design a Mif2Go project that uses all of the following:

 • system commands to check files out of source control before conversion
 • post-processing settings to assemble, compile, and archive after conversion
 • system commands to check files back into source control
 • additional system commands to handle any other post-processing steps.

When you use runfm to operate Mif2Go from outside FrameMaker, the entire conversion
project (or multiple conversion projects), as well as document printing, can be
accomplished via unattended operation, including scheduled operation and remote
operation. You can invoke runfm from a .bat file, or from the Windows Control Panel
via Scheduled Tasks, so you can use runfm to run multiple conversion projects overnight;
see §36.5.6 Running a series of Mif2Go conversions on page 990.

Note: You must have Mif2Go installed to use runfm .

See also:
§34 Automating Mif2Go conversions on page 933
§35 Producing deliverable results on page 955

SETTING UP FRAMEMAKER FOR UNATTENDED OPERATION MIF2GO USER’S GUIDE

980 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

36.2 Setting up FrameMaker for unattended operatio n
Before you can use runfm , you must set up FrameMaker for automatic operation. You
must have Windows administrator privileges to do so, because Windows records in the
registry the setting required to find the executable to run.

As Administrator, execute the following command, either in a command window or via
Start > Run... :

" path\to\FrameMaker " -progid :FrameMaker.M2G -auto

where:

After you set up FrameMaker this way, you can use runfm to run, from a command line,
any FrameMaker plug-in that is set up to receive RPC notifications.

Despite its name, the -progid option has nothing to do with which FrameMaker plug-in
you want to run. You can provide any string as the value for -progid , as long as you start
FrameMaker with that string first, then specify the same value when you execute runfm .
If you specify -progid: FrameMaker.M2G when you set up FrameMaker, you can omit
this option entirely when you use runfm to run Mif2Go .

These settings become effective after you exit FrameMaker. Once set, they remain set in
the Windows Registry (in HKEY_LOCAL_MACHINE/Software/Classes), until/unless
you set up FrameMaker again, perhaps with a different value for -progid .

Note: On a 64-bit version of Windows, entries for 32-bit applications such as
FrameMaker are buried in a subkey of a subkey: the Wow6432Node key located
below the primary Software key. Expand this key to see the 32-bit keys and
values.

See also:
§36.4 Using runfm for Mif2Go conversions on page 982
§36.8 Using runfm for other FrameMaker plug-ins on page 993

36.3 Understanding runfm command-line syntax
The syntax for runfm is as follows:

runfm [-progid FrameMaker.M2G]
[-remote systemname]
[-book [path\to\yourbook.book]]
[-doc [path\to\yourdoc.fm]]
[-project " your Mif2Go project name"]
[-client OmniBookExport]
[-print (book | doc) [path\to\printfile.prn]

[-reverse (yes | no)]]
| [-pdf (book | doc) [path\to\pdffile.pdf]]
| [-pdfsave (book | doc) [path\to\pdffile.pdf]]

path\to\ is the location where FrameMaker is installed on your system; enclose
the entire path and file name in double quotes if the path contains any
spaces; you can omit the path if FrameMaker is on your system
execution PATH

-progid is a required RPC (Remote Procedure Call) server identifier; for using
runfm , the default identifier is FrameMaker.M2G .; the colon between
-progid and the identifier is required

-auto allows runfm to start FrameMaker from the command line; without this
option, FrameMaker must already be open for runfm to work.

36 CONVERTING VIA RUNFM UNDERSTANDING RUNFM COMMAND-LINE SYNTAX

ALL RIGHTS RESERVED. 2013 MAY 18 981

[-printer " name of printer to set via SetPrint"]
[-close (book | doc | all)]
[-diag]
[-log mif2go.log]

Type the runfm command and options all on one line, at a command prompt. You can use
either “/ ” or “ - ” as the switch indicator for runfm command-line options. If you specify
no options at all, or if you specify -help (or /help) or -? (or /?), you get a message
about usage, then runfm exits.

To use the -print , -printer , and -pdf options, you must have the SetPrint plug-in for
FrameMaker installed. You can download SetPrint from Sundorne Communications:

http://www.sundorne.com/FrameMaker/Freeware/setPrint.htm

Table 36-1 describes runfm command-line options and their arguments; see §36.4 Using
runfm for Mif2Go conversions on page 982 for additional information.

Table 36-1 Command-line options for runfm

Option Description Ref.

-progid Names whatever identifier you used when you set up FrameMaker (see Setting
up FrameMaker for unattended operation); the default is FrameMaker.M2G ;.

36.4.1.1

-remote Names a different system (in the same domain), where FrameMaker is to be
run; the same user must be logged into, and FrameMaker must already be
open on, the specified system.

36.4.1.3

-book Optionally specifies the full absolute path to a book to be converted, or to a
book that contains a chapter specified by the -doc option (otherwise, the book
currently active in FrameMaker); quote the path name if it contains any spaces.

36.4.1.2

-doc Optionally specifies the full absolute path to a document to be converted
(otherwise, the document currently active in FrameMaker); quote the path
name if it contains any spaces.

36.4.1.2

-project Names a Mif2Go project (not the name of a .prj file); this name must be listed
in the .prj file for the specified book or document; quote the name if it contains
any spaces. (For plug-ins other than Mif2Go , specifies the text the plug-in
expects; see §36.8 Using runfm for other FrameMaker plug-ins on page 993.)

36.4.2

-client Specifies the ClientName of a FrameMaker plug-in to run; the default is
OmniBookExport ; you do not need this option for Mif2Go .

36.8

-print Optionally specifies the full absolute path to a file to which the active book
(-print book) or document (-print doc) will be printed, using the printer
specified by the -printer option or the default FrameMaker printer; quote the
path name if it contains any spaces; cannot be used in the same run as -pdf .;
requires SetPrint.

36.4.3.1

-reverse When used with -print , specifies the print order:
-reverse yes causes output to be printed last sheet first
-reverse no causes output to be printed first sheet first

36.4.3.1

-pdf Optionally specifies the full absolute path to a PDF file to which the active book
(-print book) or document (-print doc) will be moved, after printing via
Adobe PDF; quote the path name if it contains any spaces; cannot be used in
the same run as - print ; requires SetPrint.

36.4.3.2

-pdfsave Same as -pdf , except executes Save As PDF (FrameMaker version 8 and
later versions only). Do not use with -close all .

36.4.3.3

-printer Names the printer to use when you specify the -print option; works only if you
have installed SetPrint.

36.4.3.4

http://www.sundorne.com/FrameMaker/Freeware/setPrint.htm

USING RUNFM FOR MIF2GO CONVERSIONS MIF2GO USER’S GUIDE

982 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

36.4 Using runfm for Mif2Go conversions
To use runfm , you must have Mif2Go installed on your system. See §1.3.3 Install
Mif2Go on page 56. Also, you may need Windows administrator privileges on the system.

After you set up FrameMaker for unattended operation (see §36.2 Setting up FrameMaker
for unattended operation on page 980), you can use the runfm command to start
FrameMaker from the command line and run Mif2Go automatically. However, before you
test this process, make sure the same operation works when you start it manually from
within FrameMaker. If it does not work that way, runfm will not work either.

In this section:
§36.4.1 Locating FrameMaker executable and files on page 982
§36.4.2 Identifying your Mif2Go project on page 983
§36.4.3 Configuring runfm output on page 984
§36.4.4 Closing FrameMaker files after conversion on page 987
§36.5.5 Running a single Mif2Go conversion or print job on page 989
§36.5.6 Running a series of Mif2Go conversions on page 990
§36.5.7 Including runfm in a multi-step or scheduled process on page 991

36.4.1 Locating FrameMaker executable and files

In this section:
§36.4.1.1 Locating FrameMaker: runfm -progid option on page 982
§36.4.1.2 Specifying FrameMaker file paths: runfm -book, -doc options on page 983
§36.4.1.3 Using FrameMaker remotely: runfm -remote option on page 983

36.4.1.1 Locating FrameMaker: runfm -progid option

If you are running FrameMaker on the same system as runfm , for -progid use the same
text string you specified for this option when you set up FrameMaker for unattended
operation; see §36.2 Setting up FrameMaker for unattended operation on page 980.
However, you do not need the -progid option at all to use runfm for Mif2Go projects,
provided you first set up FrameMaker with the default value, FrameMaker.M2G .

If you are using FrameMaker across a network, you will need a different value for
-progid ; see §36.7 Operating runfm across a network on page 992.

-close Causes FrameMaker (or just the book, or the just document) to close after the
conversion:

-close book closes the book file
-close doc closes the active document
-close all closes all open documents and FrameMaker.

36.4.4

-diag Causes runfm to write more diagnostic messages to the FrameMaker console
window; intended primarily for Mif2Go developers.

36.5.2

-log Names a text file to which the contents of the FrameMaker console window are
appended when you also specify a -close option; the default log file name is
mif2go.log .

36.5.2

Table 36-1 Command-line options for runfm

Option Description Ref.

36 CONVERTING VIA RUNFM USING RUNFM FOR MIF2GO CONVERSIONS

ALL RIGHTS RESERVED. 2013 MAY 18 983

36.4.1.2 Specifying FrameMaker file paths: runfm - book, -doc options

When you use the -book and -doc options, if you specify a book or a document or both,
you must use full absolute paths to the book and document files, even if you invoke runfm
from the same directory where those files are located. If either path contains any spaces,
enclose the path in quotes.

When you use the -book option or the -doc option without specifying any value at all for
path/to/yourbook.book or path/to/yourdoc.fm , runfm uses whatever book or
document is already active in FrameMaker, if any.

If you are updating a file in a book and you specify a project listed in bookname.prj (see
§36.4.2 Identifying your Mif2Go project on page 983), use both -book and -doc options.
When you supply values for both -book and -doc , runfm opens both, book first.

If you specify -doc but not -book , and a book that contains the specified document file is
also open in FrameMaker, Mif2Go treats the document conversion as an update to the
corresponding book project. So if you really want the document to be standalone, make
sure you first close any book that contains it.

If you execute a series of runfm commands without -close on the same book or
document, you do not have to repeat the -book or -doc option after the first command;
see §36.5.6 Running a series of Mif2Go conversions on page 990. As long as runfm does
not close FrameMaker or open a new book or document, the previous book or document is
still active.

See also:
§36.4.2 Identifying your Mif2Go project on page 983
§36.4.4 Closing FrameMaker files after conversion on page 987
§36.5.6 Running a series of Mif2Go conversions on page 990

36.4.1.3 Using FrameMaker remotely: runfm -remote option

You need the -remote option for Mif2Go projects only if you are using FrameMaker
across a network, in which case see §36.7 Operating runfm across a network on page 992.

36.4.2 Identifying your Mif2Go project

When you specify -project myproject, the name myproject is whatever name you
gave your Mif2Go project when you set it up via the Choose Project dialog (see §3.3
Creating a Mif2Go conversion project on page 78).

Note: The name myproject is not the name of your Mif2Go project file; instead,
myproject is a name that is listed in your Mif2Go project file. The names of all
the Mif2Go conversion projects you have set up for a given book or document are
listed in a file with extension .prj , located in the same directory as the
FrameMaker files. See §3.3 Creating a Mif2Go conversion project on page 78 and
§C.2.1 Conversion files created during set-up on page 1020.

The name myproject must be present in the .prj file for the book (or document)
specified on the runfm command line (or already open in FrameMaker). If myproject
contains any spaces, enclose the name in quotes.

If you are updating a document using a book project (a project listed in bookname.prj),
you must make sure the book is also open; see §36.4.1.2 Specifying FrameMaker file
paths: runfm -book, -doc options on page 983. When you specify a value for -doc (even if
you also specify a value for -book), runfm first looks for docname.prj , in whatever

USING RUNFM FOR MIF2GO CONVERSIONS MIF2GO USER’S GUIDE

984 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

directory you specified in the absolute path to docname.fm . If there is no docname.prj
file in the specified directory, and a book is open in FrameMaker, runfm looks for
bookname.prj . If this search also fails, runfm looks for a file named mif2go.prj .

The -project option is required to run Mif2Go . If you omit this option, runfm merely
opens FrameMaker and any book or document specified, then stops. This can be a useful
feature, if you frequently start FrameMaker with the same book and document for editing
or testing. You could even create a desktop shortcut to use runfm this way.

See also:
§3.3 Creating a Mif2Go conversion project on page 78
§36.4.1.2 Specifying FrameMaker file paths: runfm -book, -doc options on page 983
§C.2.1 Conversion files created during set-up on page 1020

36.4.3 Configuring runfm output

In this section:
§36.4.3.1 Configuring print output: runfm -print and -reverse options on page 984
§36.4.3.2 Configuring PDF output: runfm -pdf option on page 985
§36.4.3.3 Configuring PDF output: runfm -pdfsave option on page 986
§36.4.3.4 Specifying output via SetPrint: runfm -printer option on page 987

36.4.3.1 Configuring print output: runfm -print an d -reverse options

When you use the -print option, runfm prints the specified book or document (see
§36.4.1.2 Specifying FrameMaker file paths: runfm -book, -doc options on page 983); or
if none is specified, prints the book or document that is already active in FrameMaker. If
you also use the -project option (see §36.4.2 Identifying your Mif2Go project on
page 983), the conversion project runs after printing is finished.

Note: You may not specify both -print and -pdf in the same invocation of runfm .
Also, for printing to work without user intervention, you must make sure the
default settings for your printer do not require such action; see §36.4.3.4
Specifying output via SetPrint: runfm -printer option on page 987.

Name a print file,
or print directly

If you name a print file, runfm prints to the file instead of to a printer; you must specify a
full absolute path to the file, enclosed in quotes if the path contains any spaces. The
print-file path is set by runfm as the FrameMaker print-to-file destination for the book or
document, with Print to File: checked. However, if the name of the print file ends with
.pdf , runfm assumes that the printer is Adobe PDF, and treats the print file as though you
had specified -pdf instead of -print ; see §36.4.3.2 Configuring PDF output: runfm -pdf
option on page 985. If you do not name a print file, runfm prints directly to the printer.

Make sure output
is produced in the

correct order

When you print to file, to make sure pages come out in the order you expect, also specify
-reverse yes (for last sheet first) or -reverse no (for first sheet first). Certain
FrameMaker files seem to have this print option set incorrectly when opened with runfm ;
for example, files originally created in FrameMaker 6 or an earlier version, then converted
to FrameMaker 7. (The problem seems not to arise when you print directly to a printer.)
After printing to file, runfm restores the original value of Last Sheet First . Because this
might not be the correct value, if you plan to save a file opened by runfm , first check how
this option is set in the FrameMaker Print dialog, and reset it if necessary.

Make sure the
printer you want

is the current
printer

Unless you also specify a printer with the -printer option and have SetPrint installed
(see §36.4.3.4 Specifying output via SetPrint: runfm -printer option on page 987), runfm
uses whatever printer driver is the current default in FrameMaker. If you do not specify a

36 CONVERTING VIA RUNFM USING RUNFM FOR MIF2GO CONVERSIONS

ALL RIGHTS RESERVED. 2013 MAY 18 985

printer, or you have not installed SetPrint, before using the -print option with runfm
you must make sure the printer you want to use is either the default Windows printer, or is
set as the FrameMaker default printer.

See also:
§36.4.1.2 Specifying FrameMaker file paths: runfm -book, -doc options on page 983
§36.4.2 Identifying your Mif2Go project on page 983
§36.4.3.2 Configuring PDF output: runfm -pdf option on page 985
§36.4.3.4 Specifying output via SetPrint: runfm -printer option on page 987

36.4.3.2 Configuring PDF output: runfm -pdf option

When you use the -pdf option, if the default printer for FrameMaker is Adobe PDF (or if
you also specify -printer "Adobe PDF"), runfm generates a PDF file either from the
specified book or document (see §36.4.1.2 Specifying FrameMaker file paths: runfm
-book, -doc options on page 983), or if none is specified, from the book or document that
is already active in FrameMaker. If you also use the -project option (see §36.4.2
Identifying your Mif2Go project on page 983), the conversion project runs after PDF
generation is finished.

Note: You may not specify both -print and -pdf in the same invocation of runfm .

PDF output is
assumed to be in

My Documents

If you name a PDF file, you must specify a full absolute path, enclosed in quotes if the
path contains any spaces. After FrameMaker generates PDF output, runfm moves the
resulting PDF file from My Documents to the specified location, and gives the file the
specified name. If FrameMaker writes PDF files somewhere other than My Documents,
you must move the file yourself, after runfm finishes.

If you specify a path but no PDF file name, runfm names the PDF file bookname.pdf or
docname.pdf , and moves it to the specified location. For example, for a single-file
FrameMaker document, this command:

runfm -doc E:\ Mydoc.fm -printer "Adobe PDF" -pdf doc E:\PDFs

would produce Mydoc.pdf in My Documents , then move it to E:\PDFs\ Mydoc.pdf .

Make sure
Adobe PDF is the

current printer

Unless Adobe PDF is the default Windows printer, or is set as the FrameMaker default
printer, you must install SetPrint and specify -printer "Adobe PDF" (see §36.4.3.4
Specifying output via SetPrint: runfm -printer option on page 987). If you do not specify
-printer "Adobe PDF" , or you have not installed SetPrint, before using the -pdf
option with runfm you must make sure Adobe PDF is either the default Windows printer,
or is set as the FrameMaker default printer.

Note: runfm does not use FrameMaker Save As .

Configure
Adobe PDF for no

prompts

For runfm to generate PDF without user intervention, you must also make sure that no
prompts are required:

1. On the system where FrameMaker is running, go to Start > Control Panel > Printers .

2. Right-click the entry for Adobe PDF, and choose Printing Preferences... ; the Adobe
Printing Preferences dialog opens.

3. On the Adobe PDF Settings tab, uncheck the following options:
View Adobe PDF Results
Prompt for Adobe PDF filename (if this item is present)
Ask to Replace existing PDF file

If you are using Acrobat 7 or a later version, you might find “Prompt for Adobe PDF
filename” as a choice in a drop-down list for Adobe PDF Output Folder , instead of as

USING RUNFM FOR MIF2GO CONVERSIONS MIF2GO USER’S GUIDE

986 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

a checkbox item; if this is the case, choose the following item instead from the
drop-down list:

My Documents*.pdf

4. Click OK to dismiss the Adobe Printing Preferences dialog. Under Location in the
Printers window, you should now see My Documents listed for Adobe PDF.

runfm sets
FrameMaker print

options for PDF

When you specify -pdf , runfm sets the following print options in FrameMaker:

However, runfm does not check Print to File , because doing so would not yield a PDF in
one step. After a PDF file is created, runfm restores the original values of these
FrameMaker print options.

For PostScript,
use -print instead

of -pdf

If what you really want is PostScript output (for example, if you are using a watched
directory to distill PostScript to PDF), use the -print option instead of the -pdf option,
specify -printer "Adobe PDF" , and give the output file extension .ps ; also specify
-reverse no to make sure output is in the correct order (see §36.4.3.1 Configuring print
output: runfm -print and -reverse options on page 984). For example, with book file
UG.book already open in FrameMaker:

runfm -print book E:\PS\In\UG.ps -reverse no -printer "Adobe PDF"

See also:
§36.4.1.2 Specifying FrameMaker file paths: runfm -book, -doc options on page 983
§36.4.2 Identifying your Mif2Go project on page 983
§36.4.3.1 Configuring print output: runfm -print and -reverse options on page 984
§36.4.3.3 Configuring PDF output: runfm -pdfsave option on page 986
§36.4.3.4 Specifying output via SetPrint: runfm -printer option on page 987

36.4.3.3 Configuring PDF output: runfm -pdfsave op tion

If you are using FrameMaker version 8 (fully patched) or a later version, you can direct
runfm to generate PDF output via the FrameMaker Save As PDF function instead of the
Print function. You can avoid worrying about whether Adobe PDF is the default printer,
and you can continue to use Microtype TimeSavers, which works with Distiller X only if
Distiller is run with the -f option. Save As PDF from within FrameMaker versions 8
(patched), 9, 10, and 11 all use Distiller with the -f option.

As with -pdf , do not specify -print in the same command.

If you specify -close all in the same command as -pdfsave , FrameMaker leaves
debris behind (a .tps file and a .tpdf file). However, you can use -close book
without this problem.

See also:
§36.4.3.2 Configuring PDF output: runfm -pdf option on page 985

Thumbnails No
Skip Blank Pages No
Last Sheet First No

Copies: 1
Odd-Numbered Pages Yes
Even-Numbered Pages Yes

Scale: 100%
Print Separations No

36 CONVERTING VIA RUNFM TROUBLESHOOTING RUNFM PROCESSES

ALL RIGHTS RESERVED. 2013 MAY 18 987

36.4.3.4 Specifying output via SetPrint: runfm -pr inter option

When you use the -printer option, if you also specify -print or -pdf , runfm calls the
Sundorne Communications SetPrint plug-in for FrameMaker to use the specified printer.
However:

 • If you have not installed SetPrint, this option does not work.
 • If you have already used SetPrint to designate the printer you want runfm to use as

the default printer for FrameMaker, you do not need the -printer option.

Use SetPrint to specify a default printer for FrameMaker:
http://www.sundorne.com/FrameMaker/Freeware/setPrint.htm

SetPrint is included in your Mif2Go distribution; see §B Distribution files on page 1017.

See also:
§36.4.3.1 Configuring print output: runfm -print and -reverse options on page 984
§36.4.3.2 Configuring PDF output: runfm -pdf option on page 985

36.4.4 Closing FrameMaker files after conversion

If you specify -close doc , runfm closes the document file after the conversion is
finished; if you specify -close book , runfm closes the book file. Specify both to close
both; FrameMaker remains open, unless you specify -close all .

Just as when you run Mif2Go interactively, when runfm finishes, files that Mif2Go opens
during conversion (other than files specified by runfm options) are closed without saving
changes. A book or document file that is already open and active in FrameMaker when
runfm starts (or is specified by the -book or -doc option) is either closed without saving
or remains open in FrameMaker, depending on the -close option.

If you are using runfm on the same system as FrameMaker, when you specify -close
all , runfm appends the contents of the FrameMaker console window to the file specified
by the -log option, before closing FrameMaker; see §36.5.2 Capturing console
diagnostics: runfm -log option on page 988.

If you are using runfm across a network, runfm does not append console messages to a
log file when you specify -close all ; see §36.7 Operating runfm across a network on
page 992.

If you do not specify -close all , FrameMaker remains open after runfm finishes.

See also:
§36.5.2 Capturing console diagnostics: runfm -log option on page 988
§36.7 Operating runfm across a network on page 992

36.5 Troubleshooting runfm processes
To use runfm , you must have Mif2Go installed on your system.

In this section:
§36.5.1 Increasing console diagnostics: runfm -diag option on page 988
§36.5.2 Capturing console diagnostics: runfm -log option on page 988
§36.5.3 Reviewing FrameMaker console messages after runfm on page 988
§36.5.4 Troubleshooting failed runfm processes on page 989

http://www.sundorne.com/FrameMaker/Freeware/setPrint.htm

TROUBLESHOOTING RUNFM PROCESSES MIF2GO USER’S GUIDE

988 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

36.5.1 Increasing console diagnostics: runfm -diag option

When you use the -diag option, runfm writes additional diagnostic messages to the
FrameMaker console window. These messages record step-by-step details while runfm
parses the string of options to be passed to m2rbook.dll . This option is intended
primarily for use by Mif2Go developers; however, it can be helpful for working out
problems as you construct a runfm command sequence.

For conversion runs, the -diag option produces the same diagnostics as the following
setting (see §35.2 Activating and logging production of deliverables on page 956):

[Automation]
; RunfmDiagnostics = No (default) or Yes (include m ore diagnostic
; messages in the Frame console file when running f rom runfm)
RunfmDiagnostics=Yes

However, -diag is effective for print options (which are handled before runfm reads any
project configuration file) as well as for conversion options.

See also:
§35.2 Activating and logging production of deliverables on page 956
§36.5.2 Capturing console diagnostics: runfm -log option on page 988
§36.5.3 Reviewing FrameMaker console messages after runfm on page 988

36.5.2 Capturing console diagnostics: runfm -log o ption

If you are using runfm on the same system as FrameMaker, before closing FrameMaker
runfm appends the contents of the FrameMaker console window to the file specified by
the -log option; this file is placed in the same directory as the specified book or
document. The default log file name is mif2go.log . If you specify both -book and
-doc , and the book and document files are in different directories, the log file is placed in
the document directory rather than the book directory.

The contents of the FrameMaker console window are appended to the log file only when
you specify -close all (see §36.4.4 Closing FrameMaker files after conversion on
page 987); if FrameMaker remains open after runfm finishes, nothing is appended to the
log file.

If you are using runfm across a network, the -log option has no effect; see §36.7
Operating runfm across a network on page 992.

Maintaining a log file preserves FrameMaker console output over multiple executions of
runfm , because FrameMaker clears the console each time it starts. See §36.5.3 Reviewing
FrameMaker console messages after runfm on page 988.

See also:
§36.4.4 Closing FrameMaker files after conversion on page 987
§36.5.1 Increasing console diagnostics: runfm -diag option on page 988
§36.5.3 Reviewing FrameMaker console messages after runfm on page 988

36.5.3 Reviewing FrameMaker console messages after runfm

When you specify -close all for the runfm command (or for the last in a series of
runfm commands), provided you are not operating runfm across a network (see §36.7
Operating runfm across a network on page 992), before FrameMaker closes, runfm
appends the contents of the FrameMaker console window to a text file, default name
mif2go.log (see §36.5.2 Capturing console diagnostics: runfm -log option on page 988),

36 CONVERTING VIA RUNFM TROUBLESHOOTING RUNFM PROCESSES

ALL RIGHTS RESERVED. 2013 MAY 18 989

located in the input directory for your project. You should inspect this file for error
messages.

If you do not use the -log option, after FrameMaker closes (and before you open it again)
you can find the console output for the latest FrameMaker session in consfile.txt ,
located in the FrameMaker installation directory.

Some kinds of
errors are not

reported

The Mif2Go Export and Finished dialogs are suppressed by runfm , to make sure Mif2Go
does not request user intervention during an unattended conversion. If any FrameMaker
file that Mif2Go tries to access during the conversion (such as a chapter file in a book) has
a problem (such as missing fonts or graphics) that would normally result in a dialog, the
problem is ignored and the conversion continues. Such problems are not reported in the
FrameMaker console window; with unattended operation, you have no way to know they
occurred. Therefore it is essential to make sure your conversion project is thoroughly
debugged before you use runfm for unattended operation.

36.5.4 Troubleshooting failed runfm processes

Before you use runfm to automate a process, first try the same operation manually,
from within FrameMaker. Watch for errors. If the op eration does not work
manually, runfm will not work either!

Note: Mif2Go must be installed to use runfm successfully.

Get diagnostics
and a log file

You can tell runfm to write more diagnostics by adding this option to the runfm command
line:

-diag

You can save the diagnostic messages to a file with this command-line option:
-log logfile.txt

New messages are appended to the log file, so you can use the same file for many sessions.
If you specify -log with no name, Mif2Go writes to a file named mif2go.log , in the
current directory.

PDF output does
not always report

errors

If you are using runfm to produce PDF output, some of the possible errors you can get
might not be documented at all for the FDK functions involved, so you will have to do the
usual type of troubleshooting for PDF problems. For example, sometimes Acrobat
Distiller does not like a particular graphic. If you get an error when you make the PDF
manually in FrameMaker (by printing to the Adobe PDF printer, not via SaveAs PDF), try
cutting the file in half, and see which part still has the problem. Repeat until you identify
the exact point of trouble.

A missing output
file means an

error occurred

Acrobat Distiller always writes PDF output to the default Windows document directory
for the user who is currently logged in, such as My Docments on Windows XP. If Distiller
fails, an error message might not be returned from the FDK, and the output file will simply
not be present. However, if Mif2Go does find the file, Mif2Go moves it to the destination
you specified.

36.5.5 Running a single Mif2Go conversion or print job

Here are examples of how you can use runfm to:
Convert a book
Update a chapter
Convert a single-file document
Print and update a chapter

TROUBLESHOOTING RUNFM PROCESSES MIF2GO USER’S GUIDE

990 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Create a PostScript file.

Convert a book To open FrameMaker and convert a book, leaving FrameMaker open afterward:
runfm -book D:\Guides\UserGuide.book -project "Word for review"

To convert a book, with FrameMaker already open and the book file active, then close the
book, leaving FrameMaker open:

runfm -project "Word for review" -close book

Update a chapter To update a chapter in a book, closing just the chapter file afterward:
runfm -book E:\UG.book -doc E:\Ch\Ops.fm -project 4Review -close doc

To update a chapter in a book, with the book and the chapter file already open in
FrameMaker, and the chapter file active; then close both afterward, leaving FrameMaker
open:

runfm -project 4Review -close book -close doc

Convert a
single-file
document

To open and convert a single-file FrameMaker document, closing FrameMaker afterward:
runfm -doc D:\Guides\ITGuide.fm -project "HTML for IT" -close all

To convert a single-file document that is already open in FrameMaker, closing the
document afterward but leaving FrameMaker open:

runfm -project "HTML for IT" -close doc

Print and update
a chapter

To print a chapter to Acrobat with the book already open in FrameMaker, then convert the
chapter:

runfm -doc E:\Ch\Ops.fm -project 4Review -pdf doc E:\2print\Ops.pdf

Create a
PostScript file

To open a book and print it to a PostScript file in directory My Documents , for later
distilling:

runfm -book E:\UG.book -print book -reverse no -printer "Adobe PDF"

36.5.6 Running a series of Mif2Go conversions

If you do not specify -close all , FrameMaker remains open after a runfm conversion
finishes. This allows you to use a .bat file to run several different conversions of the
same book or document, without reloading FrameMaker for each conversion. For
example:

runfm -book D:\Guides\UserGuide .book -project "Word for review"
runfm -project "On-line help"
runfm -project "HTML version" -close all

When you run a series of conversions that use different project configuration files, make
sure the configuration files include explicit values for any settings in the following
sections with values that differ from one project to the next:

If two projects have the same configuration settings in these sections (even with different
values), or at least if the second project has explicit settings, you should be able to use
them in consecutive invocations of runfm without closing FrameMaker in between.
Otherwise, you risk “bleed-through” of the prior configuration settings. If you find that the
second project is not coming out quite right, try running it by itself after closing and
reopening FrameMaker.

All conversions HTML-based Help
conversions WinHelp conversions

[Automation]
[Setup]
[Graphics]

[CSS]
[MSHtmlHelpOptions]
[JavaHelpOptions]
[OmniHelpOptions]

[HelpContents]
[HelpOptions]

36 CONVERTING VIA RUNFM COMPARING RUNFM WITH THE DCL COMMAND-LINE FILTER

ALL RIGHTS RESERVED. 2013 MAY 18 991

Here is an example of running multiple conversion projects in the same .bat file:
runfm -book E:\UG.book -doc E:\Ch\Ops.fm -project 4Review -close doc
runfm -doc E:\Ch\Examples.fm -project 4Review -close doc
runfm -doc E:\Ch\Glossary.fm -project 4Review -close all -log
runfm -book E:\UG.book -project "On-line help" -close all
runfm -doc D:\Guides\ITGuide.fm -project "HTML for IT" -print doc
runfm -close all -log ITGmsgs.txt

This series of commands updates three chapters of the same book in one project; closes
FrameMaker (logging console messages for all three to E:\Ch\mif2go.log), then
reopens FrameMaker to convert the same book using a different project; then closes
FrameMaker again (logging console messages to E:\mif2go.log), and reopens it to
convert a single-file document using yet another project, also printing the document
directly to the current printer; then shuts down FrameMaker, logging console messages for
the last project to D:\Guides\ITGmsgs.txt .

Because FrameMaker remains open after the first conversion, it is not necessary to repeat
the -book option for the second and third conversions. However, after closing
FrameMaker, the -book option is needed again for the fourth conversion.

36.5.7 Including runfm in a multi-step or schedule d process

Because runfm can be invoked in a .bat file, you can include runfm commands
interspersed with other commands. For example, we use BuildUG.bat to prepare all
editions of the Mif2Go User’s Guide for release. The first part of the script generates and
archives the WinHelp edition, then uploads the archive to a server (the runfm command
and its arguments actually are all on one line):

rem Usage: BuildUG NN
rem where NN is the two-digit release number .
@echo off
if "%1" == "" goto NOARG
if not exist G:\OmniSys\UG\source\history.txt goto NOHIST
cd G:\OmniSys\UG\out
echo BuildUG %1 starting %DATE% at %TIME% > ug33v%1 .log
copy /Y /V G:\OmniSys\UG\source\history.txt G:\Omni Sys\UG\out
copy /Y G:\OmniSys\UG\cfg*.ini G:\OmniSys\UG\cfg\C FGbackup*.i%1
:WINHELP
runfm -book G:\OmniSys\UG\usergd.book -project WinH elp

-close all -log ug33v%1.log > ug33v%1.log 2>&1
if not exist G:\OmniSys\UG\hlp\ugmif2go.hlp goto NO WIN
copy /Y G:\OmniSys\UG\hlp*.ini G:\OmniSys\UG\hlp\W Hbackup*.i%1
copy /Y ftpug.txt ftp%1.txt
echo send ughlp%1.zip >> ftp%1.txt
echo bye >> ftp%1.txt
ftp -i -s:g:\omnisys\ug\out\ftp%1.txt
echo ughlp%1.zip finished uploading at %TIME% >> ug 33v%1.log
. . .

You can include runfm commands in a .bat file that you set up as a Windows Scheduled
Task. For example, you could use runfm to periodically output MIF versions of all the
files in a book, then process the MIF files with another application, such as an archive or
index utility. In fact, you could use just the evaluation version of Mif2Go to produce MIF
output via runfm .

36.6 Comparing runfm with the DCL command-line fil ter
With runfm you can do any of the following:

OPERATING RUNFM ACROSS A NETWORK MIF2GO USER’S GUIDE

992 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 • Start FrameMaker from the command line, and have Mif2Go (or some other
FrameMaker plug-in) invoked automatically.

 • With FrameMaker already open and a book or document selected, run a Mif2Go
conversion from the command line.

 • Run multiple conversions, with a series of runfm commands in a Windows .bat file.
 • Optionally close FrameMaker (or the book or document or both) automatically when

all conversions are complete.

Advantages of
runfm

The advantage of runfm over the DCL command-line filter is availability of all the
Mif2Go options that are excluded from DCL command-line operation, including book
conversion, template import, and postprocessing steps; in other words, if you want to do
any of the following:

 • convert a FrameMaker book
 • generate bitmap graphics
 • automatically import formats from FrameMaker templates
 • automatically create and delete .mif files
 • automatically create configuration files
 • automatically create Help-system project files.

See §37.1 How the DCL filter works on page 995.

Advantages of
DCL

However, with DCL you do not need FrameMaker at all (just the MIF files to be
converted), and you can use a Windows .bat file to execute system commands before and
after conversion. Also, DCL is faster, if all you are doing is including documentation as
part of a build process, after writers are satisfied with the results of interactive
conversions. See §37 Converting via DCL on page 995.

36.7 Operating runfm across a network
To use runfm on a network with FrameMaker on a different system, you must observe the
following restrictions:

 • the system where FrameMaker and Mif2Go are installed must be in the same domain
as the system where you are using runfm

 • you must be logged into both systems with the same user ID
 • FrameMaker must be already open on the remote system.

Specify -remote
for network

operation

To operate runfm across a network, specify -remote with the name of the remote system
where FrameMaker is installed. The name to use for the remote system is the name you
see under My Network Places in Windows Explorer. Omit any punctuation.

Use FrameMaker
CLSID for

-progid

For -progid you must supply the automatic FrameMaker progid , which is the CLSID
(class identifier) found in the remote-system Windows Registry for the following key:

HKEY_LOCAL_MACHINE/Software/Classes/FrameMaker.Api

Enclose the CLSID in braces; for example:
-progid {539DB5D0-C0C6-11D0-985E-0060970BEC0B}

No log file with
remote operation

When you specify -remote you can use the -close option, but if you -close all ,
runfm does not copy the FrameMaker console output to a log file (see §36.5.3 Reviewing
FrameMaker console messages after runfm on page 988).

Set up both
systems for

DCOM

For remote operation you might have to specify system settings to enable DCOM
(Distributed Component Object Model) on both machines. On Windows XP Pro (for
example), type dcomcnfg at a command prompt and press Enter; the Component Services
console opens. Navigate to Component Services > Computers > My Computer >

36 CONVERTING VIA RUNFM USING RUNFM FOR OTHER FRAMEMAKER PLUG-INS

ALL RIGHTS RESERVED. 2013 MAY 18 993

DCOM Config , and select FrameMaker API . On the Action menu choose Properties ; the
FrameMaker API Properties dialog opens. For information about the settings available,
try Help . For additional information, see Running asynchronous clients on remote hosts in
the FDK Platform Guide , winguide.pdf .

36.8 Using runfm for other FrameMaker plug-ins
You can use runfm with different -client options to run FrameMaker plug-ins other
than Mif2Go , provided you know the values for the following options:

The command would be like this:
runfm -client TheClientName -project " The expected text"

You can use Windows Explorer to find the ClientName for a plug-in. In the FrameMaker
plug-ins directory select the DLL file name, go to File > Properties , and choose the
Version tab. The ClientName should be the first item under Other version information .

You can use the same -progid option you specified when you set up FrameMaker for
Mif2Go ; this option works for any plug-in. You can use the -book and -doc options to
specify the files you want open; these files are opened before the plug-in is called. You can
use the -close option the same way as for Mif2Go .

You do not need the -client option for Mif2Go projects; this option is intended only for
use with other FrameMaker plug-ins. The default value is OmniBookExport , which is the
ClientName for Mif2Go DLL file m2rbook.dll .

See also:
§36.2 Setting up FrameMaker for unattended operation on page 980
(No illustrations)

-client the ClientName of the plug-in

-project the text the plug-in expects when notified of an FDK ClientCall .

USING RUNFM FOR OTHER FRAMEMAKER PLUG-INS MIF2GO USER’S GUIDE

994 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 995

37 Converting via DCL

Conversion from a command line, using the DCL (Document Coding Language) filter, is
intended for programmers adding Mif2Go to automated build systems. DCL is run
separately from FrameMaker; the DCL filter operates only on FrameMaker MIF (Maker
Interchange Format) files.

Note: If any graphics are embedded in your document, or if any graphics contain
FrameMaker vector elements (such as callouts); or if your FrameMaker files are
binary rather than MIF; Mif2Go must be run from within FrameMaker. See §34.3
Considering ways to automate conversions on page 937.

This section shows how to operate the Mif2Go DCL filter. Topics include:
§37.1 How the DCL filter works on page 995
§37.2 Using the DCL filter on page 996
§37.3 DCL command-line syntax on page 998
§37.4 Command-line examples on page 1000
§37.5 Converting in multiple steps via DCL on page 1002
§37.6 Specifying output file paths and names on page 1002
§37.7 About DCL technology on page 1003

See also:
§36 Converting via runfm on page 979
§38 Generating intermediate output on page 1005

37.1 How the DCL filter works
The command-line version of Mif2Go provides a restricted set of features, and is intended
only to support automated build systems. This command-line method assumes you have
already set up your project, using the FrameMaker plug-in; and that further conversion
runs do not need to do any of the following:

 • convert a FrameMaker book
 • generate bitmap graphics
 • automatically import formats from FrameMaker templates
 • automatically create and delete .mif files
 • automatically create configuration files
 • automatically create Help-system project files.

You must run Mif2Go from within FrameMaker to accomplish any of the above. To set up
a command-line system that will handle these requirements, see §36 Converting via runfm
on page 979.

Mif2Go uses the DCL (Document Coding Language) filter to convert MIF files according
to settings you have already specified in a configuration file (and optionally as arguments
to the DCL command). Before you can convert files this way, you must do the following:

 • Create a configuration file for the conversion, using the Mif2Go FrameMaker plug-in
and a text editor such as Notepad.

 • Save as MIF all the FrameMaker files that are to be converted (see §38 Generating
intermediate output on page 1005).

USING THE DCL FILTER MIF2GO USER’S GUIDE

996 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When your configuration file and MIF files are ready, you run the Mif2Go DCL filter at a
command-line prompt in a command window.

An advantage of using Mif2Go this way is that you can automate batch processing of
many files. The Mif2Go DCL filter is usable even if you do not have FrameMaker, and
were given FrameMaker-generated MIF files by someone else. However, the filter cannot
process MIF files generated by programs other than FrameMaker. If you want to process
such files, load them first in FrameMaker and save them as MIF, then process those MIF
files.

37.2 Using the DCL filter
Command-line conversion is intended solely for use in automated build systems, where
the process has been worked out first interactively, via FrameMaker; see §3 Converting
a book or document on page 77.

In this section:
§37.2.1 Understanding where to run DCL on page 996
§37.2.2 Preparing for conversion on page 996
§37.2.3 Converting a single MIF or DCL file on page 996
§37.2.4 Converting a group of MIF or DCL files on page 997
§37.2.5 Merging ancillary Help files with DCL on page 997

37.2.1 Understanding where to run DCL

You must invoke the Mif2Go DCL filter on a command line in a Windows Command
Prompt window. The Mif2Go DCL filter is a Windows Console application, not an MS-
DOS application. It will not run under plain MS-DOS, without Windows.

37.2.2 Preparing for conversion

Before you use the DCL command-line method to convert files, you must do the
following:

1. Save the files to be converted in MIF format: on the FrameMaker File menu, select
Save As... . For Save as type choose MIF (.mif).

2. Copy a starting configuration file for the output type you want (see Table 30-5 on
page 859) from %OMSYSHOME%\m2g\local\config to the same directory where
you saved the MIF files.

3. Optionally, create a document information file (see §37.4.1 Creating a document
information file on page 1001). Though not strictly necessary, it is often useful to have
this information before adjusting configuration settings.

4. Edit the configuration file to specify settings. See §4.1 Working with Mif2Go
configuration files on page 91 for more information.

37.2.3 Converting a single MIF or DCL file

To convert a single FrameMaker MIF file with the Mif2Go DCL filter:

1. Open a Windows Command Prompt window.

2. Change to the directory where you saved the MIF file and placed a configuration file.

3. At the command-line prompt, enter the following command:

37 CONVERTING VIA DCL USING THE DCL FILTER

ALL RIGHTS RESERVED. MAY 18, 2013 997

dcl -f format [-o output] input.mif

where the arguments are as follows:

4. Press Enter to convert the file.

37.2.4 Converting a group of MIF or DCL files

You cannot use the Mif2Go DCL filter to convert a book file per se from the command
line. However, you can convert more than one file at a time (such as all the files in a book),
by using wildcards in file names, or by executing the Mif2Go DCL filter in a batch file.
You must make sure any path values in the [Setup] section of the configuration file are
correct. See §37.4.3 Converting a group of files to RTF on page 1001 for an example of
using a batch file.

When you convert multiple files, you must provide mif2go.ini , which contains file
identifiers for the output files; see §5.3.4 Working with Mif2Go FileIDs on page 119.

37.2.5 Merging ancillary Help files with DCL

You can use DCL to merge contents, index, and other data files for HTML-based Help, by
providing a file that lists the items to be included. For example, for HTML Help you can
use DCL to merge the part files (.bh*) to make a TOC or index; for OmniHelp, you can
merge the full-text search and context-sensitive help files.

The list file must have extension .lst . The first line in this file must begin with LIST , and
each subsequent line must specify the base name of a FrameMaker file to be included,
with a special file-name extension. The extension must be one of the following:

For example, list file M2GTest.lst might look like this:
LIST for C:\test\m2gts\hh\M2GTest.lst
Cover.chp
M2GTestLOF.frm
M2GTestLOT.frm
Intro.chp
TextFmts.chp
FigsTbls.chp
OtherFmts.chp
Appendix.chp

For this example the DCL command, which must be executed in the directory where the
list file is located, would look like this for HTML Help:

dcl -f MB M2GTest.lst

format Output type; one of the format codes or names listed for -f in
§37.3.1 Command-line switch -f format on page 998.

output Name or extension (with leading period) of the file to be
produced; optional for DCL, RT,F or HTML output, required for
XML output.

input Name of the file to be converted.

chp FrameMaker chapter file

frm FrameMaker LOF, LOT, or LOR

toc FrameMaker TOC

idx FrameMaker standard IX

bkm FrameMaker special index (IOM or IOR)

gen FrameMaker generated file other than the above

DCL COMMAND-LINE SYNTAX MIF2GO USER’S GUIDE

998 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See §7.3.4.3 Merging contents and index files from the command line on page 208.

37.3 DCL command-line syntax
A dcl command has the following syntax:

dcl [-f format] [–o output] input ... [–v]

Command-line switches and arguments override corresponding configuration-file settings.
Switches can appear in any order preceding the name(s) of the input file(s) to which they
apply. Switches should be lowercase, and a space is required between a switch and its
argument. For example:

-f HTML

Each switch affects only the input files named after it on the command line.

In this section:
§37.3.1 Command-line switch -f format on page 998
§37.3.2 Command-line switch -o output on page 999
§37.3.3 Command-line argument input ... on page 999
§37.3.4 Command-line switch -v on page 1000
§37.3.5 Additional command-line switches on page 1000

37.3.1 Command-line switch -f format

The DCL -f switch specifies the output format, with an optional suffix that generates
additional processing for certain formats.

The -f options have the following meanings:

Run wrap-and-
ship tasks only

Where F and L are listed under Suffix, to run only wrap-and-ship tasks for a project you
can append one of these letters to the format name (case does not matter):

F - For a single-file project, run just the wrap-and-ship tasks
L - For a book-level project, run just the wrap-and-ship tasks

You can use dummy names for the input, because wrap-and-ship tasks are independent of
the content files. For example:

Format name Optional suffix Description
 HTML F L HTML 4.0
XHTML F L XHTML 1.0

HTMLHelp F L C I B Microsoft HTML Help
JavaHelp F L C I B JavaHelp
 OracleHelp F L C I B Oracle Help for Java

 EclipseHelp F L C I B Eclipse Help
OmniHelp F L C I B Cross-platform OmniHelp
DITA F L DITA XML

DocBook F L DocBook XML
XML F L Generic XML
 Word F L Word 8/97

7 F L Word 7/95
P or WordPerfect F L WordPerfect
WinHelp F L WinHelp 4

3 F L WinHelp 3
F FrameMaker MIF only

37 CONVERTING VIA DCL DCL COMMAND-LINE SYNTAX

ALL RIGHTS RESERVED. MAY 18, 2013 999

dcl -f htmlL StartAuto.mif

See §34 Automating Mif2Go conversions on page 933 and §35 Producing deliverable
results on page 955.

Merge contents
and/or index

These suffix options apply to HTML-based Help systems for which Mif2Go can generate
contents and/or index. For example: -f HTMLHelpB.

C - Merge contents
I - Merge index
B - Merge both contents and index

Letters C, I , and B represent three mutually exclusive options for the same merge
operation, which can also (re-) create the project file (depending on configuration settings)
while generating the other infrastructure files for the designated Help system.

Note: When you specify suffix C, I , or B for the -f argument, the input file must have
extension .lst ; see §37.3.3 Command-line argument input ... on page 999.

37.3.2 Command-line switch -o output

The DCL -o switch specifies an output file name (with or without path), or an output file
extension:

Default file extensions are as follows:

XML is the only output type where you must specify -o . ext. Otherwise, some of your
output files might get extension .htm .

37.3.3 Command-line argument input ...

The input ... argument(s) specify input file name(s) or complete path(s); wildcards are
acceptable. If a path or file name contains spaces, surround it with double quotes; for
example:

dcl -f HTML "C:\My Documents\some.mif"

-o file Output file path or name, without extension. Applies only to the first
input file name that follows this option. Overrides, for the next file
name only, any –o .ext or –o path that appears earlier on the
command line. The default is the same name as the input file name, but
with the .ext extension provided as an argument to an earlier -o
switch.

-o .ext Output file extension, with leading period. Overrides default output file
extensions. Applies to all following input file names on the command
line until dcl encounters a new -o .ext. If no output type is specified
via -t (see §37.3.5 Additional command-line switches on page 1000),
the default value for .ext depends on the value of the -f argument (see
§37.3.1 Command-line switch -f format on page 998). The value must
have a period as the first character. If the period is not present, ext is
interpreted as a file name.

Output type Default extension
HTML .htm

RTF .rtf

DCL .dcl

XML varies

COMMAND-LINE EXAMPLES MIF2GO USER’S GUIDE

1000 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

When you specify suffix C, I , or B for the -f switch, the input file must have extension
.lst ; see §37.3.1 Command-line switch -f format on page 998.

37.3.4 Command-line switch -v

The -v switch produces verbose output; dcl reports, at the command prompt, everything
it does.

37.3.5 Additional command-line switches

Additional switches are available for DCL. You would need these only for working with
intermediate DCL input and output formats:

dcl [-ab] [-lm] [-s source] [–t target]

Table 37-1 shows the options for these additional switches.

Types of input or output files for switches -s and -t :

37.4 Command-line examples
This section presents the following Mif2Go conversion examples:

§37.4.1 Creating a document information file on page 1001
§37.4.2 Writing converted files to a different directory on page 1001
§37.4.3 Converting a group of files to RTF on page 1001
§37.4.4 Converting a file to HTML on page 1001
§37.4.5 Converting from one DCL format to another on page 1001
§37.4.6 Generating DITA output via command line on page 1002

Table 37-1 DCL intermediate input and output options

Switches Purpose Value Description
[-ab] Type of DCL output file -a ASCII

-b Binary

[-lm] Endianness of input files -l Little-endian (Intel)

-m Big-endian

[-s source] Type of input file -s dcl , dcb , mif , lst , or xml

[-t target] Type of output file -t dcl , dcb , inf , rtf , htm, or xml

dcb Intermediate Document Coding Language binary format; see
§37.7.1 DCL file structure on page 1003

dcl Intermediate Document Coding Language ASCII format; see
§37.7.1 DCL file structure on page 1003

htm HTML, HTML-based Help, XML

inf Intermediate document information format; see §37.4.1
Creating a document information file on page 1001

lst Mif2Go -generated list file; see §C.2.3 Additional conversion
files on page 1021.

mif Maker Interchange Format (FrameMaker)

rtf Rich Text Format

XML DITA, DocBook, generic XML

37 CONVERTING VIA DCL COMMAND-LINE EXAMPLES

ALL RIGHTS RESERVED. MAY 18, 2013 1001

37.4.1 Creating a document information file

A document information file is an ASCII file with extension .inf that lists all fonts,
formats, reference frames, text flows, cross-referenced files, and imported graphics used
in a FrameMaker document. To create a document information file for filename.mif ,
run the Mif2Go DCL filter with the following options:

dcl -t inf filename.mif

This command creates file filename.inf in the same directory as filename.mif .

37.4.2 Writing converted files to a different dire ctory

To convert files ch*.doc , title.doc , and TOC.doc to RTF with file extension .new
and place the converted files in directory c:\myfiles\newstuff :

dcl –o c:\myfiles\newstuff –o .new ch*.doc title.doc TOC.doc

Note: You do not have to use .mif as the source file-name extension; however, the
source file must be in MIF format.

37.4.3 Converting a group of files to RTF

If you have a group of FrameMaker MIF files, for example ch*.mif , this command
converts them to RTF for import into Microsoft Word:

dcl ch*.mif

Although you can use wildcards in the source argument or list multiple source files
on the command line, Mif2Go might run out of memory if there are many files, or if the
files are complex. Instead, you can use one of the following equivalent methods.

 • On the command line:
for %f in (*.mif) do dcl "%f"

 • In a .bat file:
for %%f in (*.mif) do dcl "%%f"

Note: Double quotes are required around the dcl source argument if any file names
or paths contain spaces.

37.4.4 Converting a file to HTML

To convert file myfile.mif from MIF to standard HTML:
dcl -f HTML -t htm myfile.mif

The output HTML file is created in the same directory as myfile.mif , and is named
myfile.htm .

Note: ‘If you specified CSS output in your project configuration file, you will also see a
file with extension .css , which you can edit as plain text. Not all browsers
support CSS; some might ignore the .css files.

37.4.5 Converting from one DCL format to another

You can use the dcl program to convert from one form of DCL to the other. ASCII DCL
files normally have extension .dcl , while binary DCL files have extension .dcb .

To convert an ASCII DCL file to binary DCL:
dcl -t dcb myfile.dcl

CONVERTING IN MULTIPLE STEPS VIA DCL MIF2GO USER’S GUIDE

1002 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

To convert a binary DCL file to ASCII DCL:
dcl -t dcl myfile.dcb

To generate ASCII DCL directly from a MIF file, use target option dcl :
dcl -t dcl myfile.mif

To generate an RTF file from DCL, you can omit the target option:
dcl myfile.dcb

The dcl program uses dcx.dll to convert from one form of DCL to the other.

37.4.6 Generating DITA output via command line

After you have set up a DITA project, you can run the conversion from the command line
(see §37 Converting via DCL on page 995), as follows:

1. Run the conversion first from within FrameMaker, via File > Save using Mif2Go . On
the Export dialog, replace the value of Suffix for created files: with .dcl . This will
produce a filename.dcl file for each FrameMaker file (see §3.7.2 Specifying
output type and file extension on page 84).

2. Open a Windows Command Prompt window and cd to your project directory, which
now contains one or more .dcl files, along with your project configuration file.

3. Type the following command at the command prompt, then press Enter:
dcl -t htm -f DITA -o .dita filename.dcl

where filename is the name of one of the FrameMaker files you converted. (See
§37.2.4 Converting a group of MIF or DCL files on page 997 for batch conversions.)

This process will produce a new filename.dita . If the process appears to be taking
more than a few seconds, terminate it with Ctrl+C .

If you modify anything in a FrameMaker file, you will have to start from Step 1 again and
regenerate the .dcl for that file. Otherwise, you can iteratively change settings in the
configuration file and rerun from the command line until you are satisfied with the result.

37.5 Converting in multiple steps via DCL
To export graphics, modify them, and then continue the conversion using the modified
graphics, you must run dcl twice. For the first step, specify target option -t dcl , which
tells the filter to stop after producing the DCL file and exported graphics files. For the
second step, specify the .dcl file as the source; you do not need source option -s dcl ,
because the filter can tell both from the extension on the DCL file and from its opening
bytes that the source file is in DCL format instead of MIF.

37.6 Specifying output file paths and names
For the output file name, you can modify any or all of the path, name, and extension. By
default, the filter alters only the file extension. For RTF output, the extension is normally
.rtf . For multi-step processing, it is .dcl for the first step and .rtf for the last step.
The target file is written to the same directory as the source file, usually the current
directory. Any intermediate files (typically binary DCL files, .dcb) are written to the
current directory, and are automatically deleted after conversion is complete.

The output option -o name can specify a path without a file name, a file name with or
without a path, or an extension without a file name. Each of these works differently:

37 CONVERTING VIA DCL ABOUT DCL TECHNOLOGY

ALL RIGHTS RESERVED. MAY 18, 2013 1003

 • Path without file name causes the output file to be written with the same name but to
a different directory.

 • File name with or without path alters the file name for the output file. If you do not
specify a path, the original file path (as modified by any earlier path-related -o option)
is used.

 • Extension without file name gives the output file the extension specified instead of
the original extension. (In some cases, the new extension is added on instead of
replacing the previous one; this happens if the previous extension was not the one
used to indicate the input format, such as .mif , and if the file naming rules for the
system permit multiple extensions.)

37.7 About DCL technology
The Mif2Go DCL filter is based on the Omni Systems Document Coding Language,
DCL . This section gives a brief overview of DCL. For a full description of DCL, see the
Omni Systems DCL Specification, available on request. Omni Systems has placed the
DCL language in the public domain; you may use it without obligation. Omni Systems
products based on DCL, such as Mif2Go , are proprietary, and must be licensed from
Omni Systems.

In this section:
§37.7.1 DCL file structure on page 1003
§37.7.2 Writing DCL conversion modules on page 1003

37.7.1 DCL file structure

DCL can be read and written in either of two formats: ASCII or binary. When the Mif2Go
DCL filter is converting your files, it writes and reads the binary form, which is designed
for very rapid and efficient processing. If you want to work with the DCL file yourself, use
the ASCII version, which can be edited in any plain-text editor. All Omni Systems DCL
programs understand both forms of DCL; for example, drmif can write either format, and
dwrtf can read either format.

37.7.2 Writing DCL conversion modules

For simple projects, you can use text-processing tools to modify ASCII DCL files. You
can search and replace format names, for example, or modify format properties.

For more complex projects, where you need the power and versatility of a full-sized
programming language such as perl, Java, or C++, you are better off working with binary
DCL. You write a program that reads binary DCL files. Your program reads the eight-byte
“controls” in a binary DCL file one at a time; when it has read one control, your program
knows immediately how much “external” data follows the control, which tells it where the
next control begins. This design makes it simple for a program to step to the specific
controls it needs to modify. Once there, your program can replace or delete the control, or
add more controls, without concern for side effects elsewhere.

The Omni Systems DCL programs are written in C++, using a portable class library
developed by Omni Systems. If you intend to write C++ programs that work with DCL,
ask Omni Systems about availability of sample code and development tools.

(No illustrations)

ABOUT DCL TECHNOLOGY MIF2GO USER’S GUIDE

1004 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. 2013 MAY 18 1005

38 Generating intermediate output

If you run a Mif2Go conversion in two stages, stopping the first stage as soon as MIF or
DCL files have been created (see Figure 1-1 on page 62), you can use the intermediate
files for other purposes; also, you can set up a script to modify the files and then run
Mif2Go again to complete the conversion.

This section presents configuration settings for producing FrameMaker MIF or ASCII
DCL files from your FrameMaker document. Topics include:

§38.1 Producing MIF with Mif2Go vs. FrameMaker on page 1005
§38.2 Generating MIF output on page 1006
§38.3 Converting to ASCII DCL on page 1009
§38.4 Generating ASCII DCL output on page 1011

38.1 Producing MIF with Mif2Go vs. FrameMaker
When you specify FrameMaker MIF as the output type, Mif2Go saves all the files in your
FrameMaker document (including the book file, if you so specify) in MIF format, and
stops there.

Use this feature to save your entire document as MIF, perhaps to a different directory, and
perhaps for a different purpose; for example:

 • Store your FrameMaker document in a revision-control system.
 • Pass files to someone using FrameMaker on a different operating system.
 • Extract text for translation.
 • Back up your document over a LAN (Local Area Network).

Use Wash option
instead to clean

files

If you want to save as MIF primarily to clean up FrameMaker file corruption, you can
simply use the Wash Via MIF option on the FrameMaker File menu; see §D.2.6 Check for
file corruption on page 1032.

FrameMaker
insists on .mif

extension

When you save as MIF from FrameMaker, you have to use the .mif extension. But if you
are saving a book file, you do not really want it to come out as mydoc.book.mif , or
worse yet, mydoc.mif . And if you subsequently load chapters into FrameMaker from the
book file, the extension is wrong; the book knows about chapter.fm , not
chapter.mif .

FrameMaker 8
defaults to

version 7 MIF!

When an FDK application saves as MIF, the default for FrameMaker version 8 is to
produce FrameMaker 7 MIF files. This default action discards the FrameMaker-8-specific
information, and does not use Unicode. Mif2Go overrides this action, and saves
FrameMaker 8 files as FrameMaker 8 MIF, by default. See §38.2.4 Saving FrameMaker 8
files as FrameMaker 8 MIF on page 1008.

Mif2Go keeps
original file
extensions

Mif2Go produces MIF files with .book and .fm extensions, saved in a different
directory. When you load these files into FrameMaker, FrameMaker reads the MIF
without complaining; and when you choose File > Save , FrameMaker silently overwrites
them in binary format.

FrameMaker
changes links

When you save to a different directory in FrameMaker, FrameMaker thoughtfully rewrites
all your links to point back to the original sources.

Mif2Go
preserves links

Mif2Go first saves each MIF file in the same directory as the original file, but with a
temporary extension; then moves the file to the new directory, renaming it with a .book
or .fm extension.

GENERATING MIF OUTPUT MIF2GO USER’S GUIDE

1006 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

See also:
§38.2 Generating MIF output on page 1006
§D.2.6 Check for file corruption on page 1032

38.2 Generating MIF output
In this section:

§38.2.1 Understanding how MIF files are generated on page 1006
§38.2.2 Setting up a FrameMaker MIF project on page 1006
§38.2.3 Specifying which files to include in MIF output on page 1007
§38.2.4 Saving FrameMaker 8 files as FrameMaker 8 MIF on page 1008
§38.2.5 Saving FrameMaker 9+ files as FrameMaker 7 MIF on page 1008
§38.2.6 Specifying file extensions for MIF output on page 1008

38.2.1 Understanding how MIF files are generated

The Mif2Go MIF output type was designed to work with CVS revision-management
software, to store full FrameMaker books. Special features make it possible to seamlessly
reload the stored files into FrameMaker:

 • MIF output files retain the same paths as the .fm files, rather than receiving new paths
relative to the new location. This is different from FrameMaker File > Save As...
behavior, which alters paths; a feature that can make reloading MIF files a nightmare.

 • MIF output files are named with an .fm extension, so they load from the MIF (or
native FrameMaker) book file.

 • You can use a FrameMaker conversion template (see §2.4 Importing formats from a
conversion template on page 67) to alter properties such as format definitions in the
MIF output files, without affecting the original FrameMaker files.

Mif2Go first creates the MIF files in the same directory with your FrameMaker document
files, using temporary file extensions; then moves the MIF files to the project directory,
and changes the file extensions to whatever you specify. This two-step process
accomplishes the following:

 • Prevents FrameMaker from converting relative references (such as paths to external
graphics files) to absolute references.

 • Prevents FrameMaker from creating .backup files in the project directory. Any
previous copies in the project directory are overwritten by the move.

Mif2Go does not support FrameMaker books that contain chapter files in other
directories. MIF files are always written to a single outp[ut directory.

38.2.2 Setting up a FrameMaker MIF project

When you select FrameMaker MIF as the output type for a new project, the Set Up dialog
shown in Figure 38-1 opens. Table 38-1 shows the corresponding settings in the
configuration file. When you specify FrameMaker MIF as the output type, Mif2Go saves
all the files in your FrameMaker document (including the book file, if you so specify) in
MIF format, and stops there.

See also:
§3.4 Choosing project set-up options on page 79

38 GENERATING INTERMEDIATE OUTPUT GENERATING MIF OUTPUT

ALL RIGHTS RESERVED. 2013 MAY 18 1007

Figure 38-1 Set Up FrameMaker MIF Project

Note: When you click OK to dismiss the FrameMaker MIF Set Up dialog, and Notepad
opens to show configuration settings based on your choices, do not be alarmed if
you see settings that purport to make both file extensions .mif , even though you
specified original extensions. A later setting overrides the earlier settings.

38.2.3 Specifying which files to include in MIF ou tput

You can specify whether to save the book file itself as MIF:
[Setup]
; Settings for FrameMIF projects
; MakeBookMIF = Yes (default, make MIF of book file too) or No
MakeBookMIF=Yes

You might want generated files to be saved as MIF, or you might not. You can choose
individually for contents and index files; all others are included or excluded as a group:

[Setup]
; UseFrameTOC = Yes (default, exclude for Help form ats), or No
UseFrameTOC=No

Table 38-1 FrameMaker MIF set-up options and configuration settings

Set-up dialog Configuration file
Option Section Setting Default Ref.

Make MIF for book file [Setup] MakeBookMIF=Yes Yes 38.2.3

Use original extensions for MIF [Setup] OrigExtForMIF=Yes Yes 38.2.6

Use following extensions:
For MIF file(s)
For book file

[Setup] OrigExtForMIF=No
FileSuffix=. any
MIFBookSuffix=. any

Yes
.mif
.mif

38.2.6

GENERATING MIF OUTPUT MIF2GO USER’S GUIDE

1008 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; UseFrameIX = Yes (default, exclude for Help forma ts), or No
UseFrameIX=No
; UseFrameGenFiles = Yes (default for all formats) or No
UseFrameGenFiles=No

See §5.5 Converting FrameMaker-generated files on page 124 for more information.

38.2.4 Saving FrameMaker 8 files as FrameMaker 8 M IF

By default, when you save as MIF directly from FrameMaker 8, you get FrameMaker 7
MIF files, losing Unicode capability and possibly other FrameMaker 8 features. However,
Mif2Go saves your FrameMaker 8 files as FrameMaker 8 MIF by default, preserving
Unicode and other features.

To save FrameMaker 8 files as FrameMaker 7 MIF:
[Setup]
; UseFrame8MIF = Yes (default, for Frame 8 only),
; or No (to get Frame 7 MIF)
UseFrame8MIF = No

This setting takes effect only if you are using FrameMaker version 8.

38.2.5 Saving FrameMaker 9+ files as FrameMaker 7 MIF

By default, when you save as MIF directly from FrameMaker 9, you get FrameMaker 9
MIF files. You cannot get FrameMaker 8 MIF files from FrameMaker 9; however,
FrameMaker 9 MIF is almost identical to FrameMaker 8 MIF. And Mif2Go can force
output of FrameMaker 7 MIF files from FrameMaker 9.

To save FrameMaker 9 (or 10, or 11...) files as FrameMaker 7 MIF:
[Setup]
; UseFrame xMIF = Yes (default), or No (to get Frame 7 MIF),
; where x is 9, 10, 11, or a later version number.
UseFrame9MIF = No

We do not recommend this setting unless you must supply MIF files to someone using
FrameMaker 7. This setting takes effect only if you are using FrameMaker version 9 or a
later version.

38.2.6 Specifying file extensions for MIF output

You can specify file extensions separately for the book file and for all other files; the
default in either case is to retain the original FrameMaker file extension. For example:

[Setup]
; Settings for FrameMIF projects
; MakeBookMIF = Yes (default, make MIF of book file too) or No
MakeBookMIF=Yes
; OrigExtForMIF = Yes (default, use original FM fil e extensions) or No
OrigExtForMIF=No
; MIFBookSuffix = suffix to use for book file MIF, default ".mif"
MIFBookSuffix=.book
; FileSuffix = suffix to use for MIF files, defaul t ".mif"
FileSuffix=.fm

If you leave file extensions alone, all the files in your document are saved with default
extension .mif . You can specify different extensions, depending on the reason for saving
your document as MIF.

38 GENERATING INTERMEDIATE OUTPUT CONVERTING TO ASCII DCL

ALL RIGHTS RESERVED. 2013 MAY 18 1009

If you specify OrigExtForMIF=Yes , Mif2Go saves all the files in your document in
MIF format, but with their original FrameMaker file extensions: one extension for the
book file (provided you also specify MakeBookMIF=Yes), and one for the files contained
in the book.

If you specify OrigExtForMIF=No , you can specify one extension for the book file
(provided you also specify MakeBookMIF=Yes), and another extension for the files
contained in the book.

Why would you want MIF files to have FrameMaker extensions? Suppose you are saving
as MIF so you can store your original document in a revision-control system such as CVS.
You cannot just check binaries into CVS if you ever want to compare revisions using the
CVS diff function, which is a huge benefit. You must store files in an ASCII format, so
that CVS can provide metadata. You have these choices:

 • Name the files *.mif , and rename them one by one every time you copy them into or
out of the archive, from or to your working directory.

 • Keep the original FrameMaker file extensions even though the files are in MIF format,
so you can copy all the files to your working directory and open them in FrameMaker
without changing the extensions.

You might want to specify different extensions if you are passing FrameMaker files back
and forth with someone who is using FrameMaker on a different system with different
file-naming conventions.

38.3 Converting to ASCII DCL
When you specify ASCII DCL as the output type, Mif2Go saves all the files in your
FrameMaker document in MIF format, and then converts the MIF files to ASCII DCL
files (with extension .dcl) instead of the usual binary DCL files (with extension .dcb),
and stops there.

You can use this feature to export embedded graphics from your FrameMaker document
so you can convert them outside of Mif2Go , or replace them, before you continue the
conversion; see §5.7.3.2 Processing embedded graphics separately on page 132.

You can use Perl scripts to extract information from the DCL files to integrate with other
documents from non-FrameMaker sources. Perl can parse DCL files much easier than it
can parse MIF files.

You can also create DCL files, modify them to remap something on the way from
FrameMaker to RTF or HTML, then run Mif2Go again to finish the conversion, starting
from the modified DCL files.

For more information, see:
§38.4 Generating ASCII DCL output on page 1011

38.3.1 Setting up an ASCII DCL project

When you select ASCII DCL as the output type for a new project, the Set Up dialog shown
in Figure 38-2 opens. Table 38-2 shows the corresponding settings in the configuration
file.

See also:
§3.4 Choosing project set-up options on page 79
§38.4 Generating ASCII DCL output on page 1011

CONVERTING TO ASCII DCL MIF2GO USER’S GUIDE

1010 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Figure 38-2 Set Up ASCII DCL Project

Select graphics to
export

When you specify DCL as the output type, you can take advantage of the fact that Mif2Go
exports embedded graphics at the same time. You start by choosing some (Normal), none
(Retain), or all (Export) graphic formats to export, then select or deselect individual
formats:

Names of
exported graphics

files

Mif2Go gives exported graphics files names that start with the first few letters of the name
of the FrameMaker file from which they came, followed by an incremental number. You
can specify how many letters and how many digits to use for names; the default is four
each. See §5.7.4.2 Naming files produced from embedded graphics on page 134.

Normal Mif2Go does not export BMP, WMF, or FrameImage (rf) graphics, because
these types can be converted successfully for RTF output without creating
external files. OLE graphics are not exported either, but Mif2Go extracts a
WMF graphic from each OLE image; see §31.2.4 Exporting images and
creating files from OLE objects on page 881. You can still select any of these
formats to export.

Retain No embedded graphics are exported except those you select individually.

Export All embedded graphics are exported except those you deselect individually.

38 GENERATING INTERMEDIATE OUTPUT GENERATING ASCII DCL OUTPUT

ALL RIGHTS RESERVED. 2013 MAY 18 1011

Note: Selecting ole does not create usable external graphics files from OLE objects.
This setting is intended primarily for Omni Systems programmers who are
debugging Mif2Go . The exported file is not useful for any other purpose. See
§31.2.4 Exporting images and creating files from OLE objects on page 881.

38.4 Generating ASCII DCL output
When you specify ASCII DCL as the output type, Mif2Go saves all the files in your
FrameMaker document in MIF format, and then converts the MIF files to ASCII DCL
files (with extension .dcl) instead of the usual binary DCL files (with extension .dcb),
and stops there.

In this section:
§38.4.1 Including generated files in ASCII DCL output on page 1011
§38.4.2 Specifying type and file extension for ASCII DCL output on page 1012
§38.4.3 Exporting embedded graphics via ASCII DCL output on page 1012

38.4.1 Including generated files in ASCII DCL outp ut

You might want generated files to be converted to DCL, or you might not. You can choose
individually for Contents and Index files; all others are included or excluded as a group.

[Setup]
; UseFrameTOC = Yes (default, exclude for Help form ats), or No
UseFrameTOC=No
; UseFrameIX = No (default, exclude for Help format s), or Yes
UseFrameIX=No
; UseFrameGenFiles = Yes (default for all formats) or No
UseFrameGenFiles=No

See §5.5 Converting FrameMaker-generated files on page 124 for more information.

Table 38-2 ASCII DCL set-up options and configuration settings

Set-up dialog Configuration file
Option [GraphExport] Setting Default Ref.

Select embedded
graphics to export

Normal
Retain
Export

ImportGraphics=Normal
ImportGraphics=Retain
ImportGraphics=Export

Normal
Normal
Normal

31.2.3.5

Format Setting for ImportGraphics : Normal Retain Export 31.2.3.5

bmp
cdr
eps
gif
jpg
ole
pct
pcx
png
tif
rf
wmf
wpg

ExportBmpFiles=Yes
ExportCdrFiles=Yes
ExportEpsFiles=Yes
ExportGifFiles=Yes
ExportJpgFiles=Yes
ExportOleFiles=Yes
ExportPctFiles=Yes
ExportPcxFiles=Yes
ExportPngFiles=Yes
ExportTifFiles=Yes
ExportRfFiles=Yes
ExportWmfFiles=Yes
ExportWpgFiles=Yes

No
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
No
No
Yes

No
No
No
No
No
No
No
No
No
No
No
No
No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

31.2.3.6

Name files with: chars
digits

ExportNameChars= n
ExportNumDigits= n

4
4

5.7.4.2

GENERATING ASCII DCL OUTPUT MIF2GO USER’S GUIDE

1012 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

38.4.2 Specifying type and file extension for ASCI I DCL output

To produce ASCII DCL output:
[Options]
Output = ASCII

To specify a file extension:
[Setup]
FileSuffix = .dcl

38.4.3 Exporting embedded graphics via ASCII DCL o utput

One of the main reasons for specifying ASCII DCL as the output type is to take advantage
of an optional side effect of producing DCL: Mif2Go can export embedded graphics at the
same time. This method can get embedded graphics out with minimum fuss, and can save
time compared to running a full conversion once just to produce graphics.

For example, converting to DCL and exporting graphics takes maybe 10% of the run time
for HTML output—but only if you can stick to Mif2Go native graphics export, and avoid
using FrameMaker export filters (see §5.7.2.2.1 Understanding when to use FrameMaker
export filters on page 129).

To produce graphics first:
[Setup]
GraphicsFirst=Yes

To export embedded graphics to files:

[GraphExport]
ImportGraphics=Export

To export embedded graphics only in selected formats:
[GraphExport]
Export XXXFiles=Yes

where XXX can be any of a long list of graphics formats.

To use Mif2Go native graphics export, on the Mif2Go Export dialog:

 • choose Write graphics for equations

 • do not check Write only graphics, no text .

See also:
§3.7.4.2 Using Mif2Go native graphics processing on page 86
§5.7.3.2 Processing embedded graphics separately on page 132
§31.2.3 Exporting and converting embedded graphics on page 877

ALL RIGHTS RESERVED. 2013 MAY 18 1013

A WAI marker library for HTML

This section describes example FrameMaker markers to use for Web Access Initiative
(WAI) support. The markers themselves are available in file marklib.fm in your
Mif2Go distribution. Topics include:

§A.1 How to use WAI markers on page 1013
§A.2 Table markers on page 1013
§A.3 Graphic markers on page 1014
§A.4 Link markers on page 1016

A.1 How to use WAI markers
Marker text is limited to 256 characters. If you need more, you can insert another marker
of the same type in the same paragraph, and continue the text; Mif2Go concatenates the
text in successive markers of the same type. Empty markers are ignored by Mif2Go .

If you are using the FrameMaker version of this material (marklib.fm), make sure you
have View > Text Symbols checked so you can see the marker symbols. You can copy
and paste these markers into your own documents as needed; when you paste, the Marker
Type is automatically added to your document’s list of available types.

A.2 Table markers
Table A-1 lists the special marker types you can use to apply WAI attributes to tables. The
T column in contains an example of each table marker. The “Table A-2” columns show
where in Table A-2 on page 1014 you can find another example of the same marker,
located in a cell appropriate for the marker purpose.

For more information about table marker types, see:

Table A-1 Special marker types for WAI table attributes

T marker type Purpose
HTML
attribute

Valid
content

Table A-2

Col Row

_ CellAbbr Abbreviation for header-cell text abbr Any text 2 6

_ CellAxis Cell’s data category axis Any text 5 3

_ CellGroup Header cell’s ColGroup or
RowGroup property *

id/headers
or scope

col
row

4,7
1

1
4,7,11

_ CellScope Header cell’s scope scope col
colgroup
row
rowgroup

1
4,7
3
1

3
1
4
4,7,11

_ CellSpan Assign id="span" to a header cell id/headers Non-empty 5,8
3

1
4,10

_ TableSummary Text describing the table summary Any text Upper left
corner

_ TableTitle Text shown as a mouseover title Any text Upper left
corner

* See §26.2.1 Specifying group properties for header cells on page 766 for more information.

GRAPHIC MARKERS MIF2GO USER’S GUIDE

1014 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§25.4.3.3 Using a custom marker for table summary or title on page 762
§26.2.4 Assigning table-cell attribute values with custom markers on page 772

Each of the paragraph formats used in Table A-2 has a name that represents the role it
plays in the table: Body Cell, Col Group, Col Head, Row Group, Row Head, and Table Footer.
Columns are numbered in row 3; rows are numbered in column 3. The content of other
column and row header cells indicates the kind of WAI markup provided by the markers
they contain. The Col Group and Row Group header cells each contain two markers: a
CellScope marker at the beginning of the text, and a CellGroup marker at the end. Body
cells are all numbered by column and row. This paragraph ends with the table anchor for
Table A-2:

A.3 Graphic markers
Table A-3 lists the marker types you can use for graphics. The T column contains an
example of each graphic marker.

Table A-2 Examples of WAI table markers
This corner cell contains a
TableSummary marker here, and
TableTitle marker here.

Col Group
1

Col Group
2Col Span 1 Col Span 2

Col 1 Col 2 Col 3 Col 4
Col 5
with
Axis

Col 6 Col 7 Col 8 Col 9

Row
Group 1

Row
Span 3

Row 4 C4R4 C5R4 C6R4 C7R4 C8R4 C9R4

Row 5 C4R5 C5R5 C6R5 C7R5 C8R5 C9R5

Row
Head 6
with
Abbr

Row 6 C4R6 C5R6 C6R6 C7R6 C8R6 C9R6

Row
Group 2

Row
Head 7

Row 7 C4R7 C5R7 C6R7 C7R7 C8R7 C9R7

Row
Head 8

Row 8 C4R8 C5R8 C6R8 C7R8 C8R8 C9R8

Row
Span 4

Row 9 C4R9 C5R9 C6R9 C7R9 C8R9 C9R9

Row 10 C4R10 C5R10 C6R10 C7R10 C8R10 C9R10

Row
Group 3

Row
Head 11

Row 11 C4R11 C5R11 C6R11 C7R11 C8R11 C9R11

Row
Head 12

Row 12 C4R12 C5R12 C6R12 C7R12 C8R12 C9R12

Row
Head 13

Row 13 C4R13 C5R13 C6R13 C7R13 C8R13 C9R13

Footer FC4 FC5 FC6 FC7 FC8 FC9

A WAI MARKER LIBRARY FOR HTML GRAPHIC MARKERS

ALL RIGHTS RESERVED. 2013 MAY 18 1015

GraphAlt is for a name or brief text description of the graphic, to identify the image for the
visually impaired. Some browsers might display the alt text as a “tool tip”.

GraphLongdesc is for the name of a file, or URL of a Web page, that provides a longer
description of the graphic than is afforded by GraphAlt .

GraphTitle is also for a longer description of the graphic; use this marker as an alternate to
(or in addition to) the GraphLongdesc marker, for browsers that do not support the
longdesc attribute. Some browsers might display the title text as a “tool tip”.

You should experiment to see how each of these attributes is rendered by the browsers you
intend people to use.

You cannot insert a marker in a graphic itself, unless you include a text frame also. Place
the markers anywhere before a graphic’s anchor; they will apply to the next graphic in the
flow. Once used, the markers do not persist to affect any following graphics; in fact, the
nature of these markers is such that they should never repeat exactly for two different
graphics.

The graphic anchor for Figure A-1 is in a paragraph that follows the figure title. The figure
title itself contains examples of the three Graph* markers, all inserted in the word “travel”.

Figure A-1 Primary travel method in near future

Table A-3 Special marker types for WAI graphic attributes

T marker type Purpose
HTML
attribute

Valid
content

_ GraphAlt Brief text description of the graphic alt Any text

_ GraphLongdesc Link to a file or Web page containing more
information about the graphic

longdesc File name or
URL

_ GraphTitle Text description of the graphic; use for browsers
that do not support the longdesc attribute

title Any text

LINK MARKERS MIF2GO USER’S GUIDE

1016 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

A.4 Link markers
Table A-4 lists the marker types you can use for links. The T column contains an example
of each link marker.

If you give a link the title attribute, the content of the attribute is displayed when
mousing over the link, instead of the content of the href attribute. A LinkTitle marker is
here, and it applies to the link to §A WAI marker library for HTML on page 1013.

Table A-4 Special marker types for WAI link attributes

 T marker type Purpose
HTML
attribute Valid content

_ LinkClass Set link display properties in CSS class CSS class name

_ LinkTitle Descriptive title for link destination title Any text

ALL RIGHTS RESERVED. 2013 MAY 18 1017

B Distribution files

The files listed in Table B-1 are included in each Mif2Go distribution. Read instructions
before installing; see §1.3.3 Install Mif2Go on page 56.

(No illustrations)

Table B-1 Mif2Go distribution files

Category Where installed 1 File name Description

Executable \common\bin dcl.exe Document Coding Language (DCL) program

exwmf.exe Embedded-graphics extractor

pprtf.exe RTF pretty printer

runfm.exe Command-line application for unattended runs

setini.exe Utility for changing configuration settings

DCL library \common\bin dcx.dll Converter between ASCII and binary DCL

drxml.dll DCL reader for MIF files

dwhtm.dll DCL writer for HTML/XML files

dwinf.dll DCL writer for .inf (document information) files

dwrtf.dll DCL writer for RTF files

msvcrt40.dll Microsoft Windows C++ run-time library

Plug-in files FrameMaker plug-in
directory

m2rbook.dll Mif2Go FrameMaker plug-in interface

m2gframe.dll Library for m2rbook.dll

Configuration \common\system\config omsys.ini Base configuration template

\common\local\config local_omsys.ini Editable base configuration file

\m2g\system\config m2*_config.ini Output-type configuration templates

\m2g\local\config local_m2*_config.ini Editable output-type configuration files

Macros \m2g\system\macros m2*_macros.ini Macro configuration templates

\m2g\local\macros local_m2*_macros.ini Editable macro configuration files

Documentation \m2g\usersguide ugmif2go.chm Mif2Go User’s Guide in HTML Help format

OmniHelp \common\omnihelp ohvhtm NN.zip OmniHelp control files for HTML 4.01

ohvxml NN.zip OmniHelp control files for XHTML 1.0

ohvm2gNN.zip OmniHelp customization files
1 For complete installation instructions, see §1.3.3 Install Mif2Go on page 56.

MIF2GO USER’S GUIDE

1018 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. 2013 MAY 18 1019

C Document and conversion files

This section describes the files Mif2Go creates for and during a conversion project, and
shows where to find these files and what to do with them. Topics include:

§C.1 Locating document and conversion files on page 1019
§C.2 Identifying conversion files on page 1020
§C.3 Renaming or relocating the Mif2Go project file on page 1026
§C.4 Renaming or relocating the Mif2Go FileID file on page 1027
§C.5 Working with reference files for HTML or XML on page 1027

C.1 Locating document and conversion files
When you use Mif2Go to convert a FrameMaker document, you specify a project
directory for converted and generated document files (see §2.6 Establishing a conversion
environment on page 74). By default, Mif2Go places output files in the input directory:
the directory where your FrameMaker document is located. If you accept the default (not
recommended), the project directory for your conversion is the same as the input
directory. It is better practice to create a different directory for output files. Table C-1
shows what document files are in which directory.

Mif2Go also creates several conversion files, and places some in the input directory, some
in the project directory. Table C-2 lists the basic conversion files in each directory. For
more information see §C.2 Identifying conversion files on page 1020.

Table C-1 Location of document files

Directory File name Description

Input MyDoc.book (& *.fm) or
MyDoc.fm

Your original FrameMaker document

Output MyDoc.mif (& *.mif) Your FrameMaker document in MIF format (unless you
instruct Mif2Go to delete MIF files)

*.rtf or *.htm , etc. Converted and generated document file(s), in the output
format you specify

Table C-2 Location of conversion files

Directory File name Description

Input MyDoc.prj Project information Mif2Go creates for your FrameMaker document

mif2go.ini List of FileIDs assigned to the files Mif2Go generates from your
FrameMaker document (not produced if you select FrameMIF as the
output type)

Output _m2g_log.txt Conversion event log (optional)

_m2output.ini Configuration file containing settings to produce the output file(s); put
there by Mif2Go if you convert via FrameMaker, or by you (or a script
you provide) if you convert via command line

*.grx Graphics information entries for each file in your document that contains
graphics which you direct Mif2Go to export via FrameMaker filters—
even if you check Do not write graphics on the Export dialog

*.ref Cross-reference entries for each file in your document (HTML output
only)

IDENTIFYING CONVERSION FILES MIF2GO USER’S GUIDE

1020 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

You might find other conversion files in the project directory as well, depending on the
type of output you specify and the conversion options you select. See §C.2.3 Additional
conversion files on page 1021.

C.2 Identifying conversion files
Mif2Go tends to litter your input and output directories with conversion files. It is a good
idea to know what these files are for, and what you should and should not do with them.

In this section:
§C.2.1 Conversion files created during set-up on page 1020
§C.2.2 Files created during conversion on page 1021
§C.2.3 Additional conversion files on page 1021
§C.2.4 What not to do with conversion files on page 1025

C.2.1 Conversion files created during set-up

The first time you set up a conversion project for a particular FrameMaker document,
Mif2Go creates for that document three conversion files:

 • a document-specific project file
 • a document-specific FileID file
 • an output-specific starting project configuration file:

Mif2Go places the project file and the FileID file in the same directory as your
FrameMaker document, and places the starting project configuration file in the project
directory.

Project file and
FileID file

If you run Mif2Go from within FrameMaker, the project and FileID files are created when
you click Set Up Mif2Go Export... on the FrameMaker File menu:

Conversion file Default file name File contents
Project MyDoc.prj Information Mif2Go collects about

conversion-project names, types, paths, and
states.

FileID mif2go.ini Output-file identifiers called FileIDs, mapped
to the names of your FrameMaker files;
Mif2Go assigns these identifiers.

Configuration _m2output.ini Settings and options that dictate how your
document will be converted.

_m2output_html.ini or
_m2output_word.ini

Settings that are specific to this document.

Before Mif2Go set-up: After Mif2Go set-up:
Input directory Project directory Input directory Project directory
MyDoc.book MyDoc.book _m2 output.ini

Chapter1.fm Chapter1.fm

... ...

ChapterN.fm ChapterN.fm

MyDoc.prj

mif2go.ini

MyDoc.prj Project file for conversions from MyDoc.book (or MyDoc.fm)

mif2go.ini FileID file for conversions from MyDoc.book (or MyDoc.fm)

C DOCUMENT AND CONVERSION FILES IDENTIFYING CONVERSION FILES

ALL RIGHTS RESERVED. 2013 MAY 18 1021

See §C.3 Renaming or relocating the Mif2Go project file on page 1026 for more
information about these two conversion files.

Configuration file Mif2Go places the starting project configuration file in the project directory. If you run
Mif2Go from within FrameMaker, the project directory is the location you specify via the
Choose Project Browse button (...). The configuration file is one of those listed in
Table 30-5 on page 859. Mif2Go also places a document-specific configuration file in
subdirectory _config , parallel to the project directory. This file contains settings that
apply only to the particular FrameMaker document you are converting. See §30.3
Including document-specific configuration files on page 852.

C.2.2 Files created during conversion

After the first time you run a conversion, in addition to the files described in §C.2.1
Conversion files created during set-up on page 1020, you might find several other
conversion files created by Mif2Go : graphics information files and reference files, for
example.

Graphics
information files

If your document includes graphics, and Mif2Go converts them using FrameMaker export
filters (see §5.7.2.2 Using FrameMaker graphic export filters on page 129), the project
directory will contain a graphics information file for each FrameMaker file in your
document. A graphics information file has the same name as its FrameMaker file, but with
extension .grx .

Reference files If you are converting to HTML or XML, you will also find a reference file corresponding
to each FrameMaker file, with extension .ref ; see §C.5 Working with reference files for
HTML or XML on page 1027.

C.2.3 Additional conversion files

After you run Mif2Go additional conversion files might be present in the project
directory, depending on the following:

 • Which kind of output type you specify; see:
§C.2.3.1 RTF conversion files on page 1022
§C.2.3.2 HTML/XML conversion files on page 1022
§C.2.3.3 MIF or DCL conversion files on page 1025

 • Whether you are generating on-line help; see:
§C.2.3.1.2 WinHelp files on page 1022
§C.2.3.2.4 MS HTML Help files on page 1024
§C.2.3.2.5 OmniHelp files on page 1024
§C.2.3.2.6 JavaHelp or Oracle Help files on page 1024

 • What options you specify for converting graphics; see:
§3.6 Converting documents on page 82

Before document conversion: After document conversio n:
Input directory Project directory Input directory Project directory
MyDoc.book _m2 output.ini MyDoc.book _m2 output.ini

Chapter1.fm Chapter1.fm MyDoc.mif

... ... MyDoc.rtf or *.hml or
*.xml or *.dita

ChapterN.fm ChapterN.fm Chapter1.grx

MyDoc.prj MyDoc.prj ...

mif2go.ini mif2go.ini ChapterN.grx

IDENTIFYING CONVERSION FILES MIF2GO USER’S GUIDE

1022 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§5.7 Processing graphics on page 126
§6.14 Managing graphics for print RTF on page 186
§8.6 Managing graphics for WinHelp on page 263
§23 Including graphics in HTML on page 703
§31 Working with graphics on page 869

C.2.3.1 RTF conversion files

Conversion files Mif2Go places in the project directory depend on which RTF output type
you specify:

§C.2.3.1.1 Print RTF (Word or WordPerfect) files on page 1022
§C.2.3.1.2 WinHelp files on page 1022

C.2.3.1.1 Print RTF (Word or WordPerfect) files

If you are converting to a print RTF format (Word or WordPerfect), Mif2Go creates no
additional conversion files that are specific to RTF. If you use default conversion settings,
you should see the following files in the project directory:

C.2.3.1.2 WinHelp files

If you are generating WinHelp, all graphics in anchored frames in your FrameMaker
document will appear as individual WMF graphics files. If you use default conversion
settings, you should see the following files in the project directory, in addition to those
listed in §C.2.3.1.1 Print RTF (Word or WordPerfect) files on page 1022:

C.2.3.2 HTML/XML conversion files

Conversion files Mif2Go places in the project directory depend on which output type you
specified:

§C.2.3.2.1 Standard HTML or XML files on page 1023
§C.2.3.2.2 DITA XML files on page 1023
§C.2.3.2.3 DocBook XML files on page 1023
§C.2.3.2.4 MS HTML Help files on page 1024
§C.2.3.2.5 OmniHelp files on page 1024
§C.2.3.2.6 JavaHelp or Oracle Help files on page 1024
§C.2.3.2.7 Eclipse Help files on page 1025

*.grx Graphics information entries for each file in your document that
contains graphics exported via FrameMaker filters.

* .mif Your document files in MIF format

_m2rtf.ini Configuration file

MyDoc.rtf Your document in RTF format

*.bct Contents entries for each file in your document

*.wmf Graphics

MyDoc.cnt WinHelp contents

MyDoc.hpj WinHelp project

C DOCUMENT AND CONVERSION FILES IDENTIFYING CONVERSION FILES

ALL RIGHTS RESERVED. 2013 MAY 18 1023

C.2.3.2.1 Standard HTML or XML files

Unless you specify otherwise, all graphics in anchored frames in your FrameMaker
document will appear as individual JPEG graphics files. If you use default conversion
settings, you should see the following files in the project directory:

C.2.3.2.2 DITA XML files

With default conversion settings you should see the following files in the project
directory:

C.2.3.2.3 DocBook XML files

With default conversion settings you should see the following files in the project
directory:

*.grx Graphics information entries for each file in your document that
contains graphics exported via FrameMaker filters.

*.jpg Exported graphics

* .htm Your document in HTML format, if the output type is HTML,
XHTML, or any HTML-based Help type

mydoc.lst List of FrameMaker files being processed

* .mif Your document in MIF format

* .ref Cross-reference entries for each file in your document.

* .xml Your document in XML format, if the output type is XML

1p.gif Spacer graphic

local.css Cascading Style Sheet

_m2*ml.ini Starting project configuration file

* .dita Your document in DITA XML format

* .ditamap DITA map for the book file and for each chapter file

* .dtf ASCII DCL information needed to build the book map, for each
chapter in your document

*.grx Graphics information entries for each file in your document that
contains graphics exported via FrameMaker filters

*.jpg Exported graphics

* .mif Your document in MIF format

* .ref Cross-reference entries for each file in your document.

mydoc.lst List of FrameMaker files being processed

local.css Cascading Style Sheet

_m2dita.ini Configuration file

* .ent Your chapter files in DocBook XML format

* .xml Your book file in DocBook XML format

*.grx Graphics information entries for each file in your document that
contains graphics exported via FrameMaker filters

*.jpg Exported graphics

* .mif Your document in MIF format

* .ref Cross-reference entries for each file in your document.

IDENTIFYING CONVERSION FILES MIF2GO USER’S GUIDE

1024 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

C.2.3.2.4 MS HTML Help files

In addition to the files listed in §C.2.3.2.1 Standard HTML or XML files on page 1023,
with default conversion settings you should see the following files in the project directory:

C.2.3.2.5 OmniHelp files

In addition to the files listed in §C.2.3.2.1 Standard HTML or XML files on page 1023,
with default conversion settings you should see the following files in the project directory:

C.2.3.2.6 JavaHelp or Oracle Help files

In addition to the files listed in §C.2.3.2.1 Standard HTML or XML files on page 1023,
with default conversion settings you should see the following files in the project
directory:

mydoc.lst List of FrameMaker files being processed

local.css Cascading Style Sheet

_m2docbook.ini Configuration file

* .bhc Contents entries

* .bhk Index entries

MyProj.hha Index headers

MyProj.hhp HTML Help project

MyProj.hhc Contents in HTML format

MyProj.hhk Index in HTML format

MyProj.hht List of CSH IDs for HTML Help

MyProj.lst List of FrameMaker files being processed

MyProjIX.bha Index entries from your document’s index

*.bha Aliases, such as the IDH_ identifiers, from newlinks

* .bhc Contents entries

* .bhk Index entries

* .bhl Related items (ALinks)

* .bhs Search items

MyDoc.lst List of FrameMaker files being processed

MyDoc.oha Context-sensitive help entries

MyDoc.ohc Contents entries

MyDoc.ohk Index entries

MyDoc.ohl Related-topics entries

MyDoc.ohs Full-text search entries

MyDoc.ohx Settings from project configuration file _m2omnihelp.ini

MyDocohp.htm Frameset to load in browser

* .bhc Contents entries

* .bhk Index entries

* .bhm Index headers

MyProj.hs Helpset file

C DOCUMENT AND CONVERSION FILES IDENTIFYING CONVERSION FILES

ALL RIGHTS RESERVED. 2013 MAY 18 1025

C.2.3.2.7 Eclipse Help files

In addition to the files listed in §C.2.3.2.1 Standard HTML or XML files on page 1023,
with default conversion settings you should see the following files in the project
directory:

C.2.3.3 MIF or DCL conversion files

Conversion files Mif2Go places in the project directory depend on which output type you
specified:

§C.2.3.3.1 FrameMaker MIF files on page 1025
§C.2.3.3.2 ASCII DCL files on page 1025

C.2.3.3.1 FrameMaker MIF files

When you choose Frame MIF only , Mif2Go creates no additional conversion files; and in
fact does not produce mif2go.ini . If you use default conversion settings, you should see
the following files in the project directory:

C.2.3.3.2 ASCII DCL files

When you choose ASCII DCL only , Mif2Go creates no additional conversion files. If you
use default conversion settings, you should see the following files in the project directory:

C.2.4 What not to do with conversion files

Mostly you should leave conversion files alone. But if you must:
Move files with care
Delete files with care
Modify files with care.

Move files with
care

Leave conversion files in place unless you are very sure you will not need to run all or part
of the conversion again.

For example, if you move document, project, and FileID files to another directory,
Mif2Go still expects to find the FileID file in the original location. This is because the

MyProj.jhm Map file

MyProj.lst List of files being processed

MyProjIX.bha Index entries from your document’s index

MyProjIndex.xml Index entries from your document’s index, in XML format

MyProjTOC.xml Contents entries from your document’s TOC, in XML format

* .bhc Contents entries

MyDoc.lst List of FrameMaker files being processed

plugin.xml Manifest file

toc.xml Contents file

* .mif Your document files in MIF format

_m2mif.ini Configuration file

*.dcl Your document in ASCII DCL format

* .mif Your document files in MIF format

_m2dcl.ini Configuration file

RENAMING OR RELOCATING THE MIF2GO PROJECT FILE MIF2GO USER’S GUIDE

1026 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

configuration file contains an absolute (full-path) reference to the location of the FileID
file at the time the project was created. If Mif2Go does not find a FileID file in the
referenced directory, Mif2Go creates a new one there. To get around this problem, edit the
configuration file to change the reference; see §C.4 Renaming or relocating the Mif2Go
FileID file on page 1027.

If you do move your entire project to another directory, delete all *.ref files for that
project, and also delete all *.ref files for any project that links to the one you are
moving.

Delete files with
care

You may delete reference (.ref) files as a precursor to a full rebuild. Deleting reference
files created in a prior conversion can make the next conversion of the same document run
faster. This is safe practice only if both of the following apply:

 • You are about to reconvert an entire book.
 • No files outside the book reference any files in the book.

Otherwise, you might get broken cross references from other files, until you reconvert
those files also. If you reconvert only one chapter after deleting .ref files, any cross
references from that chapter to other chapters (or HTML split files) will be wrong until
those other chapters have been reconverted also. See §C.5 Working with reference files for
HTML or XML on page 1027. See also §35.4.3 Understanding when not to delete .ref and
.htm files on page 959

Modify files with
care

If you add, rename, or remove any files in your FrameMaker book between conversions,
you might need to edit certain conversion files. See §C.4 Renaming or relocating the
Mif2Go FileID file on page 1027 and §C.5 Working with reference files for HTML or
XML on page 1027. To modify a conversion file, use a text editor such as Notepad.
Otherwise, do not change the content of any conversion files except for the configuration
file, unless you know what you are doing.

C.3 Renaming or relocating the Mif2Go project file
By default, Mif2Go creates a project file with the same base name as your FrameMaker
document, and extension .prj . By default the project file is located in the same directory
as your FrameMaker document files. However, in a configuration file you can specify a
different name or location for the project file:

[Setup]
; PrjFileName = name of project file that reference s this directory
PrjFileName= D:/path/to/yourbook.prj

If Mif2Go cannot find the specified project file, Mif2Go looks for a file named
mif2go.prj .

Path to and paths
within the project

file must be
absolute

You must specify an absolute path to the project file. Also, the path values Mif2Go creates
within the project file must be absolute. Some users always keep book and chapter files in
the same directory; others do not. Sometimes all books are in one place, all chapters in a
few others. It is possible for the book and every chapter in it to be in a different place. Yet
you need a single project directory for the project. An absolute path makes the conversion
location predictable and stable.

Copied
configurations are

automatically
updated

A configuration file created by Mif2Go specifies the default name and the input directory
for PrjFileName . If you copy a configuration file from another location to the project
directory, then set up a new conversion, Mif2Go updates the copied configuration file to
fix the path to the new project file.

C DOCUMENT AND CONVERSION FILES RENAMING OR RELOCATING THE MIF2GO FILEID FILE

ALL RIGHTS RESERVED. 2013 MAY 18 1027

C.4 Renaming or relocating the Mif2Go FileID file
By default, for a new project Mif2Go creates a FileID file named mif2go.ini in the
same directory as your FrameMaker document files. However, in the starting project
configuration file you can specify a different name or location for the FileID file:

[Setup]
; IDFileName = name of file that contains [FileIDs] for this project
IDFileName= D:/absolute/path/to/mif2go.ini

Copied
configurations are

not updated

A configuration file created by Mif2Go specifies the default name and the input directory
for IDFileName . If you copy a configuration file from another location to the project
directory, then set up a new conversion, Mif2Go does not fix the path to the FileID file,
because you could be using a centralized version of the latter; Mif2Go cannot tell. If you
are not using a centralized version, you might have to edit the path to the FileID file.

If you have multiple projects that use the same FrameMaker document files, but different
project directories, probably you should edit all the configuration files so they all point to
the same copy of mif2go.ini ; you can put that copy anywhere that is convenient. Then,
for example, all your projects would use the same FileID for graphics produced from the
same FrameMaker file.

FileIDs in old
configuration files

If you have just upgraded Mif2Go from a prior version that kept FileID information in the
main configuration file, and you are still using that configuration file, you can override the
list in the FileID file with the list in your configuration file; see §5.3.4.4 Keeping legacy
FileIDs in the configuration file on page 122.

C.5 Working with reference files for HTML or XML
If you are converting to HTML or XML, for each FrameMaker file in your document
Mif2Go creates a reference file of information about both ends of every cross reference
and every link from, to, or within that FrameMaker file. Mif2Go uses this information to
figure out and correct HTML links. Do not edit Mif2Go reference files.

A reference file has the same name as its FrameMaker file, but with extension .ref .
Reference files are placed in the project directory, along with HTML or XML output files.
However, you do not need to distribute reference files with your output. They are for
Mif2Go internal use only.

In this section:
§C.5.1 Understanding how reference files work on page 1027
§C.5.2 Resolving forward references with a second pass on page 1028
§C.5.3 Using reference files to enable links to other documents on page 1028

C.5.1 Understanding how reference files work

When Mif2Go encounters in one FrameMaker file a cross reference or link to another file
in the document, Mif2Go looks for the reference file produced when that other file was
processed—even if that other FrameMaker file is in a different directory. If the reference
file is present, Mif2Go uses the information it contains to create a link to the correct split
part of that other file.

When Mif2Go encounters, in the reference file for the current FrameMaker file, a marker
for a cross reference from another file, Mif2Go updates the other file to point to the
correct split part of the current file. The net effect is that after Mif2Go processes the last
file in a document, all links between all files are correct.

WORKING WITH REFERENCE FILES FOR HTML OR XML MIF2GO USER’S GUIDE

1028 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

During conversion, Mif2Go updates HTML files that are already in the project directory if
they contain links to FrameMaker files that Mif2Go has not yet processed; and if those
FrameMaker files are then split, the links in the HTML output files are updated to point to
the correct split parts. This means you must leave all HTML files in the project directory
until the entire conversion is finished.

Reference files are fully regenerated only when you convert the entire document they deal
with, along with any other files that reference, or are referenced by, files in that document.
Until you complete the conversion, some of the links to files that are split will be wrong.
The HTML output files might also be updated as part of the process, and must be left
where created for this to work.

If you find an entry followed by a double asterisk in a reference file; for example:
[Links]
ca871052=49CFR191.htm#Xbw1006201 **

The double asterisk means that Mif2Go was unable to resolve the reference. See §D.2.7
Check for broken links (HTML or XML output) on page 1033.

C.5.2 Resolving forward references with a second p ass

Forward links to FrameMaker files that have not yet been processed might not be resolved
the first time you run a conversion. This is a problem when macros are involved, but only
for cross references to other FrameMaker files (as opposed to hypertext links or URLs,
which do not have this issue). The problem can also be caused by latency issues in
Windows shell operations.

Mif2Go does not know the final reference while processing for the first time a macro that
includes a forward cross reference, because the destination output file does not yet exist.
When Mif2Go processes the destination file, Mif2Go goes back to fix up the cross
reference; but this does not work if a macro is involved, because in that case Mif2Go does
not know exactly where in the source file the unfixed reference is located.

However, if there is an accurate .ref file when Mif2Go processes the original reference,
the destination is known, and so no fix-up is needed.

The solution is to run the conversion twice. The first run populates the .ref file correctly,
and the second run uses that information to fix up forward references. Of course you must
not delete the..ref file in between the two runs.

C.5.3 Using reference files to enable links to oth er documents

Mif2Go does not delete reference files after conversion, because they could be needed at a
later time if other FrameMaker documents contain references to or from any previously
converted document.

If the FrameMaker document you are converting contains links to other FrameMaker
documents that were already converted, see §19.6.4 Enabling links to files in other
projects on page 623 for additional settings.

See also:
§35.4 Clearing out old files before converting on page 957
(No illustrations)

ALL RIGHTS RESERVED. MAY 18, 2013 1029

D Technical support for Mif2Go

Omni Systems can provide effective technical support for Mif2Go when you provide
complete, concise information. We always do our best to help; when you do your part, we
can do our part more quickly and effectively. Topics include:

§D.1 Evaluation version is different on page 1029
§D.2 Things to check first on page 1029
§D.3 How to request help on page 1035

Zip your files! Do not send unzipped FrameMaker files to Omni Systems.
Do not send files larger than 1 MB.

D.1 Evaluation version is different
If you are using the evaluation version of Mif2Go , and the problem you see is that some of
the text in your output has been replaced by nonsense, this is intentional:

Evaluation version alters text
Get the latest release
Get a license
Delete evaluation components if necessary

Evaluation
version alters text

The evaluation version of Mif2Go replaces some of your text with excerpts from Lewis
Carroll’s poem “Jabberwocky”. This ensures that you can evaluate Mif2Go without
restrictions on the size or complexity of your project, yet you cannot produce
commercially usable output until you actually purchase a license. For additional
information about using the evaluation version, see readme.txt in
%OMSYSHOME%\m2g\zip.

Get the latest
release

If you encounter some other problem with the evaluation version, first download the
newest sampXXuYY.zip file, and reinstall; then try the conversion again. To obtain the
latest release of the evaluation version, download file sampXXuYY.zip from the
following location:

http://mif2go.com

Get a license To purchase a license for Mif2Go , see:
http://mif2go.com

Delete evaluation
components if

necessary

Once you have installed a licensed copy of Mif2Go , you should no longer see any of your
text replaced by excerpts from Jabberwocky. However, if you are still seeing these
excerpts, some components of the evaluation version are still present on your system; and
one of them, drmif.dll , is located in a directory that is earlier on your system PATH than
the licensed version. The evaluation version of this file is larger than the production
version. Use Windows Explorer to search your hard disk for drmif.dll , and delete any
copies of this file that are 320K in size rather than 317K.

D.2 Things to check first
Before you holler for help, try the following:

§D.2.1 Examine your conversion log file on page 1030
§D.2.2 Check your Mif2Go installation on page 1030
§D.2.3 Check for missing Microsoft components on page 1032

http://mif2go.com
http://mif2go.com

THINGS TO CHECK FIRST MIF2GO USER’S GUIDE

1030 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

§D.2.4 Check the Mif2Go User’s Guide on page 1032
§D.2.5 Check path names, file names, and drive location on page 1032
§D.2.6 Check for file corruption on page 1032
§D.2.7 Check for broken links (HTML or XML output) on page 1033
§D.2.8 Restart FrameMaker, reboot system on page 1033
§D.2.9 Check your version of Mif2Go on page 1034
§D.2.10 Narrow down the problem on page 1035

D.2.1 Examine your conversion log file

By default, Mif2Go writes conversion errors and warnings to a log file in your project
directory. If the information in the log file does not reveal the cause of the problem, try
changing the log options to capture more information. See §5.2 Logging conversion
events on page 115.

No log errors or warnings? Next: Check your Mif2Go installation

D.2.2 Check your Mif2Go installation

Sometimes supporting files are not where they need to be. See if you are getting one of
these error messages:

DCL NT console driver has stopped working
Error processing m2rbook...
Could not run DCL filter...
Arguments unacceptable
OmniHelp Loading...

DCL NT console
driver has

stopped working

Check whether:

 • %OMSYSHOME% is defined as a System environment variable
 • %OMSYSHOME%\common\bin is on your System (not User) execution PATH.

See §1.3.1 Set up a framework for Omni Systems applications on page 54.

Error processing
m2rbook...

If you get an error message such as the following when you run Mif2Go from the
FrameMaker File menu:

Error Processing m2rbook command

Generally this indicates one of the following problems:

 • A corrupted Mif2Go project (.prj) file; see §C.1 Locating document and conversion
files on page 1019. You can try deleting your existing .prj file, and then restarting
FrameMaker. However, if your FrameMaker book file is on a network server, you
might need to work with a local copy. Update it from the network copy when you
start, and copy back changes when you are finished, assuming others also need to
work on the same book.

 • A missing document file, if you get the error while Mif2Go is checking links.
 • A problem with the file system where your FrameMaker book is located; this happens

mostly with network server file systems; it seems to be an intermittent problem of
FrameMaker not getting write access to the directory that contains the book file. This
is more a FrameMaker problem than a Mif2Go problem, and might also manifest as
trouble saving files, or trouble with graphics.

Other, similar error messages include the following:
Error initializing m2rbook.
Error processing m2rbook notification.

D TECHNICAL SUPPORT FOR MIF2GO THINGS TO CHECK FIRST

ALL RIGHTS RESERVED. MAY 18, 2013 1031

Error processing m2rbook hypertext command.
Error processing m2rbook dialog event.

Each message is issued under a different condition, usually as a result of an internal
problem in FrameMaker, but sometimes as a result of a Mif2Go problem. If you can get
the error message to display consistently, send a test case, prepared as described in §D.3
How to request help on page 1035.

Could not run
DCL filter...

If the FrameMaker Console reports an error such as the following:
Mif2go failed for file: G:\HTML\First.htm
type 1, code 2, at: Thu Jul 25 10:07:37 2012
Could not run DCL filter or other program.
File not found.

This is an installation problem: Mif2Go could not find one or more executable files. This
error usually means that the PATH environment variable is not set to include
%OMSYSHOME%\common\bin, where the DLLs Mif2Go is looking for reside. You must
set the SYSTEM PATH, not the USER PATH; see §1.3.3 Install Mif2Go on page 56. Another
possibility is that %OMSYSHOME% is not set as a SYSTEM (not USER) environment variable,
or is not set to the path where you actually installed the executables.

Note: After you make environment settings, you must reboot Windows before they take
effect.

Make sure your zip program did not put an extra directory name in the path when you
unpacked the distribution archive. For example, if %OMSYSHOME% is defined as
C:\omsys , make sure the executables are in C:\omsys\common\bin , and not in
C:\omsys\m2g_full_54\common\bin .

If files are all present in the right places, look at them in Windows Explorer. Right-click
each DLL, choose Properties , and look at the Security tab. Make sure that everyone has
permission to execute, preferably “full control”. Windows “security” often disables
whatever came from a downloaded .zip file by limiting permissions for any executables.

Arguments
unacceptable

If the FrameMaker Console reports an error such as the following:
Mif2go failed for file: G:\HTML\Test.htm
code 1 at: Wed Aug 17 15:05:57 2012
Arguments unacceptable.

This usually means that one or more required DLL files are not installed where Windows
can find it; see §1.3.1 Set up a framework for Omni Systems applications on page 54.
Sometimes this error occurs when an administrator “cleans up” system directories and
removes an essential file (such as msvcrt40.dll , the Microsoft C run-time library for
Visual C++ 4.x). Make sure all DLLs are in the required places.

You can get an “Arguments unacceptable” error message if compilation fails when you are
generating WinHelp or HTML Help, and you set CompileHelp=Yes (or you check
Compile Help on the Export dialog); Mif2Go runs the compiler after converting your
document. Try compiling directly from Help Workshop to see if that is where the problem
lies.

OmniHelp
Loading...

If you use Mif2Go to generate OmniHelp, then when you load _myproj.htm the browser
displays only this message, and nothing else happens:

OmniHelp Loading...

This usually means the OmniHelp viewer files or control files are not in the same directory
as the HTML files; see §10.2 Setting up OmniHelp viewer control files on page 342.

Everything where it belongs? Next: Check for missing Microsoft components.

THINGS TO CHECK FIRST MIF2GO USER’S GUIDE

1032 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

D.2.3 Check for missing Microsoft components

If FrameMaker crashes when you browse for a Path in the Choose Project dialog, check
to make sure you have a copy of library file msvcp60.dll in your Windows system
directory. If this file is not present, or is dated before 29 August 2000, download a copy
from:

http://dl.dropbox.com/u/1868997/msvcp60.dll

Place this file in your Windows system directory (\windows\system32 or, for 64-bit
systems, \windows\SysWOW64) before you start FrameMaker again.

Microsoft components present? Next: Check the Mif2Go User’s Guide.

D.2.4 Check the Mif2Go User’s Guide

Quickest way: use the Search feature of the HTML Help version, which is installed with
Mif2Go . Search for words likely to relate to the problem; you might be able to solve it
yourself.

No luck? Next: Check path names, file names, and drive location.

D.2.5 Check path names, file names, and drive loca tion

If the name of any path or file involved in the conversion contains any characters other
than letters and numbers (such as spaces, dashes, or underscores), rename the path or
move the file to eliminate them; see §1.1.2 File, directory, and path names on page 51.
FrameMaker does not handle spaces in file names very well; Mif2Go does not care.

If all file and path names are free of non-alphanumeric characters and your conversion is
still not producing any output, check whether your %OMSYSHOME% directory or any of your
FrameMaker files are on a network drive. FrameMaker is noted for not running properly
when files are on a network drive.

Another issue is “latency”, where a large and unpredictable delay occurs between a
program's file request and the server's response. So you can get a “race” condition, where
one instance of Mif2Go closes a file, and the next instance opens the same file. If the close
is not completed, which involves numerous internal updates on the server, the open may
be denied. The result will be broken links. You may get other results for other such race
conditions.

If you are using a network drive, move your files to a local drive and try running the same
conversion there before asking for support.

File names and paths valid, and the problem still exists? Next: Check for file corruption.

D.2.6 Check for file corruption

A slightly corrupted FrameMaker file might cause hard-to-trace problems with Mif2Go .
To rule out this possibility, try cleaning out any corruption by saving the offending file as
MIF and replacing the binary version with the MIF version. Mif2Go can do this for you
(even in the evaluation version), and report the results in the FrameMaker console
window.

Clean a single file To clean a FrameMaker binary file: with the file open and active, on the FrameMaker File
menu choose Wash Via MIF. Mif2Go does the following:

1. Saves the file as MIF with extension .tmb (for Temporary MIF Backup), to avoid
conflict with any existing MIF file of the same name.

http://dl.dropbox.com/u/1868997/msvcp60.dll

D TECHNICAL SUPPORT FOR MIF2GO THINGS TO CHECK FIRST

ALL RIGHTS RESERVED. MAY 18, 2013 1033

2. Closes the file without saving.

3. Opens the .tmb MIF file.

4. Saves the .tmb MIF file as .fm , overwriting the original file.

5. Deletes the .tmb MIF file.

Note: FrameMaker version 11 seems to get as far as Step 3 and then stop; and fails to
process chapter files when run on a book.

Clean all files in a
book

To clean all files in a FrameMaker book: with the book file active, hold down the Shift
key, and on the FrameMaker File menu choose Wash All Files in Book Via MIF . Mif2Go
processes each file in the book as described for Wash Via MIF, afterward closing any file
that was not open in the first place.

Back-up copies
are saved first

If you have set up FrameMaker to save back-up files, when you “wash” files via MIF,
Mif2Go saves the previous .fm or .book file as filename.backup.fm or
filename.backup.book .

File(s) decontaminated, and the problem still exists? Next: Check for broken links
(HTML or XML output).

D.2.7 Check for broken links (HTML or XML output)

When you produce HTML or XML output from a FrameMaker book with CheckLinks=
Yes (see §5.1.5 Checking for broken links in HTML or XML output on page 112), you
might get an error message about broken links. If Mif2Go is unable to resolve any interfile
links in your document, you will see a FrameMaker Book Error Log at the end of
processing, and the FrameMaker console report will list the number of broken links.

Check ObjectIDs
setting

Assuming you were able to successfully update the book before starting Mif2Go , one
possible problem might be the following setting:

[HTMLOptions]
ObjectIDs = Referenced

If this setting is included in your project configuration file or in a referenced configuration
template, change or override the setting as follows:

[HTMLOptions]
ObjectIDs = All

See §19.5.3 Including ObjectID anchors as link targets on page 620. If you are converting
generated files, see also §13.8.2.2 Including paragraph references on page 445.

Convert again,
retaining .ref files

In a few situations you might have to run a conversion twice (without deleting .ref files
in between runs) before all links are resolved. The first pass creates or updates the
necessary .ref files, and the second pass accesses the link information in those files. See
§C.5 Working with reference files for HTML or XML on page 1027.

Check for relative
vs. absolute paths

If links work locally but not when you move all the output files to another location, check
whether your project includes any [XrefFiles] settings that specify absolute paths.
These settings must specify relative paths; otherwise the links work only on the system
where you ran the conversion. See §19.6.3 Enabling links to renamed or relocated files on
page 622.

No broken links, and the problem still exists? Next: Restart FrameMaker, reboot system.

D.2.8 Restart FrameMaker, reboot system

Do you close and then reopen FrameMaker between Mif2Go runs? This should be
standard operating procedure; see §2.6 Establishing a conversion environment on page 74.

THINGS TO CHECK FIRST MIF2GO USER’S GUIDE

1034 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

If you are using Windows 9x or Windows ME, also try rebooting the system.

The problem persists? Next: Check your version of Mif2Go.

D.2.9 Check your version of Mif2Go

If you are using the evaluation version of Mif2Go , see §D.1 Evaluation version is
different on page 1029.

If you are using a licensed version of Mif2Go , do the following:

1. In a text editor, open an output file (.htm or .rtf or .dita or .ent) that you created
with Mif2Go , and find a line near the top of the file that shows the Mif2Go version
and build numbers. The line you want looks like this:

Table D-1 on page 1034 lists the build numbers underlined in these examples.

2. If you are running Mif2Go from inside FrameMaker, check the build number of the
Mif2Go plug-in, m2rbook.dll . Look for keyword PluginVersion in the
[Setup] section of the project configuration file you were using when the problem
occurred. Mif2Go updates the value of PluginVersion each time you run a
conversion. For example:

[Setup]
PluginVersion= b112

Table D-1 on page 1034 lists the build number shown in bold in this example.

To make sure you are using the most current build, check PluginVersion value
bNNN against the version of m2rbook NNN.zip on the Omni Systems Web site:

http://mif2go.com

3. Go to the Mif2Go Web site:
http://mif2go.com

Navigate to Downloads > Registered Software > Components , and check the build
numbers on the archived DLL files. For example:

4. Compare the number on each DLL archive file with the build numbers you found in
your output, as shown in Table D-1.

HTML, DITA,
or DocBook:

<!-- generated by DCL filter dwhtm, Ver 4.0 m199 h280 -->

RTF: {\info {\doccomm DCL filter dwrtf, Ver 4.0 m199 r285 }}

File Size Description Last updated
m2rbook 112.zip 196k Plugin main module 01-May-2012

drmif 208.zip 177k MIF input module 01-May-2012
dwrtf 295.zip 251k RTF output module 01-Jun-2010
dwhtm289.zip 421k HTML/XML output module 01-Jun-2010

Table D-1 Examples of build numbers for Mif2Go DLL files

Output type DLL file

Build number:

Current?Latest Used

All m2rbook.dll 112 b112 Yes

drmif.dll 208 m208 Yes

HTML dwhtm.dll 289 h284 No

RTF dwrtf.dll 295 r295 Yes

http://mif2go.com
http://mif2go.com

D TECHNICAL SUPPORT FOR MIF2GO HOW TO REQUEST HELP

ALL RIGHTS RESERVED. MAY 18, 2013 1035

5. If the build number on a DLL archive is higher than the corresponding build number
in your output file (or in the configuration file), obtain and install the current update;
see §1.4 How to update Mif2Go on page 61. Then try the conversion again.

6. If you think you have all the latest DLLs, but a build number in the output file does
not agree, there might be an old copy somewhere on your system, typically in
\windows\system or \windows\system32 . Find and delete the old copy, then
download an updated copy and unzip it in %OMSYSHOME%\common\bin.

7. If you still encounter the problem, check whether later beta versions of any DLLs are
available on the Mif2Go Web site:

http://mif2go.com

Navigate to Downloads > Registered Software > Beta Components , and check the
four-part numbers in the descriptions of the DLL files. The first two parts are the
product version, third part the build number, and fourth is the beta version, zero for the
released DLL, incremented for each beta build. For example:

8. Compare the third part of the number in each description with the build numbers you
found in your output, as shown in Table D-1. If the fourth part is greater than zero, and
the problem is due to a defect in Mif2Go , the defect might have been corrected. See
§1.4.3 Try out Mif2Go beta executables on page 62.

All DLLs up to date, and the problem still exists? Next: Narrow down the problem.

D.2.10 Narrow down the problem

Make a copy of a FrameMaker file that produces the problem, then split the copy in two
parts, and see if the problem happens with only one part. If so, keep splitting until you are
down to a page or less; you might find something questionable in the file that you can fix
to get it working.

Still no luck? See §D.3 How to request help on page 1035.

D.3 How to request help
Zip your files! Do not send unzipped FrameMaker files to Omni Systems.

Do not send files larger than 1 MB.

If you still encounter problems after following the steps in §D.2 Things to check first on
page 1029, help us to help you, as follows:

§D.3.1 If the problem involves a crash on page 1035
§D.3.2 Scope the problem on page 1036
§D.3.3 Document the problem on page 1036
§D.3.4 Package the problem on page 1037
§D.3.5 Send the package to Omni Systems on page 1037

D.3.1 If the problem involves a crash

If you are getting a Windows error message such as the following:

File Size Description Last updated
m2rbook.dll 572k Plugin main module, 4.0.112.0 01-May-2012
drmif.dll 412k MIF input module, 4.0.208.0 01-May-2012

dwrtf.dll 588k RTF output module, 4.0.297.2 02-Jun-2012
dwhtm.dll 1052k HTML/XML output module, 4.0.291.4 04-Jun-2012

http://mif2go.com

HOW TO REQUEST HELP MIF2GO USER’S GUIDE

1036 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

DCL NT console driver has encountered a problem and needs to close.

This means your Mif2Go conversion caused a crash.If the crash happens when Mif2Go is
converting a FrameMaker index, see §5.5 Converting FrameMaker-generated files on
page 124; you might need to add character formats to page numbers. Otherwise, try the
following debugging options:

[Options]
; NoNameDel = No (default),
; or Yes (prevent deallocation of name memory)
NoNameDel=Yes
; NoMemDel = No (default) or Yes (prevent deallocat ion of all memory)
NoMemDel=Yes

First set NoNameDel=Yes. If the conversion still causes a crash, try setting NoMemDel=
Yes. Your conversion might run to completion with one or the other of these options; in
any event, document the result, so Omni Systems programmers can investigate.

Note: When you set either of these options to Yes, memory deallocation is prevented
only while dcl.exe is running; at the end of that (usually brief) process, all
memory used by Mif2Go is always freed; no memory leaks occur.

Next: Scope the problem.

D.3.2 Scope the problem

Use the Configuration Manager (see §4.2 Editing files with the Configuration Manager on
page 91) to check the configurations in use. If any settings in “local’ configuration files in
%OMSYSHOME%\m2g\local subdirectories might affect the test case, copy those settings
into your project configuration file, and see if that fixes the problem. Otherwise, consider
the following questions:

 • Do you get the same result each time you try, or does the result vary?
 • If you have machines with other operating-system versions available, does the same

thing happen on all of them?
 • Does it happen with all source files, or only some? If only some, do the problem files

have something in common that other files do not?

Next: Document the problem.

D.3.3 Document the problem

Write an e-mail message that contains the following information:

 • A brief description of the problem, including answers to questions in §D.3.2 Scope the
problem on page 1036.

 • Operating-system name and version; for example, Windows 7 X64.
 • Amount of memory on your machine; for example, 2 GB.
 • FrameMaker version (click Help > About FrameMaker...); for example, 5.5.6p145.
 • Browser name and version, if the problem occurs when you generate HTML; for

example, Firefox 3.5.

If Mif2Go crashed, we also need to know just what information was displayed, at the time
of the crash, on the status bar at the bottom of the book window or file window.

Next: Package the problem.

D TECHNICAL SUPPORT FOR MIF2GO HOW TO REQUEST HELP

ALL RIGHTS RESERVED. MAY 18, 2013 1037

D.3.4 Package the problem

If you have placed settings in a file in %OMSYSHOME%\m2g\local\config* , copy
those settings to your project configuration file before you do the following.

Create a .zip file smaller than 1 MB that contains the following files:

Zip your files! Do not send unzipped FrameMaker files; they are nearly always corrupted in transit.

We need to be able to unzip and run your test case at Omni Systems with no further ado.

Finally: Send the package to Omni Systems.

D.3.5 Send the package to Omni Systems

Attach the .zip file you created in §D.3.4 Package the problem on page 1037 to the e-
mail message you wrote in §D.3.3 Document the problem on page 1036, and send it to:

FrameMaker file(s) The smallest fragments that yield the problem; see
Step D.2.10 in §D.2 Things to check first on page 1029. No
unzipped files.

MIF file(s) The .mif file(s) Mif2Go creates from the above .fm
file(s).

FrameMaker
conversion template

If your project uses a conversion template, and the problem
is a display problem, include the conversion template.

Book file If Mif2Go crashed while you were converting a book.

Output file(s) Whatever output (if any) shows the undesired result.

Log file Located by default in your project directory; see §5.2
Logging conversion events on page 115.

Configuration file(s) Your project configuration file, plus any chapter-specific
configuration file used by the problem FrameMaker file.

Configuration
templates

Include all configuration files and templates in every chain
that might affect the result, except the distribution
templates. However, if you have placed settings in a file in
%OMSYSHOME%\m2g\local\config* , copy those
settings to your project configuration file before you create
the package.

Macro libraries If the problem file uses Mif2Go macros located in library
files.

CSS file(s) If your project uses CSS (HTML output only), and the
problem is a display problem.

Mif2Go project file MyDoc.prj , located in the input directory; see §C.1
Locating document and conversion files on page 1019.

Mif2Go FileID file mif2go.ini , located in the input directory; see §C.1
Locating document and conversion files on page 1019.

Help project file If the problem occurs when you generate one of the
following:
 • WinHelp: MyDoc.hpj .
 • HTML Help: MyDoc.hhp .
 • JavaHelp or Oracle Help for Java: MyDoc.hs .

Graphics files Any external graphics referenced by the problem-file
fragment.

HOW TO REQUEST HELP MIF2GO USER’S GUIDE

1038 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

support@omsys.com

Generally you will receive a response within one business day; sometimes within an hour.
If you have not heard from Omni Systems after one business day, send another e-mail
message (without attachments) to inquire.

Zip your files! Do not send unzipped FrameMaker files to Omni Systems.
Do not send files larger than 1 MB.

(No illustrations)

mailto:support@omsys.com

ALL RIGHTS RESERVED. 2013 MAY 18 1039

E DITA <bookmeta> template

This section presents a template for the DITA version 1.1 <bookmeta> element. This
template is available in your Mif2Go distribution directory as file bookmeta.xml . Copy
the file to your project directory, delete elements you do not need, substitute values for
elements you do need, and provide a reference in your project configuration file to the
resulting customized template file; see §16.3.3 Specifying <bookmeta> information on
page 549.

<bookmeta>

<linktext>text description for xrefs</linktext>
<searchtitle>text description for search</searchtit le>
<shortdesc>detailed text description</shortdesc>

<author type="creator">name for the first author</a uthor>
<author type="contributor">name for additional auth or</author>
OR
<authorinformation>
 <personinfo>
 <namedetails>
 <personname>
 <firstname>text</firstname>
 <middlename>text</middlename>
 <lastname>text</lastname>
 <generationidentifier>text</generationidentifie r>
 <otherinfo>text</otherinfo>
 </personname>
 </namedetails>
 <contactnumbers>
 <contactnumber>text</contactnumber>
 </contactnumbers>
 <emailaddresses>
 <emailaddress>text</emailaddress>
 </emailaddresses>
 </personinfo>
 <organizationinfo>
 <namedetails>
 <organizationnamedetails>
 <organizationname>text</organizationname>
 <otherinfo>text</otherinfo>
 </organizationnamedetails>
 </namedetails>
 <addressdetails>
 <thoroughfare>text</thoroughfare>
 <locality>
 <localityname>text</localityname>
 <postalcode>text</postalcode>
 </locality>
 <administrativearea>text</administrativearea>
 <country>text</country>
 </addressdetails>
 </organizationinfo>
</authorinformation>

<source href="URL/of/source">text</source>

<publisherinformation>

MIF2GO USER’S GUIDE

1040 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

 <person>text</person>
 <organization>text</organization>
 <printlocation>text</printlocation>
 <published>
 <person>text</person>
 <organization>text</organization>
 <publishtype name="" value=""/>
 <revisionid>text</revisionid>
 <started><year>text</year><month>text</month><day >text</day></started>

<completed><year>text</year><month>text</month><day >text</day></completed
>
 <summary>text</summary>
 </published>
</publisherinformation>

<critdates>
 <created date="2001-06-12"/>
 <revised modified="2001-08-20"/>
</critdates>

<permissions view="attributes used for dita filteri ng"/>
<audience type="" job="" experiencelevel="" name="" />
<category>text</category>

<keywords>
<keyword>text</keyword>
</keywords>

<prodinfo>
 <prodname>text</prodname>
 <vrmlist>
 <vrm version="" release="" modification=""/>
 </vrmlist>
 <brand>text</brand>
 <series>text</series>
 <platform>text</platform>
 <prognum>text</prognum>
 <featnum>text</featnum>
 <component>text</component>
</prodinfo>

<othermeta name="" content=""/>
<resourceid id="" appname=""/>

<bookid>
 <bookpartno>text</bookpartno>
 <edition>text</edition>
 <isbn>text</isbn>
 <booknumber>text</booknumber>
 <volume>text</volume>
 <maintainer>
 <person>text</person>
 <organization>text</organization>
 </maintainer>
</bookid>

<bookchangehistory>
 <reviewed>
 <person>text</person>
 <organization>text</organization>
 <publishtype name="" value=""/>

E DITA <BOOKMETA> TEMPLATE

ALL RIGHTS RESERVED. 2013 MAY 18 1041

 <revisionid>text revision number</revisionid>
 <started><year>text</year><month>text</month><day >text</day></started>

<completed><year>text</year><month>text</month><day >text</day></completed
>
 <summary>text</summary>
 </reviewed>
 <edited>
 (same)
 </edited>
 <tested>
 (same)
 </tested>
 <approved>
 (same)
 </approved>
 <bookevent>
 <bookeventtype name="event"/>
 (same)
 </bookevent>
</bookchangehistory>

<bookrights>
 <copyrfirst><year>text</year></copyrfirst>
 <copyrlast><year>text</year></copyrlast>
 <bookowner>
 <person>text</person>
 <organization>text</organization>
 </bookowner>
 <bookrestriction value=""/>
 <summary>text</summary>
</bookrights>

<data name="" value="" href="">text</data>

</bookmeta>

(No tables)
(No illustrations)

MIF2GO USER’S GUIDE

1042 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. MAY 18, 2013 1043

F Content model configuration

This section provides an annotated list of configuration sections, keywords, and
acceptable values for settings in content-model configuration files.

See also:
§32 Working with content models on page 905

; ContentModel.txt describes sections used in DITAs pecial.ini files,
; such as DITAconcept11.ini, as they are supported in dwhtm.dll h283.
; Most of it also applies to DocBook content model files; differences
; are marked in the descriptions below.

[Topic]
;ModelName = name of type (usually a built-in) to b e replaced after
; this file loads, effective only when this file is specified in
; [DITAContentModels] or [DocBookOptions]ContentMod el in mif2htm.ini;
; overrides the default use of the filename (withou t "DITA").
ModelName=concept
;
; TopicRoot = name of root element in the DITA or D ocBook file for
; this type.
TopicRoot=concept

; These two are DITA-only, not for DocBook:
; TopicStart = name of element that starts topic, s uch as "glossterm"
; (for glossary) or "title" (for every other type). When the Frame
; format mapped to this element in [DITATags] is al so mapped to
; level 1 in [DITALevels], that format always start s a new topic.
TopicStart=title
; TopicBody = name of its body element, such as con body for concept.
TopicBody=conbody

; PrologDType = PUBLIC name used in DOCTYPE header, double quotes
; are required.
PrologDType="-//OASIS//DTD DITA Concept//EN".
; PrologDTD = SYSTEM name, such as "concept.dtd", c an include a path,
; double quotes are required.
PrologDTD="http://docs.oasis-open.org/dita/v1.1/CD0 1/dtd/concept.dtd".
;
;TopicDerivation = name of type from which it is de rived, either one of
; the defined types (topic, concept, task, referenc e, glossary, or map)
; or another specialized type for which an .ini is available. Needed
; iff the description in the rest of the sections i s additive rather
; than complete in itself; omitted otherwise. Not used for .inis that
; were generated by dtd2ini, which are always compl ete.
TopicDerivation=topic
;
;DumpToFile = name with optional path of file in wh ich to dump the
; tagset information (including error lists) after loading, for debug;
; default none, meaning don’t dump. If the tagset is used more than
; once in processing the Frame file, it is dumped o nly the first time.
DumpToFile=concept2dump.txt

; For DITA working examples of the following sectio ns, see the files
; DITAtopic*.ini, DITAconcept*.ini, DITAtask*.ini, DITAreference*.ini,
; DITAglossary*.ini, DITAbookmap*.ini and DITAmap*. ini, where * is
; 10 for version 1.0 and 11 for version 1.1. DocBo ok examples are

MIF2GO USER’S GUIDE

1044 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; docbook45b.ini (book as root) and docbook45a.ini (article as root).

[TopicParents]
; Element name = possible parents. All elements ot her than the topic
; type itself, amd its body type, must be listed on the left here.
; The two reserved parent names are "Any" (any pare nt is acceptable,
; mainly for inline elements) and "No" (for any ele ments present in
; the derived-from type that are excluded from this type). If there
; is more than one possible parent, they must be de fined as a single
; set, and listed in [ElementSets] below.

[ElementSets]
; Name for set = list of elements. This allows gro uping of elements
; for use on the right side of [TopicParents] and [TopicFirst], so
; that the same set of parents can be used for more than one element.
; The lists of elements on the right here can inclu de sets too, as
; building blocks. The sets are roughly equivalent to the parameter
; entities used in the DITA DTDs. Set names must s tart with "*", and
; sets can include other sets. Included sets shoul d preferably be
; defined above the sets including them; in any cas e, circular set
; references (set A includes set B and set B includ es set A, directly
; or indirectly) will not work.

[ElementTypes]
; Element name = list of properties: Block or Inlin e, Text, and
; Preform; default is Block without Text. The Bloc k and Inline
; properties determine whether returns are inserted before start
; tags and after end tags. The Text property deter mines whether
; an attempt is made to wrap any invalid text (in a n element that
; does not allow Text) in a valid container element , like <ph>.
; Preform determines whether whitespace within the element is
; retained as is; those elements are always block a nd allow text.
; For example:
para=Block Text
ph=Inline Text
section=Block
menucascade=Inline
codeblock=Block Text Preform

[TopicLevels]
; Element name = required level in topic, used only for elements that
; must be at a specific level, such as shortdesc, p rolog, body, and
; related-links at level 1, and example and metadat a at level 2.
; The content models generated by dtd2ini name only level 1 elements.

[TopicFirst]
; Child element = parents, where child must be the first child of the
; specified parents; if child is not first, the cur rent parent is
; closed and a new instance of it is started. Used mainly for lists,
; as in dt=dlentry and pt=plentry, and for title=An y. To add more
; than one parent when Any won’t do, specify them i n [ElementSets].

; The remaining sections are used for DITA only, no t DocBook:

[TopicTables]
; Table name = name of section that describes it be low. All supported
; by this topic type (other than those defined in t he type derived from)
; are defined here. Note that multiple named table s can define variants
; of the same DITA TableType; the name is purely a Mif2Go identifier.
; A name can be undefined in a derived topic type b y setting name=No.
; Since dtd2ini does not generate these sections, t hey must either be

F CONTENT MODEL CONFIGURATION

ALL RIGHTS RESERVED. MAY 18, 2013 1045

; included in dtd2ini.ini as [AddedSections], or ad ded to the generated
; content model .ini manually after dtd2ini produce s it.

; These examples of table descriptions show all ava ilable table settings.

[PropertyTable]
TableType=properties
;ColCountMax default is 0, for unlimited, as for si mpletable
ColCountMax=3
;
;HeadRowMax default is 0, for unlimited head rows.
HeadRowMax=1
; HeadRow is applied only to the initial rows, iff they are head
; rows in the Frame file.
HeadRow=prophead
; All cells are used; to omit some, define another table name with
; fewer columns but the same TableType.
HeadCell1=proptypehd
HeadCell2=propvaluehd
HeadCell3=propdeschd
;
Row=property
Cell1=proptype
Cell2=propvalue
Cell3=propdesc

[SimpleTable]
TableType=simpletable
HeadRowMax=1
HeadRow=sthead
Row=strow
Cell=stentry

[ComplexTable]
TableType=complex
; TableTitle default is No, for no title.
TableTitle=Yes
; TableDesc default is no desc.
TableDesc=desc
; TableGroup default is no group’
TableGroup=tgroup
; ColSpec default is no column specs
ColSpec=colspec
; The next three items are all colspec attributes
ColNum=colnum
; ColSpecName is required if ColSpanNames=Yes or Co lName is
; used, below. It is created using ColNamePrefix, b elow.
ColSpecName=colname
ColWidth=colwidth
;
; HeadGroup default is no group, use head rows only .
HeadGroup=thead
; HeadRow Default is same row element as for body.
HeadRow=hrow
; HeadCell default is same cell element as for body
HeadCell=hentry
;
; BodyGroup default is no group, use body rows only .
BodyGroup=tbody
Row=row
Cell=entry
;

MIF2GO USER’S GUIDE

1046 MAY 18, 2013 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

; RowSpan is a cell attribute name; default is no r owspan.
RowSpan=morerows
;
; ColSpanNames default is true to use names, false uses count.
ColSpanNames=Yes
; The next four settings are all cell attributes.
; ColSpanCount is count of cells spanned, if ColSpa nNames=No.
ColSpanCount=span
; ColSpanStart is ref to first colspec name if ColS panNames=Yes.
ColSpanStart=namest
; ColSpanEnd is ref to last colspec name if ColSpan Names=Yes.
ColSpanEnd=nameend
; ColName is ref to single colspec name for non-spa nning cells.
ColName=colname
; ColNamePrefix is for colspec names, default col a s in DITA-OT.
ColNamePrefix=col
; CellAlign default is No, when Yes use align and v align attrs.
CellAlign=Yes

[End]
(No tables)
(No illustrations)

ALL RIGHTS RESERVED. 2013 MAY 18 1047

RTF keyword index
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A
AddCntFileName , [HelpContents] keyword 291

AKey, [HelpStyles] format property222, 269, 285

ALink , [MarkerTypes] property 221, 839

AllowLiningOverrides , [HelpOptions]
keyword 254

Altura , [HelpOptions] keyword 247

[AnumCodeAfter] , code after paragraph autonumber
placement properties823
subject to configuration overrides926

[AnumCodeBefore] , code before paragraph auto-
number
placement properties823
subject to configuration overrides926

AppliedTemplateFlags , [Setup] keyword 864
change template options866
set-up option81

ApplyTemplateFile , [Setup] keyword 864
change template options866
set-up option81

Archive* , [Automation] keywords:
ArchiveCommand 973

activated by WrapAndShip 956
ArchiveEndParams 974
ArchiveExt 974
ArchiveName 974
ArchiveStartParams 973
ArchiveVer 974

AskForUserVars , [Automation] keyword 942

AutoBrowse , [HelpBrowse] keyword 292

[Automation]

default values in local_omsys.ini 59
export options and settings84
options determined at run time863
produce deliverables956
system commands938, 939
user variables942

B
BackMode, [Graphics] keyword 903

[BctFileHeads] , WinHelp section289

[BitmapChars] , WinHelp section255

BitmapDPI , [Graphics] keyword
override with a *Config marker 895
rescale bitmap graphics898

BitmapFlip , [Graphics] keyword 899

BitmapFont , [BitmapChars] keyword 255

BMPsForDingbats , [HelpOptions] keyword 256

BookmarkIXRanges , [WordOptions] keyword 148

Bottom , [Inserts] Word keyword822

Browse , [HelpStyles] format property269

[BrowsePrefix] , WinHelp section293

[BrowseStart] , WinHelp section293

Build , [HelpStyles] format property269

BulletFile , [Graphics] keyword 256

Bullets , [HelpOptions] keyword 256

C
CaselessMatch , [Options] keyword 113

case sensitivity of FileIDs121

[CharStyle*] sections
[CharStyleCode*] sections

all subject to configuration overrides926
[CharStyleCodeAfter] 823
[CharStyleCodeBefore] 823
[CharStyleCodeEnd] 823
[CharStyleCodeReplace] 823
[CharStyleCodeStart] 823

CharStylesUsedInText

[HelpOptions] keyword 254
[WordOptions] keyword 163

CharTags , [WordOptions] keyword 163

ClipLimit , [Graphics] keyword 902

ClipType , [Graphics] keyword 902

Cnt* , [HelpContents] keywords:
CntBase

set-up option245
288

CntBStyleText 290, 291
CntMainWindow 291
CntName 289

set-up option245

D MIF2GO USER’S GUIDE

1048 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

CntStartFile 289
CntTitle 289

set-up option245
CntTopHead 289
CntTopic 289

set-up option245
CntType 208, 288

Code, [MarkerTypes] property 839

Code* , [HelpStyles] and [WordStyles] format
properties
CodeAfter 804, 823
CodeAfterAnum 823
CodeBefore 804, 823
CodeBeforeAnum 823
CodeEnd 823
CodeReplace 823
CodeStart 804, 823
CodeStore 796, 804

CodePage, [Defaults] keyword 148

CompileHelp , [Automation] keyword 250
compile WinHelp project971
determined at run time863
export option84
set up WinHelp project245, 248

Compiler , [HelpOptions] keyword 250

CompressRasters , [Graphics] keyword 899

[ConditionsShown], apply FrameMaker

conditions 123

Config , override configuration settings
[HelpStyles] format property931
[MarkerTypes] property 839
[WordStyles] format property931

Configs , [Templates] keyword 851, 859, 862
chain of templates863
precedence of settings919

Contents , [HelpStyles] format property209, 269

ConvertVariables , [Setup] keyword 157
convert system variables to text114
set-up option81

CopyAfterFiles , [Automation] keyword 964

CopyAfterFrom , [Automation] keyword 964

CopyBeforeFiles , [Automation] keyword 960

CopyBeforeFrom , [Automation] keyword 960

CopyGraphicsFrom , [Automation] keyword 966
activated by CompileHelp 972
activated by WrapAndShip 956

CopyOriginalGraphics , [Automation]
keyword 965

D
[Defaults] 147, 166, 170

subject to configuration overrides925

[DefaultUnicodeFonts] , for FrameMaker 8
Unicode 169

DefBrushType , [Graphics] keyword 899

DefFont , [Graphics] keyword 902

DefFSize , [Graphics] keyword 902

DefTabWidth

[HelpOptions] keyword 253
[WordOptions] keyword 165

Delete

[HelpStyles] format property269
[MarkerTypes] property 839
[XrefStyles] format property260

Delete , [WordStyles] format property174

DeleteExistingDCL , [Setup] keyword 112

DeleteExistingMIF , [Automation] keyword 111
activated by CompileHelp 972

Digits , [HelpBrowse] keyword 292

DisambiguateIndex , [HelpOptions]
keyword 287
dependencies287

Document , [Templates] keyword 854, 859, 860

E
EditorFileName , [Logging] keyword 115

EmbedBMPsInWMFs, [Graphics] keyword 264, 873,
886, 890

EmbedEqsInWMFs, [HelpOptions] keyword 138

EmbedEqsInWMFs, [WordOptions] keyword 138

EmptyFrames

[HelpOptions] keyword 895
[WordOptions] keyword 895

EmptyGraphPath , [Automation] keyword
activated by CompileHelp 972

EmptyOutputDir , [Automation] keyword 958
activated by CompileHelp 972
dependencies959
when effective958

EmptyOutputFiles , [Automation] keyword 958
activated by CompileHelp 972
when to include959

EmptyWrapPath , [Automation] keyword 962
activated by CompileHelp 972

RTF KEYWORD INDEX F

ALL RIGHTS RESERVED. 2013 MAY 18 1049

dependencies968

[End] , dummy section to end settings107

[End] , dummy section to replace
[MacroVariables] 788

EndFtnWithSpace , [HelpOptions] keyword 248

EpsiUsage , [Graphics] keyword 876

EqHorAdjust , [HelpOptions] keyword 138

EqHorAdjust , [WordOptions] keyword 138

EqSuffix , [HelpOptions] keyword 137

EqSuffix , [Options] keyword 726

EqSuffix , [WordOptions] keyword 137

EquationExportDPI , [Setup] keyword 137
graphic format and resolution884

EquationFrameExpand , [Setup] keyword 137

EqVertAdjust , [HelpOptions] keyword 138

EqVertAdjust , [WordOptions] keyword 138

ExactLineSpace , [WordOptions] keyword 170

Export* , [GraphExport] keywords:
ExportBmpFiles 881
ExportCdrFiles 881
ExportEpsFiles 881
ExportGifFiles 881
ExportJpgFiles 881
ExportNameChars 134
ExportNumDigits 134
ExportPctFiles 881
ExportPcxFiles 881
ExportPngFiles 881
ExportRfFiles 881
ExportTifFiles 881
ExportWmfFiles 881
ExportWpgFiles 881
set-up options1011

ExtendHelpNoScroll , [HelpOptions]
keyword 270, 271

ExternalXrefs , [WordOptions] keyword 148,
179

F
FieldHyper , [WordOptions] keyword

(deprecated)176

File , [HelpStyles] format property269

[FileIDs]

deprecated for main configuration file122
mif2go.ini section 121

FileNames , [Graphics] keyword 891

reference WinHelp hypergraphics275
replace file extensions131
substitute files188, 189, 891, 892
synchronize settings969

FilePaths , [Graphics] keyword 891
for already converted files893
for referenced graphics188
omit for exported graphics189
omit for unconverted graphics189
reference WinHelp hypergraphics275
replace EPSI graphics877
substitute files891, 892
synchronize settings969

FileSuffix , [Setup] keyword 147, 1008
export option84
set-up option1007

FirstFooter , [Inserts] Word keyword822

FirstHeader , [Inserts] Word keyword822

FixMacroQuotes , [Macros] keyword 790

[FontEncoding] , for print RTF 169, 255

FontName , [Defaults] keyword 166

[Fonts] , remap fonts166

FontSize , [Defaults] keyword 166

[FontTypes]

for print RTF 168
for WinHelp 255

FontWidth , RTF [Defaults] keyword 166

[FontWidths] 166

Footer , [Inserts] Word keyword822

Footnotes

[HelpOptions] keyword 258
[WordOptions] keyword 154

FootnoteSeparator

[HelpOptions] keyword 258

FootnoteSpace , [HelpOptions] keyword 248

ForceBmc , [HelpOptions] keyword 247

ForceSideHeadPos , [WordOptions] keyword 159

ForceTableLineBreaks , [Tables] keyword 262

FrameBorders , [Graphics] keyword 900

FrameDefaultFontName , [Graphics]
keyword 901

FrameDefaultFontSize , [Graphics]
keyword 901

FrameEndPara , [WordOptions] keyword 174

FrameExactHeight , [Graphics] keyword 903

FrameStyle

[HelpOptions] keyword 264

G MIF2GO USER’S GUIDE

1050 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

[WordOptions] keyword 191

FrBorders , [Graphics] keyword 900

G
GraphCopyFiles , [Automation] keyword 966

activated by CompileHelp or FTSCommand972

[GraphExport]

export embedded graphics880
export images from OLE objects882
name exported graphics files134
set-up options and settings1011
subject to configuration overrides925

[GraphFiles] , replace graphics files131, 188, 189,
891
reference WinHelp hypergraphics275
synchronize graphics settings969

GraphicExportDPI , [Setup] keyword
FrameMaker export filters130, 721, 884

GraphicExportFormat , [Setup] keyword
BMP instead of WMF graphics873
FrameMaker export filters130
graphic output format884

GraphicNameDigits , [Setup] keyword 134, 885

[Graphics]

background903
bitmaps

compress899
embed886
reorient 899
rescale899

borders899, 900
bullets 256
EPS 876
file extension890
file names135, 247
font 902
omit 895
options determined at run time, listed 863
scale 898
subject to configuration overrides925
text 901–903

GraphicsFirst , [Setup] keyword 132, 885
export master- and reference-page graphics885
process only graphics88

[GraphLineStyles] , print RTF section900

GraphText , [Graphics] keyword 902

Green , [HelpStyles] format property269, 281

GrVertAdjust , [Graphics] keyword 903

H
Header , [Inserts] Word keyword822

HeadFoot , [WordOptions] keyword
convert to WordPerfect154
position header and footer text156

[Help*Styles] , WinHelp sections
all subject to configuration overrides282
[HelpBrowsePrefixStyles] 293
[HelpCntStyles]

basic conversion options248
understand level numbers209, 290

[HelpJumpFileStyles] 269, 283
[HelpKeywordStyles] 286
[HelpMacroStyles] 270, 284
[HelpRefStyles] 282
[HelpSuffixStyles] 270, 282
[HelpTitleSufStyles] 270, 271
[HelpTopicBuildStyles] 269
[HelpWindowStyles] 225, 270, 278

[HelpBrowse] 292, 293
subject to configuration overrides925

[HelpContents] 288–292
set-up options and settings245
subject to configuration overrides925

HelpCopyDate , [HelpOptions] keyword 250

HelpCopyright , [HelpOptions] keyword 250

HelpLineBreak , [HelpOptions] keyword 272

[HelpOptions]

cross references259, 260, 261
equations137
footnotes248, 258
formats

character254
paragraph252–253
removing 257

graphic text902
graphics874, 877, 895, 903
hotspots281
index 208, 213, 287, 288
links 277
markers277
ObjectIDs 266, 325
options determined at run time, listed 863
page and section breaks247, 249
platforms 247
remove Word markers114
special characters256
subject to configuration overrides925
tables 261, 262, 263
titles 271, 272

RTF KEYWORD INDEX I

ALL RIGHTS RESERVED. 2013 MAY 18 1051

[HelpReplacements] 258, 266
subject to configuration overrides927

HelpSectionBreaks , [HelpOptions]
keyword 249
platform differences247

[HelpStyles]

“A” footnotes 222
ALinks and keywords286
basic properties248
hotspots275
replace content257, 266, 325
subject to configuration overrides927

HelpTabLimit , [HelpOptions] keyword 253

[HelpXrefFiles] , cross references260

HFFramed, [WordOptions] keyword 155
convert to WordPerfect154

HFGap, [WordOptions] keyword 155

HFVertAdjust , [WordOptions] keyword 156

Hide , [WordStyles] format property173

HideWhiteText , [WordOptions] keyword 173

HistoryFileName , [Logging] keyword 115

HPJFileName , [HelpOptions] keyword 248

HyperHelp , [HelpOptions] keyword 247

I
IDAttrName , [WordOptions] keyword 135

IDFileName , [Setup] keyword 120, 1027
determined at run time863

IDRefAttrName , [WordOptions] keyword 135

IdxColon , [HelpOptions] keyword 213, 287

ImportDocProps , [Setup] keyword 865

ImportGraphics , [GraphExport] keyword
export embedded graphics133, 880
export OLE objects881
set-up option1011

Index

[HelpOptions] keyword 208
[WordOptions] keyword 195

IndexRanges , [HelpOptions] keyword 213

[Inserts] , insert code at predefined locations822
subject to configuration overrides925

IXnewlinkPrefix

[HelpOptions] keyword 267

J
JumpHot , [HelpStyles] format property269

JumpTarget , [HelpStyles] format property269

K
KeepAnchorParagraphs , [WordOptions]

keyword 171

KeepCompileWindow , [Automation] keyword 251
activated by CompileHelp 972

KeepID , [WordStyles] format property183

KeepIXMarkerIDs

[HelpOptions] keyword 288
[WordOptions] keyword 178

KeepSectBreaks

[HelpOptions] keyword 249
[WordOptions] keyword 153

Key, [HelpStyles] format property269, 286

KeywordLimit , [HelpOptions] keyword 212

L
Language , [Defaults] keyword 147

LeftFooter , [Inserts] Word keyword822

LeftHeader , [Inserts] Word keyword822

LineSpacing, RTF [Defaults] keyword 170

Local , [HelpStyles] format property269

LocalConfigPath , [Setup] keyword
set-up option60

LockHyper , [WordOptions] keyword 178, 194

LockXrefs , [WordOptions] keyword 175, 194

LogAuto , [Automation] keyword 956

LogDebug , [Logging] keyword 116

LogErrors , [Logging] keyword 115

LogFileName , [Logging] keyword 115

[Logging] conversion events115

LogInfo , [Logging] keyword 116

LogIniChains , [Logging] keyword 116

LogQuerys , [Logging] keyword 116

LogWarnings , [Logging] keyword 116

M
Macro , [HelpStyles] format property269, 270

N MIF2GO USER’S GUIDE

1052 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

MacroHot , [HelpStyles] format property284

MacroNestMax , [Macros] keyword 792, 816

Macros , [Templates] keyword 793, 851

[Macros]

debug 820
loop-control limits 816
remove implicit line breaks789

[MacroVariables] 797
create a macro variable796

MacroVarNesting , [Macros] keyword 798

MakeBookMIF , [Setup] keyword 1007
file extensions for MIF output1008
include book file in MIF output1007
set-up option1007

MakeCombinedCnt , [HelpOptions] keyword 248
determined at run time863
export option84
set-up option245

MakeRef , [HelpStyles] format property270, 282
for pop-up graphics265

[Markers] , invent and clone marker types139, 836,
837

MarkerType11 , [HelpOptions] keyword 277

[MarkerTypeCodeAfter] 843

[MarkerTypeCodeBefore] 843

[MarkerTypeCodeReplace] 843

[MarkerTypes] , marker-type properties838

MergeStradCells

[Table] keyword 186
[Tables] keyword 262

Metafiles

[HelpOptions] keyword 874
[WordOptions] keyword 874

MetaNameChars , [Graphics] keyword 135

MetaNumDigits , [Graphics] keyword 135

MIFBookSuffix , [Setup] keyword 1008
set-up option1007

MoveArchive , [Automation] keyword 976

N
NameGraphics , [Graphics] keyword 192

NameUndefinedMacros , [Macros] keyword 820

NameUndefinedMacroVars , [Macros]
keyword 820

NameWMFsAsBMPs, [Graphics] keyword 890

accommodate platform differences247

NoBlankFirstGTLine , [Graphics] keyword 900,
903

NoMemDel, [Options] keyword 1036

NoNameDel, [Options] keyword 1036

NoScroll , [HelpStyles] format property270

NoSeeAlso

[HelpOptions] keyword 288
[WordOptions] keyword 196

NoSymMap, [WordOptions] keyword 172

NoTitle , [HelpStyles] format property270
for pop-up topics268

NoXrefPopups , [HelpOptions] keyword 276

NoXScroll , [HelpStyles] format property270,
271
for pop-up topics268

O
ObjectIDs

[HelpOptions] keyword 249, 266
[WordOptions] keyword 175

OccludedTabs , [WordOptions] keyword 165

OmitMacroReturns , [Macros] keyword 789

OnlyAuto , [Automation] keyword 977

[Options]

debug 1036
equations138, 726
for cases, spaces, and wildcards113
for conversion debugging1036
for tabs 165
subject to configuration overrides925

OrigExtForMIF , [Setup] keyword 1008
set-up option1007

P
PageBreaks

[HelpOptions] keyword 249
[WordOptions] keyword 152

PageColGap , [WordOptions] keyword 153

PageColumns , [WordOptions] keyword 153

ParaLink

[HelpStyles] format property138, 270, 275
[WordStyles] format property182

ParaLink , [HelpStyles] format property269

ParaSpace , [WordOptions] keyword 171

RTF KEYWORD INDEX Q

ALL RIGHTS RESERVED. 2013 MAY 18 1053

[ParaStyle*] sections
[ParaStyleCode*] sections

all subject to configuration overrides927
[ParaStyleCodeAfter] 823
[ParaStyleCodeBefore] 823
[ParaStyleCodeEnd] 823
[ParaStyleCodeReplace] 823
[ParaStyleCodeStart] 823

PicScale[WordOptions] keyword 192

PluginVersion , [Setup] keyword 1034
determined at run time863

Pop* , [HelpStyles] format properties
PopContent 269, 281, 282
PopHot 269, 281
PopOver 269, 270, 274, 275, 282

Prefix , [HelpBrowse] keyword 292

PrevRef , [HelpStyles] format property270, 282
for pop-up graphics265

PrjFileName , [Setup] keyword 1026
determined at run time863

Q
Quotes

[HelpOptions] keyword 256
[WordOptions] keyword 172

R
RasterBorders , [Graphics] keyword 899

Refer , [HelpStyles] format property270, 282

RefFrameDefFormat

[HelpOptions] keyword 253
[WordOptions] keyword 162

[RefFrameFormats] , reference frames162

RefFrames

[HelpOptions] keyword 253
[WordOptions] keyword 162

RemoveGraphics , [Graphics] keyword 895

RemoveUnusedFonts

[HelpOptions] keyword 257
[WordOptions] keyword 170

RemoveUnusedStyles

[HelpOptions] keyword 257
[WordOptions] keyword 163

RemoveWordTocMarkers , [HelpOptions]
keyword 114

RepeatMax , [Macros] keyword 817

Replace

[HelpStyles] format property257, 266, 270
[WordStyles] format property174

Replace , [HelpStyles] format property269

ReplaceFrameVars , [Macros] keyword 123

Resume, [HelpStyles] format property265, 268,
269, 270, 275

RevProt , [WordOptions] keyword 194

RevTrack , [WordOptions] keyword 194

RightFooter , [Inserts] Word keyword822

RightHeader , [Inserts] Word keyword822

RMarginTabs , [WordOptions] keyword 165

RTFConfig

[HelpStyles] format property931
[MarkerTypes] property 839
[WordStyles] format property931

RunfmDiagnostics , [Automation] keyword 957,
988

RunInHeads

[HelpOptions] keyword 252
[WordOptions] keyword 160

RunInHeads , [HelpOptions] keyword
for Help systems203

S
Scope , [Templates] keyword 855, 861

Scroll , [HelpStyles] format property270, 271
for pop-up topics268

SeqAnums, [WordOptions] keyword 161, 162

SetFrameConditions , [Setup] keyword 123

[Setup]

compile WinHelp248
conversion-template settings81, 864
convert generated files for MIF output1008
convert system variables to text157
convert TOC and IX124

for Help systems205
for MIF output 1008

equations137, 884
exclude generated files125
export options and settings84
file names120
graphics

export 726
master- and reference-page885
output 130, 884, 885

manage MIF files111

T MIF2GO USER’S GUIDE

1054 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

MIF output 1008
options determined at run time, listed 863
process graphics128, 130, 133, 884, 885

master- and reference-page885
set-up options and settings81
subject to configuration overrides925
template settings864, 865
version numbers1034
WordPerfect settings84

SHGap, [WordOptions] keyword 153

ShiftWideTablesLeft

[Table] keyword 185
[Tables] keyword 261

ShipPath , [Automation] keyword 975
activated by WrapAndShip 956

ShowLog, [Logging] keyword 115

SHSpannerAnchors , [WordOptions] keyword 160

SHVertAdjust , [WordOptions] keyword 160

SHWidth , [WordOptions] keyword 153

Sideheads

[HelpOptions] keyword 252
[WordOptions] keyword

convert sidehead formats159
set-up option146

SingleFlow , [WordOptions] keyword 157

Slide , [HelpStyles] format property268, 270

SlideEnd , [Inserts] WinHelp keyword822

SlideStart , [Inserts] WinHelp keyword822

SmallCaps

[HelpOptions] keyword 254
[WordOptions] keyword 172

SpaceAfterUnicode , [Defaults] keyword 148

SpacelessMatch , [Options] keyword 104, 113

SpKey, [HelpStyles] format property269, 270,
286

Start , [HelpBrowse] keyword 292

Step , [HelpBrowse] keyword 292

StretchMode , [Graphics] keyword 899

StrippedCellPar , [Table] keyword 263

StripTables , [Table] keyword 262

StripTables , [Tables] keyword 267

[StyleCodeStore] , assign macro variable to para-
graph format804

[StyleReplacements] , merge formats159
for running headers and footers156

[Styles] , map paragraph formats to Word
styles 158

Suffix , [HelpStyles] format property270, 282

SuppressGTUnderlines , [Graphics]
keyword 903

SystemCommandWindow, [Automation]
keyword 939

SystemEndCommand, [Automation] keyword 938

SystemStartCommand , [Automation]
keyword 938

SystemWrapCommand, [Automation] keyword 938

T
TableContinued , [Tables] keyword 184

TableContVar , [Table] keyword 185

TableFill

[Table] keyword 185
[Tables] keyword 262

TableGraphics

[Tables] keyword 262
[WordOptions] keyword 185

TableRules

[Table] keyword 185
[Tables] keyword 262

TableSheet , [Table] keyword 185

TableSheetVar , [Table] keyword 185

TableTitles

[Table] keyword 184, 261

TableWidthsFixed , [Table] keyword 261

TblColWidAdd , [Table] keyword 262

TblColWidPct , [Table] keyword 262

TblFullWidth , [Table] keyword 262

Template , [WordOptions] keyword 149

TemplateAutoUpdate , [WordOptions]
keyword 149

TemplateFileName , [Setup] keyword 864
for chapter-specific templates865
set-up option81

[Templates] 859
for document-specific settings854
for general configuration settings851
for macro libraries851

TextColor

[HelpOptions] keyword 258
[WordOptions] keyword 172

[TextFlows] 113, 156

TextScale , [Graphics] keyword 903

RTF KEYWORD INDEX U

ALL RIGHTS RESERVED. 2013 MAY 18 1055

TextVertAdjust , [Graphics] keyword 903

TextWidth , [Graphics] keyword 903

TitleIndent , [HelpOptions] keyword 272

TitleInRow , [Table] keyword 185

TitleScroll , [HelpOptions] keyword 271

TitleSpace , [HelpOptions] keyword 272

TitleSuf , [HelpStyles] format property270

Top, [Inserts] Word keyword822

Topic , [HelpStyles] format property269, 270
for pop-up topics268

TopicEnd , [Inserts] WinHelp keyword822

TopicStart , [Inserts] WinHelp keyword822

TrailingTabs , [WordOptions] keyword 165

Transparent , [Graphics] keyword 903

U
Uline , [HelpStyles] format property270, 281

UnderlineTabs , [WordOptions] keyword 165

UseDefaultGraphicFormat , [Graphics]
keyword 901

UseDoneDialog , [Setup] keyword 113

UseExistingDCL , [Setup] keyword 111
determined at run time863
export embedded graphics131
export option84

UseExistingMIF , [Setup] keyword 111
determined at run time863
export option84

UseFileIDs

[HelpOptions] keyword 120, 273
[WordOptions] keyword 120, 179

UseFrame8MIF , [Setup] keyword
for MIF output 1008

UseFrame9MIF , [Setup] keyword
for MIF output 1008

UseFrameGenFiles , [Setup] keyword 125
for MIF output 1008
set-up option81

UseFrameImage , [Graphics] keyword 876

UseFrameIX , [Setup] keyword 124
for Help systems205
for MIF output 1008
set-up option81

UseFrameTOC, [Setup] keyword 124
for Help systems205

for MIF output 1007
set-up option81

UseGraphicFileID , [Setup] keyword 133, 885
FrameMaker export filters726

UseGraphicPreviews , [Graphics] keyword 130,
884
determined at run time863
export option84
turn off for native graphics export128
turn off for replaced graphics131

UseGreen , [HelpOptions] keyword 275

UseHyperColor , [HelpOptions] keyword 139,
281

UseHyperlinks

[HelpOptions] keyword 277
[WordOptions] keyword 178, 182

UseInitDialog , [Setup] keyword 113

UseLocalFileID , [Setup] keyword 120, 122, 179,
273

UseLog , [Logging] keyword 115

UseParaAnchors, RTF [WordOptions]
keyword 172

[UserVarPrompts] , user variables942

[UserVars] , user variables941
create a macro variable796

UseTextFrames , [WordOptions] keyword 152

UseTopSpaceAbove , [Graphics] keyword 903

V
No entries for this letter

W
WhileMax , [Macros] keyword 816

WildcardMatch , [Options] keyword 113

Window, [HelpStyles] format property270, 277

WinHelpDocName , [Setup] keyword
set-up option60

Word2000 , [WordOptions] keyword 150

Word2002 , [WordOptions] keyword 150

Word2003 , [WordOptions] keyword 150
correct graphics scale192

Word2007 , [WordOptions] keyword 150

Word2009 , [WordOptions] keyword 150

Word2010 , [WordOptions] keyword 150

X MIF2GO USER’S GUIDE

1056 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Word8, [WordOptions] keyword 149
preserve graphics scale192

[WordCntStyles] , deprecated
subject to configuration overrides928

183

WordDocName, [Setup] keyword
set-up option60

[WordOptions]

cross references175, 177, 179, 180, 259
equations137
fonts 170, 172
footnotes154
for special characters172
for tabs 165
formats 159, 160, 163
graphics152, 191, 874, 877, 895
headers and footers155, 156
index 196
line spacing170
ObjectIDs 175, 249
page layout152, 153
reference frames162
set-up options and settings146
spacing152
special characters172
subject to configuration overrides925
tables 184, 185
tabs 165
templates149
text 157, 171, 172, 173
WordPerfect154

WordPerfect , [WordOptions] keyword 147

[WordReplacements] 174
subject to configuration overrides928

[WordSectionFiles] , autonumbers181

[WordStyles] , print RTF format properties
hide content173
make text an active link182
omit content174
replace content174
retain ObjectIDs183
subject to configuration overrides928

[WordXrefFiles] , cross references181

WrapAllFrames , [Graphics] keyword 886

WrapAndShip , [Automation] keyword 956
determined at run time863
export option84

WrapAroundHFFrames , [WordOptions]
keyword 155

WrapAroundTextFrames , [WordOptions]
keyword 152, 191

WrapCopyFiles , [Automation] keyword 962
activated by CompileHelp 972

WrapPath , [Automation] keyword 961
activated by CompileHelp 972
activated by WrapAndShip 956
for WinHelp 248, 250, 334

WrapXrefs , [WordOptions] keyword 177

WriteAllGraphics , [Setup] keyword 130, 884
determined at run time863
export option84
native graphics processing128
third-party graphics tools131

WriteAllVarForms , [WordOptions] keyword 163

WriteAnums

[HelpOptions] keyword 257
[WordOptions] keyword 161, 162

WriteEquations , [Setup] keyword
determined at run time863
does not affect equations136
export embedded graphics131
export option84
turn off for FrameMaker export884
use native graphics processing128

WriteHelpProjectFile , [HelpOptions]
keyword 246

WriteMasterPageGraphics , [Setup]
keyword 885

WriteMissingForms , [WordOptions]
keyword 156

WriteRefPageGraphics , [Setup] keyword 885

X
XrefFileDefault , [HelpOptions] keyword 260

XrefFileSuffix

[HelpOptions] keyword 260
[WordOptions] keyword 180

XrefHyper , [WordOptions] keyword 175

XrefLenLimit , [HelpOptions] keyword 261

Xrefs

[HelpOptions] keyword 259
[WordOptions] keyword 175

[XrefStyles] , cross-reference formats177, 260
subject to configuration overrides928

XrefType , [WordOptions] keyword 177, 259

XScroll , [HelpStyles] format property270

Y MIF2GO USER’S GUIDE

1057 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Y
No entries for this letter

Z
No entries for this letter

Z MIF2GO USER’S GUIDE

1058 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ALL RIGHTS RESERVED. 2013 MAY 18 1059

HTML/XML keyword index
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A
Abbr , [HTMLParaStyles] WAI format

property 768
assign a value in [StyleCellAbbr] 769
cell content abbreviation768

AbbrVal , [HTMLParaStyles] WAI format
property 772

AccessMethod , [Table] keyword 764
apply the id/headers method to all tables765
apply the scope method to all tables764
avoid redundant attribute assignments456
effects on ColGroup property784
effects on RowGroup property785
overriding attributes750
use the scope method to identify cells775
WAI strategy for row/column markup763
ways to override765

AddCntWindowName, [HelpContents]
keyword 291

address , [ParaTags] format property647

AliasPrefix

[MSHtmlHelpOptions] keyword 330
[OmniHelpOptions] keyword 364

AliasTitle , [MSHtmlHelpOptions] keyword 331

AlignAttributes , [HTMLOptions] keyword
CSS-dependent default value688
override paragraph properties656
XML default value 459

ALink

[HTMLParaStyles] format property
create HTML Help ALink buttons312
for HTML-based Help222
for Oracle Help400

[MarkerTypes] property 221, 839

ALink* , [MSHtmlHelpOptions] keywords:
ALinkButtonGraphic 310
ALinkButtonHeight 310
ALinkButtonIcon 310
ALinkButtonText 310
ALinkButtonWidth 310
ALinkEmptyTopic 310
ALinkFlags 310
ALinkText 310

ALinkTextFont 310
ALinkType 310

ALinkRefs , [OmniHelpOptions] keyword 360

ALinkRefs , [OracleHelpOptions] keyword 400

AllowEmptyAlt , [Graphics] keyword 718

AllowNobr , [HTMLOptions] keyword 456

AllowOverrides , [HTMLOptions] keyword
CSS-independent default value688
override paragraph properties657, 668
XML default value 459

AllowPartAppendix , [DITABookmapOptions]
keyword 550

AllowTbSplit , [Table] keyword
convert tables to paragraphs753
designate split points587

AllowTbTitle , [Table] keyword
convert tables to paragraphs753
titles for split files 595

Alt , [HTMLParaStyles] format property for alt
attribute 757

AlwaysNestLists , [CSS] keyword 677

Ansi , [HTMLOptions] keyword 431

ANSI, [MarkerTypes] property 839

Anum, [HTMLParaStyles] format property677

Anum, [HTMLParaStyles] format property, retain
autonumbers649

[AnumCodeAfter] , code after paragraph autonumber
indent list items678
placement properties823
subject to configuration overrides926

[AnumCodeBefore] , code before paragraph auto-
number
placement properties823
subject to configuration overrides926

AnumTabs, [HtmlOptions] keyword 649

AppliedTemplateFlags , [Setup] keyword
change template options866
set-up option81
template settings864

ApplyTemplateFile , [Setup] keyword 864
change template options866
set-up option81

B MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1060 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Archive* , [Automation] keywords:
ArchiveCommand

activated by WrapAndShip 956
archive deliverables973
JavaHelp set-up option375
place deliverables976

ArchiveEndParams 974
ArchiveExt 974
ArchiveName 974
ArchiveStartParams 973
ArchiveVer 974

AskForUserVars , [Automation] keyword 942

ATagElement , [HTMLOptions] keyword 467

ATagLineBreak , [HTMLOptions] keyword 437

AttributeMarkers] , map attributes to markers135

[Attributes]

for background images725
for <body> element436
for links 610
for tables 736
overridden by [TableAttributes] 736
subject to configuration overrides925
when not to use740

[Automation]

default values in local_omsys.ini 59
export options and settings84
options determined at run time, listed 863
pre- and post-conversion system code938
produce deliverables956
user variables942

Axis , [HTMLParaStyles] WAI format
property 768

AxisVal , [HTMLParaStyles] WAI format
property 772

B
[Base] , default font and size664

subject to configuration overrides925

Basefont , [HTMLOptions] keyword 664, 688, 701

BeginFile , [Inserts] keyword 429

BinaryIndex

[MSHtmlHelpOptions] keyword 320

BinaryTOC

[MSHtmlHelpOptions] keyword 320

Blockquote , [ParaTags] format property647

BodyContentOnly , [HTMLOptions] keyword 450

Bold , [HTMLParaStyles] or [HTMLCharStyles]
format property657

BookFileName , [DocBookOptions] keyword 562

BookFileTitle , [DocBookOptions] keyword 562

BookLibrary , [DITABookmapOptions]
keyword 548

BookMapID , [DITAOptions] keyword 543

BookMapName, [DITAOptions] keyword 541

BookMapTitle , [DITAOptions] keyword 542

BookmapType , [DITABookmapOptions]
keyword 548

BookMeta , [DITABookmapOptions] keyword 549

BookSubtitle , [DITABookmapOptions]
keyword 548

BookTitle , [DITABookmapOptions] keyword 548

Border , [Table] keyword 740
overridden by [TableAttributes] 736, 740
set-up option426

Bottom , [Inserts] keyword 599, 600, 821
position a navigation macro642

C
CaselessMatch , [Options] keyword 113

case sensitivity of FileIDs121

CaseSensitiveIndexCompare, [Index]
keyword 218

CellAlignAttributes , [Table] keyword 739
XML default value 459, 464

CellAttribute, [HTMLParaStyles] format
property 738

CellAttribute , [HTMLParaStyles] format
property 768

CellAttribute , [HTMLParaStyles] WAI format
property 768

CellColorAttributes , [Table] keyword 739
XML default value 459, 464

Center , [HTMLParaStyles] format property656

CGElems, [TableAccess] property 733

ChangeFileNameSpaces , [HTMLOptions]
keyword 949

[CharacterRangeClasses] , assign classes to Uni-
code character ranges695

HTML/XML KEYWORD INDEX C

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1061

[CharClasses]

default use for CSS class names682
map character formats for XML463
map character formats to span classes694
subject to configuration overrides925

[CharConvert] , map special characters660
for JavaHelp384

[CharStyle*] sections
[CharStyleCode*] sections

all subject to configuration overrides926
[CharStyleCodeAfter] 823
[CharStyleCodeBefore] 823
[CharStyleCodeEnd] 823
[CharStyleCodeReplace] 823
[CharStyleCodeStart] 823

[CharStyleCSS] 700
[CharStyleLinkSrc] 823

[CharTags]

assign HTML tags to character formats653
assign XML tags to character formats463
map character formats to CSS span classes694
subject to configuration overrides927
tags used for CSS classes by default682

CheckAllRefs , [HTMLOptions] keyword 618

CheckLinkLog , [Setup] keyword: log broken
links 112, 428

CheckLinks , [Setup] keyword: check for broken
links 112, 428

[ChmFiles] , map source files to .chm files 307, 337

ChmFormat , [MSHtmlHelpOptions] keyword 308

ClassIsTag , [CSS] keyword 692
map CSS class names to XML tags463
use tag names for CSS class names696
XML default value 459

ClassSpaceChar , [HtmlOptions] keyword 691

ClickBlockToClose , [DropDowns] keyword 233

CloseFigAfterImage , [DITAOptions]
keyword 517

CloseFigAfterImage , [DocBookOptions]
keyword 581

CloseOldWindow , [OmniHelpOptions]
keyword 352

CloseStrippedTables , [Table] keyword 515

Code, [MarkerTypes] property 839

Code* , [HTMLCharStyles] format properties
CodeAfter 823

CodeBefore 823
CodeEnd 823
CodeReplace 823
CodeStart 823

Code* , [HTMLParaStyles] format properties
CodeAfter 466, 804, 823
CodeAfterAnum 823
CodeBefore 466, 804, 823
CodeBeforeAnum 823
CodeEnd 647, 804, 823
CodeReplace 312, 325, 443, 823
CodeStart 647, 804, 823
CodeStore 804

capture FrameMaker autonumbers944
create a macro variable796
difference from TextStore 805

ColGroup , [HTMLParaStyles] WAI format
property 768
in [Table]ColGroupHead cells 778
use header cells to define column groups766

ColGroupElements , [Table] keyword 732
apply scope method to all tables764
for browser-dependent table tags731
override column group settings733

ColGroupHead , [Table] WAI keyword 778
column-group extent779
id/header table cell attribute778

ColGroupIDs , [Table] WAI keyword 778
column-group extent779
id/header table cell attribute778
override for selected tables784
set by AccessMethod=IDheaders 765, 767

ColHead , [Table] WAI keyword 782
column extent783
id/header table cell attribute778

ColIDs , [Table] WAI keyword 782
column extent783
id/header table cell attribute778
override for selected tables784

Color* , [HTMLParaStyles] or
[HTMLCharStyles] format property657, 669

[Colors]

correct CMYK colors439
map color names to values439
mappings affect CSS682
override for paragraph formats657
table row color746

[Colors] , specify text colors669

C MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1062 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

ColSpanHead , [Table] WAI keyword 780
column-span extent781
id/header table cell attribute778

ColSpanIDs , [Table] WAI keyword 780
column-span extent781
dependencies765
id/header table cell attribute778
override for selected tables784

CombineIndexLevels , [Index] keyword 214

Comment

[HTMLOptions]GeneratorTag setting 433
[HTMLParaStyles] format property for

scripts 650
[HTMLParaStyles] or [HTMLCharStyles] for-

mat property650

CompileHelp , [Automation] keyword
compile HTML Help project333, 971
determined at run time863
export option84
set up HTML Help project299

Compiler , [MSHtmlHelpOptions] keyword 334

CompoundWordChars , [OmniHelpOptions]
keyword 362

[ConditionAttributes]

convert to DITA element attributes534
convert to HTML/XHTML element

attributes447

ConditionCharTag , [HTMLOptions]
keyword 446, 533

[ConditionOptions], display FrameMaker

conditions via CSS 447

[ConditionsShown], apply FrameMaker

conditions 123

Config , override configuration settings
[HTMLParaStyles] format property931
[MarkerTypes] property 839

Configs , [Templates] keyword 851, 859, 862
precedence of settings919

Confluence , [HTMLOptions] keyword 449

ConfluenceLinkEnd , [HTMLOptions]
keyword 450

ConfluenceLinkPage , [HTMLOptions]
keyword 450

ConfluenceLinkPageEnd , [HTMLOptions]
keyword 450

ConfluenceLinks , [HTMLOptions] keyword 450

ConfluenceLinkStart , [HTMLOptions]
keyword 450

ConfluenceLinkText , [HTMLOptions]
keyword 450

ConfluenceLinkTextEnd , [HTMLOptions]
keyword 450

ContentModel , [DocBookOptions] keyword 561

ContentModel , DocBookOptions] keyword 908

Contents

[HTMLParaStyles] format property
HTML-based Help contents entries210

[HtmlStyles] format property
retain ObjectIDs445, 621

[JavaHelpOptions] ListType value 207,
320, 375

[MSHtmlHelpOptions] ListType value 207,
299, 320

ContentsLocalValuePrefix ,
[MSHtmlHelpOptions] keyword 338

ContentsNamesFileOnly , [MSHtmlHelpOptions]
keyword 323

ContentType , [HTMLOptions] keyword 435, 461

ContextAnchors , [EclipseHelpOptions]
keyword 411, 418

ContextDescription , [EclipseHelpOptions]
keyword 411, 419

ContextFileName , [EclipseHelpOptions]
keyword 418

ContextID , [EclipseHelpOptions] keyword 418

ContextPluginName , [EclipseHelpOptions]
keyword 418

ConversionDPI , [HTMLOptions] keyword 436,
721

ConvertVariables , [Setup] keyword 437
convert system variables to text114
set-up option81

CopyAfterFiles , [Automation] keyword 964

CopyAfterFrom , [Automation] keyword 964

CopyBeforeFiles , [Automation] keyword 960

CopyBeforeFrom , [Automation] keyword 960

CopyCssFrom , [Automation] keyword 969
activated by CompileHelp or FTSCommand972
activated by WrapAndShip 956

CopyGraphicsFrom , [Automation] keyword 966
activated by CompileHelp or FTSCommand972

HTML/XML KEYWORD INDEX D

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1063

activated by WrapAndShip 956
locate graphics for HTML Help302
locate graphics for OmniHelp349

CopyOriginalGraphics , [Automation]
keyword 965

CshMapFile , [MSHtmlHelpOptions] keyword
set-up option299
use symbolic IDs for CSH links329

CshMapFileNumIncrement ,
[MSHtmlHelpOptions] keyword 329

CshMapFileNumStart , [MSHtmlHelpOptions]
keyword 329

[CSS] 682–701
file options 684
for XML 463
link options 611
list attributes678

Css* , [CSS] keywords:
CssBodyFontSize 698
CssBodyFontTag 699
CssBodyFontUnit 698
CssBrowserDetect 684
CssFileName 684

name CSS files686
set-up option426, 479, 561

CssFontUnitDec 699
CssFontUnits 699
CssIndentBaseSize 699
CssIndentBaseUnit 699
CssIndentUnitDec 699
CssIndentUnits 699
CSSLinkNS4 691
CssPath 686

destination for CssCopyFiles 964
place CSS files for assembly969

CssCopyFiles , [Automation] keyword 969
activated by CompileHelp or FTSCommand972

[CSSEndMacro] , ending code for CSS file700

CSSReplace , [HTMLParaStyles] or
[HTMLCharStyles] format property700

[CSSStartMacro] , starting code for CSS file700
specify default font size699
when CSS is generated each time607

CtrlCssName , [OmniHelpOptions] keyword 352

D
Default , [JavaHelp window] parameter394

DefaultChmFile , [MSHtmlHelpOptions]
keyword 301
map CHM files 336
set-up option299
syntax for inter-CHM-file links308

DefaultTarget , [HTMLOptions] keyword 451,
725

DefaultTopic , [JavaHelpOptions] keyword 382
set-up option376

DefaultTopic , [OracleHelpOptions]
keyword 382

DefaultTopicFile

[MSHtmlHelpOptions] keyword 301
set-up option299

[OmniHelpOptions] keyword 348
set-up option347

DefCharElem , [DITAOptions] keyword 494

DefCharElem , [DocBookOptions] keyword 569

DefParaElem , [DITAOptions] keyword 489

DefParaElem , [DocBookOptions] keyword 566

DefTableElem , [DITAOptions] keyword 511

DefTopic , [DITAOptions] keyword 525

Delete

[HTMLCharStyles] format property, override
placement926

[HTMLParaStyles] format property772, 950
delimit extracts593
do not use for CodeStore paragraphs804
eliminate glossary entries from JavaHelp

TOC 393
eliminate unwanted paragraphs653
enable/disable extract processing591
for configuration overrides931
hide TextStore paragraphs803
hide WAI markup756, 757, 758
HTML Help TOC-only entries322
name split files950
override placement926
paragraph formats for <meta> tags 435
prevent duplicate file names952

[HtmlStyles] format property
CSH paragraphs for HTML Help328
eliminate invisible paragraphs652
eliminate page numbers from generated

lists 445

D MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1064 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

suppress page numbers in HTML Help325
[MarkerTypes] property 839

hide Index markers from JavaHelp386
must be specified last840
suppress markers841

[XrefStyles] format property618

DeleteExistingDCL , [Setup] keyword 112

DeleteExistingMIF , [Automation] keyword
activated by CompileHelp or FTSCommand972

DeleteExistingMIF , [Setup] keyword 111

DescriptionIsFirstLabel ,
[EclipseHelpOptions] keyword 411, 418

[DITAAliases] , alternate names for a format490

[DITABookmapFiles] , roles for bookmap
components551

[DITABookmapHrefFormats] , format attribute val-
ues for wrapper elements556

[DITABookmapHrefs] , href attribute values for
wrapper elements556

[DITABookmapHrefScopes] , scope attribute values
for wrapper elements556

[DITABookmapHrefTypes] , type attribute values
for wrapper elements556

[DITABookmapOptions] , configure <bookmap>
element548

[DITABookmapOutputclasses] , outputclass at-
tribute values for wrapper elements556

[DITABookmapTitles] , <navtitle> values for
wrapper elements556

[DITACharAttributes] , assign attributes to inline
elements498

[DITACharTags]

character formats to DITA elements492

[DITACharTypographics] , multiple typographic
elements494

[DITACloseAfter] , close parent element after cur-
rent block 507

[DITACloseBefore] , close ancestor element(s) be-
fore current block506

[DITAContentModels] , specialize DITA topic
type 908, 914

[DITAElementSets] , specify alternate
ancestors504

[DITAFirst] , specify first-child status505

[DITAImageParents] , parents for image or figure

element516

[DITALevels] , element levels510

[DITAMapLevels] , topic levels in maps544

[DITAMapUsage] , topic roles maps545

[DITAOpenAfter] , open new element(s) after cur-
rent block 507

[DITAOpenBefore] , open ancestor element(s) be-
fore current block507

[DITAOptions] , options for DITA XML output480

[DITAParaAttributes] , assign attributes to block
elements497

[DITAParaTags]

alternate paragraph formats to DITA
elements491, 527

paragraph formats to DITA elements487

[DITAParaTypographics] , multiple typographic
elements494

[DITAParentAttributes] , assign attributes to in-
terpolated parents498

[DITAParents] , possible parents for elements502

[DITAPreformatted] , preserve whitespace in block
elements499

[DITARelBookGroups] , collection-type attri-
butes for topic types547

[DITARelGroups] , topic collection-type 547

[DITATableAttributes] , assign attributes to table
types 511

[DITATableParents] , parents for root table
element512

[DITATables] , map formats to table types511

[DITATopicFileNamePrefix] , prefix split-file
names by topic type521

DITATopicIDLowerCase , [DITAOptions]
keyword 526

DITATopicIDSpaceChar , [DITAOptions]
keyword 526

DITATopicIDUnderscore , [DITAOptions]
keyword 526

[DITATopicRootAttrs] , assign attributes to the
root element of a topic497

DITAVer , [DITAOptions] keyword 480
default for FrameMaker 8 import481

DListDD , [HTMLParaStyles] format property675,
677

[DocBookAlias] , alternate names for a format567

HTML/XML KEYWORD INDEX E

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1065

[DocBookCharAttributes] , assign attributes to in-
line elements572

[DocBookCharTags]

character formats to DocBook elements568

[DocBookCloseAfter] , close parent element after
current block578

[DocBookCloseBefore] , close ancestor element(s)
before current block577

[DocBookElementSets] , specify alternate
ancestors575

[DocBookFirst] , specify first-child status576

[DocBookImageParents] , parents for image
element582

[DocBookLevels] , element levels580

[DocBookOpenAfter] , open new element(s) after
current block578

[DocBookOpenBefore] , open ancestor element(s)
before current block578

[DocBookOptions] 561

[DocBookParaAttributes] , assign attributes to
block elements571

[DocBookParaIDs]

include ID attributes in block elements570

[DocBookParaTags]

paragraph formats to DocBook elements565

[DocBookParentAttributes] , assign attributes to
interpolated parents572

[DocBookParentIDs]

include ID attributes in interpolated parent
elements570

[DocBookParents] , possible parents for
elements574

DocBookRoot , [DocBookOptions] keyword 562

[DocBookTableParents] , parents for root table
element581

Document , [Templates] keyword 854, 859, 860

Drop* , [DropDowns] keywords
DropBlockEnd 233
DropBlockStart 233
DropButton 233
DropButtonAttr 233
DropButtonCloseLabel 232
DropButtonOpenLabel 232
DropClass 233
DropCloseIcon 233
DropCloseIconAlt 231

DropCloseIconFile 231
DropDivAttr 233
DropDownBlock 228
DropIDPrefix 232
DropJSCode 234
DropJSLocation 234
DropLinkAttr 232
DropLinkEnd 232
DropLinkPara 233
DropLinkParaEnd 233
DropLinkParaStart 233
DropLinkParaText 233
DropLinkStart 232
DropLinkType 230
DropOpenIcon 233
DropOpenIconAlt 231
DropOpenIconFile 231
DropText 232

DropDown, [HTMLParaStyles] format
property 228

DropDownEnd , [HTMLParaStyles] format
property 228

DropDownLink , [HTMLParaStyles] format
property 228

DropDownLink , [HtmlParaStyles] or
[HtmlCharStyles] format property228

[DropDowns] , create expandable drop-down
sections230

DropDownStart , [HtmlCharStyles] format
property 228

DropDownStart , [HTMLParaStyles] format
property 228

DropInvalidParaTag , [DITAOptions]
keyword 490

DropInvalidParaTag , [DocBookOptions]
keyword 566

DumpToFile , DITA [Topic] content-model
keyword 918

E
[EclipseHelpOptions] , set-up options and

settings405

EclipseVer , [EclipseHelpOptions]
keyword 406

EditorFileName , [Logging] keyword 115

[ElementSets] , content-model section; define sets

E MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1066 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

of DITA elements910
EmptyGraphPath , [Automation] keyword 967

activated by CompileHelp or FTSCommand972
when effective962

EmptyJavaGraphSubdir , [JavaHelpOptions]
keyword 379

EmptyJavaGraphSubdir , [OracleHelpOptions]
keyword 379

EmptyJavaHTMLSubdir , [JavaHelpOptions]
keyword 379

EmptyJavaHTMLSubdir , [OracleHelpOptions]
keyword 379

EmptyOutputDir , [Automation] keyword 958
activated by CompileHelp or FTSCommand972
dependencies959
when effective958

EmptyOutputFiles , [Automation] keyword 958
activated by CompileHelp or FTSCommand972
when to include959

EmptyParaContent , [HTMLOptions] keyword 652

EmptyTbCellContent , [Table] keyword 744
eliminate default content for XML464

EmptyWrapPath , [Automation] keyword 962
activated by CompileHelp or FTSCommand972
dependencies968

Encoding , [HTMLOptions] keyword 432
for Eclipse Help412
for XML 460
prevent character mapping663

End, [Inserts] keyword 599, 600, 821
for framesets451

[End] , dummy section to end settings107

[End] , dummy section to replace
[MacroVariables] 788

EndingFSButton , [NavigationMacros]
keyword 641

EndingNextFSButton , [NavigationMacros]
keyword 641

EndingNextFSMacro , [NavigationMacros]
keyword 640, 828
scope640

Entities , [Inserts] keyword 429, 821

EqSuffix , [HTMLOptions] keyword 137

EquationExportDPI , [Setup] keyword 137
convert equations726
graphic output format and resolution884

EquationFrameExpand , [Setup] keyword 137,
726

Export* , [GraphExport] keywords:
ExportBmpFiles 881
ExportCdrFiles 881
ExportEpsFiles 881
ExportGifFiles 881
ExportJpgFiles 881
ExportNameChars 134
ExportNumDigits 134
ExportPctFiles 881
ExportPcxFiles 881
ExportPngFiles 881
ExportRfFiles 881
ExportTifFiles 881
ExportWmfFiles 881
ExportWpgFiles 881

Extr*

[Graphics] extract keywords:
ExtrGraphClass 606
ExtrGraphHigh 605
ExtrGraphSuffix 601, 603, 605
ExtrGraphTarget 606
ExtrGraphThumbnail 605
ExtrGraphWide 606

[HTMLParaStyles] extract format properties
ExtrDisable 592
ExtrEnable 592
ExtrEnd 592
ExtrFinish 592
ExtrStart 592

[Inserts] keywords:
ExtrBottom 600
ExtrHead 600
ExtrHeadEnd 600
ExtrTop 600

[MarkerTypes] properties
ExtrBottom 839
ExtrDisable 839
ExtrEnable 839
ExtrEnd 839
ExtrFinish 839
ExtrHead 839
ExtrReplace 839
ExtrStart 839
ExtrTop 839

[Extr*] , extract-file sections
all subject to configuration overrides927
[ExtrBottom] 600
[ExtrHead] 600

HTML/XML KEYWORD INDEX F

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1067

[ExtrReplace] , extract replacement code603
[ExtrTitle] 602
[ExtrTop] 600

ExtractEnable , [HTMLOptions] keyword 591

F
Figure , [HTMLParaStyles] format property, en-

sure wrapping DITA image in <fig> 517

FigureTitleStartsFigure , [DITAOptions]
keyword 517

FigureTitleStartsFigure , [DocBookOptions]
keyword 581

[FileIDs] 121
deprecated for main configuration file122
mif2go.ini section 121

FileName

[HTMLParaStyles] format property948
[MarkerTypes] property 839

importance of processing order587, 840
name split and extract files947

FileNameSpaceChar , [HTMLOptions]
keyword 949

FileSuffix , [Setup] keyword 110, 460
for DITA output 480
for DocBook output561
output file extension for ASCII DCL1012

First* , [Inserts] keywords:
FirstBottom 600

position local TOCs634
FirstEnd 600
FirstFrames 600
FirstHead 600
FirstHeadEnd 600
FirstTop 600

FixGraphSpaces , [Graphics] keyword 889

FixMacroQuotes , [Macros] keyword 790

FM8Import , [DITAOptions] keyword 481

Font , [Base] keyword 664

[Fonts] , remap fonts664
assign CSS generic font family698
effect on CSS rendition682

[FontSizes] , map points to HTML sizes665

FootClass , [CSS] keyword 694

FootInlineIDPrefix , [HTMLOptions]
keyword 564, 672

FootInlineParaTag , [HTMLOptions]
keyword 564, 672

FootInlineRefTag , [HTMLOptions]
keyword 564, 672

FootInlineTag , [HTMLOptions] keyword 672

FootnoteEndCode , [HTMLOptions] keyword 673

Footnotes , [HTMLOptions] keyword 564, 672
XML default value 459

FootnoteSeparator , [HTMLOptions]
keyword 672

FootnoteStartCode , [HTMLOptions]
keyword 673

FootnoteWrapClass , [DITAOptions]
keyword 528

FootnoteXref , [DITAOptions] keyword 529

FootTagLast , [Table] keyword 733

ForceStartTopic , [DITAOptions] keyword 524

FrameAbove , [HtmlStyles] format property651

FrameBelow , [HtmlStyles] format property651

FrameHigh , [OmniHelpOptions] keyword 353

FrameOptions , [OmniHelpOptions] keyword 353

Frames , [Inserts] keyword 599, 600, 821
for framesets451

Frameset , [OmniHelpOptions] keyword 353

FrameWide , [OmniHelpOptions] keyword 353

FRowsN, [TableAccess] keyword 734, 735

FTSCommand, [JavaHelpOptions] keyword
for JavaHelp388
set-up option375

FTSCommand, racleHelpOptions] keyword
for Oracle Help389

G
GenerateBook , [Setup] keyword 126

set-up option81
template import problem866

GeneratorTag , [HTMLOptions] keyword 433

[GlossFiles]

for hover text449

GlossPrefix , [JavaHelpOptions] keyword 393

GlossSpace , [JavaHelpOptions] keyword 393

GlossSuffix , [JavaHelpOptions] keyword 393

GlossTerm , [HTMLParaStyles] JavaHelp format

G MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1068 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

property 392

GlossTitle , [HtmlStyles] format property, pro-
vide for hover text448

GlossTitlePath , [HTMLOptions] keyword 449

[GlossTitles]

for hover text448

[GraphAlign] 714
left-align all images704
subject to configuration overrides930

GraphAlignAttributes , [Graphics]
keyword 715
default depends on [CSS]UseCSS 688

[GraphALT] , image alt attribute
for image maps723

[GraphALT] , image alt tags 719
subject to configuration overrides930

[GraphAttr] , image attributes718
eliminate blue borders723
subject to configuration overrides930

GraphClass , [Graphics] keyword 463, 693

GraphCopyFiles , [Automation] keyword 966
activated by CompileHelp or FTSCommand972

[GraphDpi] , image DPI721
subject to configuration overrides930

[GraphEndMacros] , code after images711, 715
subject to configuration overrides930

[GraphExport]

export embedded graphics1012

[GraphExport] , export embedded graphics707,
880, 1012
from OLE objects882
set-up options and settings1011
subject to configuration overrides925

[GraphFiles] , replace graphics707, 888, 968
path overrides888
subject to configuration overrides930

[GraphGroup] , create graphics groups710
assign with *Config marker 930
override with FrameMaker Object

Attributes 896
subject to configuration overrides930

[GraphHigh] , image height in pixels720
property of extracted graphic607
related to predefined macro variables711
subject to configuration overrides930

GraphicExportDPI , [Setup] keyword 130, 721,

884

GraphicExportFormat , [Setup] keyword 130,
884
for equations725

GraphicNameDigits , [Setup] keyword 134, 885

[Graphics]

class name for anchor paragraph463, 693
export options and settings84
fix graphics file names889
graphics location for JavaHelp381
options determined at run time, listed 863
position graphics714
relocate graphics files704, 705, 887
remove path information335
replace EPSI graphics877
replace graphics888, 968
subject to configuration overrides925
third-party graphics tools131
thumbnails for extract links605
use existing graphics files706, 884, 889
use title for alt 724
include or omit image attributes

for DITA XML 518
for DocBook XML 582
for generic XML 464
for HTML 720

GraphicsFirst , [Setup] keyword
export embedded graphics1012
export master- and reference-page graphics885
process all graphics first132
process embedded graphics separately133
process only graphics88

[GraphIndents] , indent images717
subject to configuration overrides930
unindent images303

[GraphParaAlign] , position graphics715
subject to configuration overrides930

GraphPath , [Graphics] keyword 705, 887, 968
for JavaHelp and Oracle Help381
include unconverted referenced graphics890
overridden by [GraphFiles] 888
overrides [GraphFiles] 888
replace EPS graphics877

GraphPathOverrides , [Graphics] keyword 888,
929, 968

[GraphReplaceMacros] , code instead of
image 711
subject to configuration overrides930

HTML/XML KEYWORD INDEX H

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1069

[GraphRightSpacers] , indent images717
subject to configuration overrides930

GraphScale , [Graphics] keyword
eliminate attributes

for DITA XML 518
for DocBook XML 582
for generic XML 464
for HTML 720

eliminate attributes for HTML704
XML default value 459

[GraphScale] , scale images720
related to predefined macro variables711
subject to configuration overrides930

[GraphStartMacros] 710
add space before a graphic717
subject to configuration overrides930

GraphSubdir , [JavaHelpOptions] keyword 379

GraphSubdir , [OracleHelpOptions]
keyword 379

GraphSuffix , [Graphics] keyword 888, 968
replace referenced graphics706
third-party graphics tools131
use referenced graphics without converting706

[GraphSuffix] , replace graphics file
extension706, 888, 968

[GraphWide] , width of image in pixels720
property of extracted graphics607
related to predefined macro variables711
subject to configuration overrides930

GraphWrapPara , [Graphics] keyword 464, 713

H
h1 - h6 , [ParaTags] format properties647

HCols N, [TableAccess] keyword 735
default header columns734
effect on [Table]ScopeRow 776

Head, [Inserts] keyword 599, 821
customize CSS link tag690
for CSS selection macro685, 689
for HTML Help KeyHelp pop-up306
for solitary file 600

HeadEnd, [Inserts] keyword 599
for solitary file 600

HeadFootBodyTags , [Table] keyword 732
choose a row-group method780
default header/footer counts734

enable [Table*Attributes] 751
identify table cells via scope776
RowGroup property785
with scope method764, 767

Height , [JavaHelp window] parameter394

Helen , [JavaHelpOptions] keyword 385

[HelpContentsLevels]

assign heading levels for split overrides589
assign local TOC levels632
check assigned split points586
exclude links445
for HTML-based Help210
subject to configuration overrides927

HelpFileLanguage , [MSHtmlHelpOptions]
keyword 332

HelpFileTitle

[JavaHelpOptions] keyword 382
set-up option376

[MSHtmlHelpOptions] keyword 300
set-up option299

[OmniHelpOptions] keyword 348
set-up option347

[OracleHelpOptions] keyword 382

HelpMerge , [MarkerTypes] property 839

[HelpMerge] , merge help projects
for HTML Help 339
for OmniHelp 367, 369

[HelpMergePaths] , merge JavaHelp or Oracle Help
helpsets400

HFBTags, [TableAccess] override 733, 751

HHCProperties , [MSHtmlHelpOptions]
keyword 324

HHKProperties , [MSHtmlHelpOptions]
keyword 324

HHPFileName , [MSHtmlHelpOptions]
keyword 301
archive deliverables975
set-up option299

[HHWindows] , secondary windows
for HTML Help 318

HideWhiteText , [HTMLOptions] keyword 652

HistoryFileName , [Logging] keyword 115

HrefAttribute , [HTMLOptions] keyword 467,
563

HRowsN, [TableAccess] keyword 735
default header row count734

I MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1070 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

effect on [Table]ScopeCol 776

HSFileName , [JavaHelpOptions] keyword 391
archive JavaHelp deliverables975
name JavaHelp helpset file382
set-up option376

HSFileName , [OracleHelpOptions] keyword
name Oracle Help helpset file382

HSPathNames, [JavaHelpOptions] keyword 383

HSPathNames, [OracleHelpOptions]
keyword 383

HTMConfig

[HTMLParaStyles] format property931
[MarkerTypes] property 839

[HTMLCharStyles]

subject to configuration overrides927

HTMLComment, [MarkerTypes] property 839

HTMLDocName, [Setup] keyword
set-up option60

HTMLDocType, [HTMLOptions] keyword 429
for framesets451

HTMLDTD, [HTMLOptions] keyword 430
for framesets451

[HtmlFiles] , rename split files946

[HTMLOptions]

for declarations429, 430, 432, 435, 436, 451
for extracts591
for footnotes564, 672
for framesets451
for graphics713, 886
for links 443, 451, 725
for preformatted text437, 670, 671
for split files 587, 588, 590, 948
for tables 747
for Word cross references114
for XML 468
subject to configuration overrides925

[HTMLParaStyles]

for extracts592
for HTML Help 222
for images757
for links 758, 759
for split files 595
for WAI table attributes768
subject to configuration overrides927

HTMLSubdir , [JavaHelpOptions] keyword 379,
381

HTMLSubdir , [OracleHelpOptions] keyword 379

HTMLVersion , [HTMLOptions] keyword 429

HyperSpaceChar , [HTMLOptions] keyword 613

I
IDAttrName , [HTMLOptions] keyword 135

IDFileName , [Setup] keyword 120, 623, 1027
determined at run time863

IDheaders , [Table]AccessMethod option 764
apply id/headers to all tables765
ColGroup dependency784
RowGroup dependency785

IDRefAttrName , [HTMLOptions] keyword 135

IDs , [TableAccess] property, 765

IdxButtons , [OmniHelpOptions] keyword 359

IdxExpand , [OmniHelpOptions] keyword 358

IdxFilename , [EclipseHelpOptions]
keyword 410

IdxGroupsOpen , [OmniHelpOptions]
keyword 358

IdxIcoBase , [OmniHelpOptions] keyword 359

IdxOpenLevel , [OmniHelpOptions] keyword 358

IECssName, [OmniHelpOptions] keyword 350

IECtrlCssName , [OmniHelpOptions]
keyword 352

IgnoreCharsIX, [Index] keyword 217

IgnoreLeadingCharsIX, [Index] keyword 217

IgnoreWrap , [HTMLOptions] keyword 438, 670

Image , [JavaHelp window] parameter394

ImageParents , [DITAOptions] keyword 516

ImageParents , [DocBookOptions] keyword 581

ImgSrcAttr , [HTMLOptions] XML keyword 468

ImgTagElement , [HTMLOptions] XML
keyword 468

ImportDocProps , [Setup] keyword 865

ImportGraphics , [GraphExport] keyword, export
embedded graphics707, 880
by image format880
OLE objects881
separately133
via ASCII DCL output 1012

IncludeVersionPI , [EclipseHelpOptions]
keyword 409

Index

HTML/XML KEYWORD INDEX J

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1071

[JavaHelpOptions]ListType value 207, 320
[MSHtmlHelpOptions]ListType value 207,

320

[Index]

configure Help index entries213

[IndexMarkerOutputClass] , href outputclass for
indexterms554

IndexRanges , [HtmlOptions] keyword 213

IndexSortLocale , [HtmlOptions] keyword 218

IndexSortType , [HtmlOptions] keyword 218

IndexWrapClass , [DITAOptions] keyword 528

[Inserts] , insert code at predefined locations599,
821
subject to configuration overrides925

InternalTableCaption , [Table] keyword 563,
747

Ital , [HTMLPararStyles] or [HTMLCharStyles]
format property657

J
JarCommand, [JavaHelpOptions] keyword 391

JarCommand, [OracleHelpOptions] keyword 391

[JavaHelp window] , assign default parameters394

[JavaHelpOptions]

set-up options and settings376
subject to configuration overrides925

JavaRootFiles , [JavaHelpOptions]
keyword 380

JavaRootFiles , [OracleHelpOptions]
keyword 380

[JH2_HelpsetAddition] 383

[JHImages] 394

JHVersion2 , [JavaHelpOptions] keyword 376

K
KeepCompileWindow , [Automation]

keyword 334, 388, 390, 420
activated by CompileHelp 972

KeepFileNameSpaces , [HTMLOptions]
keyword 949

KeepFileNameUnderscores , [HTMLOptions]
keyword 948

KeepGraphicsInPara , [Graphics] keyword 714

KeepLink , [HtmlStyles] format property
fix <$nopage> index links 444
make index entries into links443
replace page numbers for HTML Help325
replace page numbers in index443

KeepReplacedCharLinks , [HTMLOptions]
keyword 443

KeepXrefText , [DITAOptions] keyword 528

KeywordLimit, [MSHtmlHelpOptions]
keyword 212

KeywordRefs, [Index] keyword 215

KLink* , [MSHtmlHelpOptions] keywords:
KLinkButtonGraphic 310
KLinkButtonHeight 310
KLinkButtonIcon 310
KLinkButtonText 310
KLinkButtonWidth 310
KLinkEmptyTopic 310
KLinkFlags 310
KLinkText 310
KLinkTextFont 310
KLinkType 310

L
Last* , [Inserts] keywords:

LastBottom 600
position trails of links631

LastEnd 600
LastFrames 600
LastHead 600
LastHeadEnd 600
LastTop 600

Left

[HTMLParaStyles] format property656
[JavaHelp window] parameter394

LeftWide , [OmniHelpOptions] keyword 353

LEnd, [HTMLParaStyles] format property675, 676

LevelBreakForSee, [Index] keyword 215

LFirst , [HTMLParaStyles] format property
for lists with multiple paragraph formats676
start list style675

Link* , [MSHtmlHelpOptions] base keywords:
LinkButtonGraphic 310
LinkButtonHeight 310
LinkButtonIcon 310

M MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1072 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

LinkButtonText 310
LinkButtonWidth 310
LinkEmptyTopic 310
LinkFlags 310
LinkText 310
LinkTextFont 310
LinkType 310

LinkClass , [HTMLParaStyles] WAI keyword 759

LinkClassIsParaClass , [CSS] keyword 611
default depends on UseCSS 688

LinkLogAlways , [Setup] keyword: display broken-
link log 112, 428

LinkSrc

[HTMLCharStyles] format property823
[HTMLParaStyles] format property612, 823
[XrefStyles] format property618

LinkTitle , [HTMLParaStyles] WAI keyword 758

ListMissingRefs , [HTMLOptions] keyword 618

ListN , [HTMLParaStyles] format property675

ListType

[EclipseHelpOptions] keyword 411
[JavaHelpOptions] keyword 207, 320

set-up option375
[MSHtmlHelpOptions] keyword 207, 320

set-up option299
[OmniHelpOptions] keyword 357

LLevel , [HTMLParaStyles] format property675,
677

LNest , [HTMLParaStyles] format property675,
677

LocalConfigPath , [Setup] keyword
set-up option60

[LocalTOC]

code for local-TOC entries632, 633
subject to configuration overrides925
where to place local TOCs631

LocalTOC* , [LocalTOC] keywords:
LocalTOCEnd 632
LocalTOCItem 633
LocalTOCStart 632
LocalTOCSubs 633

[LocalTOCLevels] 632
subject to configuration overrides927

LogAuto , [Automation] keyword 956

LogDebug , [Logging] keyword 116

LogErrors , [Logging] keyword 115

LogFileName , [Logging] keyword 115

[Logging] conversion events115

LogInfo , [Logging] keyword 116

LogIniChains , [Logging] keyword 116

LogQuerys , [Logging] keyword 116

LogWarnings , [Logging] keyword 116

Longdesc , [HTMLParaStyles] format property for
longdesc attribute 757

LowerCaseCSS, [CSS] keyword 692

LowMem, [OmniHelpOptions] keyword 348

M
[MacroFonts] , map characters in special fonts663

MacroNestMax , [Macros] keyword 792, 816

Macros , [Templates] keyword 793, 851

[Macros]

configure macro definitions for XML470
debug 820
loop-control limits 816
remove implicit line breaks789
subject to configuration overrides925

[MacroVariables] 797
create a macro variable796

MacroVarNesting , [Macros] keyword 798

MadeWith* , [HtmlOptions] keywords:
MadeWithAttributes 453
MadeWithImageFile 452
MadeWithLink 453
MadeWithPara 453

MainCssName, [OmniHelpOptions] keyword 350
set-up option347

MakeAliasFile , [MSHtmlHelpOptions]
keyword 330
set-up option299

MakeALinkFile , [OracleHelpOptions]
keyword 400

MakeCshMapFile , [MSHtmlHelpOptions]
keyword 329

MakeFileHrefsLower , [HTMLOptions]
keyword 406, 613
for JavaHelp391

MakeLocalTOC , [LocalTOC] keyword 631

MakeTrail , [Trails] keyword 628
enable [HTMLParaStyles]Trail format

HTML/XML KEYWORD INDEX N

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1073

property 628

MapBookRelTable , [DITAOptions] keyword 550

MapBookTopics , [DITAOptions] keyword 540,
550

MapFilePrefix , [JavaHelpOptions]
keyword 381
set-up option376

MapFilePrefix , [OracleHelpOptions]
keyword 381

MapHead, [DITAOptions] keyword 542

MapID, [DITAOptions] keyword 543

MapName, [DITAOptions] keyword 541

MapTitle , [DITAOptions] keyword 541

MapTopicID , [DITAOptions] keyword 543
default for FrameMaker 8 import481

MapTopicMeta , [DITAOptions] keyword
default for FrameMaker 8 import481

MapTopicmeta , [DITAOptions] keyword 543

[Markers] , invent and clone marker types139, 836,
837

[MarkerTypeCodeAfter] 843

[MarkerTypeCodeBefore] 843

[MarkerTypeCodeReplace] 843

[MarkerTypes] , marker-type properties838

MathFullForm , [HTMLOptions] keyword 518

MergeFirst , [OmniHelpOptions] keyword 369

MergePre , [HTMLOptions] keyword 438

Meta

[HTMLOptions]GeneratorTag property 433
[HTMLParaStyles] format property434, 598

MidHigh , [OmniHelpOptions] keyword 353

ModelName, [Topic] keyword 907, 909
MoveArchive , [Automation] keyword 976

[MSHtmlHelpOptions] 300–340
set-up options and settings299
subject to configuration overrides925

MultiImageFigures , [DITAOptions]
keyword 517

MultiImageFigures , [DocBookOptions]
keyword 581

MultipleOLE , [GraphExport] keyword 882

N
N4CssName, [OmniHelpOptions] keyword 350

N4CtrlCssName , [OmniHelpOptions]
keyword 352

N6CssName, [OmniHelpOptions] keyword 350

N6CtrlCssName , [OmniHelpOptions]
keyword 352

Name, [JavaHelp window] parameter394

NameUndefinedMacros , [Macros] keyword 820

NameUndefinedMacroVars , [Macros]
keyword 820

NavElems , [OmniHelpOptions] keyword 356
set-up option346

NavIcons , [JavaHelp window] parameter394

[NavigationMacros]

subject to configuration overrides925
use buttons for638

635

NavPane, [JavaHelp window] parameter394

NestTopicFiles , [DITAOptions] keyword 521

NewWindow, [OmniHelpOptions] keyword 352

NextButton , [NavigationMacros] keyword 640

NextFSButton , [NavigationMacros]
keyword 641

NextFSMacro , [NavigationMacros]
keyword 639, 828

NextMacro , [NavigationMacros] keyword 639,
828

NoAccess , [TableAccess] property 765

NoAnum, [HTMLParaStyles] format property, re-
move autonumbers465, 649
from footnotes673

NoAnum, [HtmlStyles] format property, remove au-
tonumbers
for XML 466

NoAttribLists , [CSS] keyword 678

NoBreak , [HtmlStyles] format property651

NoClassLists , [CSS] keyword 678
default depends on UseCSS 688

NoColID , [HTMLParaStyles] WAI format
property 768

NoColor , [HTMLParaStyles] or
[HTMLCharStyles] format property657, 669

O MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1074 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

NoCondAttrs , [DITAOptions] keyword 534

NoContLink , [HTMLParaStyles] , HTML Help for-
mat property322, 323

NoCSS, [HTMLParaStyles] or [HTMLCharStyles]
format property700

NoFig , [HTMLParaStyles] or [HTMLCharStyles]
format property, prevent wrapping DITA image
in <fig> 517

NoFonts , [HTMLOptions] keyword 665
CSS-dependent default value688
prevent tags from overriding CSS701
XML default value 459

NoFootnoteLinks , [HTMLOptions] keyword 672

NoFrameAbove , [HtmlStyles] format
property 651, 712

NoFrameBelow , [HtmlStyles] format
property 651, 712

NoHref , [HtmlStyles] property 444

NoLocations , [HTMLOptions] keyword 614

NoMemDel, [Options] keyword 1036

NoNameDel, [Options] keyword 1036

NonsplitBottom , [Inserts] keyword 600

NonsplitTop , [Inserts] keyword 600

NoPara , [HTMLParaStyles] format property, strip
<p> tags 650
for XML 464

NoPara , [HtmlStyles] format property, strip <p>
tags
render text frame as in-line text649

NoParaClose , [HTMLOptions] keyword 437

NoRef

[HTMLParaStyles] format property414, 614
[XrefStyles] format property618

NoSize , [HTMLParaStyles] or
[HTMLCharStyles] format property657

NoSplit

[HTMLParaStyles] format property590

NoSymbolFont , [HTMLOptions] keyword 666

NoTags , [HTMLParaStyles] or
[HTMLCharStyles] format property650

NoTags , [HtmlStyles] format property
render text frame as in-line text649

NoWrap, [HTMLOptions] keyword 438, 461

NoWrap, [HTMLParaStyles] format property, sup-
press line breaks650

NumericCharRefs , [HTMLOptions] keyword 432
for Eclipse Help412
for XML 460

O
ObjectIDs , [HTMLOptions] keyword 620

convert lists of paragraph references216, 325,
445

[OHMergeFiles] , map OmniHelp projects367

OHProjFileSuffix , [OmniHelpOptions]
keyword 348

OHProjFileXhtml , [OmniHelpOptions]
keyword 342

[OHTopLeftNav] , code for OmniHelp353

[OHTopRightNav] , code for OmniHelp353

OHVFiles , [OmniHelpOptions] keyword 370

OHViewPath , [OmniHelpOptions] keyword 343,
370

OmitMacroReturns , [Macros] keyword
ignore line breaks in macros, for XML470
omit line breaks in macro output789

[OmniHelpOptions] 347–369
subject to configuration overrides925

OnlyAuto , [Automation] keyword 977

OpenlinkIsFile , [HtmlOptions] keyword 620

[Options]

for cases, spaces, and wildcards113
for conversion debugging1036
subject to configuration overrides925

[OracleHelpWindows] 398

Overrides , [HtmlStyles] format property
override paragraph properties657

P
Padding , [Table] keyword 740

overridden by [TableAttributes] 736, 740
set-up option426

PageBreaks , [HTMLOptions] keyword, for split
points 587

[ParaClasses]

default use for CSS class names682
map paragraph formats693
map paragraph formats for XML463

HTML/XML KEYWORD INDEX Q

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1075

subject to configuration overrides925

ParaLink , [HtmlStyles] format property138
make index entries into links443
make LOM entries into links325
make LOP entries into links325

ParaLinkClass , [HTMLParaStyles] format
property 611

[ParaStyle*] sections
[ParaStyleCode*] sections

all subject to configuration overrides927
[ParaStyleCodeAfter] 467, 823
[ParaStyleCodeBefore] 614, 823
[ParaStyleCodeEnd] 823
[ParaStyleCodeReplace] 823
[ParaStyleCodeStart] 799, 823

[ParaStyleCSS] 700
[ParaStyleLinkSrc] 612, 823

[ParaTags]

assign HTML tags to paragraph formats647
assign XML tags to paragraph formats463
designate script paragraph formats650
map format names to CSS class names693
subject to configuration overrides927
tags used for CSS classes by default682

PersistSettings , [OmniHelpOptions]
keyword 354

PixelSpacerImage , [HTMLOptions] keyword 716
indent images716
indent tables747

Plain , [HTMLParaStyles] or [HTMLCharStyles]
format property657

PluginID, [EclipseHelpOptions] keyword 408

PluginID , [EclipseHelpOptions] keyword
set-up option405

PluginName , [EclipseHelpOptions]
keyword 408
set-up option405

PluginProvider , [EclipseHelpOptions]
keyword 408

PluginSchemaVersion , [EclipseHelpOptions]
keyword 410

PluginVer, [EclipseHelpOptions]
keyword 408

PluginVersion , [Setup] keyword 1034
determined at run time863

Pop*

[JavaHelpOptions] keywords:

PopFontColor 397
PopFontFamily 396
PopFontSize 397
PopFontStyle 397
PopFontWeight 397
PopGraphic 397
PopMarkerPrefix 398
PopSize 396
PopText 396
PopType 396

[MSHtmlHelpOptions] keywords:
PopColors 306
PopFont 306
PopMargins 306

pre , [ParaTags] format property647

PrevButton , [NavigationMacros] keyword 640

PrevFSButton , [NavigationMacros]
keyword 641

PrevFSMacro , [NavigationMacros]
keyword 639, 828

PrevMacro , [NavigationMacros] keyword 639,
827

PrjFileName , [Setup] keyword 1026
determined at run time863

ProjectName , [OmniHelpOptions] keyword 347

ProjectTemplate , [OmniHelpOptions]
keyword 356

PrologDTD , [Topic] content-model keyword909
PrologDType , [Topic] content-model

keyword 909

Q
QuotedEncoding , [HTMLOptions] keyword 432

R
Raw, [HTMLParaStyles] format property

for ALink paragraphs313
for marker-only paragraphs842
for split files 595

Raw, [HTMLParaStyles] or [HTMLCharStyles]
format property650

ReAnchorFrames , [HTMLOptions] keyword 713,
886

[RefFiles] , link paths 623

S MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1076 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

RefFileType

[EclipseHelpOptions] keyword 412
[JavaHelpOptions] keyword 207
[MSHtmlHelpOptions] keyword 207, 320
[OmniHelpOptions] keyword 207, 357

RefPageGraphIndent , [Graphics] keyword 713

RemoveAHrefAttrs , [HTMLOptions] XML
keyword 467

RemoveANames, [HTMLOptions] keyword 614
for XML link anchors 467

RemoveATags, [HTMLOptions] XML keyword 467

RemoveChmFilePaths , [MSHtmlHelpOptions]
keyword 338

RemoveEmptyParagraphs , [HTMLOptions]
keyword 652

RemoveEmptyTableParagraphs , [Table] keyword
for DITA 513
for DocBook 564
for HTML 744

RemoveFilePaths , [HTMLOptions] keyword 618
identify links to other files349, 622

RemoveFramesAbove , [HTMLOptions]
keyword 651

RemoveFramesBelow , [HTMLOptions]
keyword 651

RemoveInternalAnchors , [JavaHelpOptions]
keyword 385, 399

RemoveInternalAnchors , [OracleHelpOptions]
keyword 385, 399

RemoveWordTocMarkers , [HTMLOptions]
keyword 114

RemoveXrefHotspots , [HTMLOptions]
keyword 468, 563

RepeatMax , [Macros] keyword 817

ReplaceFrameVars , [Macros] keyword 123

RetainRuninImagesForEmptyParagraphs ,
[Graphics] keyword 714, 744

Right , [HTMLParaStyles] format property656

RowAttribute, [HTMLParaStyles] format
property 738

RowGroup, [HTMLParaStyles] WAI format
property 768, 769
in header cells to define row groups767
in [Table]RowGroupHead cells 778
use with scope method780

RowGroupHead, [Table] WAI keyword 778
id/header table cell attribute778
row-group extent779

RowGroupIDs , [Table] WAI keyword 779
id/header table cell attribute778
override for selected tables784
row-group extent779
with id/headers method767

RowHead, [Table] WAI keyword 782
id/header table cell attribute778
row extent 783

RowIDs , [Table] WAI keyword 782
id/header table cell attribute778
override for selected tables784
row extent 783

RowSpanHead, [Table] WAI keyword 781
id/header table cell attribute778
row-span extent781

RowSpanIDs , [Table] WAI keyword 780
dependencies765
id/header table cell attribute778
override for selected tables784
row-span extent781

RunfmDiagnostics , [Automation] keyword 957,
988

RunInHeads , [HTMLOptions] keyword 648
for Help systems203

S
Scope

[HTMLParaStyles] WAI format property768,
769

[Table]AccessMethod property 764
apply scope method to all tables764
avoid redundant attributes456
dependencies776, 785
enable [Table*Attributes] 751

[TableAccess] property 765
enable [Table*Attributes] 751

Scope , [Templates] keyword 855, 861

ScopeCol , [Table] WAI keyword 776
dependencies765
override for selected tables784

ScopeColGroup , [Table] WAI keyword 776
dependencies765
override for selected tables784

HTML/XML KEYWORD INDEX S

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1077

ScopeRow, [Table] WAI keyword 776
dependencies765
override for selected tables784

ScopeRowGroup

[Table] WAI keyword
dependencies765
enable [Table*Attributes] 751
override for selected tables784

[TableAccess] override, enable
[Table*Attributes] 751

[Tables] WAI keyword 776

script , [ParaTags] format property647

ScriptType , [HTMLOptions] keyword 650

SearchHighlightStyle , [OmniHelpOptions]
keyword 364

SearchWordMin , [OmniHelpOptions]
keyword 363

Sec* , [JavaHelpOptions] secondary-window
properties
SecFontColor 397
SecFontFamily 396
SecFontSize 397
SecFontStyle 397
SecFontWeight 397
SecGraphic 397
SecLocation 396
SecName 396
SecSize 396
SecText 396
SecType 396

SecMarkerPrefix , [JavaHelpOptions]
keyword 398

[SecWindows] , secondary windows225
for HTML Help 318
for OmniHelp 360
for Oracle Help399
subject to configuration overrides927

SeeAlsoTerm, [Index] keyword 214

SeeTerm, [Index] keyword 214

SelectorIncludesTag , [CSS] keyword 696

SetElementIDs , [DITAOptions] keyword 496

SetFrameConditions , [Setup] keyword 123

[Setup]

conversion-template settings81, 864, 865
convert generated files for ASCII DCL1011
convert system variables to text437
convert TOC and IX124

for ASCII DCL 1011
for Help systems205

equations137, 726, 884
exclude generated files125
export options and settings84
file names120, 623
FrameMaker-exported graphics130, 133, 134,

725, 726, 884, 885
generate/update126
manage MIF files111
options determined at run time, listed 863
set-up options and settings81
subject to configuration overrides925

ShipPath , [Automation] keyword 975
activated by CompileHelp or FTSCommand972
activated by WrapAndShip 956

ShowLog, [Logging] keyword 115

ShowNavLeft , [OmniHelpOptions] keyword 354

ShowSubjects , [OmniHelpOptions] keyword 360

ShowUndefinedFormats , [Logging] keyword 116

Size , [Base] keyword 664

Size N, [HTMLParaStyles] format property656
overrides [FontSizes] 665

SmartSplit , [HTMLOptions] keyword 590
do not use with local TOCs631

SortSeeAlsoFirst, [Index] keyword 215

SpacelessMatch , [Options] keyword 104, 113

[Spacer] , indent images and tables793

SpacerAlt , [HTMLOptions] keyword 716

Spacing , [Table] keyword 740
overridden by [TableAttributes] 736, 740
set-up option426

Span, [HTMLParaStyles] WAI format
property 768, 769
identify rows and columns781

SpecIniDir , [DITAOptions] keyword 916

Split

[HTMLParaStyles] format property586
trail dependencies628

[HtmlStyles] format property
for local-TOC level numbers632
retains ObjectIDs for TOC445

[MarkerTypes] property 587, 839

Split* , [Inserts] split-file keywords:
SplitBottom 600

position local TOCs634

T MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1078 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

position trails of links631
SplitEnd 600
SplitFrames , 600
SplitHead 600
SplitHeadEnd 600
SplitTop 600

SplitTopicFiles , [DITAOptions] keyword 520

SplitTrail , [Trails] keyword 630
dependencies628

StartingFSButton , [NavigationMacros]
keyword 641

StartingPrevFSButton , [NavigationMacros]
keyword 641

StartingPrevFSMacro , [NavigationMacros]
keyword 639, 828

StartingSplit , [HTMLOptions] keyword 588
prevent splits that leave dangling headings590

[StopWords] , for OmniHelp search363

Strike , [HTMLCharStyles] or
[HTMLCharStyles] format property657

StripGraphPath , [Graphics] keyword 704, 887
locate replacements for EPS graphics877
synchronize graphics settings968
use referenced graphics without converting706
use system commands to manage files335

StripTable , [Table] keyword 753

[Style*] sections
all subject to configuration overrides927
[StyleCellAbbr] 769, 770
[StyleCellAttribute] 769, 738
[StyleCellAxis] 769
[StyleCellScope] 769
[StyleCode*] sections

[StyleCodeAfter] 467
[StyleCodeStore] 804
[StyleFilePrefix] 951
[StyleFileSuffix] 951
[StyleMetaName] 434
[StyleParaLinkClass] 611
[StyleRowAttribute] 738
[StyleTextStore] 803
[StyleTitlePrefix] 596
[StyleTitleSuffix] 596
[StyleTrailPrefix] 628
[StyleTrailSuffix] 629
[StyleWindow] 318

[StyleTabReplace] , replace tabs with code659

Summary, [HTMLParaStyles] WAI table
keyword 761

SystemCommandWindow, [Automation]
keyword 939

SystemEndCommand, [Automation] keyword 938

SystemStartCommand , [Automation]
keyword 938

SystemWrapCommand, [Automation] keyword 938

T
TabCharsPerInch , [HTMLOptions] keyword 671

[TableAccess] , override properties733, 765, 784
override [Table] default access method765
subject to configuration overrides928

[TableAfterMacros] 749
subject to configuration overrides928

TableAttributes , [Table] keyword 464, 739,
741
XML default value 459

[TableAttributes]

overrides [Attributes] values 736
overrides border , cellpadding , and

cellspacing in [Attributes] 736
overrides [Table]Border , Padding , and

Spacing 736
subject to configuration overrides928
summary and title761

[TableBeforeMacros] 749
add space before tables749
invoke macros around tables749
subject to configuration overrides928

TableBody , [HTMLParaStyles] WAI table-cell
property 770

[TableBodyAttributes] 750
subject to configuration overrides928

TableCaptionTag , [Table] keyword 564, 747

[TableCellAttributes] 751
base CSS class on table format738, 739
subject to configuration overrides929

[TableCellEndMacros] 751
subject to configuration overrides929

[TableCellStartMacros] 751
selectively modify table text752
subject to configuration overrides929

[TableClasses] , map table formats to CSS

HTML/XML KEYWORD INDEX T

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1079

classes694, 737

TableColsRelative , [DITAOptions]
keyword 513

TableContinued , [Table] keyword 748

TableContVar , [Table] keyword 748

TableDPI , [Table] keyword 742
control width of table columns743
set-up option426

[TableEndMacros]

capture row and column counts751
invoke macros around tables749
subject to configuration overrides929

[TableFooterAttributes] 750
subject to configuration overrides929

TableFooterClass , [DITAOptions] keyword 511

TableFooterRows , [Table] keyword 734
overridden by [TableAccess] method 735

TableFootnoteSeparator , [Table] keyword 748

TableFootnotesWithTable , [Table]
keyword 748

[TableGroup] 729
assign with *Config marker 930
subject to configuration overrides929

TableHead , [HTMLParaStyles] WAI table-cell
property 770

[TableHeaderAttributes] 750
subject to configuration overrides929

TableHeaderCols , [Table] keyword 734
effect on ScopeRow 776
overridden by [TableAccess] method 735

TableHeaderRows , [Table] keyword 734
effect on ScopeCol 776
overridden by [TableAccess] method 735

TableIndents , [Table] keyword 747

[TableIndents] 747
subject to configuration overrides929
unindent tables303

TableParents , [DITAOptions] keyword 512

TableParents , [DocBookOptions] keyword 580

[TableReplaceMacros] 749
subject to configuration overrides929

[TableRowAttributes] 751
subject to configuration overrides929

[TableRowEndMacros] 751
subject to configuration overrides929

[TableRowStartMacros] 751
selectively modify table text752
subject to configuration overrides929

[Tables]

access method763–773, 776, 780, 785
caption 563, 747
cell access method775–784
eliminate attributes for XML464, 739, 741
overridden by [TableAtttributes] 737
properties740
split-file titles 595
structure730–735
subject to configuration overrides925

TableSheet , [Table] keyword 748

TableSheetVar , [Table] keyword 748

TableSizing , [Table] keyword 742
control column width743
overridden by [TableSizing] 742
set-up option426

[TableSizing] 742
subject to configuration overrides929

[TableStartMacros] 749
capture row and column counts751
override column or row groups733
selectively modify table text752
specify <col> elements732
subject to configuration overrides929

TableTitle , [HTMLParaStyles] format
property 761

TableTitles , [Table] keyword 747

[TableUseRowColor] 746
subject to configuration overrides929

TableWordBreak , [Table] keyword 744

[TargetFiles] 451
for jumps from image maps725
for jumps to a window type617

[Targets] 451
for jumps to a window type617
subject to configuration overrides928

TbFootClass , [CSS] keyword 694

TemplateFileName , [Setup] keyword 864
for chapter-specific templates865
set-up option81

[Templates] 859
for document-specific settings854
for general configuration settings851
for macro libraries851

T MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1080 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Text, [MarkerTypes] property 839

Text , [XrefStyles] format property618

[TextFlows] , use or omit113

TextFrameIsText , [HtmlStyles] format
property 649

TextInsetMark , [DITAOptions] keyword 534

TextInsetNest , [DITAOptions] keyword 535

TextStore , [HTMLParaStyles] format
property 803
create a macro variable796

Title

[HTMLOptions] keyword 433, 597
[HTMLParaStyles] format property434

for split files 595
trail dependencies628

[HtmlStyles] format property
retains ObjectIDs for TOC445

[JavaHelp window] parameter394
[MarkerTypes] property 840

[Titles]

for individual output files434
overrides [HTMLParaStyles]Title 596
precedence595

Toc*

[EclipseHelpOptions] keywords:
TocExtradir 410
TocFilename 410
TocLabel 413
TocLinkTo 416
TocNamesFileOnly 414
TocPrimary , 410
TocTopic 413

[JavaHelpOptions] keywords:
TocClosedImage 386
TocOpenImage 386
TocTopicImage 386

[OmniHelpOptions] keywords:
TocButtons 359
TocExpand 358
TocGroupsOpen 358
TocIcoBase 358
TocOpenLevel 358

TocIdxFilePrefix , [EclipseHelpOptions]
keyword 412

[TocLevelExpand] , JavaHelp 2 settings385

[TocLevelImage] , JavaHelp 2 settings386

TocTopic , [EclipseHelpOptions] keyword

set-up option405

Toolbar , [JavaHelp window] parameter394

Top

[Inserts] keyword 599, 600, 821
to position a navigation macro642
to position trails of links631

[JavaHelp window] parameter394

TopButton , [NavigationMacros] keyword 641

TopFirst , [OmniHelpOptions] keyword 353

TopHigh , [OmniHelpOptions] keyword 353

[Topic] , content-model section
debug DITA topic types918
prolog for DITA topic type909
specialize DITA topic type914

TopicBody , [Topic] content-model keyword910,
913

TopicBreak , [Inserts] keyword 586, 599, 821

TopicDerivation , [Topic] content-model
keyword 910, 914

[TopicFirst] , content-model section; first-child el-
ements for a DITA topic type911

TopicID , [DITAOptions] keyword 526

[TopicLevels] , content-model section; required
levels for specialized DITA elements911

[TopicParents] , content-model section; possible
parents of specialized elements910

TopicRoot , [Topic] content-model keyword909
TopicStart , [Topic] content-model keyword909,

913
TopicStartCode

[MarkerTypes] property 840

[TopicTables] , content-model section; table con-
figuration for DITA topic types916

TopMacro , [NavigationMacros] keyword 640

Trail , [HTMLParaStyles] format property628
dependencies628
for non-heading formats630
required for first paragraph in file631

Trail* , [Trails] keywords:
TrailCurrent 629
TrailEnd 629
TrailIndent 629
TrailPosition 630
TrailSep 629
TrailStart 629

HTML/XML KEYWORD INDEX U

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1081

[TrailLevels] 630
subject to configuration overrides928

[Trails] , bread-crumb link list628–630
subject to configuration overrides925

[Typographics] 493, 667

U
ULine , [HTMLCharStyles] or [HTMLCharStyles]

format property657

UnicodeFTS

[OmniHelpOptions] keyword 362

UnicodeLocale

[OmniHelpOptions] keyword 362

UnwrapPRE, [HTMLOptions] keyword 437, 670

URLTarget , [HTMLOptions] keyword 625

UseAliasAName , [MSHtmlHelpOptions]
keyword 327

UseAltMapTitle , [DITAOptions] keyword 542

UseAltShading , [Table] keyword 745

UseAnums, [HTMLOptions] keyword
for HTML output 649
for XML output 465
XML default value 459

UseBackForward , [OmniHelpOptions]
keyword 354

UseCALSModel, [Table] keyword 563, 730
XML default value 459

UseCharacterTypographics , [Typographics]
keyword 667

UseCharRangeClasses , [CSS] keyword 695

UseChmInLinks , [MSHtmlHelpOptions]
keyword 308

UseCodePage

[MSHtmlHelpOptions] keyword 300

UseCommaAsSeparator , [Index] keyword 213

UseCommonNames, [DITAOptions] keyword 504

UseCompositeDropJS , [DropDowns] keyword 231

UseContext , [EclipseHelpOptions]
keyword 411
set-up option405

UseCSS, [CSS] keyword 684
affects default value of

[Graphics]GraphAlignAttributes 715
[HTMLOptions]AlignAttributes 657

[HTMLOptions]Basefont 664
LinkClassIsParaClass 611
NoClassLists 678

affects default values of other settings688
affects use of tags 688, 701
replaces [HtmlOptions]Stylesheet 687
set-up option426, 479, 561

UseCSSLeading , [HTMLOptions] keyword 701

UseDefaultStopWords , [OmniHelpOptions]
keyword 363

UseDOCTYPE, [HTMLOptions] keyword 429, 563

UseDoneDialog , [Setup] keyword 113

UseDropDowns , [DropDowns] keyword 227

UseDTDPath , [DITAOptions] keyword 481

UseExistingDCL , [Setup] keyword 111
determined at run time863
export embedded graphics131
export option84

UseExistingMIF , [Setup] keyword 111
determined at run time863
export option84

UseFavorites , [JavaHelpOptions] keyword 383

UseFileIDs , [HTMLOptions] keyword 120
identify links to other files621

UseFontFace , [HTMLOptions] keyword 664, 666

UseFontSize , [HTMLOptions] keyword 666

UseFootnoteLists , [HTMLOptions] keyword 673

UseFootXrefTag , [HTMLOptions] keyword 564,
672
XML default value 459

UseFormatAsTag

[DocBookOptions] keyword 565
DITAOptions] keyword 487

UseFormatTypographics , [Typographics]
keyword 667

UseFrameGenFiles , [Setup] keyword
for ASCII DCL output 1011
include generated IOM files442
include generated list files444
omit generated files125
set-up option81

UseFrameIX , [Setup] keyword 124
for ASCII DCL output 1011
for Help systems205
set-up option81

UseFrameSet , [HTMLOptions] keyword 451

U MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1082 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

UseFrameTOC, [Setup] keyword 124
for Help systems205
include generated files1011
set-up option81

UseFTS

[EclipseHelpOptions] keyword 411
[JavaHelpOptions] keyword 387

set-up option375
[MSHtmlHelpOptions] keyword 326

set-up option299
[OmniHelpOptions] keyword 362

set-up option347

UseGlossary , [JavaHelpOptions] keyword 392

UseGraphicFileID , [Setup] keyword 133
name converted graphics885
name files from FrameMaker export filters726

UseGraphicPreviews , [Graphics] keyword 130,
884
determined at run time863
export option84
turn off for replaced graphics131

UseHash, [HTMLOptions] keyword 467, 563

UseHeadAndBody , [HTMLOptions] keyword 435,
461
XML default value 459

UseHideShow , [OmniHelpOptions] keyword 354

UseHVIndex , [Index] keyword 211

UseHyperColor , [HTMLOptions] keyword 139

UseIndex , [EclipseHelpOptions] keyword 410
set-up option405

UseIndexentryTag , [JavaHelpOptions]
keyword 386

UseIndexentryTag , [OracleHelpOptions]
keyword 386

UseInformaltableTag , [Table] keyword 563,
747

UseInitDialog , [Setup] keyword 113

UseListButton , [OmniHelpOptions]
keyword 354

UseListedXrefFilesOnly , [HTMLOptions]
keyword 468, 563

UseListTypeAttribute , [CSS] keyword 384, 678

UseLocalFileID , [Setup] keyword 120, 122

UseLocalScope , [DITAOptions] keyword 529

UseLog , [Logging] keyword 115

UseManifest , [EclipseHelpOptions]
keyword 407

UseMapID

DITAOptions] keyword 542

UseNavButtons , [NavigationMacros]
keyword 638

UseOriginalGraphicNames , [Graphics]
keyword 889
determined at run time863
export option84
for referenced graphics884
for replaced graphics files131
for unconverted graphics files706, 889

UseOutputClass , [DITAOptions] keyword 498

UseParagraphTypographics , [Typographics]
keyword 667

UsePlugin , [EclipseHelpOptions] keyword 406

UsePrevNext , [OmniHelpOptions] keyword 354

UsePtSuffix , [Graphics] keyword
default for FrameMaker 8 import481

UsePxSuffix , [Graphics] keyword 722

UseRawName, [HTMLOptions] keyword 948

UseRawNewlinks , [HTMLOptions] keyword 241,
401

UseRelNameColumn , [DITAOptions] keyword 546

UseRowColor , [Table] keyword 745

UseRunInTag , [HTMLOptions] keyword 648

UseRuntime

[EclipseHelpOptions] keyword 411

[UserVarPrompts] , user variables942

[UserVars] , user variables941
create a macro variable796

UseSearchHighlight , [OmniHelpOptions]
keyword 364

UseSingleton , [EclipseHelpOptions]
keyword 408

UseSortString, [Index] keyword 218

UseSpacers , [HTMLOptions] keyword 716, 747

UseSpanAsDefault , [CSS] keyword 693

UseStart , [OmniHelpOptions] keyword 354

UseSubHelpSets , [JavaHelpOptions]
keyword 400

UseSubHelpSets , [OracleHelpOptions]
keyword 400

HTML/XML KEYWORD INDEX V

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1083

UseTableFooterClass , [DITAOptions]
keyword 511

UseTbFootnoteLists , [HTMLOptions]
keyword 673

UseTbHeaderCode , [Table] keyword 731

UseTitleForAlt , [Graphics] keyword 724

UseTopButtons , [OmniHelpOptions]
keyword 353

UseTopicAlias

DITAOptions] keyword 485

UseTopicAlias , [DITAOptions] keyword 536

UseTypographicElements , [Typographics]
keyword 493, 667

UseTypographicStyles , [Typographics]
keyword 667

UseUlink , [HTMLOptions] keyword 468, 563

UseXMLbr, [HtmlOptions] keyword 465

UseXMLDeclaration , [HTMLOptions]
keyword 436

UseXMLRoot, [HTMLOptions] keyword 435, 563

V
ValidOnly , [HTMLOptions] keyword 454, 658

for Eclipse Help412

VariableElement , [DITAOptions] keyword 531

VariableFile , [DITAOptions] keyword 531

VariableTopicID , [DITAOptions] keyword 531

VariableType , [DITAOptions] keyword 530

W
WhileMax , [Macros] keyword 816

Width , [JavaHelp window] parameter394

WildcardMatch , [Options] keyword 113

Window

[MarkerTypes] property 840

Window, [HTMLParaStyles] format property318

Windows , [JavaHelpOptions] keyword
list of windows 394

WrapAndShip , [Automation] keyword 956
determined at run time863
export option84

WrapCopyFiles , [Automation] keyword 962

activated by CompileHelp or FTSCommand972

WrapPath , [Automation] keyword 961
activated by CompileHelp or FTSCommand972
activated by WrapAndShip 956
for JavaHelp, Oracle Help379, 382

WrapTopicFiles , [DITAOptions] keyword 521
default for FrameMaker 8 import481

WriteAllGraphics , [Setup] keyword 130, 131,
884
determined at run time863
export option84
third-party graphics tools131

WriteBookFile , [DocBookOptions] keyword 562

WriteClassAttributes , [CSS] keyword 684
default depends on UseCSS 688
replaces [HtmlOptions] Stylesheet 687
turn off for XML 463, 696

WriteContext , [EclipseHelpOptions]
keyword 411
set-up option405

WriteCssLink , [CSS] keyword 684
change CSS mid-document689
customize CSS link tag690
default depends on UseCSS 688
replaces [HtmlOptions]Stylesheet 687
select CSS file at run time689
use with CssFileName 686

WriteCssStylesheet , [CSS] keyword 684
default depends on UseCSS 688
designate CSS file686
generate CSS file684
replaces [HtmlOptions] Stylesheet 687
set-up option426, 479, 561

WriteDitamaps , [DITAOptions] keyword 540

WriteDropIconFiles , [DropDowns] keyword 231

WriteDropJSFile , [DropDowns] keyword 235

WriteEquations , [Setup] keyword 136
determined at run time863
export embedded graphics131
export option84
turn off for FrameMaker export884

WriteHelpProjectFile , [MSHtmlHelpOptions]
keyword 301
set-up option299

WriteHelpSetFile , [JavaHelpOptions]
keyword 383
set-up option376

X MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1084 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

WriteHelpSetFile , [OracleHelpOptions]
keyword 383

WriteMadeWithGraphic , [HtmlOptions]
keyword 452

WriteManifest , [EclipseHelpOptions]
keyword 408

WriteMasterPageGraphics , [Setup]
keyword 885

WritePlugin , [EclipseHelpOptions]
keyword 409
set-up option405

WriteRefPageGraphics , [Setup] keyword 885

WriteSpacerFile , [HTMLOptions] keyword 716

WriteVariableFile , [DITAOptions]
keyword 531

X
XHLangAttr , [HTMLOptions] keyword 430, 563

XHLanguage , [HTMLOptions] keyword 430

XHNamespace, [HTMLOptions] keyword 430

XMLBreak , [HtmlStyles] format property465

XMLBreakPara , [HtmlOptions] keyword 465

XMLEncoding , [HTMLOptions] keyword 460
for double-byte characters432

XMLGraphAttrs , [HTMLOptions] keyword 468

XMLLinkAttrs , [HTMLOptions] keyword 467

XMLNoBreak, [HtmlStyles] format property466

XMLRoot, [HTMLOptions] keyword 435, 461
XML default value 459

XMLVersion , [HTMLOptions] keyword 460

[XrefFiles] , interfile links 622
map links to text insets624

XrefFormatIsXrefClass , [CSS] keyword 696
default depends on UseCSS 688
for DITA XML 485

XrefSpaceChar , [HTMLOptions] keyword 613

[XrefStyleLinkSrc] , macro for href
attribute 619
for KeyHelp pop-ups306
subject to configuration overrides928

[XrefStyles] , cross-reference format618
for KeyHelp pop-ups306
subject to configuration overrides928

XrefType , [HTMLOptions] keyword 618

XrefWrapClass , [DITAOptions] keyword 528

Y
No entries for this letter

Z
ZeroCSSMargins , [CSS] keyword 463

ZipCommand, [EclipseHelpOptions]
keyword 419

ZipParams , [EclipseHelpOptions] keyword 419

ALL RIGHTS RESERVED. 2013 MAY 18 1085

Subject index
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A
 tags, suppressing line breaks in437

abbr , HTML table attribute for WAI 1013
guidelines for using759
via CellAbbr marker 772
via [HtmlStyleCellAbbr] 769
via paragraph format768
via special paragraph format772

absolute vs. relative paths
in configuration settings105
in graphics references705

accented characters, converting to HTML660

active portion of a link, defining139
for WinHelp 226

ActiveX and MS HTML Help 201

adaptive table sizing
for HTML 742

overriding 742
for WinHelp 261

<address> , HTML paragraph tag647

Adobe PDF printer, configuring for runfm 985

after , macro string operator818

alert markers
for HTML Help pop-ups 226, 306
for HTML split points 587
for WinHelp pop-ups 277
how to insert 935

alert pop-ups, creating for WinHelp277

alerttitle markers
for WinHelp pop-ups 277
how to insert 935

alias files for context-sensitive Help240

align , HTML attribute
and valign , automatically generated, excluding

from table cells 464, 739
eliminating from paragraph tags656
for HTML Help contents entries322

aligning
graphics for HTML 714
headers/footers with graphics for RTF155
sideheads to body paragraphs for print RTF160

aligning for HTML 715

ALink
See also ALinks
jumps, configuring for HTML-based Help223
keywords

adding with format properties222
adding with markers221

list destinations, specifying224

ALink , custom marker for Help systems832

ALinks
See also ALink
DITA, in relationship tables546
HTML Help

creating 309
target-and-jump 312
uncompiled 310

OmniHelp, support for359
Oracle Help for Java, creating399
target-and-jump, for HTML-based Help224
understanding220
WinHelp

adding footnotes to topics285
configuring 285

alt , HTML attribute
empty, omitting 718
for drop-down icons231
for image maps723
for images

purpose and valid content1015
via FrameMaker object attribute896
via GraphAlt marker 757
via graphic file name718
via special format 757
WAI guidelines for using 757

for links, via special format758

Altura
graphics format for WinHelp264
QuickHelp, specifying for WinHelp247

anchor paragraph, using to add space, HTML717

anchor tags, suppressing line breaks in437

anchored frames
hiding borders of 718, 723
object attributes of, specifying896
positioning

for HTML 714
for print RTF 191

B MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1086 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

for WinHelp 264
tables in, converting to RTF128

anchors, internal, for JavaHelp and Oracle Help399

ANSI, custom marker for Help systems832

Anum, [HtmlStyles] format property, retain
autonumbers465

archiving files for delivery 971

arithmetic operators for macro expressions, listed
812

arrays
initializing 807
instead of conditional expressions809
processing with macros807
processing with pointers808

ASCII
decimal character code, mapping for HTML660
non-printable character representation658
text output via conversion to Word196

Asian languages, HTML Help support for331

aspect ratio, preserving for graphics, HTML720

assembling files for distribution961
for Eclipse Help 419
for JavaHelp and Oracle Help379
for OmniHelp 369

assembly directory
default files copied to964
emptying before copying to962
files to copy, specifying962
graphics files to copy, listing966
specifying 961

associative links, see ALinks

attribute markers for HTML or XML 834
See also markers, attribute, for HTML or XML
applying 835
listed 835
names of 834
understanding834

attributes, DITA, see DITA, attributes

attributes, DocBook, see DocBook, attributes

attributes, HTML
align, omitting from paragraph tags656
assigning

to character formats653
to paragraph formats646
with attribute markers835
within macro code 845

image size, omitting720

image, specifying 718
link class, assigning with a marker610
link, assigning with markers612
list, customizing 677
table, assigning with markers737
table, automatically generated, eliminating464,

739
WAI, assigning values to769

attributes, image, see graphics, attributes

-auto , FrameMaker command-line option980

automating
conversions 919, 933
Mif2Go conversions 979
production of deliverables955

autonumbers
converting for database input944
converting to HTML 648
converting to Word 160
in FrameMaker vs. Word142
including or excluding

for DITA XML 484
for DocBook XML 562
for generic XML 465
for HTML 649

tabs in, eliminating for HTML 649

axis , HTML table attribute for WAI
guidelines for using759
identifying cells by virtual properties777
purpose and valid content1013
via Axis format property 768
via AxisVal format property 772
via CellAxis marker 772
via [HtmlStyleCellAxis] property 769

B
background image, for HTML725

backslash
character literal for macro variables798
escape character

in format names66
in frame code for OmniHelp353
in KLink jumps 223
in macro code for XML 471
in macros 789
in RTF code 194
in WinHelp font mappings256

separator in file paths

SUBJECT INDEX B

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1087

for HTML Help 337
for OmniHelp 367
in code markers for HTML446

trailing, to remove line breaks in macros789,
945

$$_basefile , macro variable601, 800

baseline quotes, converting to straight quotes in
macros 790

$$_basename , system-command variable800, 939

$$_basetitle , macro variable601, 800

Basic Multilingual Plane (BMP), Unicode659

.bat file for system commands940

batch conversions via runfm 990

.bct files for WinHelp, location of 1022

before , macro string operator818

beta executables62

Bezier curves, in WMF graphics870

bgcolor , automatically generated, excluding from
HTML table cells 464, 739

.bha file
for HTML Help, location of 1024
for JavaHelp, location of1025
for OmniHelp, location of 1024

.bhc files
for Eclipse Help

location of 1025
for HTML Help

location of 1024
merging via command line208

for JavaHelp, location of1024
for OmniHelp, location of 1024

.bhk files
for HTML Help

location of 1024
merging via command line208

for JavaHelp, location of1024
for OmniHelp, location of 1024

.bhl files for OmniHelp, location of1024

.bhm files for JavaHelp, location of1024

.bhs files for OmniHelp, location of1024

binary index for HTML Help 321

binary TOC for HTML Help 305
for browse buttons303, 320
mid-topic links 323
no-link contents entries322

bitmaps
See also graphics, bitmap
compressing 190, 899
embedding in a font, WinHelp255
embedding in Windows metafiles886
reorienting 899
rescaling 898
resolution of, for RTF 190, 871
using different versions of894

bitwise operators for macro expressions, listed 812

blank paragraphs, see empty paragraphs

blanks, see spaces

block text, content-model element type912

<blockquote> , HTML paragraph tag647

blocks for expandable sections
configuring 233
delimiting

with formats 228
with markers 229

blue borders, eliminating from anchored frames718,
723

.bmp files, exporting 881

BMP, Basic Multilingual Plane, Unicode659

BMP, graphics export format130, 884
See also bitmaps

BMROOT entries in .hpj files 251

bold , as a format override for HTML657

Book Error Log, FrameMaker, for broken links112

book file, FrameMaker
for HTML conversions 424
for RTF conversions150

-book , runfm option 981, 983

book-level maps, DITA, vs. chapter maps540

bookmap, DITA, see DITA, bookmap

bookmarks, Word
for cross references175
for every ObjectID 183
for interfile cross references179
limiting 148

bookmeta.xml , DITA <bookmeta> template 549

books, FrameMaker, converting
to HTML 424
to RTF 150
via runfm 983

books, FrameMaker, nested53

C MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1088 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

border , automatically generated, excluding from
HTML tables 464, 739

borders
around anchored frames, hiding718, 723
around in-line graphics in Word900
around table cells, HTML739, 740
HTML table, colors of 746

branching browse schemes for WinHelp293

breadcrumb trails
in Eclipse Help 406, 413
in HTML 627

<$_break> , control structure for macros815, 817

breaks, line
See also line breaks
including in DITA via PIs 499
suppressing

in HTML or XML output 437
in <pre> text 670
in XML output 461

breaks, page
See also page, breaks
and section

for print RTF 152
for WinHelp 249

as split points for HTML 587

breaks, topic, including space or a separator in586

Bristol HyperHelp
format for WinHelp graphics264
specifying for WinHelp 247

broken links, checking for112, 1033

browse
buttons, enabling in HTML Help Workshop303
numbers, WinHelp, specifying292
prefix, assigning for branches, WinHelp293
sequences

HTML, creating 635
WinHelp, creating 292

browser-dependent
HTML list styles 676
settings for HTML tables731

browsers
cookies for, created by OmniHelp354
CSS support in424, 429, 681, 1001
font rendering differences666
graphics support in871

build numbers, finding
in output 1034

on Web site 1035

build numbers, Mif2Go , finding
in configuration files 1034

bulleted lists, converting
to DITA XML 487
to DocBook XML 565
to HTML 674
to WinHelp 256
to Word 162
to XML 466

bullets
eliminating from HTML output 649
mapping to special characters for HTML661
replacing for W3C validity 454
specifying for WinHelp 256

buttons for drop-down links, configuring232

C
Calibre, for ePub424

callouts, graphic
for HTML, using FrameMaker export filters87,

129, 706, 708
for RTF

adjusting 190
adjusting space above903
font changes in191
rotated text in 191
suppressing underlines903
using FrameMaker export filters873
using Mif2Go graphics processing128

for WinHelp
adding to replacement graphics872
avoiding GDI resource leak264
converting to WMF 263
embedding in WMF 886

CALS table model
default for XML 459
specifying for HTML 730

cancelling a conversion63

caption, figure 715

<caption> tags for HTML tables, placing747

cascading style sheets, see CSS

case sensitivity
in FrameMaker vs. Word142
of ALink keywords 219, 221
of attribute names for HTML links613

SUBJECT INDEX C

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1089

of command-line arguments998
of CSS class names691, 692
of file names 947
of FileIDs 121
of format names, specifying113
of index terms for HTML-based Help217
of key names in configuration settings104, 922
of KLink keywords 219, 223
of macro operators813

.cdr files, exporting 881

Cell* , custom markers for HTML table cell
attributes 832

CellAbbr , custom marker for WAI772, 1013

CellAxis , custom marker for WAI772, 1013

CellClass , custom marker for CSS739, 832

CellGroup , custom marker for WAI773, 832, 1013
using to define a ColGroup cell767
using to define a RowGroup cell767

CellID , custom marker for WAI772, 832

cellpadding , automatically generated, excluding
from HTML tables 464, 739

cells, see table cells; tables

CellScope , custom marker for WAI772, 832, 1013

cellspacing , automatically generated, excluding
from HTML tables 464, 739

CellSpan , custom marker for WAI773, 781, 832,
1013

CGM, graphics export format130, 884

change bars
converted to DITA <chbar> elements 493
converting to DITA condition attributes499
converting to RTF 143
replacing in HTML or XML 669

change bars, replacing with tags in HTML/XML
669

$$_chapnum , macro variable800

chapter
configuration files 855
individual, configuration file for 919
maps, DITA, vs. book maps540
numbers, for print RTF181

char , macro string operator817

character
See also characters
encoding

for code pages662

for HTML 432
for HTML Help 296
for XML 460

entity references, HTML653
formats

coding for WinHelp jumps and pop-ups281
converting to RTF 163
mapping to CSS span classes 693
properties, overriding926
replacing with code, for WinHelp257, 822
replacing with code, for Word174, 822
to identify Help elements933

literals
assigning to macro variables798
for macro variables, listed 798

ranges, Unicode, assigning CSS classes to694
sets, double-byte659
spans, changing properties of926

characters
See also character
accented, converting to HTML660
double-byte, in HTML 432
double-byte, in XML 460
high ASCII

encoding for HTML 432
encoding for WinHelp 255
encoding for Word 168
encoding for XML 460
mapping to HTML 653
mapping to RTF 172
replacing for W3C validation454

in special fonts, mapping for HTML662
printable set of 658
problem, in HTML hypertext links612
representing with a font, WinHelp255
special, avoiding in URIs663
special, converting

for Eclipse Help 412
for HTML 653
for print RTF 172
for WinHelp 254

special, mapping660
for code pages662

Unicode, FrameMaker 8, encoding for RTF169

CharTitle custom attribute marker for hover text448

Chinese
for HTML Help output, specifying332
for RTF output, specifying147
Mif2Go support for 53

C MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1090 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

.chm file, compiled HTML Help 296, 336

CHM files, merging 339

CHM files, unblocking 296

Choose Project dialog, illustrated 78

chrome, browser, for OmniHelp352

CJK languages53, 431

class , CSS attribute
See also CSS, class names
for condition indicators447
for graphics 710
for links 610, 833, 1016

assigning with a format611
assigning with a marker610

for paragraphs692
for table cells 738
for table columns 732
for tables 694, 737
for Unicode character ranges694
for XML output 462
naming restrictions691

$$_class , macro variable800

-client , runfm option
for Mif2Go 981
for other plug-ins 993

ClientName

for other plug-ins 993

clipping text outside a text frame902

-close , runfm option 982, 987
for remote operation992

closing </p> tags, suppressing in HTML437

CLSID,Windows Registry key for992

CMYK colors converted to RGB
for HTML 438

problems with 441
for WinHelp 258
for Word 172

.cnt file, WinHelp contents 288
location of 1022

code pages
encoding for special characters662
for Asian and Cyrillic languages

for HTML Help 331
for print RTF 147
obtaining 54

for HTML Help 296
omitting, for uncompiled HTML Help300

code sections, configuring for HTML670

Code , HTML custom marker type832

<col> element tags for HTML tables732

ColGroup and RowGroup cells784
using with id/headers method778
using with scope attributes776

<colgroup> elements
and ColGroup cells785
required for scope column groups776
tags for HTML tables 732

colors
CMYK-RGB conversion problems441
defining and mapping for HTML438
for HTML links 610
for hypertext links 139
FrameMaker default, listed 439
in graphics

for WinHelp 870
for Word 869

in tables
for HTML 745
for WinHelp 261
for Word 185

of condition indicators, displaying in HTML
447

text, specifying
for HTML 657, 669
for print RTF 172
for WinHelp 258

text, suppressing, for HTML657
Web-safe

for HTML tables 746
for HTML text 440
listed 440

colspan , HTML table attribute 760

column spans in HTML tables781

columns, text, specifying for RTF153

combining chapter files73
for RTF output 150

command-line version of Mif2Go
dcl.exe

examples 1000
runfm.exe

examples 989
syntax 980

commands, hypertext, remapping837

commands, system
executing 937

SUBJECT INDEX C

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1091

in batch files 940
in Mif2Go macros 940
starting, before deletions957
understanding939

commenting out configuration sections107

comments
in configuration files, syntax for104
in macro definitions 789
in system-command macros941
substituting for paragraphs in HTML650

comparison tool, file, obtaining60

compiling
Help files for delivery 971
HTML Help 333
JavaHelp with Helen384
WinHelp 89, 248, 250

condition indicators, mapping to HTML attributes
447

condition Show/Hide settings, applying123

conditional
expressions

in macros 815
replacing with list variables809

operators for macro expressions, listed 813
settings, FrameMaker, applying122
text

converting to DITA attributes533
converting to HTML attributes446
disallowing for selected DITA elements534
hidden, excluded from output68
HTML tags for 446
indicators, displaying in HTML447
mapping to DITA attributes533
Show/Hide settings, applying68, 123
to differentiate output68, 936

Config , custom marker type832

configuration
file, see configuration file
macros, see configuration macros
markers for overrides921
options determined at run time, listed 863
section, see configuration file, sections; configu-

ration sections
settings, see configuration settings
template, see configuration templates
variables, see configuration variables

configuration file
chapter 855

comment syntax104
creating

automatically 992
for individual chapter files919

deciding which to edit856
document-specific

how created 82
name of 60
where to keep854

editing 91
location of 62, 1019
macro, editing 861
output-specific, editing860
project, editing 858
sections

See also configuration sections
names of 103
order of 103

source-specific, editing859
structure of 103
template, see configuration templates

configuration macros
accessing settings with809
changing graphics settings with712
changing table settings with754
deploying 810
overriding configuration settings with921

configuration sections
See also configuration file, sections
commenting out 107
fixed-key, listed 925
names of 103
order of 103
using as list variables807
variable-key

cross-reference format, listed 928
graphic, listed 930
table format or ID, listed 928
text format, listed 926

configuration settings
case sensitivity of104, 922
changing on the fly919
changing with system commands940
file-path separator in105
fixed-key

overriding 924
vs. variable-key 104

in configuration templates862
order of 104
overrides to, persistent vs. temporary921

C MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1092 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

overriding 920, 931
with macros 921
with markers 921

precedence of, listed 920
querying with configuration variables809
rules for 102
spaces and tabs in104
syntax of 103
variable-key, overriding925
wildcards in 106, 113

configuration templates67
See also templates, configuration849
chaining 863, 919
creating 861
referencing 851

configuration variables
assigning macros and variables to923
assigning values to922
capturing settings with809

Confluence, generating XHTML for449

consfile.txt , FrameMaker console output989

console messages, FrameMaker
for automation commands956
for broken links 112
reviewing after runfm 988

constraints, DITA, including477

contains , macro string operator818

content model
See also content models; DTD
abstracting from a DTD

for DITA 476, 907
for DocBook 907

configuration file, producing907
configuration sections908

[ElementSets] 910
[Topic] 909
[TopicFirst] 910
[TopicLevels] 911
[TopicParents] 910

DITA
settings, overriding914
table structure, adding916
topic type, naming908

DocBook, naming 908
element levels911
element parents910
element sets910
element types912

first-child elements 910
generating from a DTD906
replacing 907, 909
root element, specifying909

content models
See also content model
built-in

configurations for, listed 906
derivation 905
obtaining copies of906

debugging 918
preparing for use907
working with 905

content type, XML, specifying461

contents
converting from FrameMaker TOC81, 124
Eclipse Help

creating 411
entries, merging from multiple files415
link paths, supplying412
properties, configuring412
properties, specifying410
special characters in412

Help levels, checking209
HTML

converting from FrameMaker TOC444
local TOCs 631
suppressing page numbers in445

HTML Help
and index, generating319
entries, configuring 322
links to mid-file topics 323

HTML-based Help
entries, merging from multiple files208
levels, setting 210
lists, maintaining 208

JavaHelp
creating 385
entries, configuring 385
entries, merging from multiple files208
expansion levels, specifying385
images, designating386

mid-topic links, avoiding for Help systems210
OmniHelp, including 356
WinHelp

assembling for multiple topic files291
combined file, specifying248
configuring 288
entries, configuring 288
level for headings, specifying248

SUBJECT INDEX C

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1093

levels, setting 209
multiple files, referencing291
referencing secondary windows291
updating an existing file88

context IDs for Eclipse Help418

context-sensitive Help239
for Eclipse Help, setting up417
for HTML Help, setting up 326
for JavaHelp, using symbolic IDs401
for OmniHelp, setting up364

<$_continue> , control structure for macros815,
817

controls for macro expressions
listed 815
using 815

conversion
DCL modules, writing 1003
events, logging 115
process, illustrated 62
project, setting up78
restrictions on file names51, 65
setting up

for ASCII DCL 1009
for DITA XML 478
for DocBook XML 559
for Eclipse Help 403, 404
for HTML 425
for HTML Help 298
for JavaHelp or Oracle Help375
for MIF 1006
for OmniHelp 345, 346
for print RTF 146
for WinHelp 244
for XML 425, 459

template
for alternate graphics69
for eliminating page numbers from cross

references 68
for HTML 426
for WinHelp 246
for Word 152, 155
preparing 69
specifying at set-up79

to HTML
preparing for 426
validating 431

to WinHelp
basic options 248
preparing for 246

to Word, preparing for151
via DCL, preparing for 996
via runfm 979

converting
See also

conversion
converting to HTML
converting to RTF
converting via DCL
converting via runfm

FrameMaker documents, steps for82
FrameMaker-generated files124
multiple projects via runfm 990
single file of a book 937
system variables to text114

for HTML 437
for RTF 157

to ASCII DCL 1009

converting to HTML
contents entries444
cross references617
equations 725
footnotes 671
FrameMaker books424
generated files441
graphics 703
hypertext links 619
index entries 442
list formats 674
nested lists 676
numbered lists676
run-in paragraph formats648
smart quotes to straight quotes in macros790
special characters653
table footnotes748
tables 727, 754
via command line, example1001

converting to RTF
character formats163
columns 153
cross references174
EPSI graphics875
footnotes 153
graphics 186
headers and footers154
index entries for Word181
paragraph anchors171
reference frames162
run-in headings160
screen shots and other bitmaps899

C MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1094 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

sidehead formats159
special text flows 156
tab settings 163
tables 184
via command line, example1001

converting via DCL
ASCII DCL to binary DCL 1001
in multiple steps, example1002
single file, example996
to HTML, example 1001
to RTF, example1001

converting via runfm 979

cookies, OmniHelp, persistence of354, 371

copyright statement and date, for WinHelp250

$$_count , macro variable800, 817

crash, debugging1035

cropped WMF graphics in WinHelp870

cross references
See also cross-reference
broken

checking for 112
resolving with a second pass1028

eliminating page numbers from68
for DITA XML

converted to <xref> elements 527
format attribute, specifying529
in .ref files 1023
links below topic level 528
omitting from footnotes 529
retaining content of528
scope attribute, specifying529
type attribute, specifying530
understanding how converted527
wrapper outputclass , specifying 528

for DocBook XML
converted to <xref> elements 569
in .ref files 1023

for HTML
converting to links 617
converting to text 618
deleting 618
in .ref files 1019, 1023
omitting paths from 622

for print RTF 174
external, creating179
external, enabling179
from master pages, configuring181
locking 175

omitting from output 177
for WinHelp

converting 259
converting to text 260
deleting 260

forward, resolving 790, 1028
FrameMaker, IDs for117
in macros 790

cross-file links, see interfile links

cross-reference
See also cross references
identifiers, FrameMaker and Mif2Go 117
jump destinations, WinHelp, specifying260
links

to text insets for HTML 624
links, in DITA XML 527
marker text, truncating in WinHelp261
markers

duplicate, resolving118
Word-generated, eliminating114

properties, overriding928

CSH, see context-sensitive Help

CSS 681, 701
browsers, supporting424, 1001
class attributes for table columns732, 733
class names

case of 692
for character formats693
for footnotes 694
for links, assigning with formats611
for links, assigning with markers610
for paragraph formats692
for table cells 738
for table footnotes694
for tables 694, 737
for XML tags 462
restrictions on 691

directory to copy files from, specifying969
file name, specifying686
file, specifying when to create683
files

for OmniHelp 350
list of, to copy 970

font sizes, mapping664
font-size units, changing699
for OmniHelp navigation panel, modifying355
line leading in 700
options for OmniHelp 350
properties, specifying691

SUBJECT INDEX D

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1095

span class for character formats693
using with HTML Help 303
vs. HTML, header formatting429

.css file, cascading style sheet (CSS)1001
location of 1023, 1024
options, specifying 683

curly quotes, converting to straight quotes
for print RTF 172
for WinHelp 256
in macros 790

$$_currbase , macro variable601, 800

$$_currfile , macro variable601, 800

$$_currfilepath , macro variable601, 800

$$_currpath , system-command variable800, 939

$$_currtitle , macro variable601, 800

custom markers
See also markers, custom
for DITA maps 556
for DITA XML 536
for DocBook XML 582
for HTML extracts 602
for WAI

advantages of760
attributes 756
image attributes757, 1014
link attributes 759, 1016
table attributes762, 1013
table cell attributes772

custom ruling and shading in tables, for HTML727

CVS revision management, generating MIF output
for 1006

Cyrillic
font encoding

for HTML/XML 432
for WinHelp 255
for Word 168
FrameMaker 8 Unicode, for Word169

languages, HTML Help support for331
locale, for index sort order218

Czech
for HTML Help output, specifying332
for RTF output, specifying147

D
Darwin Information Typing Architecture, see DITA

dashed lines, in WMF graphics870

Data Type Definition, see DTD

database input from HTML450

dcb , DCL output type 1000

.dcb , output file extension for binary DCL files62,
111, 1001, 1009, 1011

dcl , DCL output type 1000

DCL, Mif2Go command-line version
advantages of992
compared with runfm 991
conversion modules, writing1003
converting between ASCII and binary output

1001
files, using existing 85, 111
intermediate conversion files62
options, listed 1000
output

ASCII, converting to 111, 131
file extension, specifying427
file structure 1003
files and paths, specifying1002
from MIF via command line1002

.dcl , output file extension for ASCII DCL files
convert existing DCL files85, 111
convert from one form of DCL to another1001
convert to ASCII DCL 1009, 1011
specifying via Export dialog 85

dcl.exe , DCL executable1017

DCOM, enabling for remote operation992

$$_dcount , macro variable800, 817

dcx.dll , DCL ASCII-binary converter1002, 1017

debugging options116, 1035

default configuration values102

definition lists, DITA
first-child status 505

Delete , HTML custom marker type832

deleting
files before conversion958
old MIF files 960

deliverables
assembling for distribution961
compiling or archiving 971
file names and extensions, listed 975
producing 956

destinations, named, from Word cross-reference
markers 114

-diag , runfm option 982, 988

D MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1096 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

DIB, see bitmaps

dictionary lists, converting
to HTML 677
to HTML tables 824

directory
Omni Systems home, creating54

directory names
restrictions on 51

directory names, restrictions on65

distribution
assembling files for961
files, listed 1017
Mif2Go , downloading 56

DITA
attributes

assigning to elements495
block element, overriding497
block element, specifying497
class, not included477
collection-type 547
for bookmap wrapper elements555
from FrameMaker conditions533
href , omitting topic IDs from for

FrameMaker 8 543
ID, specifying 495
image width and height519
index range, for DITA 1.1 only480, 500
inline element, specifying498
omitted from reopened paragraph tags484
outputclass

assigning 498
for CSS 485

parent, interpolated, assigning498
parent, interpolated, overriding498
root element, specifying497
table type, assigning511
<xref> , overriding 529

bookmap
<bookmeta> information 549
<booktitle> information 548
constructing 548
declarations, overriding915
mapping FrameMaker files to551
multiple files per role 554
multiple roles per file 554
reltable, book level, excluding550
roles for chapter files551
structure, specifying550
type of, specifying 548

wrapper element attributes555
configuration file, custom topic type

creating 913
listing 915
locating 916

content models
See also content model; DTD
abstracting from DTD 476
built-in, configurations for, listed 906
built-in, obtaining copies of906
built-in, source of 905
configuration files, producing907
configuration sections908
generating from DTDs906
naming 908
overriding 914
preparing for use907

DTD
properties, specifying476
SYSTEM identifier, configuring 481

elements
assigning to formats487
block, ID, specifying 495
block, nesting 501
default, for character formats494
default, for paragraph formats489
delimiting 486
footnote 484
graphic, alternate text for518, 896
graphic, including 518
image, configuring 516
levels, overriding 510
levels, specifying 509
list types, parents of502
<menucascade> 494
nesting 477
outputclass attribute 495, 498
overriding character mapping494
overriding paragraph mapping490
possible parents of, specifying502
root, assigning outputclass attribute 499
<shortdesc> 500
typographic 494
<uicontrol> 494

equations as <image> elements 136
images

alternate text for 518
ancestry, specifying516
configuring 516
DPI values for 518

SUBJECT INDEX D

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1097

parents of 516
width and height attributes519
wrapping in <fig> elements 517

importing into FrameMaker 8481
maps 915

book maps vs. chapter maps540
from FrameMaker chapters and books477
ID, specifying 542
levels, specifying 544
naming 541
navigation aids, providing547
navigation title, specifying542
nesting 540
overriding settings with markers556
overwriting 540
predefined markers for, listed 556
titles, specifying 541

marker types, predefined
for maps, listed 556
for topics and elements, listed 536

migrating legacy data to474
parent elements, specifying502
producing 473, 539
project, setting up478
PUBLIC declaration 483
relationship tables

adding ALink rows to 546
book level, excluding550
collection-type attribute 547
excluding ALink column from 546
structure of 546
unidirectional linking in 547

resources 474
specializations 477
specialized topic types

debugging 918
element levels911
element parents, specifying910
first-child elements 910

table structure, specialized916
mapping from table type916
properties, assigning917
undefining 917

tables
ancestry, specifying512
as image containers514
attributes, assigning511
cell properties 514
column widths of, specifying513
converting from FrameMaker510

default table type511
empty paragraphs in513
mapping formats to types511
omitting code for 515
omitting element ancestries513
parents of 512
titles of, converting 514
width, specifying 513

text insets, delimiting534
topic files, splitting 520
topic ID, specifying 526
topic types

assigned via marker525
assigned via paragraph format525
assignment, precedence of524
default, specifying 525
predefined, overriding914
specializing 913
specifying 524

topics
alternate titles for 526
embedded 519, 521
IDs, specifying 526
map levels, specifying544
nesting 521
organizing 519
starting paragraph523
wrapping in <dita> elements 521

version, specifying 480

DITA Open Toolkit 475

DITA*, DITA predefined marker types832
for maps, listed 556
for topics and elements, listed 536

DITA-FMx plug-in 519
and book-level ditamaps541
compatibility with 481
fmdpi attribute, value for 518
recommended480

DITA-FMx plug-in, Leximation 543

.ditamap , DITA map file 539

$$_ditastart , macro variable491, 800

DLL files 62
build numbers of 1035
downloading 62
listed 1017

.doc files, for Word 2000 192

-doc , runfm option 981, 983

DocBook

D MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1098 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

attributes
ID, assigning 569
inline, assigning 572
other than ID, assigning571
overriding 572
parent, assigning572
parent, overriding 572

content model
See also content models; DTD
built-in

configurations for, listed 906
obtaining copy of 906
source of 905

configuration file, producing907
configuration sections908
debugging 918
generating from a DTD906
naming 908
preparing for use907

elements
assigning to formats565
block, ID, specifying 571
block, nesting 573
default, for character formats569
default, for paragraph formats566
figure, options for 581
levels, overriding 580
levels, specifying 579
list types, parents of574
overriding character mapping569
overriding paragraph mapping567
possible parents of, specifying573

images
ancestry, specifying581
figure element, what to include in581
omitting size attributes from582
options for, specifying581
parents of 581
titles, where to place581

language attribute, specifying431
marker types, predefined, listed 583
migrating legacy data to558
output, producing 557
parent elements, specifying573
resources 557
tables

ancestry, specifying580
parents of 580

DocBook* , DocBook predefined marker types832
listed 583

DocType , specifying for HTML/XML 429

document
FrameMaker, converting via runfm 983
information file, creating 1001
layout options, specifying for RTF151
properties, importing865
properties, specifying for HTML436

Document Coding Language, see DCL

double-byte characters
in HTML 432
in XML 460
sets of 659

double-byte languages53, 431

downloading 62
beta executables62
evaluation version1029
HTML Help Workshop 58, 297
JavaHelp 58
Microsoft Help Workshop 58, 243
OmniHelp control files 342
run-time libraries 62
User’s Guide 41

DPI
default, specifying for HTML 436
of equations

specifying 136
specifying for HTML 884

of images
including in DITA image attributes518
specifying, for HTML 884
understanding130

drmif.dll , DCL reader for MIF files 1017

drop-down sections
See also expandable sections for HTML
blocks for

configuring 233
delimiting with formats 228
delimiting with markers 229

CSS for 233
emulating Web Works Publisher method237
JavaScript code for234
links for

configuring 230
delimiting with formats 228
delimiting with markers 229

DTD
See also content model
abstracting content model from906

SUBJECT INDEX E

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1099

DITA, properties, specifying476
HTML, specifying 429
parameter entities, equivalent to element sets

910
source for built-in content model905

dtd2ini , content-model extractor476, 906

dwhtm.dll , DCL writer for HTML files 1017

dwinf.dll , DCL writer for.inf files 1017

dwrtf.dll , DCL writer for RTF files 1017

dynamic Help systems, see modular Help systems

E
eBooks, producing424

from HTML 58

Eclipse Help
contents and index methods411
contents properties, configuring412
context file, naming 417
context-sensitive Help, setting up417
files, packaging 419
generating 403
index properties, configuring414
infopops, configuring 417
MANIFEST.MF

configuring 408
including or excluding 407

output options, specifying405
plug-in

CSH properties, specifying411
ID, specifying 408
index properties, specifying410
naming 407
product version, specifying408
provider, specifying 408
schema version, specifying410
TOC properties, specifying410

plugin.xml

configuring 409
creating 409
excluding 406

projects
merging 415
setting up 403

TOCs, primary vs. secondary415
understanding403

Eclipse SDK, downloading58

EclipseAnchor , custom marker type416, 832

EclipseContext , custom marker type418, 832

EclipseLink , custom marker type416, 832

EDD, for exporting structured documents135

editor
for log file error display, designating115

eHelp 200

electronic books, producing424

$$_element , macro variable800

elements
DITA, configuring 486
DocBook, configuring 564
structured FrameMaker, formats required for

135
XML, from unstructured text462

<$_else> , control structure for macros815

<$_elseif> , control structure for macros815

embedded graphics877
See also graphics, embedded
exporting 69, 879, 1010, 1012
from Word, extracting 886
replacing with referenced graphics69

embedded topics, DITA519, 521
IDs for, generated526

embedding bitmaps
in a font, WinHelp 255
in Windows metafiles 886

empty paragraphs
avoiding splits on, for HTML 587
eliminating for HTML output 652
in DITA table cells, retaining tags for513
in DocBook table cells, retaining tags for564
in HTML table cells

omitting tags for 744
providing content for 744
retaining tags for 744

in HTML text, providing content for651
in RTF output, removing final174

<$_endif> , control structure for macros815, 816

<$endrange> marker, see index, ranges

<$_endrepeat> , control structure for macros815

ends , macro string operator818

<$_endwhile> , control structure for macros815

entity references
for HTML 429
for XML 460
mapped from high ASCII characters653

E MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1100 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

environment variable %OMSYSHOME%, creating 55

.eps files, exporting 875, 881

EPS graphics
converting 875
export format 130, 884
replacing 876

ePub format, producing from XHTML424

ePub, producing
from HTML output 52, 58
from XHTML 424

equations
converting to DITA 518
converting to HTML 725
converting to Word 143
DPI and size, specifying136

for HTML 884
exporting 129, 136, 883
MathFullForm, including in DITA alt tags 518
output format, specifying137
positioning in RTF 137
understanding how processed136

error messages
Could not run DCL filter 1031
DCL NT console driver 1035
Eclipse Help packaging, viewing420
HTML Help

alias entries 331
compilation, viewing 334
page cannot be displayed301

JavaHelp search index, viewing388
logged as conversion events115
Mif2Go

arguments unacceptable1031
error processing m2rbook command 1030
file not found 1031

OmniHelp Loading... 1031
Oracle Help search index, viewing390
runfm , reviewing 988
suppressed, during runfm 989
system command, displayed939
text of, localizing for OmniHelp354
WinHelp

compilation, viewing 251
unmatched braces256

Word
cannot open file177
missing formats, eliminating156, 163

errors
corrupt file, fixing via MIF 1032

corrupt graphics129
duplicate keys in configuration settings103
link, checking for 112
logged to conversion log file115
severity level of 116
WinHelp compiler 212

too many tabs253
WinHelp memory 251
Word font type 167

escape character for macros789

evaluation version1029

evaluation version of Mif2Go
using to wash files via MIF1032

event log, see log file

events, conversion, logging115

expandable sections for HTML226
See also drop-down sections
delimiting with formats 228
delimiting with markers 229
JavaScript code for

deploying 234
locating 234
modifying 235

JavaScript macro for, naming234
understanding227

Export dialog, skipping112

Export* , [GraphExport] keywords:
ExportOleFiles 882
ExportWmfFiles 881, 882

exported graphics files, naming69, 134, 1010

exporting
embedded graphics69, 879, 1010, 1012
HTML for database input450
structured documents135

expressions, macro
conditional, in macros815
results of 811

displaying in output 813
using indirection in 819
using list variables in818

ExtCode* , custom marker types832

extension point, Eclipse Help403, 411, 420

extension, see file, extension

external vs. internal metafiles, specifying873

Extr* , custom marker types833
listed 602

SUBJECT INDEX F

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1101

$$_extr* , predefined macro variables for extracts,
listed 603

extracts, HTML 591
customizing 601
delimiting 592

with existing formats 592
with markers 593
with special formats592

enabling and disabling591
meta text for 598
naming, with custom markers947
referencing 600
replacing with links 603
titles of, specifying 594

<$_extrthumb> , predefined macro603, 606

exwmf.exe , embedded graphics extractor1017

F
FAR, for Microsoft Help Viewer 200

favorites option
for HTML Help 304
for JavaHelp2 383

fcharset values for non-Western scripts168

FDK name, Mif2Go FileID+ObjectID identifier
118

figures, list of (LOF)
See also list of figures or tables, converting
converting to HTML 444
converting to HTML Help 325
converting to Word 181
preventing conversion of125

figures, see graphics

file
See also files
comparison tool, obtaining60
corruption, fixing via MIF 1032
extension

for DITA XML output 480
for DocBook XML output 561
for graphics, HTML 888
for HTML/XML/DCL output 427
for interfile links 427
for Word interfile links 180
for Word output 147
for XML output 460

extracts, HTML, creating591, 608
FrameMaker book

for HTML conversions 424
for RTF conversions150

identifiers, see FileIDs
names

containing blanks999, 1001
for DITA topics, via FrameScript480, 526
for Word interfile references180
HTML project 1026
HTML split and extract 593
HTML split and extract, customizing952
HTML, custom markers for947
of chapter-specific configuration files919
restrictions on 51, 52, 65

path, see path
paths in configuration settings105
sequence, specifying for HTML644
structure, DCL 1003
titles, HTML, specifying 433

FileID configuration file 120, 623, 1026, 1027
location of 62

$$_fileid , macro variable800, 952

FileIDs
See also mif2go.ini ; configuration file
for HTML

determining 717
finding 729
modifying 121
project 120, 623, 1027

providing for batch conversions via DCL997

FileName , custom marker type833, 947
for DITA topics 526

files
See also file
configuration, see configuration file
converted

default location of for Word181
writing to a different directory1001

converting
See also converting
individual chapters937
to HTML via command line 1001
to RTF via command line1001

copying via system commands937
corrupt, washing via MIF1032
DCL, using existing 85
deliverable

assembling for distribution961
default base names of, listed 975

distribution, listed 1017

F MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1102 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

generated
converting to HTML Help 325
converting to WinHelp 265
converting to Word 181
including in output 81, 124

graphics
See also graphics, files
copied for postprocessing, listed 966
extension, specifying for HTML888
identifying 133
original names of, keeping for HTML889
path, removing for HTML 704, 887
replacing, renaming, relocating for HTML

887
Help contents

for HTML Help, generating 319
for JavaHelp, creating385
for WinHelp, assembling for multiple

topics 291
for WinHelp, naming 288

HTML
extracting 591
importing as insets446
renaming, for automated systems946
split and extract, referencing600
split and extract, renaming946
split and extract, specifying titles for594
splitting 586
splitting, at table heads587

index
for HTML Help, generating 319
for JavaHelp, generating385

JavaHelp
helpset, configuring382
merging multiple contents and index208

macro, individual 793
macro, library 794
map, HTML Help, specifying336
MIF

existing, using 85
intermediate, deleting85
managing 111
old, deleting before converting960

Mif2Go
moving 63, 1025, 1026, 1027
project, location of 1019

naming, restrictions on51, 65
output, copied for postprocessing, listed 964
postprocessing via system commands937
renaming via system commands937

RTF, conversion 1022
saving as MIF 1006
splitting

for DITA 520
for HTML 586

WinHelp
multiple, referencing from contents291
project, naming 248

filters, input and output62

find, see full-text search

Finished dialog, skipping 112

Firefox new window option for OmniHelp372

first , macro string operator817

$$_firstfile , macro variable601, 800

$$_firstsfile , macro variable (deprecated) 601

fixed-key configuration sections
listed 925
overriding settings in924
vs. variable-key 104

fixed-text links for expandable sections229
configuring 232

flags for conditions in HTML 447

flows, text
converting to RTF 156
including in HTML 113

folder, see directory

font
See also fonts
default, specifying for RTF166
encoding for FrameMaker 8 Unicode, for RTF

169
encoding for non-Western characters

for WinHelp 255
for Word 168

graphics default, specifying902
ignored for high ASCII character mapping662
metrics, specifying for RTF165
size units in CSS303, 699
size, changing in HTML Help303
size, matching, for graphics901
tags, HTML

including in HTML output 665
removed for CSS688
workaround for browser differences666

using to embed bitmaps, WinHelp255
using to represent a character, WinHelp255

fonts

SUBJECT INDEX F

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1103

See also font
encoding for WinHelp 255
mapping, for HTML 663
non-Western, encoding

for WinHelp 255
for Word 168

OpenType and TrueType, browser support for
666

referenced, in WMF graphics870
special, mapping characters in662
unused, removing

for RTF 170
for WinHelp 257

footer rows of tables
identifying, HTML 732
in HTML <tfoot> elements 776
positioning for HTML 733

footers
aligning with graphics for print RTF155
and headers, converting to Word154
and headers, not converted to HTML 645

footnotes 671
ALink, adding to WinHelp topics285
converting

to HTML 671, 694
to print RTF 153
to WinHelp 258

inline, configuring, for HTML/XML 672
jump, formatting with macros673
links to, eliminating 672
omitting

from DITA XML output 484
from HTML/XML output 671

separator for 671
table

converting to HTML 694, 748
positioning in HTML 748

using list tags vs. <div> and <p> tags 672

forced returns
converted to spaces

for DITA XML 476
for DocBook XML 559

converting, for HTML or XHTML 651
eliminating

for DITA 484
for DocBook 562

for generic XML 465
in <pre> text, omitting line breaks for670

format strings in macro expressions813

formats
See also character, formats; paragraph, formats
character, properties of, overriding926
for exporting graphics, HTML884
importing from a conversion template863, 936
list, converting to HTML 674
mapping

to DITA XML 486
to DocBook XML 564
to generic XML 462
to HTML 645, 679

naming 66
paragraph

See also paragraph, formats
deleting, for WinHelp 253
merging, RTF 159
properties of, overriding926
replacing with code, for WinHelp257, 822
replacing with code, for Word174, 822
script, designating for HTML650
suppressing, for WinHelp253

paragraph, converting
run-in, to HTML 648
sidehead, to print RTF159
sidehead, to WinHelp252

unused, removing
for print RTF 163
for WinHelp 257

forward cross references, resolving790, 1028

Frame Vector facets
as imported WMF graphics870

FrameID, FrameMaker ObjectID for graphics118

FrameImage, EPSI preview facet875

FrameMaker
book file, role in conversion150, 424
condition settings, applied at run time122
console messages, reviewing after runfm 988
export filters, converting graphics with884
generated files, including or excluding81, 124
ObjectIDs 118
pen style patterns, mapping900
setting up for unattended operation980
templates, applying863
user variables

as Mif2Go macro variables802
values supplied at run time123

version 8
DITA import compatibility 481
saving files as version 8 MIF1008

G MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1104 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

Unicode font encoding for RTF169
version9, support for53

FrameMaker.M2G , default runfm -progid value
982

frames
anchored

See also anchored frames
hiding borders of 718, 723
object attributes of, specifying896
positioning for RTF 191, 264
tables in, converting to RTF128

reference
converting to RTF 162
converting to WinHelp 253
removing for HTML 651

unanchored
See also unanchored frames
excluding from HTML output 713
in HTML 886
on body pages, for HTML886
on master pages, for RTF885

framesets
image maps in725
in HTML 450
in HTML Help 452
in OmniHelp, customizing352
target for HTML jumps 725

framework for Omni Systems applications54

FTS, see full-text search

full-text search
for HTML Help 326

excluding topics from 326
for JavaHelp and Oracle Help387
for OmniHelp 356, 361

excluding content from363
excluding stop words from363

G
GDI resource leak, WMF graphics problem74, 264

generated files
converting 124

to HTML 441
to HTML Help 325
to WinHelp 265
to Word 181

excluding from output 125
including 124

at set-up time 81
in DCL output 1011
in MIF output 1007

generating book before converting126

generator, HTML, specifying433

GhostScript, PostScript interpreter876
for converting EPSI graphics131

.gif files, exporting 881

GIF, graphics export format130, 884

glossary, converting to JavaHelp392

gotolink markers
converting to HTML links 609, 619, 620
for HTML image maps 723
for WinHelp jumps and pop-ups276
inserting 935

gotopage markers, converting to HTML links619

Graph* , custom markers for HTML image attributes
833

GraphAlt , custom marker for WAI image attribute
757, 1015

$$_graphbase , macro variable711, 800

GraphDpi , custom marker for image resolution722,
833

graphic
See also graphics
elements, including in DITA output518
ID, determining for HTML 717
text, background, specifying903

Graphic Workshop130, 134, 873, 874

graphics
See also graphic
adding space before, HTML717
aligning headers and footers with, RTF155
aligning, for HTML 714
alternate text for

DITA 518
HTML 719
WAI 757

alternate, via conditional text69
aspect ratio, preserving, HTML720
attributes

See also image attributes
size, omitting 720
specifying 718
width and height units722

bitmap
See also bitmaps

SUBJECT INDEX G

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1105

compressing 899
embedding in Windows metafiles886
generating via Mif2Go plug-in 992

borders around
eliminating for HTML 718, 723
positioning for Word 900

captions, aligning for HTML 715
class, assigning710
configuration sections subject to override, listed

930
converting

for HTML/XML 703
for print RTF 186
for WinHelp 263
in unanchored frames, HTML713, 886
with FrameMaker export filters129, 884
with Graphic Workshop134
with Mif2Go , for RTF 128
with third-party tools 130

directory
emptying before copying files to967
specifying for assembly968
specifying for HTML links 887

DPI
including in DITA image attributes518
specifying for HTML 884

embedded 69, 877
exporting 111, 131, 1010
exporting before converting69, 879
exporting via ASCII DCL 1012
imported from Word, extracting886

EPSI, replacing 876
excluding

from HTML output 713
from RTF output 895

exporting 871
before converting132
embedded 69, 132, 877
from master pages, with FrameMaker

filters 885
file extension, specifying, HTML888
files

assembling for distribution965
copying to assembly directory965
exported, naming69, 134, 1010
for assembly, listing966
identifying 133
keeping original names of, HTML889
path to, on UNIX server705
removing path from, HTML 704, 887

renaming extension, for Bristol Hyperhelp
247

replacing, renaming, relocating, for HTML
887

spaces in names, replacing, HTML889
thumbnail, naming 604

font, specifying default902
formats, HTML, preferred871
fuzzy, correcting for HTML 703
GDI resource leak with WMF264
groups

assigning properties to708
creating with overrides930
creating, HTML 708, 710

imported
by copying, see graphics, embedded
by reference, replacing890
from Word, extracting 886

in extracts, referencing607
in table cells, repositioning

for HTML 717
for RTF 185

including without converting, HTML 889
indenting, HTML 716
JavaHelp, specifying location of380, 394
macros, specifying, HTML715
master page

in unanchored frames, for RTF885
including for HTML 885
including for Word 154

names of, including in Word192
omitting from HTML or XML output 708
paragraph format, specifying

for WinHelp 264
for Word 191

properties
accessing with <$$_extrgraphid> 607
overriding for HTML 895, 929
overriding for RTF 895
specifying, HTML 718

reference page, skipping, HTML885
replacement, format for, HTML706, 888
scale, preserving in Word191
scaling

for HTML/XML 719
for WinHelp 872
for Word 191

settings
custom, specifying895
overriding 896

H MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1106 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

synchronizing for HTML output968
synchronizing for RTF output969

size of, preserving, for Word191
spacer, for HTML 716, 747
tags around, omitting713
thumbnails, referencing, HTML604
visible portion only, converting712
WAI markup for 756
writing without converting text88

GraphLongdesc , custom marker for WAI image
attribute 757, 1015

$$_graphorighigh , macro variable711, 800

$$_graphorigwide , macro variable711, 800

$$_graphsrc , macro variable711, 800

GraphTitle , custom marker for WAI image attribute
757, 1015

Greek
for HTML Help output, specifying332
for RTF output, specifying147
Mif2Go support for 53

Greek font encoding for HTML/XML 431

groups
graphic, see graphics, groups
table, see tables: HTML, groups

.grx file, graphics references
deleting between conversions, HTML427
location of 1019, 1022
use for export 88

guillemets, converting to straight quotes in macros
790

H
<h1> - <h6> , HTML paragraph tags647

H2reg, for Microsoft Help Viewer200

hard returns
ignored for preformatted HTML elements670
in configuration overrides931
See also forced returns
to end WinHelp topic titles272

line breaks

headers
aligning with graphics, RTF155
and footers

adjusting for Word 154
converting to RTF 154

not converted to HTML 645
running, for RTF 156

levels of, for WinHelp 289

headers , HTML table attribute for WAI 759, 1013
purpose of 763

heading rows in tables, identifying, HTML732

headings, run-in, converting
to RTF 160
to WinHelp 252

Helen, third-party JavaHelp compiler384

Help 2, Microsoft, tools for 200

Help Compiler, WinHelp 257

Help compiler, WinHelp
obtaining 58, 243
running automatically248

Help systems, merging241
Eclipse Help 415
HTML Help 339
JavaHelp, Oracle Help400
OmniHelp 366
WinHelp 249

Help Viewer, Microsoft
index terms for 211
tools for converting CHM files200

Help Workshop
downloading 58, 243
for HTML Help 296
for WinHelp 54, 58, 243, 257

Help, on-line 199
contents entries, configuring209
contents levels, checking209
context-sensitive, setting up239
Eclipse Help

evaluating 202
generating 403

evaluating features of200
HTML Help

evaluating 201
generating 295

HTML-based Help
contents levels, setting210
contents list, maintaining208

index entries, configuring211
JavaHelp or Oracle Help

evaluating 202
generating 373

merging systems241
Microsoft Help 2, tools for 200

SUBJECT INDEX H

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1107

OmniHelp
evaluating 202
generating 341

Oracle Help for Java, evaluating202
related-topic links, providing219
topic levels, checking203
WinHelp

contents levels, setting209
evaluating 200
generating 243

HelpMerge , HTML custom marker type833
for HTML Help 339
for OmniHelp 368

helpset file, JavaHelp, configuring382

helpsets, merging400

hexadecimal numbers
displaying 815
in results of expressions811

.hha file for HTML Help 330
location of 1024

.hhc file
for HTML Help 321, 322
location of 1024

.hhk file, location of 1024

.hhp file for HTML Help 301, 304, 335
location of 1024

HHReg, HTML Help tool 335

.hht file, CSH IDs for HTML Help 331
location of 1024

HHW, see HTML Help Workshop

HIDC_ prefix for context-sensitive Help IDs330,
365

hidden text in Word
turning off for reviewers 144
used by Mif2Go 173

hiding content in Word173

hiding white text for RTF output173

hierarchical links in HTML 627

high ASCII characters
encoding for HTML 432
encoding for XML 460
mapping to HTML 653
mapping to RTF 172
replacing for W3C validation454

highlighting search terms in OmniHelp364

.hlp files for WinHelp 257

location of 1022

home directory, Omni Systems, creating54

hotspots
See also image maps
creating, for hypertext links72
HTML Help, span of 226, 306
HTML, creating, for graphics722
spanning entire paragraph138
WinHelp

defining 274
for jumps and pop-ups272

hover text, providing, for HTML 448

.hpj file for WinHelp 246
location of 1022

.hs file for JavaHelp, location of1024

htm , DCL output type 1000

.htm , default HTML file extension427

HTMConfig , HTML custom marker type833

HTML
See also HTML code insertion
content for database input450
conversion files 1022, 1025
conversion template426
converting to 423, 703
extracts

code insertion methods for598
custom markers for602
customizing 601
graphics in, referencing607
replacing in parent file603
thumbnails for reference to604
titles, customizing 602

file extension, specifying427
files, split and extract, referencing600
generator, specifying433
links, creating 609
lists, indenting 678
macros for

defining and invoking 787
including in a library 794
selectively enabling791
using expressions in811
using variables in795

navigation macros627
output

using FileIDs for 119
tables, see tables: HTML
tags, closing: suppressing437

H MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1108 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

using XHTML tagging for 428

HTML code insertion
in splits and extracts598
keyword prefixes for splits and extracts, listed

599
keywords and locations, listed 599
keywords for splits and extracts, listed 600
methods for extracts, listed 598
pass-through, in FrameMaker650

HTML Help
See also HTML-based Help
advantages and disadvantages of201
ALink jumps, configuring 223
ALinks, target-and-jump224
binary TOC

for browse buttons303, 320
mid-topic links 323
no-link contents entries322

browse buttons, enabling303
.chm file, specifying 336
.chm , unblocking 296
compiling

and testing 333
for delivery 971
from Mif2Go 333
with HTML Help Workshop 334

contents, table of319
customizing 324
files, generating319
links to mid-file topics 323
merging entries208

conversion files, location of1024
file name restriction 52, 65
font resizing 303
framesets in 452
full-text search, providing326
generating 295

contents and index files319
href links to other .chm files 308
hypertext jumps to other.chm files 307
indents, eliminating 303
index entries

case sensitivity of, specifying217
levels, combining 213
maximum length of 212
merging 208, 216
sort order, specifying216

index files, generating319
index, customizing 324
jumps to secondary windows317

KLink jumps, configuring 223
links

specifying syntax of 308
to external files, configuring308

map files, specifying336
mapping FrameMaker files to CHM files336
merging CHM files 339
parameters for ActiveX controls317
pop-ups

creating with HTML Help 306
creating with KeyHelp 306
creating with WinHelp 307
in hypertext Alert markers 226, 306

project title, specifying 300
project, compiling 296
registering a CHM for network use335
related topics, configuring317
span of hotspots, determining226, 306
starting topic, specifying301
synchronizing TOC references338
TOC, binary, compiling 305
uncompiled, configuring links for308
viewer

for .chm files 296
using CSS with 303

HTML Help Workshop 296
downloading 58

HTML-based Help
See also:

Eclipse Help
HTML Help
JavaHelp
OmniHelp
Oracle Help for Java

ALink jumps, configuring 223
ALinks, target-and-jump224
checking automatic Help level assignments586
contents levels, setting210
index entries

case sensitivity, specifying217
sort order, specifying216

index link destination, specifying215
KLink jumps, configuring 223

HTMLComment , HTML custom marker type833

HVIndex , HTML custom marker type211, 833

hypergraphic, WinHelp graphic with hotspots275

HyperHelp, Bristol, see Bristol HyperHelp

hyperlinks, see hypertext, links

SUBJECT INDEX I

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1109

hypertext
alert markers, see alert markers
commands, remapping as marker types837
hotspots, creating72
links

See also links, hypertext; links, HTML 622
active area of 138
broken, checking for112
converting to HTML 619
for print RTF, converting 178
for print RTF, external 179
HTML, problem characters in612
WinHelp, using for jumps and pop-ups276

markers, how to insert935
message commands

for HTML 181, 278, 625

hyphens, hard, in WinHelp257

I
icons for drop-down links, configuring231

id , HTML table attribute for WAI 759, 1013
purpose 763
via CellID marker 772

identifying
graphics files 133
Help elements, with character formats933
Help files and titles, WinHelp288
HTML files 120, 1027
links to other files, HTML 621

ideographic space in Japanese HTML Help333

IDH_ prefix for context-sensitive Help IDs
for HTML Help 330
for OmniHelp 365

id/headers method, WAI
column and row identifiers, naming782
columns, identifying 782
group identifiers, naming779
identifying row and column groups779
markup for table cells777
markup for tables763, 765
rows, identifying 783
span identifiers, naming781
using span IDs783

IDs
DITA element, specifying495
DocBook element, specifying571
file and object, see FileIDs; ObjectID

HTML table, see TableID
symbolic, for HTML Help CSH 327
symbolic, for OmniHelp CSH364

.idx files for Oracle Help 389

<$_if not> , control structure for macros815

<$_if> , control structure for macros815

IGES, graphics export format130, 884

Illustrator, Adobe, for converting graphics130

image attributes
See also graphics, attributes; tag attributes
DPI, including for DITA XML 518
omitting

for DITA XML 518
for DocBook XML 582
for generic XML 464
for HTML 720

specifying, for HTML 718

image maps, creating, for HTML722

image, background, for HTML725

ImageMagick, EPS graphics converter876

images, see graphics

 tag attributes
alignment 714
class for anchor paragraphs693
for Made with Mif2Go graphic 453
specifying 718

via markers 756, 835
src , specifying 705, 877

for JavaHelp 381

 tag class for anchor paragraphs463

importing
DITA output into FrameMaker 8481, 519, 521
formats from a conversion template863, 936

INCLUDEPICTURE field for Word external graphics
188, 873, 877, 904

indenting
graphics, HTML 716
list items, HTML 678
tables, HTML 747

index
See also index entries
activating hypertext links in125
converting from FrameMaker IX81, 124

crash 125, 1036
for HTML 442
for Word 195

files, generating

J MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1110 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

for HTML Help 319
for JavaHelp 385
for OmniHelp 356
for Word, in Word 195

link destinations for HTML-based Help,
specifying 215

links, activating 125
for Word 182

markers
converting to Word {xe} fields 195
mapping, for Help systems140
mapping, for HTML 442
treating content as text844

page numbers
applying a character format to125
in Word, accuracy of182
replacing for HTML 442

properties, configuring for Eclipse Help414
ranges

expanded for Help systems212
omitting for HTML-based Help212

sort order, specifying
for HTML Help, OmniHelp 216
Japanese, for Help systems218

terms, see index entries
Word

generating in Word195

index entries
See also index
for DITA XML, sorting 485
for Eclipse Help

configuring 414
special characters in412

for Help systems, configuring211
for HTML Help, maximum length of212
for HTML-based Help

case sensitivity of217
configuring 211
level separators for213
merging from multiple files 208
range, automatic212
range, omitting 212
sort order of, specifying216
sort strings in, using218

for JavaHelp
configuring 386
merging from multiple files 208

for Microsoft Help Viewer, preparing211
for OmniHelp, configuring 359
for print RTF, ensuring targets for183

for WinHelp, level separators for287
for XML, from index markers 468, 844
<$nopage> , see <$nopage> index entries 215

IndexRef, for See and See also entries 125
for HTML 444
for Word 184

index.xml , Eclipse Help index file414

indirect references, see pointers

indirection, using in macro expressions819

.inf files
creating 1001
document information1017

inf , DCL output type 1000

infopops for Eclipse Help, configuring417

.ini file, see configuration file

in-line graphics
in Word, preserving borders of900

inline text , content-model element type912

insets
FrameMaker, see text insets
HTML, importing files as 446

installing Mif2Go
for the first time 56
updates 61

instructions, adding with markers935

interfile links
in HTML, to renamed files622

interfile links in HTML
See also reference files for HTML
to files in other projects623

invisible paragraphs, eliminating, HTML652

IX, see index

J
Japanese

combined fonts option80
for HTML Help output, specifying332
for HTML Help, compiling 335
for RTF output, specifying147
ICU DLLs for HTML output 54
ICU DLLs, obtaining 300
index sort order for on-line Help218
Mif2Go support for 53

JAR file, creating 390

SUBJECT INDEX K

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1111

Java Runtime Environment, for JavaHelp54

Java Virtual Machine, for JavaHelp373

JavaHelp
See also HTML-based Help
advantages and disadvantages202
ALink jumps, configuring 223
compiling, with Helen 384
contents and index files

creating 385
locating 387

conversion files, location of1024
conversion, setting up directories for374
excluding face attribute of font tags665
full-text search 387
generating 373
glossary, converting to392
helpset file, configuring382
images, mapping to files394
index entries

case sensitivity of, specifying217
configuring 386

index link destination, specifying215
JAR file, creating 390
JHIndexer command388
map file, specifying location of381
version 2.0, downloading58
windows, defining 393

JavaScript
for expandable sections234
including in HTML output 52, 424
inserting, for HTML attributes436
using macro variables in600

JH2Pop* , custom markers for JavaHelp 2 pop-up win-
dow properties 833

JH2Sec* , custom markers for JavaHelp 2 secondary
window properties 833

JHIndexer command for JavaHelp388

.jhm file, JavaHelp map file401
location of 1025

JPEG graphics export format130, 884
for Web use 871

.jpg files
exporting 881
for DITA XML, location of 1023
for DocBook XML, location of 1023
for HTML, location of 1023

JRE, Java Runtime Environment54

jumps

ALink
configuring for Help systems223
macros for HTML Help 312
with keywords for HTML Help 312

and pop-ups, WinHelp
coding character formats for281
creating 272
local, coding 283
using hypertext links for276

destinations of, WinHelp
cross-reference, specifying260
external, coding 284

KLink, configuring for Help systems223
related-topic, adding for Help systems222
to other Help files, HTML Help307
to secondary windows

in Help systems224
in HTML Help 317
in OmniHelp 360
Oracle Help 399

K
key names in configuration settings104

Key Tools, obtaining 306

KeyHelp, DLL for HTML Help pop-ups 306

KeyrefBranch , PI for keyref to named map branch
833

keyword links, see KLinks

keywords, configuration
DITA content model, listed 1043
DITA, listed 1039
HTML, listed 1059
RTF, listed 1047

KLinks
access to merged topics220
HTML-based Help, configuring223
jump destinations of, specifying224
maintenance issues221
OmniHelp, support for359
understanding221
WinHelp, limitations of 285

Korean
for HTML Help output, specifying332
for RTF output, specifying147
Mif2Go support for 53

L MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1112 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

L
label attribute for Eclipse Help index entries414

label, Eclipse Help TOC, for book level413

landscape
pages, converting to RTF157
tables, converting to RTF186

language, output, specifying
for HTML Help 331
for <html> tag 430
for print RTF 147

languages supported53

last , macro string operator817

$$_lastfile , macro variable601, 801

<$_lastlocaltoc> , predefined macro for HTML
634, 792

layout options, RTF, specifying151

leading, see line spacing, adjusting

legacy content, migrating
to DITA 474
to DocBook 558

length , macro string operator817

levels, macro nesting791

Leximation DITA-FMx plug-in 480, 481, 519,
521, 530, 541, 543

libraries, run-time
downloading 62
listed 1017

library, macro, creating and naming794

license for Mif2Go , purchasing 1029

line breaks
in DITA <codeblock> elements, preserving

489
in DITA, inserting via processing instructions

499
in DocBook <programlisting> elements,

preserving 566
in HTML tables, forcing 744
in HTML, suppressing437
in HTML/XHTML <pre> text, eliminating 670
in macros, including or excluding789
in XML, suppressing 437, 461

line spacing, adjusting
for HTML list items 678
for RTF 170
in CSS 700

line wraps in <pre> text, eliminating 670

lines, dashed, in WMF graphics870

Link* , custom markers for HTML link attributes833

LinkClass marker 610
effect of 833
for WAI 759, 1016

links
See also cross references; hypertext, links
See also links, HTML; hypertext, links; ALinks;

KLinks
adding with markers935
broken, checking for112, 1033
hypertext

converting to HTML 619
converting to RTF for Word178
determining active area of138

related-topic
ALinks and KLinks 219
for on-line Help 219

XML
anchors for, managing467
configuring 467

links, HTML
creating 609
CSS class, assigning

via format 611
via marker 610

drop-down, configuring230
buttons 232
icons 231
text 232
type, specifying 230

drop-down, delimiting
with formats 228
with markers 229

for breadcrumb trails627
forcing to lowercase613
from cross references617
hierarchical 627
keeping ObjectID 620
mid-topic, from TOC 210
navigation

behavior of 636
creating 627

suppressing in <$nopage> index entries 444
to footnotes, eliminating672
to other documents1028
to other files, identifying 621

$$_linksrc , macro variable612, 619, 758, 801

SUBJECT INDEX M

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1113

LinkTitle , marker for WAI attribute 759, 1016

list formats
converting

to DITA XML 502, 505
to DocBook XML 574
to HTML 674

dictionary, converting
to HTML 677
to HTML tables 824

indenting, for HTML 678
nested, converting

to DITA XML 505
to HTML 676

list of figures or tables, converting
prevention of 125
to HTML 444
to HTML Help 325
to Word 181

list variables
creating with configuration sections807
for macros 806
initializing 807
instead of conditional expressions809
processing with macros807
processing with pointers808
using in expressions818

literals, character
assigning to macro variables798
for macro variables, listed 798

local contents for HTML 631

local jumps and pop-ups, WinHelp, coding283

locale
for index sort order218
for RTF output 147
identifier for HTML Help 331
specifying for HTML Help 331

<$_localtoc> , predefined macro for HTML634,
792

LocalTOCTitle , custom marker for HTML local
TOCs 634, 833

$$_loctocfile , macro variable633, 801

$$_loctoctitle , macro variable633, 801

log file
editor for displaying when errors115
for conversion events115
mif2go.log , runfm results 988

-log , runfm option 982, 988

logging
automation commands956
conversion events115
link errors 112
runfm commands and results988

logical operators for macro expressions, listed 812

longdesc , HTML image attribute for WAI 757,
1015

loops, nesting, in macros817

lower , macro string operator818

.lst file
for DITA XML, location of 1023
for DocBook XML, location of 1024
for Eclipse Help, location of1025
for HTML Help, location of 1024
for HTML-based Help, maintaining208
for HTML/XHTML/XML, location of 1023
for JavaHelp, location of1025
for OmniHelp, location of 1024

M
m2gframe.dll , Mif2Go plug-in interface 1017,

1034

m2g_log.txt , conversion event log file
default location of 1019

m2hmacro.ini , sample macros for HTML1017

m2rbook.dll , Mif2Go plug-in interface 1017

macro
See also macros, Mif2Go
configuration file, editing 861
expressions, results of

displaying in output 813
interpreting 811

files, individual 793

macro libraries, organization of851

macro parameter, passing820

macro variables
See also macros, Mif2Go
assigning paragraph content to803
assigning values to797
assignment values of, displaying798
from FrameMaker user variables802
in HTML navigation macros638
incrementing and decrementing799
list type 806

See also list variables

M MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1114 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

using in expressions818
nesting 798
predefined

for HTML extract replacement, listed 603
for HTML splits and extracts, listed 601
for system commands939
listed 800
uses for 800

referenced in WAI attributes755
syntax of 796
undefined, debugging820
valid contexts for 821

$$_macroparam , macro variable801

macros, Mif2Go
See also macro; macro variables
backslash escape character in789
conditional expressions in815
control-structure elements, listed 815
debugging 820
defining 787
expression results811
expressions811, 820
for HTML

framesets, using to create450
inserting, for split and extract files598
insertion methods for extracts598
JavaHelp secondary windows and pop-ups

393
navigation, inserting predefined635, 821
navigation, redefining639
referenced in WAI attributes755
table, specifying 748
using for attribute text619
using for link properties612
using to specify WAI attributes761

for system commands940
line breaks in 789
nesting 791
nesting limit 792
operands 811
operators, listed 812
predefined, HTML listed 792
specifying where to invoke821
ternary operators '?' and ':'816
trailing spaces at end of789

macros, WinHelp, invoking284

<$_madewith> , predefined macro for HTML792

madewithm2g.jpg , “Made with Mif2Go ” icon 452

Maker Interchange Format, see MIF; .mif

manifest file, Eclipse Help
MANIFEST.MF, configuring 408
plugin.xml , configuring 409

MANIFEST.MF, Eclipse Help manifest file407

map files for context-sensitive Help240
HTML Help, specifying 336
JavaHelp, specifying location of381

[MAP] section of HTML-based Help file329

maps
ditamaps, configuring539

margins
specifying, for HTML Help pop-ups306
unusually large, in RTF151

marker types
See also markers
assigning properties to838
cloning 139
configuration, defining 921
creating and cloning139, 836
effects of properties, listed 839
hypertext, how to insert935
mapping 139
naming 834
predefined

for all output types, listed 832
for DITA maps, listed 556
for DITA XML, listed 536
for DocBook XML, listed 583
for HTML extracts, listed 602

redefining 840
suppressing841

markers
adding links and instructions with935
ALink , for Help systems140
attribute, for HTML or XML

See also attribute markers for HTML or XML
applying 835
for images 718
for links 612
for tables 737
including in macro code845
listed 835
understanding834

configuration, to override settings921
cross-reference, eliminating Word-generated

114
custom

adding in FrameMaker832
for HTML extracts 602

SUBJECT INDEX M

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1115

custom, WAI
advantages of760
for image attributes1014
for link attributes 1016
for table attributes772, 1013
using to specify attributes756

hypertext
commands, remapping837
how to insert 935

hypertext alert
and alerttitle , for WinHelp pop-ups277
for HTML Help pop-ups 226, 306
for HTML split points 587
for splitting HTML files 587

identifying, with $$_objectid 847
index, see index, markers
mapping

for Help systems140
for HTML 442

repurposing 139
text, cross-reference, truncating261
Type 11, for WinHelp mid-topic jumps277

marklib.fm , WAI marker library 1013

master pages
content omitted for HTML 645
cross references, for print RTF181
different size and orientation157
including graphics on

for HTML 885
for Word 154

layout restrictions for Word151
sidehead width, adjusting for Word153
substituting via conversion template68, 151

MathFullForm for FrameMaker equations, in DCL
output 136

MathFullForm objects for equations
included in DCL 136
including in DITA alt tags 518

memory deallocation1035

merging
Eclipse Help projects415
Help systems241
HTML Help .chm files 336
JavaHelp or Oracle Help systems400
OmniHelp projects 366

message openfile hypertext links
for HTML 625
for WinHelp 278
for Word 181

how to insert 935

message URL hypertext links
for HTML 625
for WinHelp 278, 284
for Word 181
how to insert 935

Meta*, custom markers for <meta> tag content 833

<meta> tag content, supplying434
for split or extract files 598

metafiles
embedding bitmap graphics in886
embedding equations in137
internal vs. external, specifying873
naming, for WinHelp 134

metrics, font, specifying for RTF165

Microsoft
Help Workshop, see Help Workshop
HTML Help Workshop, see HTML Help Work-

shop; Help Workshop
HTML Help, see HTML Help
Vista, no support for WinHelp200
Word, see Word

Microsoft Help Viewer
index terms for 211
tools for converting CHM files200

mid-topic entry points
for Eclipse Help context anchors418
for HTML Help CSH links 327, 330
for index links, not recognized by RoboHelp

216
for TOC links, in HTML Help 323
incompatible with HTML Help binary TOC

303, 323

mid-topic headings, moving link anchors above615

mid-topic links
from OmniHelp TOC, avoiding354
in Eclipse Help TOC, enabling413
in Help systems, effects of200

MIF files
automatically creating/deleting, via plug-in992
deleting after conversion85
existing, using 85, 111
file extension, specifying1008
generating with Mif2Go 1006
managing 111
old, deleting before converting960
to clean corrupt .fm files 1005, 1032
version 8, from FrameMaker version 81008

N MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1116 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

.mif , MIF (Maker Interchange Format) files62

MIF, saving as, via Mif2Go 1006

Mif2Go
command-line applications

DCL 995
runfm 979

getting started with51
installing 56
plug-in, using 77
running

via DCL 995
via FrameMaker plug-in77
via runfm 979

stopping 63
uninstalling 64
updating 61

mif2go.ini , configuration file
combined 623
for FileIDs 120
providing for batch conversions997
renaming or relocating1027

mif2go.log , runfm results 982, 988

mif2go.prj , fallback project file 1026
for runfm 983

modular Help systems241

modules, DCL conversion, writing1003

moving files
conversion 63, 1025
FileID 1027
Mif2Go project 1026

MS HTML Help, see HTML Help

msvcrt40.dll , Microsoft Windows C++ run-time
library 1017

N
named destinations from Word cross references114

names
See also naming
of CSS classes, case sensitivity692
of files and paths, restrictions on52, 65
of files, in double quotes999, 1001
of FrameMaker formats, restrictions on66

namespace, HTML, specifying430

naming
See also names
files

and paths 51, 65
graphics 134, 1010
helpset, JavaHelp382
HTML FileID and project 1026
HTML split and extract 946
WinHelp 288
WinHelp topic 260

marker types 834
projects

Eclipse Help 407
Mif2Go conversion 78
OmniHelp 347

WinHelp primary window 291

navigation
buttons

for HTML 638
for HTML Help 303
for OmniHelp 353

links for HTML, creating 635
macros for HTML

button definitions, listed 642
buttons for 638
default definitions of 637
redefining 639
scope of 642
text-link definitions, listed 642
where to invoke 642

titles
for DITA topics, alternate526

Ndoc, for Microsoft Help Viewer200

nested FrameMaker books53

nested lists
converting to DITA XML 505
converting to HTML 676

nesting
DITA elements 477, 501, 505
DITA maps 540
DITA topics 521
DocBook elements573
macro loops and conditionals, forbidden815,

816
macro variables798
macros 791

network drive
for shared configurations855
not a good place for %OMSYSHOME%54

network drives
why not to use 1032

SUBJECT INDEX O

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1117

network file system
operating runfm across 992
problems accessing files74, 1030

network file system, using HTML Help across335

.new , extension for changed configuration files92

newlink markers
for DITA

cross references477
ID attributes 495

for DocBook 571
for HTML Help CSH 327
for HTML hypertext links 619
for OmniHelp CSH 364
for WinHelp

in marker lists 267
pop-ups 265, 275, 279
using Type 11 markers for277

how to insert 935

<$_next> , HTML navigation macro635, 792

$$_nextfile , macro variable601, 801

$$_nexttitle , macro variable601, 801

<$nopage> index entries
for HTML 444
for HTML-based Help 215
for OmniHelp 359
for Word 184
for Word-generated index, discarding196

no-scroll region for WinHelp topic titles271

numbered lists, converting
to HTML 676
to RTF 158

numeric entity references
for HTML 432
for XML 460
in Eclipse Help contents or index412

numeric IDs for context-sensitive Help240

O
ObjectID

determining for HTML split files 594
duplicate, removing119
FrameMaker 118
links, keeping, HTML 620
specifying for print RTF 175, 249

$$_objectid , macro variable801
in file names 951

to identify markers 847

OLE objects
exporting all WMF images882
extracting images with FrameMaker filters882
extracting WMF previews881
retrieving for use in original application882

Omni Systems
environment variable %OMSYSHOME%, creating

55
home directory, creating54

OmniHelp
See also HTML-based Help
advantages and disadvantages of202
ALink jumps, configuring 223
ALink keywords, displaying 359
ALinks, target-and-jump224
buttons, excluding or displaying353, 359
contents

expanding and collapsing357
including 356

context-sensitive Help, setting up364
conversion files, location of1024
cookies, persistence of371
CSS usage, specifying350
data and control files, listed

generated by Mif2Go 345
supplied in ohview.zip 344

file name restriction 66
files, obtaining 342
frameset and frame dimensions, specifying352
full-text search

configuring 361
including 356
terms, highlighting 364

index entries
case sensitivity of, specifying217
expanding and collapsing357
levels, combining 213
See and See also entries 359
sort order, specifying216

index link destination, specifying215
index, including 356
interface, localizing 202, 354
KLink jumps, configuring 223
launching 370
memory requirements348
navigation aids, modifying353
navigation panel, modifying355
pop-up windows, specifying360
prev/next buttons, including354

P MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1118 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

projects
merging 366
naming 347
setting up 345
titles of 348

related topics
including 356
links, providing 359

search terms, highlighting364
secondary windows, jumping to360
settings, making persistent354
starting topic, specifying348
template, modifying 356

%OMSYSHOME% environment variable55

on-line Help, see Help, on-line

openlink markers
converting to HTML links 609, 619
how to insert 935
specifying a destination for HTML619
using for WinHelp jumps and pop-ups276

OpenOffice, producing RTF for197

operating settings, specifying109

operators for macro expressions, listed 812

Oracle Help for Java
See also HTML-based Help
advantages and disadvantages of202
ALink jumps, configuring 223
ALinks, target-and-jump224
content and index, creating387
Developer's Kit 54
downloading 58
full-text search 387
index entries

case sensitivity of217
configuring 386

index link destination, specifying215
JAR file, creating 390
obtaining information about373
windows, defining 393

order of configuration-file sections and settings103

output
directory, specifying for project via plug-in78
file paths and names, specifying1002
format, specifying 78
HTML, using FileIDs for 119
type, specifying

for print RTF 147
for WinHelp 248

overline, replacing with a tag in HTML/XML669

overrides
See also overriding
configuration

See also configuration settings, overriding
for HTML table and graphics groups930
persistent vs. temporary921

format
allowing or eliminating for HTML 657
retaining in HTML for structured

documents 135
suppressed for DITA XML 494

overriding
configuration settings

fixed-key 924
in macros 921
variable-key 925
with command-line options998
with configuration markers921
with text, for HTML 931

cross-reference properties928
format properties926
HTML graphics properties929
HTML table

[Attributes] values 750
column and row groups733
default heading/footing counts735
default WAI cell settings784
display attributes736
properties 928
WAI markup method 765

paragraph properties for HTML653
path to graphics for HTML888, 929
split points in HTML 588

overview topic in WinHelp 290

P
</p> tags, suppressing in HTML437

page
breaks

See also breaks, page
automatic, keeping the same in Word152
handling for print RTF 152
handling for WinHelp 249
inserting in DITA via PIs 499
using for HTML split points 587

numbers
eliminating from cross references68

SUBJECT INDEX P

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1119

in cross references, for print RTF180
index, applying a character format to125
index, replacing for HTML 442
retained, in XML output 468
suppressing, for HTML TOC445

size and orientation, converting to RTF157
titles, for HTML files 594

assigned with markers597
based on file names596
based on paragraph formats595
computed 597
default 597
precedence595
prefixes and suffixes596
related to StartingSplit 588

pagination, maintaining in Word152

Paint Shop Pro, for converting graphics130

paragraph
See also paragraphs
anchors, converting to RTF171
attributes, suppressing, for HTML650
autonumbers, eliminating, for HTML465, 649
formats

See also formats, paragraph
deleting, for WinHelp 253
eliminating tags for HTML 650
for graphics, specifying191, 264
for splitting HTML files 586
mapping to DITA elements487
mapping to DocBook elements565
mapping to RTF styles158
merging, RTF 159
properties of, overriding926
replacing with code, for WinHelp257, 822
replacing with code, for Word174, 822
replacing with comments for HTML650
run-in, converting to HTML 648
script, designating, HTML650
suppressing, for WinHelp253

properties
changing for individual paragraphs926
overriding, HTML 653
stripping, HTML 650

spacing, adjusting for RTF170

paragraphs
See also paragraph
empty

keeping or removing in Word171
omitting tags for in HTML 652

providing content for in HTML 651
replacing with RTF code

for WinHelp 257, 822
for Word 174, 822

unwanted, eliminating for HTML652

ParaID, FrameMaker ObjectID for paragraphs118,
594

parameter entities, equivalent to element sets910

parameter for Mif2Go macro 820

parameter lists for DITA output505

<$paranum> and <$paranumonly> , replacing for
Word 181

$$_paratag , macro variable801

$$_parauid , macro variable615, 801

pass-through code, HTML650

path
See also file, paths in configuration settings
current, macro variable for601
default, for Word documents181
names

restrictions on 52, 65
spaces in, avoiding52, 65, 1032

omitting from links, for OmniHelp 349
overriding, for HTML graphics888, 929
relative vs. absolute

in configuration settings105
in graphics references705

retaining in interfile links for HTML 622
specifying, for HTML graphics705
to assembly directory961
to configuration template851
to conversion template, specifying864, 866
to CSS directory, for copying CSS files969
to graphics files

on UNIX server 705
removing, for HTML 704, 887

to project directory, macro variable for800
to shipping directory 975

.pct files, exporting 881

.pcx files, exporting 881

PDF output, generating via runfm 985

-pdf , runfm option 981, 985

-pdfsave , runfm option 981

pen style patterns, FrameMaker, mapping900

pernicious mixed content
constraining in DITA output477

P MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1120 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

persistent configuration overrides921

persistent settings in OmniHelp354

PICT, graphics export format130, 884

pictures, see graphics

pkzip.exe

for archiving deliverables973
for packaging Eclipse Help topic files419

placement of, for HTML/XML 671

platform differences, accommodating, WinHelp247

plug-in manifest file plugin.xml , Eclipse Help,
configuring 409

plug-in, FrameMaker
DITA-FMx, see DITA-FMx plug-in, Leximation
IndexRef 125, 184, 444
Mif2Go 77
SetPrint 987

plugin.xml , Eclipse Help manifest file409

.png files, exporting 881

PNG, graphics export format130, 884

point size, matching for graphics901

pointers
to process lists808

pop-ups
See also windows, pop-up
browser, suppressing, effect on OmniHelp372
HTML Help 305

creating with HTML Help 306
creating with KeyHelp 306
creating with WinHelp 307

HTML, require JavaScript616
JavaHelp, using macros for393
OmniHelp, specifying 360
WinHelp

alert, creating 277
creating 272
from table cells 263
hotspots for 274
local, coding 283
using hyperlinks for 276

postprocessing
activating and logging956
automated 955
choosing options for, on Export88
files copied, listed 964
graphics files copied, listed 966
separately from converting976
understanding955

pprtf.exe , RTF pretty printer 1017

<pre> , HTML paragraph tag647

precedence
of configuration settings852, 862, 919

listed 920
of DITA topic type assignments524
of extract code insertion methods598
of extract property assignments602
of HTML page title assignments595
of macro definitions 792, 795
of macro variable definitions796
of shading colors in HTML tables745
of table property assignments728

predefined
macro control-structure elements, listed 815
macro variables

all, listed 800
for HTML splits and extracts, listed 601
in system commands939
using 800

macros, listed 792
marker types, listed 832

preformatted text
assigning HTML <pre> tags 646
content-model element type912
empty tags preserved in652
HTML/XHTML, configuring 670
in table cells

for DITA 513
for DocBook 564
for HTML/XML 744

preserving whitespace in for DITA499

<$_prev> , HTML navigation macro 635, 792

$$_prevfile , macro variable601, 801

$$_prevsfile , macro variable (deprecated) 601

$$_prevtitle , macro variable601, 801

primary window, naming in WinHelp291

print file, naming, for runfm 984

print options, FrameMaker, set by runfm 986

-print , runfm option 981, 984

printable set, characters in658

printer
Adobe PDF, configuring for runfm 985
default, specifying via SetPrint987
for runfm , specifying 987

-printer , runfm option 981, 987

printing via runfm 984

SUBJECT INDEX Q

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1121

.prj file
See also project file
location of 1019
Mif2Go conversion projects78
role in converting individual chapters937

$$_prjname , macro variable801

$$_prjpath , system-command variable801, 939

processing instructions in DITA, for line and page
breaks 499

-progid

FrameMaker RPC option980
runfm option

for Mif2Go 981, 982
for other plug-ins 993
for remote operation992

project directory, establishing74

project file
HTML Help 301, 304, 335

location of 1024
JavaHelp helpset382
Mif2Go

See also .prj file
accessed by runfm 983
location of 62, 1019

WinHelp 246
location of 1022
naming 248

project, Mif2Go
name, specifying for runfm 983
naming 78
setting up 78

for multiple books 75

-project , runfm option
for Mif2Go 981, 983
for other plug-ins 993

properties, document, importing865

public and system IDs, overriding915

PUBLIC declaration for HTML/XML 429

punctuation
in ALink keywords, avoiding

for HTML Help 309
for OmniHelp 359
for Oracle Help 399

in CSH newlink markers
allowing 241
for JavaHelp, Oracle Help401

in file and directory names, avoiding51, 65
in format names, avoiding66

in HTML file names 948
in index entries

detecting for XML tags 470
ignoring for sort order217

in link keywords, disallowed219

Q
quotes

around configuration-assignment values922
around macro names in overrides923
baseline, converting to straight, in macros790
smart, converting

for WinHelp 256
in macros 790

style, specifying for print RTF172

R
raster graphics, see bitmaps; graphics, bitmap

raw code, HTML, including in FrameMaker650

redirect pages for OmniHelp CSH365

.ref files, interfile links
location of 1019, 1023
understanding and using1027
when not to delete959

reference files for HTML 1027
See also interfile links in HTML
deleting between conversions427, 958, 1026

reference frames
converting to RTF 162
converting to WinHelp 253
removing for HTML 651

reference page graphics
including or excluding

for HTML 885
for RTF 162
for WinHelp 253

written only if used 131

references, updating before converting126

related topic
keywords

adding with format properties222
adding with markers140, 221

links
ALinks and KLinks 219
for Help systems219

R MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1122 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

for HTML Help 309
for OmniHelp 356, 359
for Oracle Help 400
for WinHelp 285
in DITA maps 546

relational operators for macro expressions, listed
812

relationship tables, DITA546

relative vs. absolute paths
in configuration settings105
in graphics references705

remote operation of Mif2Go via runfm 992
enabling DCOM for 992

-remote , runfm option 981, 983, 992

renaming files via system commands937

repeat loops in macros816

<$_repeat> , control structure for macros815, 816

replace with , macro string operator818

requirements, system53

rescaling bitmaps
see also scaling
for RTF 898
for screenshots872
via FrameMaker export filters884

resource.h , Help map file 240

returns, hard, see hard returns; line breaks

returns, soft, see line breaks; soft returns

-reverse , runfm option 981

review process using Word144, 943

revision system, checking files in and out of979

revision tracking in Word144, 194, 944

.rf files, exporting 881

RGB colors
converted from CMYK

for HTML 438
for WinHelp 258
for Word 172
problems with 441

Web-safe 440, 746
listed 440

RoboHelp, for generating WebHelp200, 201, 216

root element
for content model 909
XML, specifying 458

rotated table cells

in HTML 426
in Word 142, 185

rotated text in callouts191

round-trip DITA output 480, 481

row spans, identifying781

Row* , custom markers for HTML or XML table row
attributes 833

RowClass , custom marker for CSS738

RowGroup cells 785
and ColGroup cells, using784

with id/headers method778
with scope attributes776

defined 767

rowspan , HTML table attribute 760

RTF
configuration file

location of 1022
conversion files, location of1022
converting to 141
formats, mapping158
raw code, replacing content

in WinHelp 257, 822
in Word 174, 822

RTF code, including for Word194

rtf , DCL output type 1000

RTFConfig , RTF custom marker type833

runfm

advantages of, for command-line use992
command-line syntax980
compared with DCL 991
console messages, reviewing988
operating across a network992
options and arguments, listed 981
using 979

for a series of conversions990
for a single conversion989
to run Mif2Go 982
to run other plug-ins993

runfm.exe , command-line application1017

run-in formats, converting
to HTML 648, 825
to print RTF 160
to WinHelp 252

Running H⁄F variables, converting to RTF 156

running headers and footers, see headers

run-time libraries, Mif2Go , listed 1017

SUBJECT INDEX S

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1123

run-time values, supplying941

Russian
for HTML Help output, specifying332
for RTF output, specifying147
Mif2Go support for 53

S
saving a project from within FrameMaker79

Saxon, for DITA XML 475

SBAppLocale, HTML Help compiler for other
locales 335

scaling
See also rescaling
bitmap graphics898
graphics for HTML/XML 719
graphics via DPI setting130, 884
screenshots for WinHelp872
thumbnail graphics for HTML605

scheduled operation via runfm 979

scope method, WAI
identifying column and row groups776
identifying columns and rows776
markup for tables763, 764

scope , HTML table attribute for WAI 759, 1013
adding via format 768, 769
adding via marker772
purpose of 763

screen captures, see screenshots

screenshots
converting 899
fuzzy, correcting for HTML 703
scaling, for HTML 606
scaling, for WinHelp 872, 898

script paragraph formats, designating, HTML650

<script> , HTML paragraph tag647

scrolling WinHelp topic titles 271

Search , custom marker833

search, see full-text search

secondary windows
See also windows, secondary
HTML Help 317

accessing from contents or index318
accessing from topics318
defining 317

JavaHelp

size and position settings for394
using macros for393

jumping to, in Help systems224
OmniHelp, specifying jumps to360
WinHelp

forcing contents to main window291
specifying 278

section breaks, handling
for print RTF 152
for WinHelp 249

$$_sectionnum , macro variable801

see-also index entries, see <$nopage> index entries
444

separator character
between topics, adding586
in file paths 105

for importing HTML files 446
in system commands938

SEQ fields , Word, for autonumbers161

<$_seqnext> , HTML navigation macro 792

<$_seqprev> , HTML navigation macro 792

setini.exe , configuration utility 940, 1017

SetPrint, Sundorne Communications plug-in, set by
runfm 987

setting up a conversion79
generating and updating81
importing formats 79
including generated files81
options for 81
system variables80
to ASCII DCL 1009
to DITA XML 478, 479
to DocBook XML 559, 560
to Eclipse Help 403, 404
to generic XML 459
to HTML 424, 425
to HTML Help 297, 298
to JavaHelp or Oracle Help374, 375
to MIF 1006
to OmniHelp 345, 346
to print RTF 146, 195
to WinHelp 243, 244
to XML 425
understanding the process82

setup, see setting up a conversion

SGML, producing via XML output458

shading

S MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1124 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

in tables
for HTML 745
for Word 185

shed.exe , for WinHelp graphic hotspots275

.shg files, WinHelp hypergraphics275

_ship , default shipping subdirectory204, 957

shipping directory, specifying975

sidehead formats
converting to HTML 648
converting to WinHelp 252
converting to Word 159

cannot be handled by Word templates148
eliminating via conversion template68

sidehead width, specifying for Word153

single sourcing, preparing documents for67, 933

SIP, Supplementary Ideographic Plane, Unicode
659

Slovenian font encoding for HTML/XML431

small caps, adjusting
for WinHelp 254
for Word 172

smart quotes, converting to straight quotes
for print RTF 172
for WinHelp 256
in macros 790

soft returns in <pre> text, omitting line breaks for
438, 670

soft returns, see forced returns

solidus, mapped to a forward slash for HTML662

sort order, index, specifying216
See also index, sort order, specifying

sort strings, index, for HTML-based help218

source control, checking files in and out of979

space, adding
See also line spacing, adjusting
after tables in RTF185
at the end of a macro789
before graphics in HTML717
before tables in HTML 749
between topics in a single HTML file586

spacer graphic for HTML
for indenting images716
for indenting tables747

$$spacerwidth , macro variable for HTML 793

spaces

around images in HTML table cells,
eliminating 717

fixed, in Japanese HTML Help333
in configuration settings104, 113
in CSH newlink markers, allowing 241
in CSS class names, removing or replacing691
in file or path names

for commands, double quotes999, 1001
for graphics, eliminating889
for HTML links, avoiding 622
not recommended52, 65, 1032

in FrameMaker format names66
in HTML links, removing or replacing613
in marker names, avoiding140, 837
nonbreaking, in Word164
removing from a string value820
thin, adjusting for Word 164
trailing, in macros 789

span class, CSS attribute for character formats693

span , HTML table attribute for WAI 832

special characters, mapping for HTML660

special fonts, mapping characters in662

specializations
handled by Mif2Go . 477

split files
See also split points
DITA XML 520
HTML 586

designating split points for586
determining ObjectIDs of594
naming

via custom markers947
via paragraph formats947

suppressing split points for588
titles of, specifying 594

split points
See also split files
for DITA XML files 522
for HTML files

determining automatically586
for multiple-paragraph headings590
overriding 588
preventing dangling headings with589
preventing empty files with588
suppressing588
using Help-contents level numbers for589

Split , custom marker for splitting files587, 833

$$_splitid , macro variable801, 952

SUBJECT INDEX T

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1125

$$_splitnum , macro variable801, 952

StarOffice, producing RTF for197

starting topic, specifying
for Eclipse Help 405, 413
for HTML Help 299, 301
for JavaHelp 376, 382
for OmniHelp 347, 348
for Oracle Help 376, 382
for WinHelp 245, 288

<$startrange> marker, see index, ranges

starts , macro string operator818

stop words in OmniHelp search363

stopping a Mif2Go conversion 63

straddled table columns and rows
in WinHelp 262
in Word 185, 186

strikethrough, as a format override for HTML657

string operators for macro expressions, listed 813

stripping paragraph properties for HTML650

structure, XML, providing 461

structured documents
converting

to DITA XML 475
to HTML/XHTML 135

preparing for conversion73

structured documents, converting73

style tags, HTML/XML, suppressing in output648,
653

$$_subsectionnum , macro variable801

suffix, file, see file, extension

summary, HTML table attribute for WAI 760, 761,
1013

Sundorne Communications
IndexRef plug-in 125, 184, 444
SetPrint plug-in 987

Supplementary Ideographic Plane (SIP), Unicode
659

support for Mif2Go , requesting 1029

symbolic IDs for context-sensitive Help240

symbols, converting
to HTML 662
to WinHelp 257
to Word 167

syntax
command-line

for DCL 998
for runfm 980

configuration-variable assignment922
macro variable, for HTML 796

system
commands, see also commands, system
commands, to automate conversions938
requirements for Mif2Go 53
variables, FrameMaker, converting to text114

for HTML 437
for RTF 157

T
table cells

HTML, see tables: HTML, cells
rotated, in Word 142, 185

table of contents, see contents

table structure model, CALS vs. HTML730

Table* , custom markers for HTML table attributes
833

TableID
assigning properties to, for HTML728
determining, for HTML 729
FrameMaker ObjectID for tables118, 729

tables, see:
tables: converting
tables: HTML
tables: WinHelp
tables: Word

tables, list of (LOT)
See also list of figures or tables, converting
converting to HTML 444
converting to HTML Help 325
converting to Word 181
preventing conversion of125

tables: converting
to DITA XML 510
to HTML 727
to WinHelp 261
to Word 184

tables: HTML
access method, specifying for WAI764
adaptive sizing of 742
attributes

automatically generated, eliminating464
overriding 733, 736, 742

attributes, specifying

T MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1126 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

precedence of methods728
via [Attributes] 736
via macros 748
via markers 737

background color, automatic739
border colors 746
browser-dependent tags for731
caption tags 747
cells

attributes of, specifying751
identifying 770, 782
rotated, avoiding 426

color and shading745
column groups

enumerating 732
identifying 731
overriding 733

columns
applying CSS class attribute to732
WAI information about 763

configuration sections subject to override, listed
928

converting to paragraphs753
custom ruling and shading727
display attributes

overriding 736
properties for, specifying735
specifying 736

footer rows, counting734, 735
footnotes

converting 748
positioning 748

format names, assigning properties to729
graphics in, adjusting spacing717
groups

assigning properties to729
creating 729
creating with overrides930
specifying settings for727
using wildcards to specify730

header cells, designating731
header rows

counting 734, 735
designating 778

indenting 747
line breaks, forcing744
list of, converting 444
macros, specifying748
properties of, overriding928
properties, assigning727

row groups
attributes of, specifying750
identifying 731
overriding 733
specifying 732

rows
attributes of, specifying737, 751
information for WAI 763
shading, alternate745

ruling properties, converting727
space before, adding749
splitting files based on587
structure, specifying730
titles, positioning 747
variables, FrameMaker, eliminating748
WAI markup 759, 1013

applying 759
method for, choosing760
method for, default, specifying764
overriding 765
specifying with custom markers762
strategy for 763

tables: WinHelp
adaptive sizing of 261
appearance, adjusting261
converting rows to topics262
titles, positioning 261

tables: Word
cell properties, adjusting185
graphics, repositioning185
in anchored frames, converting128
indents, removing185
landscape, headers and footers186
list of, converting 181
rotated cells, avoiding185
space below185
table variables, eliminating184
titles, repositioning 184

TableSummary , custom marker for WAI762, 1013

TableTitle , custom marker for WAI762, 1013

tabs
avoiding in FrameMaker426
converting

for print RTF 163
for WinHelp 253
to spaces for HTML/XML 658, 671

eliminating via conversion template68
in autonumbers, eliminating for HTML649
in configuration settings104

SUBJECT INDEX T

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1127

replacing with code in HTML/XML 658
unused, removing for RTF output164

tags, HTML/XML, eliminating from output648,
653

target frame for HTML jumps725

$$_tblcols , macro variable751, 801

$$_tblrows , macro variable751, 801

<tbody> elements
and RowGroup cells785
overriding [Attributes] for 750
required for scope row groups776
tags for HTML tables 732

technical support for Mif2Go , requesting 1029

templates
configuration 849

chaining 863
creating 861
general, organization of850
general, what to include in862
naming convention for850
organization of 849
precedence of863, 919
referencing 851

DITA <bookmeta> 1039
FrameMaker conversion

for alternate graphics69
for HTML 426, 866
for individual chapter files68, 865
for WinHelp 246
for Word 152
importing formats from 863, 936
specifying at set-up79
troubleshooting 866

Mif2Go configuration 67
precedence of919

OmniHelp, modifying 356
Word, specifying 148

temporary configuration overrides921

ternary macro operators '?' and ':'816

test file title, eliminating 433, 595, 597

text
See also text insets
color, specifying

for HTML 669
for WinHelp 258
for Word 172

flows
including for HTML 113

special, converting to RTF156
for drop-down links, configuring232
frames, using, RTF152
outside a text frame, clipping902
pop-up attributes, HTML Help306
preformatted

configuring, HTML 670
designating, HTML 646

replacing, with code or macros822
underlined, WinHelp 254
white, hiding

for HTML 652
for RTF 173
or showing, for callouts190

wrapping for RTF 191

text insets
combining files for HTML 591
delimiting, in DITA XML 534
for HTML local TOCs 635
for WinHelp pop-ups 279
specifying links from and to, HTML624

<tfoot> elements
overriding [Attributes] for 750
tags for HTML tables 732

<th> elements, tags for HTML tables731

<thead> elements
overriding [Attributes] for 750
tags for HTML tables 732

thin space, adjusting for Word164

thumbnails to reference graphics
in HTML extracts 604
in place of images in HTML711

.tif files, exporting 881

TIFF, graphics export format130, 884

Title , custom marker for split and extract files597,
833

title , HTML attribute
for images

assigning via format757
assigning via marker1015

for links
assigning via format758
assigning via marker757, 1016

for tables
assigning via marker1013
assigning via TableID761
WAI guidelines for 760

Title , HTML marker type property597

U MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1128 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

titles
DITA, alternate, specifying526
HTML Help project, specifying300
HTML, specifying 433

for split and extract files594
to eliminate Test File 433, 595, 597

JavaHelp helpset, specifying382
WinHelp

file, identifying 288
table, repositioning261
topic, configuring 271

.tmb file, Temporary MIF Backup1032

TOC, see contents

toc.xml , Eclipse Help TOC file 412

<$_top> , HTML navigation macro 635

topic
See also topics
DITA, starting point of 522
files, WinHelp

assembling contents for291
naming 260

ID, DITA, specifying 526
levels in HTML, checking 203
levels in WinHelp, specifying289
starting, specifying

for Eclipse Help 405, 413
for HTML Help 299, 301
for JavaHelp 376, 382
for OmniHelp 347, 348
for Oracle Help 376, 382
for WinHelp 245, 288

titles in WinHelp, configuring 271
type, DITA

default 525
specifying 524

TopicAlias , custom marker for context-sensitive
help 833

topics
See also topic
DITA, see DITA, topics
pop-up, see pop-ups; windows, pop-up
WinHelp

adding ALink footnotes to285
converting table rows to262
creating 267

TopicStartCode , custom marker for code at start of
topic 792, 833

<$_TopicStartCode> , predefined macro for

HTML 792

<$_trail> , predefined macro for HTML627, 792

trailing space, in macros789

trails of links, creating for HTML 627

translation, extracting text for1005

transparency, specifying for graphics903

trim first , macro string operator818

trim last , macro string operator818

truncating cross-reference marker text, WinHelp
261

Turkish
for HTML Help output, specifying332
for RTF output, specifying147

Turkish font encoding for HTML/XML 431

Type 11 markers, for WinHelp mid-topic jumps277

typographic elements
assigning to a format for DITA output494
including for DITA XML 482
managing in HTML/XML 667
replacing with other tags669
suppressing in HTML/XML 668

all 668
maintaining overrides668
only in character formats669
only in paragraph formats668
only those used as overrides668

use sparingly for DITA XML 493, 495

U
unanchored frames

converting graphics in, HTML886
excluding from HTML output 713
on master pages, for RTF885
processing 126

unattended operation
designing for 979
setting up FrameMaker for980
using runfm for 982

unblocking CHM files 296

underlined text
as overrides, removing for WinHelp254
for hotspots in WinHelp269, 275
for links in HTML 609
solid vs. dotted, for WinHelp hotspots272
turning off for tabs in Word165

SUBJECT INDEX V

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1129

underscores
allowed in WinHelp reference strings270
avoiding in path and file names52, 65

for HTML Help 622
disallowed in CSS class names691
disallowed to start user variable names796
removing from path and file names1032
replacing spaces in graphics file names889

Unicode
character ranges, assign CSS classes to694
characters, mapping in HTML660
conversion for HTML 431
decimal value for character mapping661
Mif2Go support for, understanding659
processing for FrameMaker 8659
space after, in RTF148
values in numeric entity references658

<Unique ID> tag in MIF 117, 119

UNIX server, relative path to graphics705

<$_until> , control structure for macros815, 816

updating references before converting126

upper , macro string operator818

UsePxSuffix , [Graphics] keyword 519

user variables
FrameMaker, using in macros802
Mif2Go , for run-time values941

UTF-8 character encoding460

V
validating HTML documents431, 453

valign and align , automatically generated, exclud-
ing from HTML table cells 464, 739

variable-key configuration sections
for cross-reference formats, listed 928
for HTML graphics properties, listed 930
for HTML table properties, listed 928
for text formats, listed 926
vs. fixed-key 104

variable-key settings, overriding925

variables, see:
variables, FrameMaker
variables, Mif2Go configuration
variables, Mif2Go macro
variables, Mif2Go user
variables, environment

variables, environment
%OMSYSHOME%, creating 55

variables, FrameMaker
converting to DITA XML 530
Running H⁄F, converting to RTF 156
system, converting to text114, 157, 437
table, eliminating for HTML 748
user, in macros for HTML802
values applied at run time123

variables, Mif2Go configuration
assigning macros and variables to923
assigning values to922
capturing settings with809

variables, Mif2Go macro
See also macro variables803
assigning paragraph content to803
assigning values to797
incrementing and decrementing799
list, using in expressions818
list, working with 806
nesting 798
predefined

all, listed 800
for extracts, listed 603
for splits and extracts, listed 601

starting values for797

variables, Mif2Go macro, predefined
listed 800
uses for 800

variables, Mif2Go user
for run-time values 941
predefined, in system commands939

version control, checking files in and out of979

version of Mif2Go
command-line 995
how to find 1034

Vista, Microsoft, support for WinHelp200

$$_volnum , macro variable801

W
W3C

HTML 4 specification 429
placement of <tfoot> elements 733

WAI
abbr attribute

assigning to a paragraph format768

W MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1130 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

assigning with a special marker772
assigning with a special paragraph772

attributes
assigning to paragraph formats756, 767
assigning values to769
comparing ways to specify755
for links 758
image 756
image, assigning to a paragraph format757
image, custom markers for757
specifying with paragraph formats755, 756
supplying as paragraph content756
table, custom markers for762
using custom markers for756
using special paragraphs for772

axis attribute
assigning to a paragraph format768
assigning with a special marker772
assigning with a special paragraph772

cells
header, group properties of766
identifying 770
identifying by row and column782
overriding default settings784
tags for, assigning with paragraph formats

770
ColGroup cell, defined 766
column groups, defining766
guidelines

for images 757
for links 758
for tables 760

id attribute, assigning with a special marker772
id/headers method for table cells777
link attributes, assigning to a paragraph format

758
markup

for images 756, 1014
for links 758, 1016
for tables 759, 1013

row groups, defining767
RowGroup cell, defined 767
scope attribute

assigning to a paragraph format769
assigning with a special marker772

span attributes780
summary attribute760
table markup, see tables: HTML, WAI markup
title attribute 760

warnings, logging as conversion events115

wash files via MIF 1005, 1032

watermark, as background image for HTML725

$$_wcount , macro variable801, 816

Web Accessibility Initiative, see WAI

Web browsers, see browsers

Web Works Help 200

WebHelp
evaluating 201
from HTML Help and RoboHelp200, 216

Web-safe colors, see colors, Web-safe

while loops in macros for HTML816

<$_while> , control structure for macros815, 816

white text
hiding

for HTML output 652
for RTF output 173

showing
for callouts 190

whitespace, preserving
in DITA block elements 499
in HTML output 670

wildcards, using
in configuration settings106, 113
in DCL commands 1001
in font names for HTML 664
in HTML special-character mappings660
to identify tables for HTML 728
to specify table sets for HTML730

window
browser, opening another451
JavaHelp main, naming394
WinHelp main, naming291

Window , custom marker for HTML Help secondary
windows 833

Windows metafiles (WMFs)137
See also metafiles; WMF graphics
embedding bitmap graphics in886

Windows Registry
browser command for OmniHelp CSH calls366
CHM files, registering 335
key for CLSID for runfm 992

windows, pop-up
See also pop-ups
HTML Help 226, 305
HTML, require JavaScript616
JavaHelp 226, 394, 396

SUBJECT INDEX X

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ALL RIGHTS RESERVED. 2013 MAY 18 1131

OmniHelp 226, 360
Oracle Help 226, 399
WinHelp 273

windows, secondary
See also secondary windows
HTML Help 317

defining 317
jumping to from a topic 318
jumping to from contents or index318

JavaHelp
jumping to 399
using a macro for393

OmniHelp, jumping to 360
Oracle Help, jumping to399
WinHelp

jumping to 277
not jumping to from contents291

winguide.pdf , FDK Platform Guide for Windows
992

WinHelp
advantages and disadvantages of200
compiling

for delivery 971
from Help Workshop 251
via Mif2Go 89, 971, 250

contents levels, setting209
contents, configuring288
conversion files, location of1022
conversion template for246
elements, identified with character formats933
file name restriction 66
files, identifying 288
generating 243

cross references259
footnotes 258
pop-ups from table cells263
reference frames253
run-in headings252
sidehead formats252
special characters254
tables 261
topics from table rows262

index entries, maximum length of212
macros, invoking 284
overview topic, renaming or eliminating290
platform-specific settings247
project file, naming 248
titles, identifying 288
topics

creating 267

from table rows 262
starting, specifying 245

using for HTML Help pop-ups307

WinHelp 2000, producing via WinHelp 4200

WinMerge, file comparison tool60

WinZip add-on for archiving deliverables973

WMF graphics
See also metafiles
export format 130, 884
for WinHelp

files, location of 1022
GDI resource problem with264

limitations of 870

Word
bookmarks for every ObjectID183
conversion files, location of1022
cross-reference markers, eliminating114
graphics imported from, extracting886
template, specifying148
using for review 144, 943
version 2000, converting to192
version 8, configuring for149
versions of, adjusting for149

WordPerfect conversion files, location of1022

.wpg files, exporting 881

wrap
and ship conversion output955
text around graphics, for Word191
text lines in <pre> tags for HTML 670

wrap directory, see assembly directory

_wrap , default assembly directory204, 957

wrapping DITA topics in <dita> elements 521

wzzip.exe

for archiving deliverables973
for packaging Eclipse Help topic files419

X
XHTML

declaration, suppressing436
DocType and DTD 430
encoding, specifying432
for Confluence 4.x, generating449
OmniHelp viewer files 369
tagging for HTML output 428
using instead of HTML 424

XML

Y MIF2GO USER’S GUIDE

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1132 2013 MAY 18 COPYRIGHT © 1999-2012 OMNI SYSTEMS, INC.

comments, inserting with markers839
content type, specifying461
file extension, specifying427, 460
from unstructured documents462
line breaks in, suppressing437, 461
links, managing 467
list types, from unstructured text466
output settings, specifying460
structure, providing 461
tag names, deriving from CSS462
tags, providing 461
version, specifying 460
within HTML 647
XSLT processing 458

.xml

default XML file extension 427
files for JavaHelp, location of1025

$$_xrefid , macro variable615, 801

<XRefSrcText> tag in MIF 117, 119

XSLT
using for XML structure 458
using to produce DITA XML 474
using to produce DocBook XML558

Y
Y: No entries

Z
ZIP command for Eclipse Help419

	Contents
	Figures
	Tables
	About this guide
	Availability
	New information
	Colophon

	1 Getting started with Mif2Go
	1.1 What you need to know
	1.1.1 How Mif2Go is organized
	1.1.2 File, directory, and path names
	1.1.3 Output types you can specify
	1.1.4 Languages and character sets

	1.2 What you need to have
	1.3 What you need to do
	1.3.1 Set up a framework for Omni Systems applications
	1.3.2 Download a Mif2Go distribution
	1.3.3 Install Mif2Go
	1.3.4 Make Omni Systems executables accessible
	1.3.5 Obtain tools for Help systems or eBooks
	1.3.6 Establish system-wide configuration settings
	1.3.7 Locate document-specific settings
	1.3.8 Obtain a file comparison tool (optional)
	1.3.9 Download the Mif2Go User’s Guide (optional)

	1.4 How to update Mif2Go
	1.4.1 Change from the evaluation version to a licensed version
	1.4.2 Update your Mif2Go installation
	1.4.3 Try out Mif2Go beta executables

	1.5 How Mif2Go works
	1.6 How to start and stop Mif2Go
	1.7 How to work with Mif2Go
	1.8 How to uninstall Mif2Go

	2 Planning a conversion project
	2.1 Naming files, directories, and paths
	2.2 Naming FrameMaker formats
	2.3 Understanding Mif2Go configuration files
	2.4 Importing formats from a conversion template
	2.5 Preparing documents for conversion
	2.5.1 Updating your document in FrameMaker
	2.5.2 Planning for graphics processing
	2.5.3 Replacing embedded graphics with referenced graphics
	2.5.4 Setting up cross references to and from text insets
	2.5.5 Creating hotspots for hypertext links
	2.5.6 Producing a single output file from a FrameMaker book
	2.5.7 Preparing a structured document for conversion

	2.6 Establishing a conversion environment
	2.7 Setting up multiple interlinked HTML projects
	2.8 Preparing deliverables after conversion

	3 Converting a book or document
	3.1 Checking set-up and conversion requirements
	3.2 Starting Mif2Go
	3.3 Creating a Mif2Go conversion project
	3.4 Choosing project set-up options
	3.4.1 Importing formats from a FrameMaker template
	3.4.2 Converting FrameMaker system variables to text
	3.4.3 Generating and updating your document
	3.4.4 Including FrameMaker-generated files
	3.4.5 Understanding configuration settings for general set-up options
	3.4.6 Choosing output-specific set-up options

	3.5 Understanding how Mif2Go sets up a project
	3.6 Converting documents
	3.7 Choosing final conversion options
	3.7.1 Understanding how export options work
	3.7.2 Specifying output type and file extension
	3.7.3 Choosing input source and disposition
	3.7.4 Figuring out graphics export options
	3.7.5 Choosing postprocessing options

	4 Editing configuration files
	4.1 Working with Mif2Go configuration files
	4.2 Editing files with the Configuration Manager
	4.2.1 Understanding how to use the Configuration Manager
	4.2.2 Starting the Configuration Manager
	4.2.3 Setting Configuration Manager preferences
	4.2.4 Establishing a starting point
	4.2.5 Choosing a configuration category or file type
	4.2.6 Understanding variable vs. fixed names and keys
	4.2.7 Choosing the kind of change to make
	4.2.8 Selecting a configuration section
	4.2.9 Selecting a configuration setting
	4.2.10 Selecting a configuration file
	4.2.11 Specifying a final value

	4.3 Understanding where project settings come from
	4.4 Understanding the rules for configuration settings
	4.5 Specifying file paths in configuration settings
	4.6 Using wildcards in configuration settings
	4.7 Commenting out configuration sections
	4.8 Ending a configuration file

	5 Setting basic conversion options
	5.1 Specifying operating settings
	5.1.1 Checking output type and file extension
	5.1.2 Excluding files from book conversions
	5.1.3 Reusing or discarding MIF files
	5.1.4 Reusing or discarding ASCII DCL files
	5.1.5 Checking for broken links in HTML or XML output
	5.1.6 Skipping the Mif2Go Export and Finished dialogs
	5.1.7 Specifying how to treat cases, spaces, and wildcards
	5.1.8 Reordering text flows
	5.1.9 Converting system variables to text
	5.1.10 Preserving Word-generated cross-reference markers

	5.2 Logging conversion events
	5.3 Identifying files and objects
	5.3.1 Understanding how Mif2Go creates identifiers
	5.3.2 Working with FrameMaker ObjectIDs
	5.3.3 Working with FrameMaker cross-reference IDs
	5.3.4 Working with Mif2Go FileIDs

	5.4 Applying FrameMaker conditions and variables
	5.4.1 Applying condition Show/Hide settings
	5.4.2 Replacing values of FrameMaker user variables

	5.5 Converting FrameMaker-generated files
	5.5.1 Converting FrameMaker TOC and IX files
	5.5.2 Preventing conversion of other generated files
	5.5.3 Activating hypertext links in a converted index
	5.5.4 Making See and See also index entries into useful links

	5.6 Generating/updating before converting
	5.7 Processing graphics
	5.7.1 Understanding which graphics are included
	5.7.2 Choosing how to convert graphics
	5.7.3 Choosing when to convert graphics
	5.7.4 Identifying exported graphics files

	5.8 Converting structured documents
	5.9 Converting equations
	5.9.1 Understanding how equations are processed
	5.9.2 Specifying equation size and DPI
	5.9.3 Specifying equation output format
	5.9.4 Providing a file-name suffix for equations
	5.9.5 Positioning equations in RTF output

	5.10 Creating hotspots for hypertext links
	5.10.1 Delimiting a hotspot with a character format
	5.10.2 Making an entire paragraph into a hotspot
	5.10.3 Delimiting a hotspot with a color

	5.11 Repurposing FrameMaker markers

	6 Converting to print RTF
	6.1 Converting to Word: a one-way street
	6.1.1 Understanding differences in implementation
	6.1.2 Understanding differences in file sizes
	6.1.3 Understanding why round-tripping is not an option
	6.1.4 Migrating a document from FrameMaker to Word
	6.1.5 Developing a workflow using Word for reviews

	6.2 Setting up a print RTF project
	6.2.1 Creating a print RTF project
	6.2.2 Choosing set-up options for a print RTF project
	6.2.3 Specifying output file extension
	6.2.4 Specifying the default output language and code page
	6.2.5 Constraining the number of bookmarks in Word
	6.2.6 Importing a Word template

	6.3 Adjusting output for different versions of Word
	6.4 Converting a FrameMaker book to print RTF
	6.5 Specifying document layout options
	6.5.1 Understanding page layout restrictions
	6.5.2 Eliminating large top or bottom margins
	6.5.3 Using text frames to solve spacing problems
	6.5.4 Maintaining pagination in Word
	6.5.5 Managing page and section breaks
	6.5.6 Specifying columns and gaps
	6.5.7 Adjusting sidehead width for Word
	6.5.8 Converting footnotes
	6.5.9 Converting headers and footers
	6.5.10 Converting special text flows for RTF output
	6.5.11 Handling different page size or orientation

	6.6 Converting system variables to text for RTF
	6.7 Converting paragraph and character formats
	6.7.1 Mapping paragraph formats to RTF styles
	6.7.2 Merging paragraph formats
	6.7.3 Converting sidehead formats
	6.7.4 Converting run-in headings
	6.7.5 Converting autonumbered formats
	6.7.6 Converting bulleted formats
	6.7.7 Converting reference frames for Word
	6.7.8 Converting character formats
	6.7.9 Removing unused formats

	6.8 Converting tabs and spaces
	6.8.1 Understanding differences in tab behavior
	6.8.2 Understanding differences in spaces
	6.8.3 Altering tab behavior for Word output
	6.8.4 Altering font metrics to adjust tabs

	6.9 Specifying font usage
	6.9.1 Setting default font parameters
	6.9.2 Remapping fonts
	6.9.3 Specifying font types
	6.9.4 Specifying font encoding for non-Western characters
	6.9.5 Specifying font encoding for FrameMaker 8 Unicode
	6.9.6 Removing unused fonts

	6.10 Modifying text appearance
	6.10.1 Adjusting line spacing
	6.10.2 Adjusting paragraph spacing
	6.10.3 Adjusting small caps
	6.10.4 Specifying a style for quotes
	6.10.5 Mapping high ASCII characters for RTF output
	6.10.6 Specifying text color
	6.10.7 Hiding white text
	6.10.8 Hiding content in Word
	6.10.9 Omitting content from RTF output
	6.10.10 Replacing content in RTF output

	6.11 Converting cross references and hypertext links
	6.11.1 Including ObjectIDs for Word links and cross references
	6.11.2 Converting cross references to Word
	6.11.3 Converting hypertext links to Word
	6.11.4 Locking hypertext links to allow revision tracking
	6.11.5 Enabling interfile cross references and hypertext links
	6.11.6 Replacing building blocks in master-page references

	6.12 Converting generated files to print RTF
	6.12.1 Specifying which generated files to convert
	6.12.2 Activating links in converted index and list files
	6.12.3 Making the entire text of each list entry an active link
	6.12.4 Ensuring link targets are present in RTF output
	6.12.5 Correcting <$nopage> index links

	6.13 Converting tables to print RTF
	6.14 Managing graphics for print RTF
	6.14.1 Understanding graphics requirements for Word
	6.14.2 Converting referenced graphics
	6.14.3 Converting embedded graphics
	6.14.4 Limiting bitmap resolution and color depth
	6.14.5 Managing callouts added to graphics
	6.14.6 Positioning graphics and wrapping text
	6.14.7 Preserving graphics scale in Word
	6.14.8 Accommodating graphics in multiple versions of Word
	6.14.9 Including file names of referenced graphics in Word
	6.14.10 Linking instead of embedding referenced graphics
	6.14.11 Embedding graphics in converted RTF files
	6.14.12 Updating fields in Word to show linked graphics

	6.15 Including RTF code for Word output
	6.16 Turning on revision tracking in Word
	6.17 Managing Word output after conversion
	6.17.1 Supporting more than one version of Word
	6.17.2 Including index terms in Word
	6.17.3 Producing ASCII text from a converted Word document
	6.17.4 Combining RTF files into a Word master document
	6.17.5 Checking print RTF output files for Mif2Go version

	6.18 Converting to OpenOffice or StarOffice

	7 Producing on-line Help
	7.1 Weighing Help-system alternatives
	7.1.1 Considering Help-system features
	7.1.2 Understanding the effects of mid-topic links
	7.1.3 Evaluating Microsoft Windows Help (WinHelp)
	7.1.4 Evaluating Microsoft HTML Help
	7.1.5 Evaluating WebHelp
	7.1.6 Evaluating OmniHelp
	7.1.7 Evaluating JavaHelp and Oracle Help for Java
	7.1.8 Evaluating Eclipse Help

	7.2 Setting up a Help system project
	7.2.1 Checking automatic Help topic assignments
	7.2.2 Configuring run-in paragraphs
	7.2.3 Specifying additional processing after conversion
	7.2.4 Compiling and distributing Help systems

	7.3 Producing contents and index for Help systems
	7.3.1 Understanding how Mif2Go produces contents and index
	7.3.2 Including FrameMaker TOC and IX in Help systems
	7.3.3 Grouping contents entries
	7.3.4 Modifying contents or index production for HTML-based Help
	7.3.5 Modifying contents or index production for WinHelp

	7.4 Configuring contents entries for Help systems
	7.4.1 Understanding how contents levels are assigned
	7.4.2 Setting contents levels for WinHelp
	7.4.3 Including contents entries in HTML-based Help
	7.4.4 Setting contents levels for HTML-based Help

	7.5 Configuring index entries for Help systems
	7.5.1 Understanding how Mif2Go creates Help index entries
	7.5.2 Preparing index entries for Microsoft Help Viewer
	7.5.3 Limiting length of index entries for HTML Help or WinHelp
	7.5.4 Omitting intermediate index-range entries
	7.5.5 Treating commas as potential index level separators
	7.5.6 Combining index levels for HTML-based Help
	7.5.7 Configuring See and See also entries for HTML-based Help
	7.5.8 Specifying index link destinations for HTML-based Help
	7.5.9 Customizing index sort order

	7.6 Providing related-topic links for Help systems
	7.6.1 Understanding related-topic links
	7.6.2 Understanding how ALinks work
	7.6.3 Understanding how KLinks work
	7.6.4 Adding related-topic link keywords in FrameMaker
	7.6.5 Adding ALink and KLink jumps in FrameMaker
	7.6.6 Creating target-and-jump ALinks for HTML-based Help
	7.6.7 Specifying ALink and KLink list-link destinations

	7.7 Jumping to secondary windows in Help systems
	7.7.1 Assigning secondary windows for WinHelp
	7.7.2 Assigning secondary windows for HTML-based Help

	7.8 Creating pop-up topics for Help systems
	7.8.1 Understanding pop-up hotspots, links, and topics
	7.8.2 Defining a pop-up hotspot
	7.8.3 Displaying a topic in a pop-up window

	7.9 Including expandable sections in Help topics
	7.9.1 Understanding Mif2Go expandable drop-down sections
	7.9.2 Setting up expandable sections for your document
	7.9.3 Delimiting expandable drop-down sections
	7.9.4 Configuring drop-down links
	7.9.5 Configuring drop-down blocks
	7.9.6 Providing CSS for drop-down links and blocks
	7.9.7 Deploying JavaScript code for drop-down sections
	7.9.8 Emulating Web Works Publisher drop-down hotspots

	7.10 Setting up Context Sensitive Help (CSH)
	7.10.1 Understanding how CSH works
	7.10.2 Specifying CSH mappings

	7.11 Setting up a dynamic modular Help system

	8 Generating WinHelp
	8.1 Obtaining tools for WinHelp
	8.2 Setting up a WinHelp project
	8.2.1 Setting up a WinHelp project
	8.2.2 Choosing set-up options for a WinHelp project
	8.2.3 Deciding where to locate configuration settings
	8.2.4 Preparing a document for conversion to WinHelp
	8.2.5 Understanding initial set-up requirements
	8.2.6 Deciding whether to regenerate the WinHelp project file
	8.2.7 Accommodating platform differences
	8.2.8 Setting basic WinHelp options in the configuration file
	8.2.9 Including ObjectIDs in WinHelp
	8.2.10 Handling page breaks and section breaks
	8.2.11 Providing multiple .hlp files
	8.2.12 Integrating WinHelp from RoboHelp
	8.2.13 Compiling a WinHelp project
	8.2.14 Checking WinHelp RTF files for Mif2Go version

	8.3 Converting text
	8.3.1 Converting formats for WinHelp
	8.3.2 Converting special characters
	8.3.3 Removing unused formats and fonts
	8.3.4 Converting autonumbers
	8.3.5 Replacing paragraph or character content
	8.3.6 Specifying text color
	8.3.7 Converting footnotes

	8.4 Converting cross references
	8.4.1 Creating help context markers
	8.4.2 Specifying cross-reference destination files
	8.4.3 Specifying cross-reference jump destinations
	8.4.4 Specifying WinHelp options for cross-reference formats
	8.4.5 Limiting cross-reference text

	8.5 Converting tables to WinHelp RTF
	8.5.1 Positioning tables and table titles
	8.5.2 Adjusting table appearance
	8.5.3 Converting table rows to topics and table cells to pop-ups

	8.6 Managing graphics for WinHelp
	8.6.1 Choosing a graphics format for WinHelp
	8.6.2 Avoiding the GDI resource leak
	8.6.3 Positioning graphics in WinHelp
	8.6.4 Displaying graphics in pop-ups for WinHelp

	8.7 Converting generated files for WinHelp
	8.7.1 Converting lists of paragraph references
	8.7.2 Converting indexes and lists of marker references

	8.8 Configuring WinHelp topics
	8.8.1 Creating WinHelp topics
	8.8.2 Assigning properties to formats for topics and hotspots
	8.8.3 Configuring topic titles for WinHelp

	8.9 Creating jumps and pop-ups for WinHelp
	8.9.1 Identifying WinHelp jump destinations with FileIDs
	8.9.2 Configuring pop-up topics
	8.9.3 Creating hotspots for jumps and pop-ups in WinHelp
	8.9.4 Using cross references for jumps and pop-ups
	8.9.5 Using hypertext links for jumps and pop-ups
	8.9.6 Disallowing hypertext links for jumps and pop-ups
	8.9.7 Specifying jumps to secondary windows in WinHelp
	8.9.8 Specifying jumps to external files
	8.9.9 Using the same content for both normal topics and pop-ups
	8.9.10 Creating a glossary pop-up: an example
	8.9.11 Configuring alternative jumps and pop-ups
	8.9.12 Specifying the scope of alternative jumps and pop-ups

	8.10 Invoking WinHelp macros
	8.10.1 Using a hypertext marker to invoke a macro
	8.10.2 Assigning a hotspot property to invoke a macro

	8.11 Creating related-topic links in WinHelp
	8.11.1 Understanding KLink limitations
	8.11.2 Adding ALinks and KLinks with markers
	8.11.3 Adding related-topic keywords with formats
	8.11.4 Inserting WinHelp macros for ALink jumps

	8.12 Configuring index entries for WinHelp
	8.12.1 Designating index level separators
	8.12.2 Eliminating duplicate keywords
	8.12.3 Keeping or discarding “See also” entries
	8.12.4 Using FrameMaker Index markers

	8.13 Configuring contents for WinHelp
	8.13.1 Naming and configuring Help files and titles
	8.13.2 Specifying heading formats and levels for contents
	8.13.3 Assembling WinHelp contents from the command line

	8.14 Creating browse sequences
	8.14.1 Setting up an automatic browse sequence
	8.14.2 Specifying browse numbers
	8.14.3 Setting up multi-file browse sequences
	8.14.4 Setting up branching browse sequences

	9 Generating Microsoft HTML Help
	9.1 Understanding how Mif2Go produces HTML Help
	9.2 Understanding why Unicode is not the answer
	9.3 Setting up an HTML Help project
	9.3.1 Creating an HTML Help project
	9.3.2 Choosing set-up options for an MS HTML Help project
	9.3.3 Deciding where to locate configuration settings
	9.3.4 Organizing source files for HTML Help
	9.3.5 Specifying a project title for HTML Help
	9.3.6 Deciding whether to compile HTML Help
	9.3.7 Naming project and compiled files for HTML Help
	9.3.8 Specifying a starting topic file for HTML Help
	9.3.9 Regenerating the HTML Help project file
	9.3.10 Locating graphics files for HTML Help

	9.4 Customizing HTML Help display features
	9.4.1 Using CSS and font tags with HTML Help
	9.4.2 Eliminating graphic and table indents from HTML Help
	9.4.3 Adding tabs and toolbar buttons to HTML Help
	9.4.4 Adding expandable sections to HTML Help

	9.5 Creating pop-ups for HTML Help
	9.5.1 Using HTML Help for pop-ups
	9.5.2 Using KeyHelp for pop-ups
	9.5.3 Using WinHelp for pop-ups

	9.6 Creating links and hypertext jumps in HTML Help
	9.6.1 Creating hypertext jumps to other CHM files
	9.6.2 Specifying href link syntax for HTML Help
	9.6.3 Linking to external files from compiled HTML Help

	9.7 Creating related-topic links for HTML Help
	9.7.1 Adding ALink keywords for HTML Help
	9.7.2 Adding ALink and KLink jumps for HTML Help
	9.7.3 Configuring ALink and KLink jumps for HTML Help
	9.7.4 Rolling your own macros for ALink jumps in HTML Help
	9.7.5 Using the same format or marker for ALink keywords and jumps
	9.7.6 Creating buttons for other types of related-topic links

	9.8 Using secondary windows in HTML Help
	9.8.1 Defining secondary windows for HTML Help
	9.8.2 Jumping from a topic to a secondary window
	9.8.3 Jumping from contents or index to a secondary window

	9.9 Generating contents and index for HTML Help
	9.9.1 Choosing how to generate HTML Help contents and index
	9.9.2 Choosing whether to generate binary contents or index
	9.9.3 Generating contents and index with HTML Help Workshop
	9.9.4 Generating contents and index with Mif2Go
	9.9.5 Configuring contents entries for HTML Help
	9.9.6 Providing mid-topic contents links in HTML Help
	9.9.7 Making the TOC track index links in HTML Help
	9.9.8 Customizing contents and index for HTML Help

	9.10 Converting generated files for HTML Help
	9.10.1 Converting lists of paragraph references
	9.10.2 Converting lists of marker references

	9.11 Providing full-text search (FTS) for HTML Help
	9.12 Setting up CSH for HTML Help
	9.12.1 Inserting CSH destinations in your document
	9.12.2 Determining whether you need map and alias files
	9.12.3 Specifying and generating a map file for CSH links
	9.12.4 Creating an alias file for CSH links
	9.12.5 Understanding alias-file entries
	9.12.6 Producing a list of aliases and associated topic titles

	9.13 Generating HTML Help in non-Western languages
	9.13.1 Converting from Unicode to Windows code pages
	9.13.2 Specifying locale and language for HTML Help
	9.13.3 Preventing inclusion of Unicode numeric references
	9.13.4 Coping with FrameMaker index-entry conversion defects

	9.14 Compiling and testing HTML Help
	9.14.1 Directing Mif2Go to run the HTML Help compiler
	9.14.2 Copying output files and compiling later
	9.14.3 Compiling in a different language
	9.14.4 Testing HTML Help generation
	9.14.5 Registering your HTML Help system for network use

	9.15 Mapping and merging CHM files
	9.15.1 Interlinking multiple CHM files
	9.15.2 Synchronizing TOC references to slave CHM files
	9.15.3 Putting up with a binary index for merged CHM files
	9.15.4 Merging CHM files
	9.15.5 Comparing HHW settings for stand-alone vs. merged CHMs

	10 Generating OmniHelp
	10.1 Understanding how OmniHelp works
	10.2 Setting up OmniHelp viewer control files
	10.2.1 Choosing XHTML vs. HTML OmniHelp control files
	10.2.2 Making OmniHelp viewer control files available
	10.2.3 Customizing OmniHelp viewer control files
	10.2.4 Examining generated control and data files

	10.3 Setting up an OmniHelp project
	10.3.1 Creating an OmniHelp project
	10.3.2 Choosing set-up options for an OmniHelp project
	10.3.3 Deciding where to locate configuration settings
	10.3.4 Naming your OmniHelp project
	10.3.5 Giving your OmniHelp project a title
	10.3.6 Specifying the starting topic
	10.3.7 Specifying memory requirements
	10.3.8 Removing paths from interfile links for OmniHelp
	10.3.9 Getting OmniHelp supporting files in the right place

	10.4 Using CSS with OmniHelp
	10.4.1 Specifying CSS for topics in OmniHelp
	10.4.2 Understanding how CSS works in OmniHelp topics
	10.4.3 Specifying CSS for OmniHelp navigation frames

	10.5 Customizing OmniHelp display features
	10.5.1 Configuring OmniHelp window usage and frameset dimensions
	10.5.2 Altering OmniHelp top navigation frame content
	10.5.3 Modifying OmniHelp navigation aids
	10.5.4 Choosing whether to use cookies for OmniHelp
	10.5.5 Localizing the OmniHelp interface
	10.5.6 Modifying OmniHelp CSS classes
	10.5.7 Modifying the OmniHelp template

	10.6 Choosing navigation features for OmniHelp
	10.7 Configuring contents and index for OmniHelp
	10.7.1 Understanding OmniHelp contents and index creation
	10.7.2 Choosing whether to use expanding contents or index
	10.7.3 Choosing how far to expand contents and index subentries
	10.7.4 Providing alternate expansion icons for contents or index
	10.7.5 Excluding Open All and Close All buttons
	10.7.6 Redirecting See and See also index entries

	10.8 Providing related-topic links in OmniHelp
	10.9 Jumping to secondary windows in OmniHelp
	10.10 Configuring full-text search for OmniHelp
	10.10.1 Understanding how OmniHelp FTS works
	10.10.2 Generating search data
	10.10.3 Making compound terms searchable
	10.10.4 Supporting search for non-ANSI text
	10.10.5 Specifying length of search terms
	10.10.6 Excluding search terms
	10.10.7 Excluding content from being searched
	10.10.8 Using regular expressions in search
	10.10.9 Highlighting search terms found in topics

	10.11 Setting up CSH for OmniHelp
	10.11.1 Specifying alias prefixes for OmniHelp CSH calls
	10.11.2 Referencing OmniHelp topic IDs from an application
	10.11.3 Using redirect pages for OmniHelp CSH calls
	10.11.4 Executing browser commands for OmniHelp CSH calls

	10.12 Merging OmniHelp projects
	10.12.1 Understanding the OmniHelp merge process
	10.12.2 Listing and mapping OmniHelp subprojects
	10.12.3 Providing TOC placeholders for OmniHelp subprojects
	10.12.4 Deciding when to merge OmniHelp subprojects

	10.13 Assembling OmniHelp files for viewing
	10.14 Deploying OmniHelp
	10.14.1 Starting with the default topic or a specified topic
	10.14.2 Restarting where you left off
	10.14.3 Coping with browser quirks

	11 Generating JavaHelp or Oracle Help
	11.1 Deciding which Java Help system to use
	11.2 Obtaining tools for a Java-based Help system
	11.3 Setting up a JavaHelp or Oracle Help project
	11.3.1 Creating a JavaHelp or Oracle Help for Java project
	11.3.2 Choosing set-up options for a JavaHelp or Oracle Help project
	11.3.3 Deciding where to locate configuration settings
	11.3.4 Specifying output options for JavaHelp
	11.3.5 Establishing a JavaHelp environment
	11.3.6 Establishing an Oracle Help environment
	11.3.7 Creating a directory structure for JavaHelp / Oracle Help
	11.3.8 Configuring the helpset file
	11.3.9 Coping with JavaHelp / Oracle Help viewer limitations
	11.3.10 Compiling JavaHelp with Helen

	11.4 Generating contents and index
	11.4.1 Configuring contents entries for JavaHelp or Oracle Help
	11.4.2 Assigning TOC images and expansion levels in JavaHelp 2
	11.4.3 Configuring index entries for JavaHelp or Oracle Help
	11.4.4 Eliminating index-marker artifacts from text
	11.4.5 Locating JavaHelp or Oracle Help contents and index files

	11.5 Providing full-text search for JavaHelp / Oracle Help
	11.5.1 Including a search-index link in the helpset file
	11.5.2 Creating a search index for JavaHelp
	11.5.3 Creating a search index for Oracle Help

	11.6 Creating and viewing a Java Archive (JAR) file
	11.6.1 Creating a JAR file
	11.6.2 Viewing a JAR file

	11.7 Converting a glossary to JavaHelp 2
	11.7.1 Evaluating glossary usability
	11.7.2 Assigning glossary properties
	11.7.3 Configuring glossary IDs
	11.7.4 Eliminating glossary entries from the JavaHelp TOC

	11.8 Defining windows for JavaHelp or Oracle Help
	11.8.1 Specifying window parameters for JavaHelp 2
	11.8.2 Specifying window parameters for Oracle Help
	11.8.3 Jumping to secondary windows in JavaHelp or Oracle Help

	11.9 Linking to destinations within topics
	11.10 Creating ALinks for Oracle Help
	11.11 Merging JavaHelp or Oracle Help systems
	11.12 Setting up CSH for JavaHelp or Oracle Help

	12 Generating Eclipse Help
	12.1 Understanding how Eclipse Help works
	12.2 Setting up an Eclipse Help project
	12.2.1 Creating an Eclipse Help project
	12.2.2 Choosing set-up options for an Eclipse Help project
	12.2.3 Deciding where to locate configuration settings
	12.2.4 Specifying Eclipse Help output options
	12.2.5 Making sure links work in Eclipse Help
	12.2.6 Disabling breadcrumb trails in Eclipse Help

	12.3 Configuring Eclipse Help manifest files
	12.3.1 Specifying a Java manifest file for Eclipse Help
	12.3.2 Specifying Eclipse Help plug-in properties
	12.3.3 Configuring the Java manifest file for Eclipse Help
	12.3.4 Configuring the plug-in manifest file for Eclipse Help

	12.4 Configuring contents and index for Eclipse Help
	12.4.1 Choosing contents and index methods for Eclipse Help
	12.4.2 Supplying path information for contents and index links
	12.4.3 Encoding special characters for contents and index entries
	12.4.4 Configuring contents properties for Eclipse Help
	12.4.5 Configuring index properties for Eclipse Help

	12.5 Configuring search properties for Eclipse Help
	12.6 Merging Eclipse Help projects
	12.6.1 Linking primary content to secondary TOCs
	12.6.2 Linking secondary TOCs to primary content (deprecated)

	12.7 Setting up CSH for Eclipse Help
	12.7.1 Understanding how Mif2Go generates context links
	12.7.2 Naming context file and attribute for secondary plug-ins
	12.7.3 Configuring context IDs and context anchors
	12.7.4 Configuring context descriptions
	12.7.5 Locating context information

	12.8 Packaging Eclipse Help files
	12.8.1 Specifying a ZIP command for doc.zip
	12.8.2 Specifying ZIP command parameters
	12.8.3 Specifying a JAR command for doc.jar
	12.8.4 Monitoring the packaging step for errors
	12.8.5 Archiving Eclipse Help files

	13 Converting to HTML/XHTML
	13.1 Deciding which type of output to produce
	13.2 Setting up an HTML project
	13.2.1 Creating an HTML or XHTML project
	13.2.2 Choosing set-up options for an HTML or XHTML project
	13.2.3 Preparing a document for conversion to HTML or XHTML
	13.2.4 Specifying a different output file extension
	13.2.5 Checking automatic settings for HTML or XML split files
	13.2.6 Establishing a conversion workflow for HTML
	13.2.7 Checking HTML output files for broken links
	13.2.8 Checking HTML or XML output files for Mif2Go version
	13.2.9 Using XHTML tagging rules for HTML

	13.3 Including starting code and entity references
	13.4 Supplying values for the <head> element
	13.4.1 Specifying HTML/XML version, DOCTYPE, and DTD
	13.4.2 Specifying namespace and language
	13.4.3 Specifying character encoding for HTML
	13.4.4 Including or omitting HTML/XML generator information
	13.4.5 Specifying page titles for HTML output files
	13.4.6 Supplying content for the <meta> tag
	13.4.7 Specifying nonstandard values for declarations

	13.5 Specifying HTML <body> attributes
	13.6 Specifying document-wide properties for HTML
	13.6.1 Specifying a default DPI setting
	13.6.2 Converting system variables to text for HTML
	13.6.3 Suppressing closing </p> tags for HTML
	13.6.4 Suppressing line breaks in HTML and XML output
	13.6.5 Preventing adjacent <pre> elements from merging

	13.7 Defining and mapping colors for HTML
	13.7.1 Converting colors
	13.7.2 Mapping FrameMaker colors to new values
	13.7.3 Defining new colors
	13.7.4 Using Web-safe colors
	13.7.5 Redefining colors via conversion template
	13.7.6 Understanding CMYK-to-RGB conversion anomalies

	13.8 Converting generated files for HTML
	13.8.1 Converting FrameMaker IX and other marker lists
	13.8.2 Converting FrameMaker TOC and other paragraph lists

	13.9 Importing HTML files as insets
	13.10 Converting conditions to HTML attributes
	13.10.1 Understanding how Mif2Go converts conditions
	13.10.2 Mapping FrameMaker conditions to HTML attributes
	13.10.3 Displaying condition indicators in HTML with CSS

	13.11 Providing hover text for terms in HTML
	13.12 Generating XHTML for Confluence 4.x
	13.13 Exporting content for database input
	13.14 Using framesets
	13.15 Adding a “Made with Mif2Go” label or button
	13.16 Passing W3C validation tests
	13.16.1 Understanding limitations of W3C validation
	13.16.2 Replacing high ASCII characters for W3C validation
	13.16.3 Eliminating <nobr> tags
	13.16.4 Removing full-row straddles from tables
	13.16.5 Avoiding redundant attribute assignments in tables
	13.16.6 Eliminating duplicate ObjectIDs

	14 Converting to generic XML
	14.1 Understanding how Mif2Go generates XML output
	14.1.1 Accommodating HTML features in XML output
	14.1.2 Introducing structure with Mif2Go
	14.1.3 Introducing structure with XSLT
	14.1.4 Creating structure in FrameMaker
	14.1.5 Producing SGML with Mif2Go and XSLT

	14.2 Setting up a generic XML project
	14.3 Specifying generic XML output settings
	14.3.1 Creating a generic XML project
	14.3.2 Changing output XML version or file extension
	14.3.3 Specifying character encoding for generic XML
	14.3.4 Specifying the root element and content type
	14.3.5 Preventing arbitrary line breaks in XML text elements

	14.4 Providing XML tags and structure
	14.4.1 Generating XML from an unstructured document
	14.4.2 Deriving XML tags from format and class names
	14.4.3 Eliminating HTML attributes and tags for generic XML
	14.4.4 Including or excluding FrameMaker autonumbers
	14.4.5 Configuring forced returns for XML

	14.5 Converting FrameMaker lists to generic XML
	14.6 Configuring links for generic XML
	14.7 Converting graphics for generic XML
	14.8 Converting index entries to generic XML
	14.8.1 Configuring index markers for conversion to XML
	14.8.2 Defining macros to process index content

	15 Converting to DITA XML
	15.1 Generating DITA XML with Mif2Go
	15.1.1 Understanding the complexity of a DITA conversion project
	15.1.2 Understanding what you need to know about DITA
	15.1.3 Clarifying your purpose for creating DITA output
	15.1.4 Converting from structured vs. unstructured FrameMaker
	15.1.5 Understanding what information you must supply
	15.1.6 Understanding how Mif2Go generates DITA output
	15.1.7 Creating valid DITA XML output

	15.2 Setting up a DITA XML project
	15.2.1 Creating a DITA XML project
	15.2.2 Choosing set-up options for a DITA XML project
	15.2.3 Specifying DITA output options
	15.2.4 Specifying DITA version
	15.2.5 Configuring the DITA DTD SYSTEM identifier
	15.2.6 Ensuring FrameMaker 8 import compatibility
	15.2.7 Substituting document format names for default names

	15.3 Specifying general options for DITA
	15.4 Configuring DITA elements
	15.4.1 Understanding how Mif2Go delimits DITA elements
	15.4.2 Treating FrameMaker format names as DITA element names
	15.4.3 Mapping paragraph formats to DITA block elements
	15.4.4 Mapping character formats to DITA inline elements
	15.4.5 Assigning multiple typographic elements to a format
	15.4.6 Assigning attributes to DITA elements
	15.4.7 Preserving whitespace in block elements
	15.4.8 Including PIs for line, column, or page breaks
	15.4.9 Providing a <shortdesc> element for a DITA topic
	15.4.10 Converting index markers to <indexterm> elements

	15.5 Nesting DITA block elements
	15.5.1 Understanding how Mif2Go determines element nesting
	15.5.2 Designating DITA ancestor elements
	15.5.3 Fixing up interpolated ancestries
	15.5.4 Deciding when to fully specify ancestry
	15.5.5 Specifying alternate ancestries for the same element
	15.5.6 Avoiding invalid ancestries
	15.5.7 Specifying first-child status for nested elements
	15.5.8 Configuring nested lists
	15.5.9 Closing DITA ancestor elements
	15.5.10 Opening DITA ancestor elements
	15.5.11 Configuring multi-paragraph list items
	15.5.12 Splitting a paragraph into separate DITA elements
	15.5.13 Specifying DITA element levels

	15.6 Converting tables to DITA XML
	15.6.1 Working with Mif2Go DITA table types
	15.6.2 Marking table footer rows for future reference
	15.6.3 Designating ancestors for <table> elements
	15.6.4 Applying attributes to DITA tables
	15.6.5 Configuring DITA table components
	15.6.6 Converting tables used only as image containers
	15.6.7 Omitting table coding entirely

	15.7 Specifying options for images in DITA XML
	15.7.1 Designating ancestors for <image> and <fig> elements
	15.7.2 Specifying what to include in a <fig> wrapper
	15.7.3 Omitting size attributes from images for DITA output
	15.7.4 Providing alternate text for images
	15.7.5 Including MathFullForm equations in <alt> elements
	15.7.6 Including the original image DPI as an attribute
	15.7.7 Understanding why images might look incorrectly scaled

	15.8 Organizing DITA topics
	15.8.1 Understanding when to split, nest, or wrap DITA topics
	15.8.2 Splitting FrameMaker files into DITA topic files
	15.8.3 Renaming DITA topic files
	15.8.4 Nesting DITA topics in unsplit files
	15.8.5 Wrapping DITA topics in a top-level <dita> element

	15.9 Configuring DITA topics
	15.9.1 Designating starting points for DITA topics
	15.9.2 Specifying the DITA topic type
	15.9.3 Specifying the ID for a DITA topic
	15.9.4 Adjusting DITA topic IDs generated from file names
	15.9.5 Specifying alternate titles for a DITA topic
	15.9.6 Omitting a DITA topic from the TOC

	15.10 Configuring cross references and links for DITA
	15.10.1 Understanding how Mif2Go converts cross references
	15.10.2 Specifying an outputclass for cross-reference wrappers
	15.10.3 Linking to elements below topic level
	15.10.4 Retaining cross-reference content in <xref> elements
	15.10.5 Omitting <xref> elements from footnotes
	15.10.6 Overriding <xref> attribute values

	15.11 Exporting FrameMaker variables to DITA XML
	15.11.1 Understanding how Mif2Go represents variables in DITA
	15.11.2 Specifying how to treat FrameMaker variables
	15.11.3 Treating FrameMaker variables as conrefs
	15.11.4 Retaining format properties of user variables in DITA

	15.12 Converting conditions to DITA attributes
	15.12.1 Understanding how Mif2Go converts conditional text
	15.12.2 Mapping FrameMaker conditions to element attributes
	15.12.3 Disallowing condition conversion for selected elements

	15.13 Marking FrameMaker text insets in DITA
	15.14 Including CSH targets in DITA XML
	15.15 Overriding DITA settings with markers

	16 Configuring DITA maps
	16.1 Understanding how Mif2Go generates DITA maps
	16.2 Configuring DITA ditamaps
	16.2.1 Specifying options for ditamaps
	16.2.2 Specifying topic levels in ditamaps
	16.2.3 Accounting for missing topic levels
	16.2.4 Specifying roles for topics in ditamaps
	16.2.5 Adding relationship tables to ditamaps
	16.2.6 Providing navigation aids in ditamaps

	16.3 Constructing a DITA bookmap
	16.3.1 Specifying the type of map for a book
	16.3.2 Specifying <booktitle> information
	16.3.3 Specifying <bookmeta> information
	16.3.4 Extending <part> to include <appendix>
	16.3.5 Choosing whether a bookmap references maps or topics
	16.3.6 Excluding the book-level reltable from a bookmap

	16.4 Mapping FrameMaker files to bookmap components
	16.4.1 Assigning bookmap roles to FrameMaker files
	16.4.2 Assigning frontmatter and backmatter roles and components
	16.4.3 Including multiple booklist components of the same type
	16.4.4 Assigning a divider role to a section file or chapter
	16.4.5 Assigning a series of roles to a single FrameMaker file
	16.4.6 Assigning a single role to a series of FrameMaker files
	16.4.7 Including placeholders for additional bookmap elements

	16.5 Providing attributes for bookmap wrapper elements
	16.6 Overriding DITA map settings with markers

	17 Converting to DocBook XML
	17.1 Generating DocBook XML with Mif2Go
	17.1.1 Understanding what you need to know about DocBook
	17.1.2 Clarifying your purpose for creating DocBook output
	17.1.3 Understanding what information you must supply

	17.2 Setting up a DocBook XML project
	17.2.1 Creating a DocBook project
	17.2.2 Choosing set-up options for a DocBook project
	17.2.3 Specifying DocBook output options

	17.3 Specifying general options for DocBook
	17.3.1 Configuring styles for DocBook XML
	17.3.2 Configuring entity information for DocBook XML
	17.3.3 Configuring links for DocBook XML
	17.3.4 Configuring tables for DocBook XML
	17.3.5 Retaining empty paragraph tags in DocBook table cells
	17.3.6 Configuring footnotes for DocBook XML

	17.4 Configuring DocBook elements
	17.4.1 Treating FrameMaker format names as element names
	17.4.2 Mapping paragraph formats to DocBook elements
	17.4.3 Mapping character formats to DocBook elements
	17.4.4 Assigning ID attributes to DocBook block elements
	17.4.5 Assigning attributes other than ID to DocBook elements

	17.5 Nesting DocBook block elements
	17.5.1 Understanding how Mif2Go determines element nesting
	17.5.2 Designating DocBook ancestor elements
	17.5.3 Fixing up interpolated ancestries
	17.5.4 Deciding when to fully specify ancestry
	17.5.5 Specifying alternate ancestries for the same element
	17.5.6 Specifying first-child status for nested elements
	17.5.7 Specifying full ancestry for nested sections
	17.5.8 Closing DocBook ancestor elements
	17.5.9 Opening DocBook ancestor elements
	17.5.10 Configuring multi-paragraph list items
	17.5.11 Specifying DocBook element levels

	17.6 Designating ancestors for table elements
	17.7 Specifying options for figure elements
	17.7.1 Deciding what to include in a figure element
	17.7.2 Specifying ancestry for figure elements
	17.7.3 Omitting size attributes from images for DocBook

	17.8 Overriding DocBook settings with markers

	18 Splitting and extracting files
	18.1 Splitting versus extracting
	18.2 Splitting files
	18.2.1 Designating split points
	18.2.2 Managing split points
	18.2.3 Combining instead of splitting files

	18.3 Extracting files
	18.3.1 Enabling and disabling extract processing
	18.3.2 Delimiting material to extract

	18.4 Identifying split and extract files
	18.4.1 Understanding how split and extract files are named
	18.4.2 Specifying page titles for split or extract files
	18.4.3 Supplying <meta> text for split or extract files

	18.5 Inserting HTML code in split and extract files
	18.5.1 Choosing how to insert code in extracts
	18.5.2 Assigning code to [Inserts] keywords for splits and extracts
	18.5.3 Using special sections to insert code in extracts

	18.6 Referencing split and extract files
	18.7 Customizing and replacing extracts
	18.7.1 Using markers for extract processing
	18.7.2 Customizing title text for extracts
	18.7.3 Replacing extracts with links in the parent file
	18.7.4 Specifying extracts: an example

	19 Creating HTML links
	19.1 Understanding sources of links
	19.2 Specifying link appearance
	19.2.1 Specifying link colors
	19.2.2 Specifying link class
	19.2.3 Assigning link attributes with markers
	19.2.4 Specifying link properties with macros
	19.2.5 Replacing problem characters in links
	19.2.6 Forcing link text to lowercase

	19.3 Specifying link destination
	19.3.1 Forcing links to top-of-page for selected paragraph formats
	19.3.2 Forcing all links to top-of-page
	19.3.3 Linking to an arbitrary location
	19.3.4 Providing alternate link destinations
	19.3.5 Troubleshooting bad links

	19.4 Creating jumps to particular windows for HTML
	19.5 Converting FrameMaker links to HTML
	19.5.1 Converting FrameMaker cross references to HTML
	19.5.2 Converting FrameMaker hypertext links to HTML
	19.5.3 Including ObjectID anchors as link targets

	19.6 Linking to other files and other Mif2Go projects
	19.6.1 Identifying HTML link destinations with FileIDs
	19.6.2 Retaining file paths in interfile links
	19.6.3 Enabling links to renamed or relocated files
	19.6.4 Enabling links to files in other projects
	19.6.5 Updating links between files in different projects
	19.6.6 Mapping links to text insets

	19.7 Linking to external destinations

	20 Providing navigation in HTML
	20.1 Understanding how navigation links work
	20.2 Generating trails of links
	20.2.1 Understanding trails of links
	20.2.2 Specifying whether to include trails of links
	20.2.3 Specifying what to include in trails of links
	20.2.4 Specifying heading levels for trails of links
	20.2.5 Specifying where to display trails of links

	20.3 Including local TOCs
	20.3.1 Directing Mif2Go to generate local TOCs
	20.3.2 Configuring local TOCs
	20.3.3 Positioning local TOCs in HTML topics
	20.3.4 Creating local TOCs in FrameMaker

	20.4 Creating a browse sequence
	20.4.1 Understanding how browse macros work
	20.4.2 Choosing buttons versus text links for a browse sequence
	20.4.3 Formatting browse-link labels
	20.4.4 Modifying macros <$_prev>, <$_next>, and <$_top>
	20.4.5 Understanding browse keyword scope and default values
	20.4.6 Specifying where to invoke a browse macro
	20.4.7 Considering an example of browse navigation
	20.4.8 Specifying an alternate file sequence for browse links

	21 Mapping text formats to HTML/XML
	21.1 Understanding how Mif2Go converts text
	21.2 Choosing how to map formats
	21.3 Mapping paragraph formats
	21.3.1 Assigning HTML tags and attributes to paragraph formats
	21.3.2 Converting sidehead and run-in paragraph formats
	21.3.3 Converting paragraph formats with autonumbers
	21.3.4 Including text-frame content in line
	21.3.5 Designating script paragraph formats
	21.3.6 Stripping paragraph properties
	21.3.7 Keeping or removing reference frames
	21.3.8 Deciding how to treat forced returns
	21.3.9 Providing content for empty paragraphs
	21.3.10 Eliminating empty paragraphs in text
	21.3.11 Eliminating invisible paragraphs
	21.3.12 Eliminating unwanted paragraphs

	21.4 Mapping character formats
	21.5 Assigning properties to text formats
	21.5.1 Understanding where to specify format property overrides
	21.5.2 Overriding paragraph alignment and size properties
	21.5.3 Overriding properties added by typographic elements
	21.5.4 Overriding properties specified in font tags

	21.6 Mapping special characters
	21.6.1 Understanding how Mif2Go represents characters
	21.6.2 Understanding how Mif2Go treats tabs in HTML/XML
	21.6.3 Understanding Mif2Go support for FrameMaker 8+ Unicode
	21.6.4 Converting Western European accented characters
	21.6.5 Mapping individual special characters
	21.6.6 Mapping characters in a special font
	21.6.7 Avoiding use of special characters in URIs
	21.6.8 Preventing character mapping

	21.7 Mapping fonts
	21.7.1 Specifying a default font and size
	21.7.2 Remapping fonts
	21.7.3 Mapping font sizes
	21.7.4 Including or excluding font tags
	21.7.5 Managing font tags for symbol fonts
	21.7.6 Excluding face and size attributes from font tags
	21.7.7 Accommodating browser font-rendering differences

	21.8 Managing typographic elements for HTML or XML
	21.8.1 Deciding whether to suppress typographic elements
	21.8.2 Choosing how to treat typographic elements

	21.9 Specifying text colors for HTML
	21.10 Configuring preformatted text for HTML/XML
	21.10.1 Eliminating line wraps in preformatted text
	21.10.2 Replacing tabs with spaces in preformatted text

	21.11 Converting footnotes to HTML or XML
	21.11.1 Configuring and placing footnotes
	21.11.2 Eliminating links to jump footnotes
	21.11.3 Using list tags or <div> and <p> tags for jump footnotes
	21.11.4 Formatting jump footnote text with macros

	21.12 Converting list formats to HTML
	21.12.1 Understanding the problem with HTML lists
	21.12.2 Converting list formats to HTML list styles
	21.12.3 Indenting list items
	21.12.4 Converting list formats to HTML/XML paragraphs

	22 Setting up CSS for HTML
	22.1 Deciding whether to use CSS
	22.2 Understanding how to use CSS
	22.3 Understanding how Mif2Go generates CSS
	22.4 Specifying CSS file and link options
	22.4.1 Specifying CSS options at project set-up time
	22.4.2 Specifying CSS options in a Mif2Go configuration file
	22.4.3 Designating and locating a CSS file
	22.4.4 Directing Mif2Go to generate a CSS file
	22.4.5 Understanding effects of the older Stylesheet setting

	22.5 Understanding how CSS affects other options
	22.6 Linking to alternate CSS files
	22.6.1 Selecting a CSS file at run time
	22.6.2 Changing CSS files in the middle of a document
	22.6.3 Customizing the CSS link tag
	22.6.4 Using an alternate CSS link tag for Netscape 4

	22.7 Assigning CSS classes
	22.7.1 Understanding CSS class name restrictions
	22.7.2 Mapping paragraph formats to CSS classes
	22.7.3 Mapping character formats to tags or span classes
	22.7.4 Assigning CSS classes to table formats
	22.7.5 Assigning CSS classes to text and table footnotes
	22.7.6 Assigning CSS classes based on Unicode character ranges
	22.7.7 Assigning CSS classes to FrameMaker conditions
	22.7.8 Using link format names as CSS class names
	22.7.9 Using CSS class names as tags for XML
	22.7.10 Omitting tags from CSS selectors
	22.7.11 Overriding CSS class for selected paragraphs

	22.8 Customizing CSS properties
	22.8.1 Assigning a CSS generic font family
	22.8.2 Specifying CSS <body> tag properties
	22.8.3 Specifying CSS size values and units of measurement
	22.8.4 Overriding styles in Mif2Go-generated CSS files
	22.8.5 Adjusting leading (line spacing) in CSS
	22.8.6 Preventing tags from overriding CSS properties

	23 Including graphics in HTML
	23.1 Starting with default graphics options
	23.2 Understanding graphics processing for HTML
	23.3 Locating graphics files for HTML
	23.4 Specifying options for HTML graphics
	23.4.1 Using referenced graphics without converting
	23.4.2 Specifying formats of replacement graphics
	23.4.3 Choosing a graphics conversion method
	23.4.4 Using referenced, embedded, and compound graphics
	23.4.5 Omitting graphics from HTML or XML output

	23.5 Selecting and modifying graphics
	23.5.1 Assigning properties to sets of graphics
	23.5.2 Replacing or surrounding a graphic with macro code
	23.5.3 Converting only the visible portion of a graphic
	23.5.4 Converting reference-page graphics for HTML
	23.5.5 Eliminating graphics in unanchored frames
	23.5.6 Omitting paragraph tags around graphics
	23.5.7 Retaining run-in images in otherwise empty paragraphs

	23.6 Positioning graphics in HTML output
	23.6.1 Positioning graphics anchored in empty paragraphs
	23.6.2 Aligning anchored graphics
	23.6.3 Indenting images
	23.6.4 Adding space above an image
	23.6.5 Eliminating space above or below graphics in table cells

	23.7 Specifying HTML image attributes
	23.8 Providing (or omitting) alternate text for images
	23.9 Scaling images for HTML
	23.9.1 Excluding image size attributes from HTML
	23.9.2 Adjusting image size for selected graphics
	23.9.3 Adjusting image resolution for referenced graphics
	23.9.4 Specifying image resolution for exported graphics
	23.9.5 Specifying px units for graphics sized in pixels

	23.10 Creating image maps for HTML
	23.10.1 Creating hotspots for image maps
	23.10.2 Providing alternate text for a hotspot in an image map
	23.10.3 Specifying jumps from image maps in framesets

	23.11 Supplying a background image or watermark
	23.12 Converting equations for HTML

	24 Converting tables to HTML
	24.1 Assigning properties to tables
	24.1.1 Understanding which table features can be converted
	24.1.2 Understanding precedence of assignment methods
	24.1.3 Overriding default table and cell properties and attributes

	24.2 Defining sets of tables
	24.2.1 Determining the TableID
	24.2.2 Creating table groups
	24.2.3 Using wildcards to specify table sets

	24.3 Specifying table structure
	24.3.1 Choosing the table structure model
	24.3.2 Identifying row and column groups and header cells
	24.3.3 Identifying table headers and footers

	24.4 Specifying table attributes
	24.4.1 Specifying attributes for all tables
	24.4.2 Overriding attributes for selected tables
	24.4.3 Assigning a CSS class to a table
	24.4.4 Using markers to assign attributes to tables, rows, or cells
	24.4.5 Specifying attributes for table rows
	24.4.6 Specifying attributes for table cells
	24.4.7 Eliminating automatically generated attributes
	24.4.8 Adjusting borders, cell spacing, and cell padding
	24.4.9 Determining the width of table columns
	24.4.10 Deciding what to do with empty paragraphs in table cells
	24.4.11 Using shading and color in tables

	24.5 Positioning tables, table titles, and table footnotes
	24.5.1 Indenting tables
	24.5.2 Configuring and positioning table titles
	24.5.3 Eliminating FrameMaker table title variables
	24.5.4 Positioning table footnotes

	24.6 Using macros to control table properties
	24.6.1 Invoking macros around tables
	24.6.2 Adding space before tables
	24.6.3 Adjusting space after tables
	24.6.4 Turning processing on and off around selected tables
	24.6.5 Specifying row-group, row, and cell attributes with macros
	24.6.6 Capturing table row and column counts with variables
	24.6.7 Selectively modifying table text with macros: an example

	24.7 Converting tables to paragraphs
	24.7.1 Removing table-specific tags from all tables
	24.7.2 Removing table-specific tags from selected tables
	24.7.3 Removing table-specific tags from complex tables

	25 Generating WAI markup for HTML
	25.1 Comparing Mif2Go markup methods for WAI
	25.1.1 Choosing a markup method for WAI attributes
	25.1.2 Using paragraph formats for WAI attributes
	25.1.3 Creating custom markers for WAI attributes

	25.2 Applying WAI markup to images
	25.2.1 Following WAI guidelines for images
	25.2.2 Assigning WAI image attributes with dedicated formats
	25.2.3 Assigning WAI image attributes with custom markers
	25.2.4 Assigning WAI image attributes via the Object Attributes dialog

	25.3 Applying WAI markup to links
	25.3.1 Following WAI guidelines for links
	25.3.2 Assigning WAI link attribute values with dedicated formats
	25.3.3 Assigning WAI link attribute values with custom markers

	25.4 Applying WAI markup to tables
	25.4.1 Following WAI guidelines for tables
	25.4.2 Choosing a WAI markup method for tables
	25.4.3 Providing table summary and title information
	25.4.4 Identifying table row and column information

	26 Identifying HTML table structure for WAI
	26.1 Identifying table rows and columns
	26.1.1 Developing a strategy for row and column markup
	26.1.2 Comparing scope and id/headers accessibility methods
	26.1.3 Specifying a default accessibility method
	26.1.4 Overriding the default accessibility method

	26.2 Associating table cells with header cells
	26.2.1 Specifying group properties for header cells
	26.2.2 Using paragraph formats for table-cell attributes
	26.2.3 Assigning table-cell attribute values with dedicated formats
	26.2.4 Assigning table-cell attribute values with custom markers

	27 Marking HTML table cells for WAI
	27.1 Understanding table cell settings
	27.2 Using the scope method to identify table cells
	27.3 Using the id/headers method to identify table cells
	27.3.1 Choosing an id/headers level
	27.3.2 Specifying id/headers attributes for table cells
	27.3.3 Grouping header cells for identification
	27.3.4 Column-group and row-group extent
	27.3.5 Choosing a different row-group method
	27.3.6 Using span attributes to identify rows and columns
	27.3.7 Column-span and row-span extent
	27.3.8 Identifying individual table cells by row and column
	27.3.9 Column and row extent
	27.3.10 Using span IDs with row or column IDs

	27.4 Overriding default table-cell settings
	27.5 Using ColGroup and RowGroup cells
	27.5.1 Understanding how the ColGroup property works
	27.5.2 Understanding how the RowGroup property works

	28 Working with macros
	28.1 Defining and invoking macros
	28.1.1 Defining macros
	28.1.2 Invoking a macro
	28.1.3 Nesting macros
	28.1.4 Using predefined macros

	28.2 Accessing Mif2Go macro libraries
	28.2.1 Understanding Mif2Go-supplied macro libraries
	28.2.2 Modifying Mif2Go-supplied macro definitions
	28.2.3 Storing a macro definition in a separate file
	28.2.4 Including macro definitions in your own macro library

	28.3 Using macro variables
	28.3.1 Creating and invoking macro variables
	28.3.2 Assigning values to macro variables
	28.3.3 Incrementing and decrementing macro variables
	28.3.4 Using predefined macro variables
	28.3.5 Treating FrameMaker user variables as macro variables
	28.3.6 Using some FrameMaker system variables as macro variables
	28.3.7 Creating macro variables from paragraph content

	28.4 Using multiple-value list variables
	28.4.1 Understanding list-variable syntax
	28.4.2 Assigning a value to a list-variable item
	28.4.3 Initializing list variables
	28.4.4 Using macros to process lists
	28.4.5 Using pointers to process lists
	28.4.6 Using a list instead of a conditional expression

	28.5 Accessing settings with configuration macros
	28.5.1 Understanding configuration macros and variables
	28.5.2 Determining the value of a configuration variable
	28.5.3 Deploying configuration macros

	28.6 Using expressions in macros
	28.6.1 Understanding macro expressions
	28.6.2 Understanding operands and operators
	28.6.3 Displaying expression results in output
	28.6.4 Using control structures in expressions
	28.6.5 Specifying substrings in expressions
	28.6.6 Using list variables in expressions
	28.6.7 Using indirection in expressions
	28.6.8 Removing spaces from strings: an example

	28.7 Passing a parameter to a macro
	28.8 Debugging macros
	28.9 Deploying macros and macro variables
	28.9.1 Understanding where to use macros and macro variables
	28.9.2 Invoking macros at predetermined points in output
	28.9.3 Surrounding or replacing text with code or macros
	28.9.4 Converting a dictionary-style list to an HTML table
	28.9.5 Assigning macros to graphics or tables for HTML
	28.9.6 Redefining navigation macros in HTML
	28.9.7 Using HTML Macro markers to invoke macros
	28.9.8 Implementing drop-down text with macros

	28.10 Using macros to fine-tune HTML or XML output

	29 Working with FrameMaker markers
	29.1 Using custom FrameMaker markers
	29.2 Adding custom marker types
	29.2.1 Identifying dedicated custom marker types
	29.2.2 Naming new custom marker types
	29.2.3 Understanding attribute markers
	29.2.4 Using attribute markers for HTML or XML

	29.3 Remapping marker types and hypertext commands
	29.3.1 Remapping and cloning marker types
	29.3.2 Understanding when to remap marker types
	29.3.3 Remapping FrameMaker hypertext commands

	29.4 Defining and redefining marker behavior
	29.4.1 Assigning properties to marker types
	29.4.2 Observing restrictions on redefining marker behavior
	29.4.3 Understanding examples of marker redefinition

	29.5 Suppressing markers
	29.6 Using marker property names for marker types
	29.7 Inserting code or text with markers
	29.7.1 Inserting marker content in output
	29.7.2 Surrounding marker content with code
	29.7.3 Processing marker content as text for XML/HTML/XHTML
	29.7.4 Surrounding attribute markers with code
	29.7.5 Converting custom markers to attributes
	29.7.6 Including code to be executed before a topic

	29.8 Identifying markers with variable <$$_objectid>

	30 Working with templates
	30.1 Working with configuration templates
	30.1.1 Understanding how templates are organized
	30.1.2 Understanding how templates are named
	30.1.3 Understanding how templates are chained together
	30.1.4 Understanding how macro libraries are organized

	30.2 Referencing configuration files and templates
	30.3 Including document-specific configuration files
	30.3.1 Understanding document-specific configuration files
	30.3.2 Referencing a document-specific configuration file
	30.3.3 Deciding where to keep document-specific configuration files
	30.3.4 Indicating the intended scope of a configuration file

	30.4 Including chapter-specific configuration files
	30.5 Deciding which configuration file to edit
	30.5.1 Understanding what configuration files are available
	30.5.2 Editing a project configuration file
	30.5.3 Editing a document-specific configuration file
	30.5.4 Editing an output-specific configuration file
	30.5.5 Editing a macro configuration file
	30.5.6 Indicating the intended scope of a configuration file

	30.6 Creating your own configuration templates
	30.6.1 Creating a template from a project configuration file
	30.6.2 Deciding what to include in a general configuration template
	30.6.3 Chaining configuration templates

	30.7 Applying FrameMaker conversion templates
	30.7.1 Specifying conversion-template settings
	30.7.2 Applying alternate conversion templates
	30.7.3 Changing template options
	30.7.4 Avoiding template-related disasters
	30.7.5 Troubleshooting template import problems

	31 Working with graphics
	31.1 Choosing an appropriate graphics format
	31.1.1 Graphics formats for Word documents
	31.1.2 Graphics formats for WinHelp
	31.1.3 WMF format limitations
	31.1.4 Graphics formats for HTML

	31.2 Converting and exporting graphics
	31.2.1 Converting bitmap graphics
	31.2.2 Converting vector graphics
	31.2.3 Exporting and converting embedded graphics
	31.2.4 Exporting images and creating files from OLE objects
	31.2.5 Converting graphics with FrameMaker export filters
	31.2.6 Embedding bitmap graphics in WMF for WinHelp
	31.2.7 Exporting embedded graphics imported from Word

	31.3 Replacing and relocating graphics files
	31.3.1 Changing graphics files for HTML output
	31.3.2 Changing graphics files for RTF output

	31.4 Specifying custom settings for individual graphics
	31.4.1 Overriding graphics settings with custom markers
	31.4.2 Overriding graphics settings with FrameMaker object attributes

	31.5 Controlling image appearance in RTF output
	31.5.1 Rescaling bitmap graphics
	31.5.2 Reorienting bitmap graphics
	31.5.3 Compressing bitmap graphics
	31.5.4 Positioning borders around inline graphics
	31.5.5 Mapping FrameMaker pen style patterns
	31.5.6 Converting graphic text
	31.5.7 Specifying transparency for WinHelp 4

	31.6 Converting graphics with Microsoft Word filters

	32 Working with content models
	32.1 Understanding Mif2Go content models
	32.2 Modifying or replacing a content model
	32.2.1 Obtaining a copy of a built-in content-model
	32.2.2 Generating a content model from a DTD

	32.3 Preparing a content model for use with Mif2Go
	32.4 Understanding content-model configurations
	32.4.1 Content model [Topic] settings
	32.4.2 Content model [ElementSets] settings
	32.4.3 Content model [TopicParents] settings
	32.4.4 Content model [TopicFirst] settings
	32.4.5 Content model [TopicLevels] settings

	32.5 Understanding how Mif2Go uses content models
	32.6 Inspecting and correcting element types
	32.7 Specializing or modifying DITA topic types
	32.7.1 Creating a content model for a specialized topic type
	32.7.2 Overriding settings in a DITA content model
	32.7.3 Eliminating elements from a DITA content model
	32.7.4 Overriding declarations in a DITA map content model
	32.7.5 Listing DITA topic type configuration files
	32.7.6 Locating DITA topic type configuration files
	32.7.7 Providing table structure information for DITA topic types

	32.8 Extracting content-model debug information

	33 Overriding configuration settings
	33.1 Using a different configuration for selected files
	33.1.1 Providing configuration files for individual chapters
	33.1.2 Understanding precedence of configuration settings
	33.1.3 Updating a single chapter of a FrameMaker book

	33.2 Overriding settings with markers or macros
	33.2.1 Determining the extent of a configuration override
	33.2.2 Overriding settings with configuration markers
	33.2.3 Overriding settings with macros
	33.2.4 Assigning values to configuration variables
	33.2.5 Adding a new configuration setting on the fly
	33.2.6 Assigning a macro or variable to a configuration variable
	33.2.7 Understanding fixed-key vs. variable-key settings
	33.2.8 Overriding fixed-key configuration settings
	33.2.9 Overriding variable-key configuration settings
	33.2.10 Assigning HTML table and graphic groups with overrides

	33.3 Overriding configuration settings with text

	34 Automating Mif2Go conversions
	34.1 Preparing documents for single-sourcing
	34.1.1 Using character formats to identify Help elements
	34.1.2 Using markers to add links and instructions
	34.1.3 Using conditional text to differentiate output
	34.1.4 Importing formats and conditional text settings

	34.2 Converting a single chapter of a book
	34.3 Considering ways to automate conversions
	34.4 Executing operating-system commands
	34.4.1 Specifying system commands
	34.4.2 Including macros and variables in system commands
	34.4.3 Monitoring system command execution
	34.4.4 Changing configuration settings with system commands
	34.4.5 Supplying system commands in a .bat file
	34.4.6 Supplying system commands in a macro

	34.5 Supplying run-time values for user variables
	34.5.1 Assigning an initial value to a user variable
	34.5.2 Assigning a prompt to a user variable
	34.5.3 Deciding how often to prompt for values of user variables
	34.5.4 Understanding when Mif2Go prompts for user variables
	34.5.5 Inspecting and editing values of user variables

	34.6 Supporting document review in Word
	34.7 Converting autonumbers for database systems
	34.8 Renaming output files for automated systems
	34.8.1 Understanding which files can be renamed
	34.8.2 Renaming individual output files
	34.8.3 Using custom markers to name output files
	34.8.4 Using paragraph formats to name output files
	34.8.5 Including identifiers and sequence numbers in file names

	35 Producing deliverable results
	35.1 Understanding Mif2Go pre- and post-processing
	35.2 Activating and logging production of deliverables
	35.3 Understanding path values for deliverables
	35.4 Clearing out old files before converting
	35.4.1 Specifying when to delete old files from the project directory
	35.4.2 Specifying which files to delete from the project directory
	35.4.3 Understanding when not to delete .ref and .htm files
	35.4.4 Deleting MIF files from the project directory

	35.5 Gathering additional files before converting
	35.6 Assembling files for distribution
	35.6.1 Specifying a wrap directory
	35.6.2 Emptying the wrap directory before copying
	35.6.3 Listing files to copy to the wrap directory
	35.6.4 Understanding when to use other file copy settings
	35.6.5 Understanding which files are copied from where
	35.6.6 Listing extracurricular files to put in the wrap directory

	35.7 Placing graphics files for distribution
	35.7.1 Copying referenced graphics to a distribution directory
	35.7.2 Selecting graphics to copy from arbitrary locations
	35.7.3 Deleting prior contents of the graphics destination directory
	35.7.4 Synchronizing graphics settings for HTML output
	35.7.5 Synchronizing graphics settings for RTF output

	35.8 Placing CSS or XSL files for assembly
	35.9 Gathering files for an HTML project: an example
	35.10 Gathering and processing Help-system files
	35.11 Archiving deliverables
	35.11.1 Specifying an archiving command
	35.11.2 Supplying parameters for the archiving command
	35.11.3 Specifying archive file name and optional version

	35.12 Placing deliverables in a shipping directory
	35.12.1 Specifying a shipping directory for deliverables
	35.12.2 Understanding which files are placed in the shipping directory
	35.12.3 Choosing whether to copy or move deliverables

	35.13 Postprocessing separately from converting

	36 Converting via runfm
	36.1 Designing a project for unattended operation
	36.2 Setting up FrameMaker for unattended operation
	36.3 Understanding runfm command-line syntax
	36.4 Using runfm for Mif2Go conversions
	36.4.1 Locating FrameMaker executable and files
	36.4.2 Identifying your Mif2Go project
	36.4.3 Configuring runfm output
	36.4.4 Closing FrameMaker files after conversion

	36.5 Troubleshooting runfm processes
	36.5.1 Increasing console diagnostics: runfm -diag option
	36.5.2 Capturing console diagnostics: runfm -log option
	36.5.3 Reviewing FrameMaker console messages after runfm
	36.5.4 Troubleshooting failed runfm processes
	36.5.5 Running a single Mif2Go conversion or print job
	36.5.6 Running a series of Mif2Go conversions
	36.5.7 Including runfm in a multi-step or scheduled process

	36.6 Comparing runfm with the DCL command-line filter
	36.7 Operating runfm across a network
	36.8 Using runfm for other FrameMaker plug-ins

	37 Converting via DCL
	37.1 How the DCL filter works
	37.2 Using the DCL filter
	37.2.1 Understanding where to run DCL
	37.2.2 Preparing for conversion
	37.2.3 Converting a single MIF or DCL file
	37.2.4 Converting a group of MIF or DCL files
	37.2.5 Merging ancillary Help files with DCL

	37.3 DCL command-line syntax
	37.3.1 Command-line switch -f format
	37.3.2 Command-line switch -o output
	37.3.3 Command-line argument input ...
	37.3.4 Command-line switch -v
	37.3.5 Additional command-line switches

	37.4 Command-line examples
	37.4.1 Creating a document information file
	37.4.2 Writing converted files to a different directory
	37.4.3 Converting a group of files to RTF
	37.4.4 Converting a file to HTML
	37.4.5 Converting from one DCL format to another
	37.4.6 Generating DITA output via command line

	37.5 Converting in multiple steps via DCL
	37.6 Specifying output file paths and names
	37.7 About DCL technology
	37.7.1 DCL file structure
	37.7.2 Writing DCL conversion modules

	38 Generating intermediate output
	38.1 Producing MIF with Mif2Go vs. FrameMaker
	38.2 Generating MIF output
	38.2.1 Understanding how MIF files are generated
	38.2.2 Setting up a FrameMaker MIF project
	38.2.3 Specifying which files to include in MIF output
	38.2.4 Saving FrameMaker 8 files as FrameMaker 8 MIF
	38.2.5 Saving FrameMaker 9+ files as FrameMaker 7 MIF
	38.2.6 Specifying file extensions for MIF output

	38.3 Converting to ASCII DCL
	38.3.1 Setting up an ASCII DCL project

	38.4 Generating ASCII DCL output
	38.4.1 Including generated files in ASCII DCL output
	38.4.2 Specifying type and file extension for ASCII DCL output
	38.4.3 Exporting embedded graphics via ASCII DCL output

	A WAI marker library for HTML
	A.1 How to use WAI markers
	A.2 Table markers
	A.3 Graphic markers
	A.4 Link markers

	B Distribution files
	C Document and conversion files
	C.1 Locating document and conversion files
	C.2 Identifying conversion files
	C.2.1 Conversion files created during set-up
	C.2.2 Files created during conversion
	C.2.3 Additional conversion files
	C.2.4 What not to do with conversion files

	C.3 Renaming or relocating the Mif2Go project file
	C.4 Renaming or relocating the Mif2Go FileID file
	C.5 Working with reference files for HTML or XML
	C.5.1 Understanding how reference files work
	C.5.2 Resolving forward references with a second pass
	C.5.3 Using reference files to enable links to other documents

	D Technical support for Mif2Go
	D.1 Evaluation version is different
	D.2 Things to check first
	D.2.1 Examine your conversion log file
	D.2.2 Check your Mif2Go installation
	D.2.3 Check for missing Microsoft components
	D.2.4 Check the Mif2Go User’s Guide
	D.2.5 Check path names, file names, and drive location
	D.2.6 Check for file corruption
	D.2.7 Check for broken links (HTML or XML output)
	D.2.8 Restart FrameMaker, reboot system
	D.2.9 Check your version of Mif2Go
	D.2.10 Narrow down the problem

	D.3 How to request help
	D.3.1 If the problem involves a crash
	D.3.2 Scope the problem
	D.3.3 Document the problem
	D.3.4 Package the problem
	D.3.5 Send the package to Omni Systems

	E DITA <bookmeta> template
	F Content model configuration
	RTF keyword index
	HTML/XML keyword index
	Subject index

